文档视界 最新最全的文档下载
当前位置:文档视界 › 巧算乘法和各种图形计算公式

巧算乘法和各种图形计算公式

巧算乘法和各种图形计算公式

1.十几乘十几:

口诀:头乘头,尾加尾,尾乘尾。

例:12×14=?解: 1×1=1

2+4=6

2×4=8

12×14=168

注:个位相乘,不够两位数要用0占位。2.头相同,尾互补(尾相加等于10):口诀:一个头加1后,头乘头,尾乘尾。

例:23×27=?

解:2+1=3

2×3=6

3×7=21

23×27=621

注:个位相乘,不够两位数要用0占位。3.第一个乘数互补,另一个乘数数字相同:

口诀:一个头加1后,头乘头,尾乘尾。

例:37×44=?

解:3+1=4

4×4=16

7×4=28

37×44=1628

注:个位相乘,不够两位数要用0占位。

4.几十一乘几十一:

口诀:头乘头,头加头,尾乘尾。

例:21×41=?

解:2×4=8

2+4=6

1×1=1

21×41=861

5.11乘任意数:

口诀:首尾不动下落,中间之和下拉。

例:11×23125=?

解:2+3=5

3+1=4

1+2=3

2+5=7

2和5分别在首尾

11×23125=254375

注:和满十要进一。

6.十几乘任意数:

口诀:第二乘数首位不动向下落,第一因数的个位乘以第二因数后面每一个数字,加下一位数,再向下落。例:13×326=?

解:13个位是3

3×3+2=11

3×2+6=12

3×6=18

13×326=4238

注:和满十要进一。

各种图形计算公式

小学数学所有图形计算公式

小学数学图形计算公式 1 正方形 C周长S面积a边长 周长=边长×4 C=4a 面积=边长×边长 S=a×a 2 正方体 V:体积a:棱长 表面积=棱长×棱长×6 S表=a×a×6 体积=棱长×棱长×棱长 V=a×a×a 3 长方形 C周长S面积a边长 周长=(长+宽)×2 C=2(a+b) 面积=长×宽 S=ab 4 长方体 V:体积s:面积a:长b: 宽h:高 (1)表面积(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh) (2)体积=长×宽×高 V=abh 5 三角形 s面积a底h高 面积=底×高÷2 s=ah÷2 三角形高=面积×2÷底 三角形底=面积×2÷高 6 平行四边形 s面积a底h高 面积=底×高 s=ah 7 梯形 s面积a上底b下底h高 面积=(上底+下底)×高÷2 s=(a+b)× h÷2 8 圆形 S面积C周长∏ d=直径r=半径 (1)周长=直径×∏=2×∏×半径 C=∏d=2∏r

(2)面积=半径×半径×∏ 9 圆柱体 v:体积h:高s;底面积r:底面半径c:底面周长 (1)侧面积=底面周长×高 (2)表面积=侧面积+底面积×2 (3)体积=底面积×高 (4)体积=侧面积÷2×半径 10 圆锥体 v:体积h:高s;底面积r:底面半径 体积=底面积×高÷3 总数÷总份数=平均数 和差问题的公式 (和+差)÷2=大数 (和-差)÷2=小数 和倍问题 和÷(倍数-1)=小数 小数×倍数=大数 (或者和-小数=大数) 差倍问题 差÷(倍数-1)=小数 小数×倍数=大数 (或小数+差=大数) 植树问题 1 非封闭线路上的植树问题主要可分为以下三种情形: ⑴如果在非封闭线路的两端都要植树,那么: 株数=段数+1=全长÷株距-1 全长=株距×(株数-1) 株距=全长÷(株数-1) ⑵如果在非封闭线路的一端要植树,另一端不要植树,那么: 株数=段数=全长÷株距 全长=株距×株数 株距=全长÷株数 ⑶如果在非封闭线路的两端都不要植树,那么: 株数=段数-1=全长÷株距-1 全长=株距×(株数+1) 株距=全长÷(株数+1) 2 封闭线路上的植树问题的数量关系如下 株数=段数=全长÷株距 全长=株距×株数 株距=全长÷株数 盈亏问题 (盈+亏)÷两次分配量之差=参加分配的份数 (大盈-小盈)÷两次分配量之差=参加分配的份数 (大亏-小亏)÷两次分配量之差=参加分配的份数

