文档视界 最新最全的文档下载
当前位置:文档视界 › 浅析高分子材料性能与组成和结构的关系

浅析高分子材料性能与组成和结构的关系

浅析高分子材料性能与组成和结构的关系
浅析高分子材料性能与组成和结构的关系

1.6

浅析高分子材料性能与组成、结构的关系

北京工商大学教授王锡臣

一.概述

1.高分子材料及其分类:

相对分子质量超过10000的化合物称之高分子材料,又称高聚物或聚合物。高分子材料可分天然高分子(如淀粉、纤维素、蚕丝、羊毛等)和合成高分子,通常所说高分子材料指的是后者。

按其应用来分,高分子材料可分为塑料、橡胶、化纤、涂料和粘合剂五大类,有时又将塑料和橡胶合称为橡塑。由于大量新材料的不断出现,上述分类方法并非十分合理。

2.决定高分子材料性能主要因素:

(1)化学组成:

高分子材料都是通过单体聚合而成,不同单体,化学组成不同,性质自然也就不一样,如聚乙烯是由乙烯单体聚合而成,聚丙烯是由丙烯单体聚合而成的,聚氯乙烯是由氯乙烯单体聚合而成。由于单体不同,聚合物的性能也就不可能完全相同。

(2)结构:

同样的单体即化学组成完全相同,由于合成工艺不同,生成的聚合物结构即链结构或取代基空间取向不同,性能也不同。如聚乙烯中的HDPE、LDPE和LLDPE,它们的化学组成完全一样,由于分子链结构不同即直链与支链,或支链长短不同,其性能也就不同。

(3)聚集态

高分子材料是由许许多多高分子即相同的或不相同的分子以不同的方式排列或堆砌而成的聚集体称之聚体态。同一种组成和相同链结构的聚合物,由于成型加工条件不同,导致其聚集态结构不同,其性能也大不相同。高分子材料最常见的聚集态是结晶态、非结晶态,又称玻璃态和橡胶态。聚丙烯是典型的结晶态聚合物,加工工艺不同,结晶度会发生变化,结晶度越高,硬度和强度越大,但透明降低。PP双向拉伸膜之所以透明性好,主要原因是由于双向拉伸后降低了结晶度,使聚集态发生了变化的结果。

(4)分子量与分子量分布(相对分子质量与相对分子质量分布):

对于高分子材料来说,分子量大小将直接影响力学性能,如聚乙烯虽然都是由乙烯单体聚合而成,分子量不同,力学性能不同,分子量越大其硬度和强度也就越好。如PE蜡,分子量一般为500~5000之间,几乎无任何力学性能,只能用作分散剂或润滑剂。而超高分子量聚乙烯,其分子量一般为70~120万,其强度都超过普通的工程塑料。表-1列出LDPE性能与相对分子质量的关系。

性能与数均相对分子质量()的关系

×

高分子材料实际上是不同分子量的混合体,任何高分子材料都是由同一种组成而分子量却不相同的化合物构成。通常所说的分子量大小是指的平均分子量。分子量分布这一专用述语是用来表示该聚合物中各种分子量大小的跨度。分子量分布越窄即跨度越小,同样平均分子量的高分子材料其耐低温脆折性和韧性越好,而耐长期负荷变形和耐环境应力开裂性下降。 3. 表征高分子材料性能常用的两个物理量: (1)密度:

单位体积物质的质量称之密度,其单位一般用g/cm 3表示。对于高分子材料来说,密度大小表示高分子链之间接近的程度,或者说密堆积的程度。同一种高分子材料,密度大小将表示支链化的程度。支链化程度越小,密度越大,材料的硬度强度越好,而韧性降低。表-2列出聚乙烯性能与密度的关系。

从表-2中所列数据可以看出,断裂伸长率和缺口冲击强度之间成正比关系,而与硬度和拉伸强度则成反比关系。这种规律几乎适用于所有高分子材料。断裂伸长率和缺口冲击强度越大,材料的韧性越好,而强度相反越小。 (2)熔体流动速率—MFR :

熔体流动速率(MFR )是指在规定的试验条件下,10min 内挤出的热塑性高分子材料的量(见GB/T2035-1996),其单位为g/10min 。MFR 是通过熔体流动速率测定仪测得的。不同的高分子材料其测定条件并不相同,如PE 是在190±5℃、21.2N 负荷作用下测得,PP 是在230±5℃、21.2N 负荷作用下测得。

MFR 是高分子材料分子量大小另一种表征形式,MFR 越大高分子材料的分子量越小。对于LDPE 来说,MFR 与数均分子量( )之间具有以下定量关系:

MFR L 是表征高分子材料熔体表观粘度(η)大小的物理量,二者的关系如下式所示:

以上两个关系式只是近似定量关系式,主要适用高MFR 的高分子材料。从两关系式可以看出,MFR 越大, 越小,η也越小,材料的加工流动性越好。 4. 选择载体树脂的理论依据:

载体树脂是一种用来作填充料(填充母粒和色母粒)的树脂,顾名思义是借助于该树脂的作用将填充料分散到塑料制品中。为此,载体树脂必须具备以下两个条件: (1)MFR 要大:

由以上讨论所知MFR 越大,树脂的分子量( )越小,熔体粘度(η)也就越小,熔体的

流动性越好,对无机粉表面包覆越充分,最好能使无机粉每一颗原生粒子的表面都裹上一层载体树脂膜,才能使填料均匀地分散到塑料制品中。

载体树脂的MFR最好为10~20,不同用途的填充母粒应有所不同。用作膜的填充母粒尤其是流延膜最好选MFR为16~20的树脂。选用两种不同MFR的树脂复配使用比单一树脂的效果更好。复配后的混合树脂的MFR可以通过图-1近似求得。

图-1 两种不同PE混合后MFR

图-1是一个示意图。图中的A点表示60份MFR为20的PE与40份MFR为10.5的PE混合物的MFR,为16。B点表示40份MFR为20的PE与60份MFR为5.6的PE混合物的MFR,为10.8。C点表示80份MFR为14份的PE与20份MFR为4的PE混合物的MFR,为11.6。(2)载体树脂与制品中的基体树脂相容性要好

填充母粒中的载体树脂的功能是将无机粉运载到制品基体树脂中,并能与基体树脂形成一个均匀体系。为此,载体树脂与基体树脂必须相容性好。判断树脂间的相容性有两种方法,即溶解度参数法和内聚能(或内聚能密度)法。表-3列出常见几种聚合物的溶解度参数。表-4列出聚合物中常见基团内聚能。聚合物内聚能等于分子中各种基团内聚能总和,所以从基团内聚能大小可以判断不同聚合物之间内聚能的差异。

溶解度参数法只适用于非极性聚合物,如PE 、PP 、PS 等。

凡是两种聚合物溶解度参数之差的绝对值小于0.5,二者相容,否则不相容。

内聚能法适用于所有聚合物,聚合物内聚能相同或相近、相容,符合有机物相似相溶的基本规则。

二. 聚乙烯性能与结构的关系

聚乙烯的合成单体都是乙烯,其组成相同。由于合成方法不同,聚乙烯的结构有所不同,其性能也不完全相同。

1. 高压聚乙烯(低密度聚乙烯)——LDPE :

LDPE 是在微量氧的存在下,通过高温(200℃)高压(1000大气压)聚合而成。从聚合机理来说属于自由基聚合,易引起链转移,所以支链比较多,每1000个C 的主链上具有15~30个支链,而且支链比较长,链与链之间距离较大,密度小(0.910~0.925g/cm 3),故又称之低密度聚乙烯。

2. 低压聚乙烯(高密度聚乙烯)——

HDPE

HDPE 是在齐格勒—纳塔催化剂作用下,在65~95℃,1~14个大气压下聚合而成。从聚合机理来说属于阴离子配位聚合,很少发生链转移,支链很少,而且很短,每1000个C 主链上仅有0.5~3个支链,分子量较大, 为7~30×104,几乎是LDPE 的2倍以上。由于支链少,而且短,分子链之间靠的比较近,密度大(0.940~0.965 g/cm 3),故又称之高密度聚乙烯。 3. 线型低密度聚乙烯——LLDPE

LLDPE 合成工艺基本上与HDPE 相同,所不同的是所用单体除乙烯外,还有小部分α-烯烃如1-丁烯、丙烯、1-己烯、1-辛烯等。实际上LLDPE 是乙烯与α-烯烃共聚物。所谓线型指的是两种单体在聚合过程中头尾相接而成,并非无支链。虽然也有许多支链,但支链的长度仅仅是α-烯烃聚合后余下的部分,分子链之间距离较LDPE 小,密度比LLDPE 大,但比HDPE 小。

三种聚乙烯从主链组成来看,都是以—CH 2—为主体的链状高分子化合物。所不同的只是结构上的差异即支链化程度和支链的长短不同。如图-2所示。

图-2 三种PE 分子链结构示意图

尽管三种PE 只是在链结构上有所差异,却直接影响到分子链间的距离,进而影响到材料的密度,正如表-2所示,材料的密度主要由链结构所决定。而密度又直接影响材料性能,所以链结构不同性能自然也就不同。 4. 茂金属聚乙烯——mPE

mPE 是以金属茂(MAO 即甲基铝氧化物)为催化剂,用乙烯丙烯为原料,聚合而成。实际上是乙烯、丙烯共聚物。与普通乙烯丙烯共聚物最大区别是:由于金属茂催化剂的强定向作用,使分子链中的丙烯单体和单体上的甲基呈有序排列,而且分子量分布窄。

正由于mPE 上述结构特征,使mPE 具有如下优异特性: (1)韧性好、刚性大、透明性和清洁度比普通PE 都好; (2)熔体强度大,不易发生破裂,适合加工超薄膜制品;

(3)熔体粘度大,热稳定性好,315℃以上才开始分解,可以在288~315℃下加工生产复合膜,膜与膜间粘合力大,复合膜强度好。

(4)低温热封性好,比LDPE 低18℃,比LLDPE 低26℃,比EV A 低5℃,是至今低温热封性能最好的树脂,可广泛应用于食品包装。

三. 聚丙烯性能与结构关系:

工业上的聚丙烯(PP )有均聚物和共聚物两大类型。 1. PP 均聚物:

通常所用的PP 都是PP 均聚物。它是以丙烯为原料在齐格勒——纳塔催化剂作用下,通过阴离子定向聚合而成。市场上销售的有粉状和粒状两种类型产品,后者是通过二次造粒制得的。

与PE 相比PP 最大区别是C 链上含有甲基,甲基的存在使分子链间距增大,密度减小,PP 在所有树脂中密度最小(0.90~0.91g/cm 3)。聚丙烯C 链的甲基还能使叔C 原子活化,使PP 不稳定,在空气氧或阳光或加热情况下容易分解;所以PP 在加工中应加入一定量稳定剂(粒状PP 内已含有稳定剂)。PP C 链上的甲基在空间取向不同,PP 可分等规PP 、间规PP 和无规PP 三种:

等规PP 和间规PP C 链上的甲基在空间取向是规整有序的,或取向一致,或间隔取向。而无规PP C 链上的甲基在空间取向无规律性,随意排布。也正由于这结构上的微少差异,使其性能差别很大,等规PP 和间规PP 具有很好的力学性能(市场所售PP 为等规PP ),而无规PP 呈蜡状物,基本上无力学性能。

等规PP 与PE 在力学性能上最大区别是具有强的力的异向性。PP 沿着C 链方向拉伸,即纵

间规

PP

等规

PP

无规PP

向拉伸强度非常好,而沿着垂直C链方向拉伸则强度很弱。其原因同样是甲基的存的,而且是规整的排列,使PP分子链无法靠近,分子链之间是靠范德华力相连接,而范氏力与分子间距离成反比。所以PP分子链间的范氏力远远小于PE。

从上述讨论,可以看出,PP的几乎所有性能都与甲基和甲基的空间排布方式有关,PP与PE 性能上的差异完全由甲基的存在所决定。

2.PP共聚物:

PP共聚物主要是丙烯与乙烯共聚物。除前面介绍的mPE外,丙烯与乙烯共聚物主要有以下几种。

(1)乙-丙橡胶:

PP共聚物的性能与组成具有密切关系,当共聚物中丙烯含量为5~10%时,与PE相比,除韧性提高外,其它性能基本与PE相同。当丙烯含量为40~70%时,则完全成为一种无定形的橡胶状弹性体,称之为乙-丙橡胶。主要用作其它树脂改性剂,可提高材料的韧性和抗冲击强度。当丙烯含量大于80%时,则性能趋向PP,但比PP性能好。

(2)PP无规共聚物:

PP无规共聚物中,乙烯含量一般不超过20%。所谓无规是指乙烯单体在无规共聚物分子链中呈无规则排列,乙烯可起到阻止共聚物结晶作用,使结晶度降低,玻璃化温度降低,但透明性、柔软性和光泽度提高。PP无规共聚物主要用来制作耐寒性薄膜、低温热封性包装膜和透明性中空制品。

(3)PP嵌段共聚物

PP嵌段共聚物的分子链中乙烯和丙烯组分呈嵌段式排布。嵌段共聚物中乙烯含量为5~20%。与PP无规共聚物相比,软化温度降低很小,而脆化温度却提高很大。PP嵌段共聚物与PP等规均聚物相比,在刚性基本保持不变的情况下,耐低温性、韧性和抗冲击性却得到较大提高。

PP嵌段共聚物与HDPE相比,耐热性、抗应力开裂性、抗蠕变性和表面硬度都获得提高,而收缩率降低。PP嵌段共聚物主要用于耐冲击的聚丙烯制品,如啤酒瓶等各种容器,管材、洗衣机内缸等家电制品。

从上述PP共聚物的讨论中,可以进一步证明,高分子材料的性能与其组成和结构有着密切关系。

四.苯乙烯系列聚合物性能与组成关系:

1.通用级聚苯乙烯——PS

PS是苯乙烯的均聚物(),是一种线型无定型热塑性树脂,是苯乙烯系列聚合物中主要品种。

PS质轻坚硬,密度为1.05g/cm3,无色、透明,具有较好刚性、透明性和表面光泽性,冲击强度小,耐磨性差,软化温度为80~90℃,热容低,流动性好,易加工成型。主要用于日用小商品、包装、建材和家用电器零部件等。其中用量较大的是发泡制品,即EPS制品。

EPS是在合成PS过程中,加入5~8%的低沸兰烃类发泡剂,如石油醚、丙烷、丁烷和戊烷等。为了提高发泡效果,还加入少量交联剂、阻燃剂和孔尺寸控制剂等。

2.抗冲击聚苯乙烯——HIPS

HIPS是苯乙烯与丁二烯的共聚物,结构式为:

PS性能上最大缺陷是性脆、韧性小,抗冲击性差。为了克服它的不足,在合成过程中加入6~8%的聚丁二烯橡胶,实际上HIPS是聚丁二烯接枝苯乙烯的共聚物。由于聚丁二烯是一种弹性体,它的引入可以明显改善PS的韧性。HIPS的性能与聚丁二烯含量有密切关系,含量增加韧性增大,冲击强度增加,但拉伸强度和弯曲强度下降。一般控制聚丁二烯含量为6~8%为宜。

HIPS可以替代ABS树脂制作日用器皿、家电部件和办公用品等。

3.丙烯腈-丁二烯-苯乙烯共聚物——ABS

ABS树脂是目前价格适中,应用范围较广,性能较好的一种工程塑料。它是在PS和HIPS 的基础上设计发明的。其结构式为:

ABS是一种三组分组成的聚合物(即三元共聚物),聚苯乙烯具有较好的光泽性、透明性和加工性,聚丁二烯为橡胶弹性体,具有良好韧性和抗冲击性,聚丙烯腈(俗称人造毛)具有高度化学稳定性、耐油性和表面硬度,三者结合为一体,可充分发挥各自的优势,成为一种综合性能优异的高分子材料。

ABS树脂为无定形聚合物,熔融温度为221~245℃,热分解温度为270℃,耐热性好,具有极好的低温抗冲击性能、尺寸稳定性、电性能、耐磨性和成型加工性。可广泛用于电子电器、仪器仪表、汽车零部件、家用电器和办公用品等。由于分子中含有氰基(—CN),易吸潮水解,所以加工之前必须充分干燥。

4.苯乙烯系列其它聚合物:

(1)苯乙烯-丙烯腈共聚物——AS树脂

AS树脂是由丙烯腈与苯乙烯共聚而成,结构式为:

AS树脂与PS相比,具有更好的硬度、刚性、耐热性、耐溶剂性。AS树脂的性能取决于丙烯腈的含量,随之丙烯腈含量增加,熔体粘度和强度提高,防渗透性、耐化学品性和抗紫外线性能也有所提高,但热稳定性降低。一般丙烯腈含量为20~35%。