小学数学图形计算公式

小学数学图形计算公式Prepared on 21 November 2021

小学数学图形计算公式? 1、长方形: C周长S面积a长b宽 周长=(长+宽)×2?C=2(a+b) 长=周长÷2-宽a=C÷2-b 宽=周长÷2-长b=C÷2-a 面积=长×宽?S=ab 长=面积÷宽a=S÷b 宽=面积÷长b=S÷a 2、正方形:C周长S面积a边长 周长=边长×4C=4a 边长=周长÷4a=C÷4 面积=边长×边长S=a2 3、长方体 V:体积s:面积a:长b:宽h:高 (1)棱长总和=(长+宽+高)×4 L=(a+b+h)×4 长=棱长总和÷4-宽-高a=L÷4-b-h 宽=棱长总和÷4-长-高b=L÷4-a-h 高=棱长总和÷4-长-宽h=L÷4-a-b (2)表面积= 长×宽×2+长×高×2+宽×高 ×2S=2ab+2ah+2bh (3)体积=长×宽×高?V=abh 长=体积÷宽÷高a=V÷b÷h 宽=体积÷长÷高b=V÷a÷h 高=体积÷长÷宽h=V÷a÷b 体积=底面积×高V=Sh 底面积=体积÷高S=V÷h 高=体积÷底面积h=V÷S 4、正方体:V:体积a:棱长 棱长总和=12a 棱长=棱长总和÷12 表面积=棱长×棱长×6? S表=a2×6 体积=棱长×棱长×棱长?V=a3 体积=底面积×高V=Sh 5、平行四边形:s面积a底h高? 面积=底×高?s=ah 底=面积÷高a=S÷h 高=面积÷底h=S÷a 6、三角形? s面积a底h高? 面积=底×高÷2?s=ah÷2? 三角形高=面积×2÷底h=S×2÷a 三角形底=面积×2÷高a=S×2÷h 7、梯形:s面积a上底b下底h高? 面积=(上底+下底)×高÷2 s=(a+b)×h÷2 上底=面积×2÷高-下底a=S×2÷h-b 下底=面积×2÷高-上底b=S×2÷h-a 高=面积×2÷(上底+下底)h=S×2÷(a+b) 8、圆形:S面积C周长圆周率π d=直径r=半径

各种图形面积计算公式

各种图形面积计算公式 1、长方形的周长=(长+宽)×2 C=(a+b)×2 2、正方形的周长=边长×4 C=4a 3、长方形的面积=长×宽S=ab 4、正方形的面积=边长×边长S=a.a= a 5、三角形的面积=底×高÷2 S=ah÷2 6、平行四边形的面积=底×高S=ah 7、梯形的面积=(上底+下底)×高÷2 S=(a+b)h÷2 8、直径=半径×2 d=2r 半径=直径÷2 r= d÷2 9、圆的周长=圆周率×直径=圆周率×半径×2 c=πd =2πr 10、圆的面积=圆周率×半径×半径?=πr 11、长方体的表面积=(长×宽+长×高+宽×高)×2 12、长方体的体积=长×宽×高V =abh 13、正方体的表面积=棱长×棱长×6 S =6a 15、圆柱的侧面积=底面圆的周长×高S=ch 16、圆柱的表面积=上下底面面积+侧面积 S=2πr +2πrh=2π(d÷2) +2π(d÷2)h=2π(C÷2÷π) +Ch 17、圆柱的体积=底面积×高V=Sh V=πr h=π(d÷2) h=π(C÷2÷π) h 18、圆锥的体积=底面积×高÷3 V=Sh÷3=πr h÷3=π(d÷2) h÷3=π(C÷2÷π) h÷3 19、长方体(正方体、圆柱体)的体积=底面积×高 V=Sh 各种图形体积计算公式 平面图形 名称符号周长C和面积S 1、正方形a—边长C=4a S=a2 2、长方形a和b-边长C=2(a+b) S=ab 3、三角形a,b,c-三边长 h-a边上的高 s-周长的一半 A,B,C-内角 其中s=(a+b+c)/2 S=ah/2 =ab/2·sinC =[s(s-a)(s-b)(s-c)]1/2 =a2sinBsinC/(2sinA) 4、四边形d,D-对角线长