AS树脂主要用于制作仪表盘、家电零部件、日用品、医疗器材等。

(2)苯乙烯-丁二烯共聚物——K树脂

K树脂是由苯乙烯和丁二烯共聚而成,其结构式为:

K树脂中苯乙烯含量为75%左右。与AS相比,分子中的丙烯腈换成具有橡胶性能的丁二烯,所以K树脂具有良好耐冲击性、挠屈性能好、柔软而有弹性,透明性好。

K树脂可经受γ射线辐照消毒处理,适宜用于高级食品和药物的包装,还被大量用于透明罩、合页式盒子、玩具、装饰品、医疗器材和办公用品等。

(3)透明ABS——MBS:

MBS 是由甲基丙烯酸甲酯、丁二烯和苯乙烯共聚而成,其结构式为:

甲基丙烯酸甲酯是合成有机玻璃的单体,将ABS 分子中的丙烯腈换成甲基丙烯酸甲酯,便可制得高透明产品。MBS 具有类似ABS 力学性能,但透明度都明显提高,厚度为3.2mm 的制品透光率可达85~90%,雾度6%,抗冲击性、刚性和耐寒性均很好,在-40℃下仍有较好的韧性,耐紫外光性能也优于ABS 。可广泛用于制作透明管材、电器设备、汽车零部件、仪器仪表透明罩和防尘罩、文具、矿灯罩和各种装饰品。

从上述对苯乙烯系列聚合物性能与组成关系的讨论中,再一次证明高分子材料的性能与组成结构的依赖关系。高分子材料分子中组成或结构任何微小变化,都会使材料的性能发生改变。这正是高分子材料分子设计的理论依据,根据这一理论依据,将会不断研究开发出更多性能优异的新材料。

2006年5月14日

高聚物结构与性能的答案

高聚物结构与性能 试题参考答案 一、名词解释(2.5×12 =30分) 构型:由化学键决定的原子基团间的空间排列方式 分子链柔顺性:高分子链能够改变其构型的性质 高斯链:又名高斯线团,是末端距分布符合Gauss分布函数的线团。 熔限:高分子晶体的熔融发生在一个温度范围内,称为熔限。 多分散指数:描述高分子的分子量多分散性大小的参数,通常是Mw/Mn或Mz/Mw 取向:高分子的链段、整链或其晶体结构沿外力方向所作的优先排列。 粘弹性:高分子固体的力学性质兼具纯弹性和纯粘性的特征,称为粘弹性。 溶度参数:定义为(CED)1/2,用于指导非极性聚合物的溶剂选择。 冷拉:高分子材料在拉伸条件下,发生应力屈服,出现细颈、细颈扩展所导致的大形变行为。 增韧:即增加聚合物材料韧性,所采用的技术路线有弹性体和刚性粒子增韧力学损耗:高分子材料在动态力学条件下,应力与应变出现滞后所导致的机械能损耗 银纹:由于应力或环境因素的影响,聚合物表面所产生的银白色条纹 二、简答题(8×5=40 分) 1.分别写出顺丁橡胶、聚丙烯、聚异丁烯、聚甲醛、聚氯乙烯的结构式,比较其玻璃化温度的高低,并说明原因。

2.高聚物熔体的流动机理是什么?其流动行为上有什么特征? 答:流动机理:高分子链的重心移动采用高分子链段的协同跃迁的方式完成,通常称为“蠕动”。 熔体流动的特征有三: 1,高粘度,缘自高分子巨大的分子量; 2,剪切变稀:高分子链受剪切作用时,发生构象变化。 3,弹性效应:高分子流动变形中包含可逆的构象变化,导致其表现出Barus效应、爬杆效应等现象。 3.何为θ溶液?θ条件下,Huggins参数取何值?此时溶液中高分子链的构象有何特征? 答:处于θ状态,即高分子链段间作用等于高分子链段与溶剂分子作用的状态的高分子溶液,称为θ溶液。 此时,Huggins参数为1/2;溶液中高分子链的构象与同温度条件下的高聚物本体的非晶区构象相同。 4.请说明聚乙烯、尼龙-66和交联顺丁橡胶溶解行为上的差异。 答:PE:非极性、结晶性,需要在高温下采用非极性溶剂溶解; Nylon-66:极性、结晶性,常温下采用极性溶剂溶解; 交联顺丁:只有熔胀过程,而不溶解 5.试从结晶热力学的角度分析天然橡胶的拉伸结晶现象。 答:天然胶NR,主体成分是顺式聚异戊二烯,具有规整性,可以结晶。 晶体的熔点:Tm=△H / △S。由于NR柔顺性大,结晶中的熵变巨大,导致熔点低,常温下不能结晶; 拉伸条件下,NR分子链的构象变化,结晶的熵变减小,使熔点高于室温,所以NR在拉伸条件下可以结晶。

聚合物的相容性-高分子物理化学(高聚物结构和性能)论文

聚合物的相容性 高莉丽PB02206235 摘要:从共混来研究聚合物的基本特点,相容性的表征方法和测定方法。 关键词:相容,共聚,溶度参数,Huggins-Flory相互作用参数。 聚合物共混物是指两种或两种以上聚合物的混合物,正如合金一样,共混高聚物可以使材料得到单一的等聚物所不具有的性能,因此其合成具有很重要的意义。聚合物之间的相容性是选择适宜共混方法的重要依据,也是决定共混物形态结构和性能的关键因素。以下就聚合物之间相容性的基本特点,相容性的表征参数和测定方法进行简单的阐述。 从热力学角度来看,聚合物的相容性就是聚合物之间的相互溶解性,是指两种聚合物形成均相体系的能力。若两种聚合物可以任意比例形成分子水平均匀的均相体系,则是完全相容;如硝基纤维素-聚丙烯酸的甲脂体系。若是两种聚合物仅在一定的组成范围内才能形成稳定的均相体系,则是部分相容。如部分相容性很小,则为不相容,如聚苯乙烯-聚丁二烯体系。 相容与否决定于混合物的混合过程中的自由能变化是否小于0。即要求△G=△H-T△S<0.对于聚合物的混合,由于高分子的分子量很大,混合时熵的变化很小,而高分子-高分子混合过程一般都是吸热过程,即△H为正值,因此要满足△G<0是困难的。△G往往是正的,因而绝大多数共混高聚物都不能达到分子水平的混合,或者是不相容的,形成非均相体系。但共混高聚物在某一温度范围内能相容,像高分子溶液一样,有溶解度曲线,具有最高临界相容温度(UCST)和最低临界相容温度(LCST),这与小分子共存体系存在最低沸点和最高沸点类似。大部分聚合物共混体系具有最低临界相容温度,这是聚合物之间相容性的一个重要特点。 还应指出,聚合物之间的相容性还与分子量的分布有关。一般,平均分子量越大,聚合物之间的相容性就越小。 以上定性地描述了影响相容性的一些因素,那么在实际中如何判断聚合物之间的相容性呢?最常用的判据是溶度参数和Huggins-Flory相互作用参数。 1.溶度参数 对于非极性分子体系,混合过程无热效应或吸热。由Hildebrand的推导,混合焓 △Hm =Vm(∑12/1-∑22/1)2&1&2 ∑1,∑2分别为溶剂与高聚物的内聚能密度,&1,&2分别为溶剂与高聚物的体积分数,Vm为混合后的总体积。 定义溶度参数δ=∑2/1,则上式可写为: △Hm =Vm(δ1-δ2)2&1&2 当δ1与δ2越接近,则△H越小,△G越小,越有利于相容,据此可以根据溶度参数来选择聚合物的溶剂,但以上溶度参数仅考虑了分子之间的色散力,仅适用于非极性分子的情况。当聚合物之间有强的极性作用或氢键时上述规则不适用。鉴于这种情况,采用三维溶度参数。即假定液体的蒸发能为色散力、偶极力和氢键三种力的贡献,这三种力对蒸发能的贡献分别为Ea, Ep和Ed。即 E=Ea+Ep+Ed.于是有:δ2=δ2 a +δ2 p +δ2 d 仅当两种聚合物的δa,δp和δn都分别相近是才能很好地溶解。如PVC的δ值与氯仿和四氢呋喃的δ值都很相近,但PVC与氯仿的δp和δn相差较大,所以两者不相容,PVC与四氢呋喃的δp,δa,δn都相近,所以可以很好地相容。 2 Huggins-Flory作用参数Χ1,2

高聚物结构与性能

1.聚合物表面改性 聚合物表面改性方法可以分为以下几种:化学改性、光化学改性、表面改性剂改性、力化学处理、火焰处理与热处理、偶联剂改性、辐照与等离子体表面改性。 (1)化学改性是通过化学手段对聚合物表面进行改性处理,其具体方法包括化学氧化法、化学浸蚀法、化学法表面接枝等。 化学氧化法是通过氧化反应改变聚合物表面活性。常用的氧化体系有:氯酸-硫酸系、高锰酸-硫酸系、无水铬酸-四氯乙烷系、铬酸-醋酸系、重铬酸-硫酸系及硫代硫酸铵-硝酸银系等,其中以后两种体系最为常用。 化学浸蚀法是用溶剂清洗可除去聚烯烃表面的弱边界层,例如通过用脱脂棉蘸取有机溶剂,反复擦拭聚合物表面多次等。 聚合物表面接枝,是通过在表面生长出一层新的有特殊性能的接枝聚合物层,从而达到显著的表面改性效果。 (2)光化学改性主要包括光照射反应、光接枝反应。 光照射反应是利用可见光或紫外光直接照射聚合物表面引起化学反应,如链裂解、交联和氧化等,从而提高了表面张力。 光接枝反应就是利用紫外光引发单体在聚合物表面进行的接枝反应。 (3)表面改性剂改性 采用将聚合物表面改性剂与聚合物共混的方式是一种简单的改性办法,它只需要在成型加工前将改性剂混到聚合物中,加工成型后,改性剂分子迁移到聚合物材料的表面,从而达到改善聚合物表面性能的目的。 (4)力化学处理是针对聚乙烯、聚丙烯等高分子材料而提出来的一种表面处理和粘接方法,该方法主要是对涂有胶的被粘材料表面进行摩擦,通过力化学作用,使胶黏剂分子与材料表面产生化学键结合,从而大大提高了接头的胶接强度。力化学粘接主要是通过外力作用下高分子键产生断裂而发生化学反应,包括力降解、力化学交联、力化学接枝和嵌段共聚等。(5)火焰处理就是在特别的灯头上,用可燃气体的热氧化焰对聚合物表面进行瞬时处理,使其表面发生氧化反应而达到表面改性的效果。热处理是将聚合物暴露在热空气中,使其表面氧化而引入含氧基团。 (6)偶联剂是一种同时具有能分别与无机物和有机物反应的两种性质不同官能团的低分子化合物。其分子结构最大的特点是分子中含有化学性质不相同的两个基团,一个基团的性质亲无机物,易于与无机物表面起化学反应;另一个基团亲有机物,能与聚合物起化学反应,生成化学键,或者能互相融合在一起。偶联剂主要包括硅烷偶联剂、钛酸酯偶联剂两大类,其作用机理同表面活性剂的改性机理相同。 (7)辐照改性是聚合物利用电离辐射(直接或间接的导致分子的激发和电离)来诱发一些物理化学变化,从而达到改性的目的。等离子体表面改性是通过适当选择形成等离子体的气体种类和等离子体化条件,对高分子表面层的化学结构或物理结构进行有目的的改性。2.哪些物质能形成液晶,判断、表征 形成液晶物质的条件: (1)具有刚性的分子结构。 (2)分子的长宽比。棒状分子长宽比>4左右的物质才能形成液晶态;盘状分子轴比<1/4左右的物质才能呈现液晶态。 (3)具有在液态下维持分子的某种有序排列所必需的凝聚力。这种凝聚力通常是与结构中的强极性基团、高度可极化基团、氢键等相联系的。 液晶相的判断:各种液晶相主要是通过它们各自的光学形态即织构来识别的,即在正交偏光显微镜下可观察到各种不同的由双折射产生的光学图像,这些图像是由“畴”和向错构成的。

高分子结构与性能精华版

第一章链结构 1聚合物:是不同聚合度分子的聚集体,是指宏观的物体。而高聚物指分子量很高的聚合物,属聚合物的一部分。高分子、大分子:单个的孤立分子,由许多小分子单体聚合而成。 2.物理缠结:无数根高分子链共享一个扩张体积, 链与链间互相围绕穿透,运动受到缠结点的限制。产生物理缠结的条件:1. 刚性分子链不发生物理缠结;2. M(分子量)大于M c (临界分子量) ,M小于M c不发生物理缠结。化学交联:高分子链之间通过化学键或链段连接成一个空间网状的结构,可限制高分子链的在轮廓方向的运动。。 3高分子链以不同程度蜷曲的特性称为柔性。两个可旋转单键之间的一段链,称为链段。链段是分子链上最小的独立运动单元。链段长度b愈短,柔性愈好。 4分子构造:一维、合成高分子多为线形,如HDPE、PS、PVC、POM;二维、环形高分子;三维、三维交联高分子、?-环糊精、纳米管。 5支化高分子:无规(树状)、疏形和星形。无规、不同长度的支链沿着主链无规分布。如LDPE。疏形、一些线性链沿着主链以较短的间隔排列而成。如苯乙烯采用阴离子聚合。星形、从一个核伸出三个或多个臂(支链)的高分子。如星形支链聚苯乙烯。 6链结构鉴别:红外光谱与拉曼光谱区别:红外活性与振动中偶极矩变化有关,而拉曼活性与振动中诱导偶极矩变化有关。红外光谱为吸收光谱,拉曼光谱为散射光谱。红外光谱鉴别分子中存在的基团、分子结构的形状、双键的位置以及顺、反异构等结构特征。拉曼光谱在表征高分子链的碳-碳骨架结构上较为有效,也可测定晶态聚合物的结晶度和取向度。核磁共振谱研究共聚物中共聚体的化学结构较有效,核磁共振发法是研究高聚物链内单个原子周围环境最有效的结构研究方法,共振吸收强度比例于参加共振吸收核的数目。7超支化聚合物的性质1低粘度较低的粘度意味着其分子间链缠结较少。2较好的溶解性3热稳定性和化学反应性。 第二章高聚物的凝聚态结构 1高聚物非晶态指非晶高聚物的玻璃态,高弹态以及所有高聚物的熔融态。从分子结构角度看,包括:1分子链化学结构的规格性很差,以致根本不能形成结晶;2链结构具有一定的规整性,可以形成结晶。但在通常条件下结晶速率太低,以致得不到可观的结晶PC、PET;3链结构虽然具有规整性,但因分子链扭折不易结晶,常温下呈现高弹态结构,低温时才能形成可观的结晶。 2非晶态结构模型:单相无规律团模型,每个链分子形成无规线团,其直径正比于分子中链段数的平方根。不同分子链有较多的相互贯穿,每个线团内的其余空而均为相邻分子链所占有,在同一分子链以及不同分子链的链段之间存在着不同程度的缠结。局部有序模型:大分子区域模型,该模型认为:非晶态高聚物中存在一个―区域‖,其分子链有相当大的一部分链段集中于此―区域‖内,―区域‖内的链段密度是均匀分布的,不服从高斯分布。―区域‖主要是由同一种分子链的链段所组成,很少有不同分子链之间的相互贯穿和缠结。―区域‖中的有些链段可以横向有序排列,形成某种相对有序区。折叠链缨束粒子模型(两相模型)包括粒子相(有序区、粒界区)和粒间相。 3高聚物晶体结构特点:1、晶体中的每根分子链按照能量最小的原则采取一种特定的构象,由于分子间作用力使之密堆排列,分子链轴恒与一根晶胞主轴相平行。2、分子链内原子的共价键连接使得结晶时分子链段不能自由运动妨碍其规整堆砌排列,因此在高聚物晶体中常常有许多畸变的晶格。3、在高聚物晶体的晶胞中与分子链轴相垂直的方向有独立的分子链,而沿分子链轴方向上只包含分子链的链节,即晶胞中的结构单元是分子链中的化学重复单元。 4球晶是一个三维球形对称生长,含有结晶及非晶部分的多晶聚集体。球晶生长过程:当成核后球晶在生长过程中,亚结构单元沿球晶的半径方向向外生长,同时不断产生小角度的分叉以填补不断增加的空间,一直长到球晶的边缘为止;另一方面不断将小分子添加物,不结晶成分(如无规立构)以及来不及结晶的分子链或链段排斥到片晶、片晶束或球晶之间。 5黑十字消光成因:一束自然光通过起偏镜后变成偏正光,使其振动都在同一方向上。一束偏振光通过球晶时,发生双折射,分成两束电矢量相互垂直的偏振光,这两束光的电矢量分别平行和垂直于球晶半径方向。由于两个方向的折射率不同,两束光通过样品的速度是不等的,必然产生一定的相位差而发生干涉现象。结果,通过球晶一部分区域的光线可以通过与起偏镜处于正交位置的检偏镜,另一部分的光线不能通过检偏镜,最后形成亮暗区域。 6球晶消光环的成因:片晶的协同扭曲造成的。随着晶片的扭曲,微晶的位置将发生周期性的变化,透过偏光镜的情况随之发生周期性变化。 7球晶的形态与分子量关系:分子量越高,晶核生长速度越快;分子量越低,晶核生长速度越快慢。分子量越高,晶体生长速度越慢;分子量越低,晶体生长速度越快。分子量越高,球晶中片层相互缠结越显著;分子量越低,则相反。低温利于成核,高温利于生长。8附生结晶:一种结晶物质在另一种晶体基底上的取向结晶,是一种表面诱导结晶现象。(1)聚合物在聚合物基底上的附生结晶,①聚合物均相附生结晶(串晶)②聚合物异相附生结晶(穿晶)(2) 聚合物附生结晶对材料力学性能的影响:协调效应明显,力学性能提高聚合物附生晶体间存在强的相互作用;异相附生结晶中的附生晶体和基底的分子链轴方向成一定角度交叉取向结构对力学性能产生协调效应。 9晶态结构研究手段:POM宏观形态,线生长速度;TEM片晶形态;AFM微观形态;SAXS片晶厚度,片晶取向;W AXD结晶度,晶型,晶胞参数,链取向;DSC结晶度,总体结晶动力学。 10在受限条件下结晶,膜越薄,取向程度越大,球晶被拉长的程度越明显,最后成纤维结构。