常见数学图形计算公式大全

常见数学图形计算公式大全 1 、长方形的周长 = (长 + 宽) × 2 C= ( a + b ) × 2 2 、长方形的面积 = 长 × 宽 S=a × b 3 、正方形的周长 = 边长 × 4 C=a × 4 4 、正方形的面积 = 边长 × 边长 S=a × a 5 、三角形的面积 = 底 × 高 ÷ 2 S=a × h ÷ 2 6 、平行四边形的面积 = 底 × 高 S=a × h 7 、梯形的面积 = ( 上底 + 下底 ) × 高 ÷ 2 S= ( a + b ) × h ÷ 2 8 、圆的周长 = 圆周率 × 直径 C= π × d 9 、圆的面积 = 圆周率 × 半径 × 半径 S= πr 10 、长方体的表面积 = (长×宽 + 长×高 + 高×宽)× 2 S 表 = ( a × b + a × h + h × b )× 2 11 、长方体的体积公式 = 长 × 宽 × 高v =a × b × h 12 、正方体的表面积 = 棱长 × 棱长 × 6 S 表 = a × a × 6 13 、正方体的体积 = 棱长 × 棱长 × 棱长 V=a × a × a 14 、圆柱的侧面积 = 底面周长 × 高 S 侧 =C 底 × h 15 、圆柱的表面积 = 侧面积 +2 个底面积 S 表 =S 侧 +2 S 底

16 、圆柱的体积 = 底面积 × 高 V= S 底 × h 17 、圆锥的表面积 = 圆锥的侧面积 + 底面圆的面积 S 表 = S 侧 +S 底 18 、圆锥的体积 = 底面积 × 高 ÷ 3 V= S 底 × h ÷ 3 19 、环形的面积 = 外圆的面积 - 内圆的面积 S=S 外圆 - S 内圆 20 、平行四边形的周长 = ( 长边 + 短边) ×2 S= (a+b ) ×2

小学数学图形计算公式大全

小学数学图形计算公式大全小学数学图形计算公式 1 / 3

小学数学图形计算公式大全 =2n R+2n r =2n( R+r) =n( Ff —r2) 立体图形 图形名 称 图形总棱长(L)公式表面积(S)公式 正方体总棱长=棱长X 12 L=12a S=—个面的面积X 6 S= a X a ^6 =6a 体(容)积(V 公式 体积=棱长X 棱 长X棱长 3 V= a X a X a=a 长方体 h a v6总棱长=长乂4+宽 X 4+高X 4=4(长 + 宽+高) L=4 (a+b+h) 表面积=(长X宽+长X 高+宽X高)X 2 S=2(ab+ah+bh) 体积=长X宽 X高 V=abh 圆柱体 圆筒圆锥体侧面积=底面周长X高 S 侧=ch=d n h=2 n rh 表 面积=底面积X 2+侧面积 S表=S底X 2+ S侧 圆柱的表面积公式: (1)有两个底面的圆柱的表面积公式: 2 S 表=S 底X 2+ S 侧=n r X 2+ n dh 2 =n r X 2+2 n rh =2 n r (r+h ) (2)只有1个底面的圆柱的表面积公 式: 2 S 表=S 底+ S 侧=n r + n dh =n r +2n rh= n r (叶2h) (3)两个底面都没有的圆柱的表 面积公式:S表=S侧=ch = n dh =2n rh 大圆柱直径为D,半径为R,周长为C; 小圆 柱直径为d,半径为r,周长为c;高都为h S表=S大圆柱侧+ S小圆柱侧+ (S大圆柱底一S小圆柱底) X 2 =C大圆柱h+c小圆柱h+ (n於一n r 2)X 2 =D n h+d n h+ (n R^—n r2)X 2 =n h ( D+d) +2n( R2—r2) =2 n h (R+r) +2 n( R —r2) 体积=底面积X高十3 体积=底面积 乂高=侧面积 -2 X半径 V= S 底X h =n r2 h V= V大圆柱一V小圆 柱 =S大圆柱底X h —S小圆柱底X h =n 氏h —n r2 X h =n h ( R2—r2) 2 / 3