高分子材料的结构特点和性能精选. - 副本

高分子材料是由相对分子质量比一般有机化合物高得多的高分子化合物为主要成分制成的物质。一般有机化合物的相对分子质量只有几十到几百,高分子化合物是通过小分子单体聚合而成的相对分子质量高达上万甚至上百万的聚合物。巨大的分子质量赋予这类有机高分子以崭新的物理、化学性质:可以压延成膜;可以纺制成纤维;可以挤铸或模压成各种形状的构件;可以产生强大的粘结能力;可以产生巨大的弹性形变;并具有质轻、绝缘、高强、耐热、耐腐蚀、自润滑等许多独特的性能。于是人们将它制成塑料、橡胶、纤维、复合材料、胶粘剂、涂料等一系列性能优异、丰富多彩的制品,使其成为当今工农业生产各部门、科学研究各领域、人类衣食住行各个环节不可缺少、无法替代的材料。 高分子材料的性能是其内部结构和分子运动的具体反映。掌握高分子材料的结构与性能的关系,为正确选择、合理使用高分子材料,改善现有高分子材料的性能,合成具有指定性能的高分子材料提供可靠 的依据。 高分子材料的高分子链通常是由103~105个结构单元组成,高分子链结构和许许多多高分子链聚在一起的聚集态结构形成了高分子材料的特殊结构。因而高分子材料除具有低分子化合物所具有的结构特征(如同分异构体、几何结构、旋转异构)外,还具有许多特殊的结构特点。高分子结构通常分为链结构和聚集态结构两个部分。链结构是指单个高分子化合物分子的结构和形态,所以链结构又可分为近程和远程结构。近程结构属于化学结构,也称一级结构,包括链中原子的种类和排列、取代基和端基的种类、结构单元的排列顺序、支链类型和长度等。远程结构是指分子的尺寸、形态,链的柔顺性以及分子在环境中的构象,也称二级结构。聚集态结构是指高聚物材料整体的内部结构,包括晶体结构、非晶态结构、取向态结构、液晶态结构等有关高聚物材料中分子的堆积情况,统称为三级结构。 1. 近程结构 (1) 高分子链的组成 高分子是链状结构,高分子链是由单体通过加聚或缩聚反应连接而成的链状分子。高分子链的组成是指构成大分子链的化学成分、结构单元的排列顺序、分子链的几何形状、高聚物分子质量及其分布。 高分子链的化学成份及端基的化学性质对聚合物的性质都有影响。通常主要是指有机高分子化合物,它是由碳-碳主链或由碳与氧、氮或硫等元素形成主链的高聚物,即均链高聚物或杂链高聚物。 高密度聚乙烯(HDPE)结构为-[CH2CH2]n-,是高分子中分子结构最为简单的一种,它的单体是乙烯,重复单元即结构单元为CH2CH2 ,称为链节,n为链节数,亦为聚合度。聚合物为链节相同,集合度不同的混合物,这种现象叫做聚合物分子量的多分散性。 聚合物中高分子链以何种方式相连接对聚合物的性能有比较明显的影响。对于结构完全对称的单体(如乙烯、四氟乙烯),只有一种连接方式,然而对于CH2=CHX或CH2=CHX2类单体,由于其结构不对称,形成高分子链时可能有三种不同键接方式:头-头连接,尾-尾连接,头-尾连接。如下所示: 头-头(尾-尾)连接为: 头-尾连接为: 这种由于结构单元之间连接方式的不同而产生的异构体称为顺序异构体。一般情况下,自由基或离子型聚合的产物中,以头-尾连接为主。用来作为纤维的高聚物,一般要求分子链中单体单元排列规整,使 聚合物结晶性能较好,强度高,便于抽丝和拉伸。 (2) 高分子链的形态 如果在缩聚过程中有三个或三个以上的官能度的单体存在,或是在加聚过程中有自由基的链转移反应发生,

高聚物结构与性能的关系

高聚物结构与性能的关系 1. 高聚物的结构 按研究单元的不同分类,高聚物结构可分为两大类:一类为高聚物的链结构,即分子内的结构,是研究一个分子链中原子或基团之间的几何排列;另一类为高聚物的分子聚集态结构,即分子间的结构,是研究单位体积内许多分子链之间的几何排列。对高聚物材料来说,链结构只是间接影响其性能,而分子聚集态结构才是直接影响其性能的因素。 高聚物链结构 高聚物的链结构包括近程结构和远程结构。近程结构是指结构单元的化学组成、立体异构、连接顺序、以及支化、交联等;远程结构是指高分子链的构象、分子量等。 高聚物链结构是决定高聚物基本性质的主要因素,各种高聚物由于链结构不同其性质则完全不同。例如,聚乙烯柔软容易结晶,聚苯乙烯硬而脆不能结晶;全同立构聚丙烯在常温下是固休,可以结晶,而无规立构聚丙烯在常温下则为粘稠的液体等。 高聚物的聚集态结构 高聚物的分子聚集态结构包括晶态、非晶态、液晶态、取向态等;高聚物的分子聚集态结构是在加工成型过程中形成的,是决定高聚物制品使用性能的主要因素。即使具有相同链结构的同一种高聚物,由于加工成型条件的不同,其成型品的使用性能就有很大差别。例如,结晶取向程度不同直接影响纤维和薄膜的力学性能;结晶大小和形态不同可影响塑料制品的耐冲击强度,开裂性能和透明性。 因此对高聚物材料来说,链结构只是间接影响其性能,而分子聚集态结构才是直接影响其性能的因素。研究高聚物分子聚集态结构的意义就在于了解高聚物分子聚集态结构的特征,形成条件及其与材料性能之间的关系,以便人为地控制加工成型条件得到具有预定结构和性能的材料,同时为高聚物材料的物理改性和材料设计建立科学基础。 2.高聚物结构与力学性能的关系 链结构与力学性能的关系 不同的高聚物,有不同的分子结构,当然会显示出不同的材料性能出来。聚

四川大学高聚物结构与性能复习要点

四川大学硕士研究生《高聚物结构与性能》课程复习 要点 (第一部分) 1.高聚物结构主要包括哪些内容? 2.球晶是高聚物结晶的一种常见的特征形式。较大的球晶在偏光显微镜两正交偏振器之间,呈现特有的Maltese黑十字消光图像。请简要解释产生这一现象的原因。 3.什么是聚合物的附生结晶?如何研究? 4.给出两种描述高聚物结晶动力学的方法,并设计相应的实验。 5.结晶性高聚物的结晶度对其性能有着重要的影响。对于某一具体的聚合物,如何制定成形加工条件获得高结晶度的制品? 6.即使最容易结晶的聚合物,也很难获得百分之百结晶度的制品。请解释为什么结晶聚合物通常是不透明的?如何提高结晶聚合物的透明性? 7.具有液晶性的高分子有哪些结构特征?液晶高分子有哪些主要特性?试设计一个在国内已出版的教科书或专著上没有的可能具有液晶性的高分子(可通过详细描述其结构组成或直接用化学结构式表示出来)。 8.取向对高分子材料的力学性能影响很大。取向度通常用取向函数F=1/2(3cos2θ-1) 表示,请解释F的物理意义,并举出三个以上测定取向 度的方法,说明相应方法测得的是何种取向单元的取向度;举2个实例说明取向研究对提高高分子材料性能的重要性。 9.对于普通的聚合物,其熔体的表观粘度与聚合物的分子量大小及其分布、聚合物分子链的结构等结构因素有关,同时还与所处的流动场的温度、剪切应力或切变速率等有关。试简要描述普通聚合物熔体的表观粘度与上述因素的关系。 10.幂律方程η a= K γ n 在很多情况下能够用于描述高聚物流体的表观黏度(ηa)和剪切速率(γ)之间的定量关系,但是该方程存在明显的缺陷, 请指出其缺陷所在,并提出改进的方法。(在γ上面加点)