2.2.3 运用乘法公式进行计算

2.2.3 运用乘法公式进行计算 1.熟练运用乘法公式进行计算;(重点、难点) 2.通过对不同的式子采取合适的方法运算,培养学生的思维能力和解题能力. 一、情境导入 1.我们学过了哪些乘法公式? (1)平方差公式:(a+b)(a-b)=a2-b2. (2)完全平方公式:(a+b)2=a2+2ab+b2,(a-b)2=a2-2ab+b2. 2.怎样计算:(a+2b-c)(a-2b+c). 二、合作探究 探究点:运用乘法公式进行计算 【类型一】乘法公式的综合运用 计算: (1)(2+1)(22+1)(24+1)…(216+1); (2)(a+b)2-2(a+b)(a-b)+(a-b)2; (3)(x-2y+3z)(x+2y-3z); (4)(2a+b)2(b-2a)2. 解析:(1)可添加(2-1),与首项结合起来用平方差公式,再把结果依次与下一项运用平方差公式; (2)逆用完全平方公式,能简化运算; (3)两个因式都是三项式,且各项的绝对值对应相等,所以可先运用平方差公式; (4)先利用积的乘方把原式变形为[(b+2a)(b-2a)]2,再利用平方差公式把中括号内的多项式的乘法展开,然后再利用完全平方公式展开即可. 解:(1)原式=(2-1)(2+1)(22+1)(24+1)…(216+1)=(22-1)(22+1)(24+1)…(216+1) =(24-1)(24+1)…(216+1)=232-1; (2)原式=[(a+b)-(a-b)]2=(a+b-a+b)2=4b2; (3)原式=[x-(2y-3z)][x+(2y-3z)]=x2-(2y-3z)2=x2-(4y2-12yz+9z2)=x2-4y2 +12yz-9z2; (4)(2a+b)2(b-2a)2=[(b+2a)(b-2a)]2=(b2-4a2)2=b4-8a2b2+16a4. 方法总结:运用乘法公式计算时,先要分析式子的特点,找准合适的方法,能起到事半功倍的作用.同时由于减少了运算量,能提高解题的准确率. 【类型二】运用乘法公式求值 如图,立方体每个面上都写有一个自然数,并且相对两个面所写两数之和相等. 若18的对面写的是质数a,14的对面写的是质数b,35的对面写的是质数c,试求a2+b2+c2-ab-bc-ca的值.

小学数学五年级上册图形计算公式

小学数学五年级上册图 形计算公式 Document serial number【KK89K-LLS98YT-SS8CB-SSUT-SST108】

五年级上册图形计算公式 正方形的面积=S= 正方形的周长=c = 长方形的面积=S= 长方形的周长=c = 平行四边形的面积=S= 底=a = 高=h = 三角形形的面积=S= 底=a = 高=h = 梯形形的面积=S= (上底+下底)=(a+b )= 上底=a = 下底=b = 高=h = 5、梯形面积公式的推导过程: 把两个完全一样的梯形可以拼成一个平形四边形,拼成平形四边形的底等于梯形的上底加下底的和,平行四边形的高与梯形的高相等,每个梯形的面积是拼成平形四边形面积的一半,因为平形四边形面积等于底乘以高,所以梯形等于(上底+下底)×高÷2.如果用S 表示梯形的面积,用a 、b 和h 分别表示梯形的上底和高,面积公式可以写成S=(a+b)h÷2 梯形的面积=(上底+下底)×高÷2S 梯=(a+b )h÷2 梯形的高=面积×2÷(上底+下底)h 梯=S×2÷(a+b ) 上底+下底=面积×2÷高a+b=S×2÷h 梯形的上底=面积×2÷高-下底a 梯=S×2÷h-b 梯形的下底=面积×2÷高-上底b 梯=S×2÷h-a 1.长度单位换算 1千米=1000米1米=10分米1分米=10厘米1米=100厘米1厘米=10毫米 2.面积单位换算 1平方千米=100公顷1公顷=10000平方米1平方米=100平方分米 1平方分米=100平方厘米l 平方厘米=100平方毫米 a a a b a h a h

3.重量单位换算 1吨=1000千克1千克=1000克1千克=1公斤4.人民币单位换算‘1元=10角1角=10分1元=100分 5.时间单位换算1世纪=100年1年=12月大月(31天)有:1\3\5\7\8\10\12月 小月(30天)的有:4\6\9\11月平年2月28天,闰年2月29天 平年全年365天,闰年全年366天1日=24小时1时=6O分1分=60秒1时=3600秒6.数量关系式(1)、每份数×份数=总数总数÷每份数=份数 总数÷份数=每份数(2)、1倍数×倍数=几倍数几倍数÷1倍数=倍数 几倍数÷倍数=1倍数(3)、速度×时间=路程路程÷速度=时间路程÷时间=速度(4)、单价×数量=总价总价÷单价=数量总价÷数量=单价(5)、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率 (6)、加数+加数=和和-一个加数=另一个加数 (7)、被减数-减数=差被减数-差=减数 差+减数=被减数(8)、因数×因数=积积÷一个因数=另一个因数(9)、被除数÷除数=商被除数÷商=除数商×除数=被除数 7.角和三角形(1)角的大小分类,从小到大是:锐角、直角、钝角、平角、周角 (2)锐角是小于90度的角,直角是90度,钝角是大于90度而小于平角的角,平角是180度的角,周角是360度的角。(3)三角形按角分类:锐角三角形,直角三角形,钝角三角形 (3)三个角都是锐角是锐角的三角形叫锐角三角形;有一个角是直角的三角形叫直角三角形;有一个角是钝角的三角形叫钝角三角形。 (4)三角形按边分类有:不等边三角形,等腰三角形,等边三角形 (5)从三角形的一个顶点到它的对边作一条垂线,顶点和垂足之间的线段叫做三角形的高,这条对边叫做三角形的底。(5)小数的计数单位是十分之一,百分之一,千分之一……记作0.1,0.01,0.001……(6)小数的性质:小数的末尾添上“0”或去掉“0”,小数的大小不变。(7)1平角=2直角1周角=2平角=4直角 (8)三角形具有稳定性 (9)三角形任意两边之和大于第三边 (10)三角形的内角和是180度 五年级上册数学概念公式 第一单元:小数乘法 1、小数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。如:1.2×5表示5个1.2是多少。 2、一个数乘纯小数的意义就是求这个数的十分之几、百分几、千分之几……是多少。如: 1.2×0.5表示求1.2的十分之五是多少。 3、小数乘法的计算方法:计算小数乘法,先按整数乘法算出积,再看因数中一共有几位小数,就从积的右边起数出几位,点上小数点。乘得的积的小数位数不够,要在前面用0补足,再点上小数点。 4、一个数(0除外)乘1,积等于原来的数。 一个数(0除外)乘大于1的数,积比原来的数大。 一个数(0除外)乘小于1的数,积比原来的数小。 5、整数乘法的交换律、结合律和分配率,对于小数乘法也适用。 第二单元:小数除法 1、小数除法的意义与整数除法的意义相同,是已知两个因数的积与其中一个因数,求另一个因数的运算。 如:2.4÷1.6表示已知两个因数的积是2.4与其中一个因数是1.6,求另一个因数是多少。

小学数学基本计算公式

小学数学基本计算公式 一、小学数学图形计算公式: 1、正方形:C周长、S面积、a边长 周长=边长×4(C=4a) 面积=边长×边长(S=a×a) 2、正方体:V体积、a棱长 表面积=棱长×棱长×6(S表=a×a×6) 体积=棱长×棱长×棱长(V=a×a×a) 3、长方形: C周长、S面积、a边长 周长=(长+宽)×2(C=2(a+b)) 面积=长×宽(S=ab) 4、长方体: V体积、s面积、a长、b宽、h高 (1)表面积(长×宽+长×高+宽×高)×2(S=2(ab+ah+bh)) (2)体积=长×宽×高(V=abh) 5、三角形:s面积、a底、h高 面积=底×高÷2(s=ah÷2) 三角形高=面积×2÷底 三角形底=面积×2÷高 6、平行四边形:s面积、a底、h高 面积=底×高(s=ah) 7、梯形:s面积、a上底、b下底、h高 面积=(上底+下底)×高÷2s=(a+b)× h÷2 8、圆形:S面积、C周长、∏、d=直径、r=半径 (1)周长=直径×∏=2×∏×半径(C=∏d=2∏r)