高聚物结构与分析

第一章 1 假定PS样品由质量比为1:2的两个相对分子质量分别为100000和400000的两个单分散组分组成,求它的数均分子量和重均分子量以及分布指数。 假定物质A的质量为1,B的质量为2 Mn=∑niMi/∑ni=(1/100000×100000+2/400000×400000)/(1/100000+2/400000)=200000 Mw=∑miMi/∑mi=(1×100000+2×400000)/(1+2)=300000 DI=Mw/Mn=300000/200000=1.5 2 高聚物结构与低分子物质相比有什么特点? (1)高分子是由很大数目的结构单元组成。每一个结构单元相当于一个小分子。 (2)一般高分子主链都有一定的内旋转自由度,可以使主链弯曲而具有柔性。如果结构单元有强烈的相互作用,则形成刚性链而具有一定的形状。 (3)高分子结构具有不均一性,即使是相同反应条件下,各个分子的分子量、结构单元的键合顺序、支化度、共聚物组成都或多或少存在差异。 (4)结构单元间的相互作用对其聚集态结构和物理性能有着重要影响。 (5)高分子的聚集态有晶态和非晶态之分。高分子的晶态比小分子晶态的有序程度差,高聚物的非晶态却比小分子液态的有序程度高。 (6)织态结构也是决定高分子材料性能的重要因素。 第二章 实验测定不同分子量的天然橡胶的流动活化能分别为25.08、40.13、53.50、53.9、 54.3kJ/mol,而单体异戊二烯的蒸发热为25.08kJ/mol,试求:上述五种情况下高分子流动时链段各位多长(链段所含的碳原子数)?天然橡胶大分子链段至少应包括几个链节?链段分子量约为多大? 解:已知烃类的流动活化能(ΔEη)与蒸发热(ΔHy)有如下关系式: ΔE=βΔHβ=1/3-1/4 理论上若每个链接为独立运动单元时,则流动活化能应为ΔEη≈1/4×25.08=6.27kJ/mol。现实际测定值ΔEη分别是25.08、40.13、53.50、53.9、54.3kJ/mol,所以链节数分别是4、6.4、8.5、8.6、8.65,可见独立运动的链段长度为8.5×5≈43个碳原子。

高聚物结构与性能2011复习

“高聚物结构与性能”复习思考题 ●举例说明高分子体系中的氢键、极性基团之间的相互作用, 如 PA,PAN,Cellulose 等. ●简述如PS,PV A键接方式的分析测试方法. ●写出异戊二烯聚合可能形成的不同高分子链结构. ●简述LDPE, HDPE, LLDPE 在链分子结构及性能上的差别. ●简述高分子链单键内旋转位垒势能函数U(Φ)的意义及其与链分 子静态和动态柔性的联系. ●描述高分子链刚柔性的主要参数有哪些? ●简述高分子结晶区中链分子构象的择取原则, 举例说明之. ●简述高分子在不同的结晶形成条件下可能形成的不同结晶形态, 并说明如何表征之. ●写出等温结晶的Avrami 方程, 说明在不同温度下结晶的机理有 何不同, 以及对聚集态结构的影响. ●如何说明在无定形区中随分子量的增大, 高分子链的相互贯穿 或缠结的程度也愈大. ●说明不同测试方法下得到的取向的不同意义. ●简述高分子的分子运动的特点. ●Tg 的等自由体积理论的要点是什么? ●简述影响Tg 的结构因素. ●试比较下列高分子链的刚柔性或Tg 的大小: PE, PP, PVC, cellulose, 甲基纤维素, 聚苯.

●简述描述高聚物粘弹性的Boltzmann 线性叠加原理 ●给出橡胶态下高分子材料的应力-应变关系式. ●简述高聚物断裂破坏的二种机理. ●为什么通常的PMMA 可以得到透明度很高的塑料制品, 而另一 种特殊聚合方法得到的PMMA 却总是不透明的, 解释之. ●透明的PET 薄膜接触到有些有机溶剂常常会变为不透明, 请解 释之. ●简述三维溶解度参数的概念. ●写出高分子溶液混合熵的公式, 说明其与理想溶液混合熵公式 的差异. ●比较同一种高分子链在下列各情况下均方末端距的大小: (1)良溶 剂稀溶液下; (2) 良溶液较浓溶液下; (3) θ溶液体系下; (4) 熔体中; (5) 无定形固体中. ●为什么说从热力学观点看高分子溶液是真溶液? ●为什么PVC很不适合用于食品包装业? ●通过哪些实验论证可以较充分地证明冻胶纺超拉伸的高强高模 超高分子量聚乙烯纤维具有伸直链结晶结构. ●写出顺式聚1,4-丁二烯及反式聚1,4-丁二烯的化学结构式, 且从分子链结构的特点来说明它们性能上的主要差异,哪种可作为橡胶材料用? ●甲基纤维素的链分子相比纤维素的链分子显现更好的柔性,这是 为什么?

浅析高分子材料性能与组成、结构的关系

浅析高分子材料性能与组成、结构的关系 一.概述 1.高分子材料及其分类: 相对分子质量超过10000的化合物称之高分子材料,又称高聚物或聚合物。高分子材料可分天然高分子(如淀粉、纤维素、蚕丝、羊毛等)和合成高分子,通常所说高分子材料指的是后者。 按其应用来分,高分子材料可分为塑料、橡胶、化纤、涂料和粘合剂五大类,有时又将塑料和橡胶合称为橡塑。由于大量新材料的不断出现,上述分类方法并非十分合理。 2.决定高分子材料性能主要因素: (1)化学组成: 高分子材料都是通过单体聚合而成,不同单体,化学组成不同,性质自然也就不一样,如聚乙烯是由乙烯单体聚合而成,聚丙烯是由丙烯单体聚合而成的,聚氯乙烯是由氯乙烯单体聚合而成。由于单体不同,聚合物的性能也就不可能完全相同。 (2)结构: 同样的单体即化学组成完全相同,由于合成工艺不同,生成的聚合物结构即链结构或取代基空间取向不同,性能也不同。如聚乙烯中的HDPE、LDPE和LLDPE,它们的化学组成完全一样,由于分子链结构不同即直链与支链,或支链长短不同,其性能也就不同。 (3)聚集态 高分子材料是由许许多多高分子即相同的或不相同的分子以不同的方式排列或堆砌而成的聚集体称之聚体态。同一种组成和相同链结构的聚合物,由于成型加工条件不同,导致其聚集态结构不同,其性能也大不相同。高分子材料最常见的聚集态是结晶态、非结晶态,又称玻璃态和橡胶态。聚丙烯是典型的结晶态聚合物,加工工艺不同,结晶度会发生变化,结晶度越高,硬度和强度越大,但透明降低。PP双向拉伸膜之所以透明性好,主要原因是由于双向拉伸后降低了结晶度,使聚集态发生了变化的结果。 (4)分子量与分子量分布(相对分子质量与相对分子质量分布): 对于高分子材料来说,分子量大小将直接影响力学性能,如聚乙烯虽然都是由乙烯单体聚合而成,分子量不同,力学性能不同,分子量越大其硬度和强度也就越好。如PE蜡,分子量一般为500~5000之间,几乎无任何力学性能,只能用作分散剂或润滑剂。而超高分子量聚乙烯,其分子量一般为70~120万,其强度都超过普通的工程塑料。表-1列出LDPE性能与相对分子质量的关系。 )的关系 × 高分子材料实际上是不同分子量的混合体,任何高分子材料都是由同一种组成而分子量却不相同的化合物构成。通常所说的分子量大小是指的平均分子量。分子量分布这一专用述语是用来表示该聚合物中各种分子量大小的跨度。分子量分布越窄即跨度越小,同样平均分子量的高分子材料其耐低温脆折性和韧性越好,而耐长期负荷变形和耐环境应力开裂性下降。 3.表征高分子材料性能常用的两个物理量: (1)密度: 单位体积物质的质量称之密度,其单位一般用g/cm3表示。对于高分子材料来说,密度大小表示高分子链之间接近的程度,或者说密堆积的程度。同一种高分子材料,密度大小将表示支链化的程度。支链化程度越小,密度越大,材料的硬度强度越好,而韧性降低。表-2列出聚乙烯性能与密度的关系。