(2)面积=半径×半径×∏(S=∏×r×r) 9、圆柱体:v体积、h高、s底面积、r底面半径、c底面周长 (1)侧面积=底面周长×高 (2)表面积=侧面积+底面积×2 (3)体积=底面积×高 (4)体积=侧面积÷2×半径 10、圆锥体:v体积、h高、s底面积、r底面半径 体积=底面积×高÷3 11、总数÷总份数=平均数 12、和差问题的公式: (和+差)÷2=大数 (和-差)÷2=小数 13、和倍问题: 和÷(倍数-1)=小数、小数×倍数=大数、(或者和-小数=大数) 14、差倍问题: 差÷(倍数-1)=小数、小数×倍数=大数、(或小数+差=大数) 15、植树问题: 1、非封闭线路上的植树问题主要可分为以下三种情形: ⑴如果在非封闭线路的两端都要植树,那么: 株数=段数+1=全长÷株距-1 全长=株距×(株数-1)株距=全长÷(株数-1) ⑵如果在非封闭线路的一端要植树,另一端不要植树,那么: 株数=段数=全长÷株距全长=株距×株数株距=全长÷株数 ⑶如果在非封闭线路的两端都不要植树,那么:

小学数学图形计算公式与运算定律

小学数学图形计算公式及运算定律 1 正方形 知道边长求周长:周长=边长×4 C=4a 知道边长求面积:面积=边长×边长 S= a×a= a2 2 正方体 知道棱长求表面积:表面积=棱长×棱长×6 S表=a×a×6 知道棱长求体积:体积=棱长×棱长×棱长 V=a×a×a= a3 =S底×h 3 长方形 知道长和宽求周长:周长=(长+宽)×2 C=2(a+b) 知道长和宽求面积:面积=长×宽 S=ab 4 长方体 知道长、宽、高求表面积: 表面积=(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh) 知道长、宽、高求体积: 体积=长×宽×高

V=abh= S底×h 5 三角形 知道底、高,求面积: 面积=底×高÷2 s=ah÷2 知道三角形的面积和底,求三角形的高: 三角形的高=面积×2÷底知道三角形的面积和高,求三角形的底: 三角形的底=面积×2÷高6 平行四边形 知道底和高求平行四边形的面积: 平行四边形的面积=底×高 s=ah 知道平行四边形的面积和底,求高: 高=面积÷底 知道平行四边形的面积和高,求底: 底=面积÷高 7梯形s面积a上底b下底h高 面积=(上底+下底)×高÷2 s=(a+b)× h÷2 上底=面积×2÷高—下底 下底=面积×2÷高—上底

知道圆锥体的体积和底面积求高: 高=圆锥体的体积×3÷底面积 知道圆锥体的体积和高求底面积: 底面积=圆锥体的体积×3÷高 运算定律 1. 加法交换律: 两个数相加,交换加数的位置,它们的和不变,即 a+b=b+a 。 2. 加法结合律: 三个数相加,先把前两个数相加,再加上第三个数;或者先把后两个数相加,再和第一个数相加它们的和不变,即(a+b)+c=a+(b+c) 。 3. 乘法交换律: 两个数相乘,交换因数的位置它们的积不变,即 a×b=b×a。 4. 乘法结合律: 三个数相乘,先把前两个数相乘,再乘以第三个数;或者先把后两个数相乘,再和第一个数相乘,它们的积不变,即(a×b)×c=a×(b×c) 。 5. 乘法分配律: 两个数的和与一个数相乘,可以把两个加数分别与这个数

各种图形计算公式

圆柱体: 表面积:2πRr+2πRh 体积:πRRh (R为圆柱体上下底圆半径,h为圆柱体高) 圆锥体: 表面积:πRR+πR[(hh+RR)的平方根] 体积: πRRh/3 (r为圆锥体低圆半径,h为其高, 平面图形 名称符号周长C和面积S 正方形 a—边长 C=4a S=a2 长方形 a和b-边长 C=2(a+b) S=ab 三角形 a,b,c-三边长h-a边上的高s-周长的一半A,B,C-内角其中 s=(a+b+c)/2 S=ah/2=ab/2·sinC =[s(s-a)(s-b)(s-c)]1/2= a2sinBsinC/(2sinA) 四边形 d,D-对角线长α-对角线夹角 S=dD/2·sinα 平行四边形 a,b-边长h-a边的高α-两边夹角 S=ah=absinα 菱形 a-边长α-夹角D-长对角线长d-短对角线长 S=Dd/2=a2sinα 梯形 a和b-上、下底长h-高m-中位线长 S=(a+b)h/2=mh 圆 r-半径 d-直径 C=πd=2πr S=πr2=πd2/4 扇形 r—扇形半径 a—圆心角度数 C=2r+2πr×(a/360) S=πr2×(a/360) 弓形 l-弧长 S=r2/2·(πα/180-sinα) b-弦长=r2arccos[(r-h)/r] - (r-h)(2rh-h2)1/2 h-矢高=παr2/360 - b/2·[r2-(b/2)2]1/2 r-半径=r(l-b)/2 + bh/2 α-圆心角的度数≈2bh/3 圆环 R-外圆半径 S=π(R2-r2) r-内圆半径=π(D2-d2)/4 D-外圆直径 d-内圆直径 椭圆 D-长轴 S=πDd/4 d-短轴 二维图形