高聚物的结构高聚物的结构包括高分子链结构和聚集态结构

第一章高聚物的结构 高聚物的结构包括高分子链结构和聚集态结构,研究高聚物结构的根本目的,是了解高聚物结构与其物理性能之间的关系,以及高聚物分子运动的规律,为高聚物分子设计和材料设计建立科学基础,同时指导我们正确地选择和使用高聚物材料,更好地掌握高聚物的成型加工工艺条件,并通过各种途经,改变高聚物的结构,以达到改进性能。 高聚物结构有很多特点,高聚物是很多碳原子以共价键联结的大分子,分子链长,并具有多分散性,分子之间相互作用力大,机械强度高,高聚物在使用时还加入很多掺合物以达到提高性能、改进性能的目的。 1- 1高分子 高分子是由许多相同或不同的基本链节作为化学结构单元,通过共价键连接起来的大分子,又称高聚物、聚合物、大分子及高分子化合物。 1- 2天然高分子 像蛋白质、天然纤维和其他糖类等天然产物,具有特殊的结构特 征,这些结构特征是分子长度均一,以及分子的化学结构完全相同,在这些化合物中,每一个分子具有不同单体单元构成完全相同的序列。 1- 3合成高分子 将一种或两种以上的单体,经人工合成的高分子化合物,是与天

然咼分子向对照而言的,如合成树脂、合成纤维、合成橡胶、合成皮 革、合成涂料、合成胶粘剂等,都是以合成高分子为主的,合成高分子的分子量分布较天然高分子的多。 1- 4碳链高分子 高分子主链是由相同的碳原子,以共价键连结的长链分子,如聚 乙烯CHFCh2 n。 这类高聚物,工业产量最大,用途最广,除聚四氟乙烯外,可塑性好,容易成型加工,原料丰富,成本较低,但缺点是易老化,耐热性差。1- 5杂链高分子 在咼分子主链上,除碳原子外,还有氧(0)、氮(N)、硫(S)等元素组成,并以共价键连结。 0~ 如聚苯二甲酸乙二醇酯0。 N卄(CH3) 4— N卄CO(CH)4CO 聚酰胺- _ n 这类高分子具有较高的耐热性和机械强度,比碳链高分子要高,但因主链上常有极性基团,容易水解,杂链高分子一般作为工程塑料用。 1- 6元素有机高分子 这种高分子主链上含有硅Si、磷P、钛Ti、砷As、锡Sn、锑Sb、错Ge等元素和氧组成主链,但在侧基上还含有有机基团

医用高分子材料的结构与性能

目录 摘要 (1) 1 前言 (2) 2 医用高分子材料的分类 (2) 2.1 来源 (2) 2.2 降解性 (3) 2.3 应用方向 (4) 2.3.1 人工脏器 (4) 2.3.2 人工组织 (4) 2.3.3 护理和医疗用具相关的医用材料 (4) 2.3.4 药用高分子 (5) 3 医用高分子的性质 (5) 3.1 生物功能性 (5) 3.2 生物相容性 (5) 4 医用高分子的表面改性方法 (6) 4.1 物理方法 (6) 4.1.1 表面涂层 (6) 4.1.2 物理共混 (7) 4.2 化学方法——表面接枝法 (7) 4.2.1 表面接枝改性 (7) 4.2.2 等离子体表面改性 (8) 4.2.3 光化学固定法 (8)

4.3 表面仿生化改性 (9) 4.3.1 表面肝素化 (9) 4.3.2 表面磷脂化 (9) 4.3.3 表面内皮化——内皮细胞固定法 (9) 5 总结与展望 (10) 参考文献 (11)

摘要 由于其良好的生物相容性,医用高分子材料是现阶段最为安全的一类医用材料。同时,合成加工的简便,来源的广泛,使得医用高分子材料的功能性越来越多,应用范围也越来越广泛。但由于结构的限制,医用高分子材料在人体中的相容性还未达非常理想地到人们要求。因此,也就产生了以表面改性为主的一系列增进其相容性的改性方法。本文通过对医用高分子材料的定义、分类、性质以及表面改性方法的介绍,体现了医用高分子材料的优越和不足之处,同时也对医用高分子材料的未来进行了展望。 关键词:医用高分子;生物相容性;表面改性

1 前言 医用高分子材料(medical polymer)是一类可对有机体组织进行修复、替代与再生,具有特殊功能作用的高分子材料,是生物医用材料的重要组成之一[1]。医用高分子材料需长期与人体体表、血液、体液接触,有的甚至要求永久性植入体内。因此,这类材料必须具有优良的生物体替代性(力学性能、功能性)和生物相容性[2]。 生物医用高分子材料需要满足的基本条件:在化学上是不活泼的,不会因与体液或血液接触而发生变化;对周围组织不会引起炎症反应;不会产生遗传毒性和致癌;不会产生免疫毒性;长期植入体内也应保持所需的拉伸强度和弹性等物理机械性能,具有良好的血液相容性;能经受必要的灭菌过程而不变形;易于加工成所需要的复杂的形态[3]。 随着近代医学及材料科学的发展,对生物医用高分子材料的需求越来越大。目前全世界应用的有90多个品种,西方国家消耗的医用高分子材料每年以10%-20%的速度增长。以美国为例,每年有数以百万计的人患有各种组织、器官的丧失或功能障碍,需进行800万次手术进行修复,年耗资超过400亿美元,器官衰竭和组织缺损所需治疗费占整个医疗费用的一半[4]。随着人民生活水平的提高和对生命质量的追求,我国对医用高分子材料的需求也会不断增加。 2 医用高分子材料的分类 2.1 来源 按照来源,可将医用高分子材料分为合成医用高分子材料和天然高分子材料。 常见的合成医用高分子材料包括PE(polyethylene,聚乙烯)、PP (polypropylene,聚丙烯)、PC(polycarbonate,聚碳酸酯)、PLA(polylactic acid,聚乳酸)及其衍生物、有机硅橡胶等。其优点是工艺成熟,机械性能相对较好,加工性能较好,能够同时表现多种功能性[5]。 常见的天然医用高分子材料包括壳聚糖、明胶、海藻酸盐类、纤维素等。天

高聚物结构与性能的关系

高聚物结构与性能的关系;1.高聚物的结构;按研究单元的不同分类,高聚物结构可分为两大类:一;1.1高聚物链结构;高聚物的链结构包括近程结构和远程结构;高聚物链结构是决定高聚物基本性质的主要因素,各种;1.2高聚物的聚集态结构;高聚物的分子聚集态结构包括晶态、非晶态、液晶态、;因此对高聚物材料来说,链结构只是间接影响其性能,;2.高聚物结构与力学性能的关系; 2高聚物结构与性能的关系 1. 高聚物的结构 按研究单元的不同分类,高聚物结构可分为两大类:一类为高聚物的链结构,即分子内的结构,是研究一个分子链中原子或基团之间的几何排列;另一类为高聚物的分子聚集态结构,即分子间的结构,是研究单位体积内许多分子链之间的几何排列。对高聚物材料来说,链结构只是间接影响其性能,而分子聚集态结构才是直接影响其性能的因素。 1.1 高聚物链结构 高聚物的链结构包括近程结构和远程结构。近程结构是指结构单元的化学组成、立体异构、连接顺序、以及支化、交联等;远程结构是指高分子链的构象、分子量等。高聚物链结构是决定高聚物基本性质的主要因素,各种高聚物由于链结构不同其性质则完全不同。例如,聚乙烯柔软容易结晶,聚苯乙烯硬而脆不能结晶;全同立构聚丙烯在常温下是固休,可以结晶,而无规立构聚丙烯在常温下则为粘稠的液体等。 1.2 高聚物的聚集态结构

高聚物的分子聚集态结构包括晶态、非晶态、液晶态、取向态等;高聚物的分子聚集态结构是在加工成型过程中形成的,是决定高聚物制品使用性能的主要因素。即使具有相同链结构的同一种高聚物,由于加工成型条件的不同,其成型品的使用性能就有很大差别。例如,结晶取向程度不同直接影响纤维和薄膜的力学性能;结晶大小和形态不同可影响塑料制品的耐冲击强度,开裂性能和透明性。 因此对高聚物材料来说,链结构只是间接影响其性能,而分子聚集态结构才是直接影响其性能的因素。研究高聚物分子聚集态结构的意义就在于了解高聚物分子聚集态结构的特征,形成条件及其与材料性能之间的关系,以便人为地控制加工成型条件得到具有预定结构和性能的材料,同时为高聚物材料的物理改性和材料设计建立科学基础。 2.高聚物结构与力学性能的关系 2.1链结构与力学性能的关系 不同的高聚物,有不同的分子结构,当然会显示出不同的材料性能出来。聚乙烯、聚苯乙烯、聚甲基丙烯酸甲酯、聚对苯二甲酸乙二酯、聚碳酸酯、聚丙烯腈、环氧树脂和聚二甲基硅氧烷(硅橡胶)等等都是不同分子结构的高聚物,它们或是晶态高聚物,或是非晶态高聚物,或是橡胶,或是不溶不熔的热固性树脂,这些都是一般人都知道的常识。交联能使本来可溶可熔的热塑性塑料成为既不能溶解也不会熔融的热固性树脂,物理力学性能有了大幅提高;普通的支化会使高聚物的性能变坏;单官能团的封端能大大改善聚碳酸酯的热稳定性,以及具有离子键的高聚物玻璃化温度会提高很多等等,这样的例子俯首可拾。在我们的高分子物理教材中都详细的介绍高聚物结构单元的化学组成、端基、结构单元的键接方式、结构单元的空间立构、结构单元的键接序列以及支化和交联导致的不

分子量大小对聚合物结构与性能的影响资料

分子量大小对聚合物结构与性能的影响

聚合物分子量下降对其性能的影响 众所周知,聚合物的分子量对物理机械性能有着重要的影响,对此,人们已用大量的实验事实加以论证。在实验中发现聚合物的分子量一定要达到某一数值后才能显示出力学强度。另一方面,由于高分子化合物的分子量存在多分散性,因此其分子量分布也同样影响着高分子材料的性能。与此相反聚合物的分子量降低也会聚合物的各种性能产生影响。 一、分子量下降对力学性能的影响 1、拉伸强度 Margolies[1]和Perkins[2]等发现在分子量M小于某个值时,聚合物的拉伸强度随分子量增大而升高。这是由于分子量的提高增加了晶体间的链缠结,从而增强了纵向、横向微纤维的联系。当进行拉伸试验时,链缠结抑制微纤维的相对滑动,从而提高拉伸强度。反之,如果分子量下降,分子链之间的缠结减少,作用力减弱,相应的拉伸强度也会下降,当分子量下降到某一个值时,不具有拉伸强度。 2、断裂伸长率 Margolies[1]等人通过对HDPE的研究,提出分子量在500000-750000范围内,断裂长率随着分子量增大而迅速提高至极大值,而分子量的进一步提高会引起断裂长率的逐步下降。所以,对于一般聚合物分子量下降,将会使得断裂长率下降。 3、模量 Capaccio和Ward[3]对LDPE的研究表明,当拉伸比大于29时,室温下的模量与分子量无关。然而他们提出拉伸比与重均分子量存在着单独的关系。因为重均分子量越低,拉伸比越高,这种分子量对拉伸比的影响也影响着聚合物的机械性能。Jarecki等人用宽分布的HDPE在较高温度下拉伸,得到超高模量

的样品。他们总结为PE中的高分子量部分,在拉伸材料中形成的连缠结而产生高模量,而低分子部分促进链取向并阻止在高温拉伸中达到非常高拉伸比时产生内部空隙。所以低分子部分有助于提高聚合物的模量。 二、蠕变和应力松弛[4] 蠕变和应力松驰试验通常是在长时间内测量聚合物的尺寸稳定性,因而具有很大的实用价值。当温度远远低于玻璃化温度时,聚合物为脆性, 分子量对蠕变和应力松驰的作用很小,当温度在玻璃化温度附近或高于玻璃化温度时,分子量对蠕变和应力松弛的影响就较为明显。分子量降低将会减少分子链之间的缠结,从而增加蠕变和应力松弛。 三、聚合物降解的影响 聚合物在使用过程中,由于受到外界光、力、热等的作用下都会导致聚合物分子链的断裂,从而导致聚合分子量的下降。所以分子量降低会使得聚合物的降解变得更加容易。 吴岳[5]等人研究了PVA的生物降解机理,PVA是经历了两步酶催化过程才得以降解,第一步由PVA氧化酶在有氧的条件下,PVA氧化脱氢成为酮基化合物。第二步,经氧化的PVA碳链上的双酮进一步水解,一部分水解生成以狡酸为端点的链,另一部分生成以甲基酮为端点的链。值得注意的是在这个过程中被水解酶水解会使得分子链发生断裂生成低分子量的片段,然后才能透过细胞进入细胞内,进行进一步代谢。另外,也研究了分子量大小对PVA降解的影响,在醇解度为88%和99%时,小分子量的PVA降解很快,而大分子量的PVA降解较慢。 四、结晶性能与热性能影响 蔡夫柳[7]等人研究不同分子量聚酯(PET)的等温结晶、非等温结晶、热失重和恒温热降解性能,结果表明在等温结晶过程中,随着分子量的增加结晶速

高聚物结构-问答计算题

1.简述聚合物的结构层次。 答聚合物的结构包括高分子的链结构和聚合物的凝聚态结构,高分子的链结构包括近程结构和远程结构。一级结构包括化学组成,结构单元链接方式,构型,支化与交联。二级结构包括高分子链大小和分子链形态。三级结构属于凝聚态结构,包括晶态结构,非 态结构,取向态结构和织态结构。 2.高密度聚乙烯,低密度聚乙烯和线形低密度聚乙烯在分子链上的主要差别是什么? 答高密度聚乙烯为线形结构,低密度聚乙烯为具有长链的聚乙烯,而线形低密度聚乙烯的支链是短支链,由乙烯和高级的a–烯烃如丁烯,己烯或辛烯共聚合而生成。共聚过程生成的线形低密度聚乙烯比一般低密度聚乙烯具有更窄的相对分子质量分布。高密度聚乙烯易于结晶,故在密度,熔点,结晶度和硬度等方面都高于低密度聚乙烯。 3.假若聚丙烯的等规度不高,能不能用改变构象的办法提高等规度?答不能,提高聚丙烯的等规度须改变构型,而改变构型与构象的方法根本不同。构象是围绕单键内旋转所引起的分子链形态的变化,改变构象只需克服单键内旋转位垒即可实现;而改变够型必须经过化学键的断裂才能实现。 4.试从分子结构分析比较下列各组聚合物分子的柔顺性的大小:

(1)聚乙烯,聚丙烯,聚丙烯腈; (2)聚氯乙烯,1,4-聚2-氯丁二烯,1,4-聚丁二烯; (3)聚苯,聚苯醚,聚环氧戊烷; (4)聚氯乙烯,聚偏二氯乙烯。 答(1)的柔顺性从大到小排列顺序为:聚乙烯>聚丙烯>聚丙烯腈; (2)的柔顺性从大到小排列顺序为:1,4-聚丁二烯>1,4-聚2-氯丁二烯>聚氯乙烯 (3)的柔顺性从大到小排列顺序为:聚环氧戊烷聚苯醚聚苯 (4)的柔顺性从大到小排列顺序为:聚偏二氯乙>烯聚氯乙烯 5.请排出下列高聚物分子间的作用力的顺序,并指出理由: (1)顺1,4-聚丁二烯,聚氯乙烯,聚丙烯腈; (2)聚乙烯,聚苯乙烯,聚对苯二甲酸乙二酯,尼龙66。 答(1)分子间作用力从大到小的顺序为:聚丙烯腈>聚氯乙烯>顺1,4-聚丁二烯 聚丙烯腈含有强极性基团,所以分子间作用力大;聚氯乙烯含有极性基团,分子间作用力较大;顺序1,4-聚丁二烯是非极性分子,不含庞大的侧基,所以分子间力作用小。 (2)分子间作用力从大到小的顺序为:尼龙66>聚对苯二甲酸乙二酯>聚苯乙>烯聚乙烯 尼龙66分子间能形成氢键,因此分子作用力最大;聚对苯二甲酸乙二酯含有强极性基团,分子间作用力比较大;聚苯乙烯含有侧

相关文档
相关文档 最新文档