2.2.3 运用乘法公式进行计算

2.2.3 运用乘法公式进行计算 学习目标: 1、学习2 )(c b a ++型,并进行公式推导; 2、进一步巩固完全平方公式和平方差公式,并会用乘法公式化简某些代数式. 重点:乘法公式的有关推广计算. 预习导学——不看不讲 学一学:阅读教材P48“动脑筋” 说一说: 平方差公式与完全平方公式及其结构特征 议一议:计算下列各题 (1)?)1)(1)(1(2=-++x x x (2)?)1)(1y (=-+++y x x 【归纳总结】遇到多项式的乘法时,要先观察式子的特征,看能否运用乘法公式,一达到简化运算的目的。 选一选:下列多项式的乘法中可用平方差公式计算的是( ). A .()()11x x ++ B .)2 1)(21 (a b b a -+ C .()()a b a b -+- D .()()22x y y x -+ 填一填:()2a b ---2ab = 你能用2222)(b ab a b a ++=+推导2 )(c b a ++的结果吗? 【课堂展示】例8 运用乘法公式计算 (1)2 )]3)(3[(-+a a (2)))((c b a c b a -++- 合作探究——不议不讲

互动探究一:291y my ++是完全平方式,则m 的若要使值为( ). A .3± B .3- C .6± D .6- 互动探究二:若,4,922-==+xy y x 求(1)2)(y x + (2)2)(y x -的值. 互动探究二:计算:[2a 2-(a+b )(a -b )][(-a -b )(-a+b )+2b 2]; 【当堂检测】: 1.填空 (1)、____))((=+-y x y x ;()()a b a b ---+= (2)、____)32(2=-n ;____)22(2=-y x (3)、22)(____)(n m n m +-=+; 222)() (b a b ab a +=+++ 2.计算 (1))9)(9(-++-y x y x (2)22)10()10(+-x x (3)2()x y z +- (4))3)(3()3(2y x y x y x +--+ 3. 思考:你能计算22()()a b a ab b +-+、22()()a b a ab b -++吗?

小学数学所有图形的周长,面积,体积,表面积公式大全之欧阳语创编

小学数学图形计算公式 时间:2021.03.01 创作:欧阳语 平面图形 图形名称图形周长(C)公式面积(S)公式 正方形 (4条对称轴)a周长=边长×4 C=4a 公式变换:a = C÷4=C 面积=边长×边长 S=a×a= a2 长方形 (2条对称轴)b a 周长=长+长+宽+宽=2长+2宽=(长+ 宽)×2 C=(a+b)×2 公式变换: a = C÷2-b b = C÷2-a 面积=长×宽 S=a×b= ab 公式变换: a= S÷bb= S÷a 三角形 (等边△有 3条对称轴;等腰△有1条对称轴)周长=边长a+边长b+边长c C =a+ b+ c 注:等边△周长C=3a 公式变换: a = C÷3 面积=底×高÷2 s=ah÷2= ah 公式变换: 三角形高=面积 ×2÷底 h=2s÷a 三角形底=面积 ×2÷高 a =2s÷h 平行四边形(没有对称轴)周长=边长a+边长a+边长b+边长b =边长a×2+边长b×2 C=2a+2b=2(a+ b) 面积=底×高 s=ah 公式变换: a=s÷hh =s÷a 梯形 (等腰梯形有1条对称轴) 周长=边长a+边长b +边长d +边长e C=a+b+ d+e 面积=(上底+下底)×高÷2 s=(a+b)× h÷2 公式变换: a =2s÷h-b b = 2s÷h-a a b h a h b c a b d e h

圆形 周长=直径×π=2×π×半径 C=πd=2πr 公式变换: d=2r r= d÷2 d = C÷πr = C÷2π ※半圆周长=πr +d 面积=半径×半径×π S =πr2 圆环 周长=C 大圆+C 小圆 =πD+πd =2πR+2πr =2π(R+r ) 面积= S 大圆-S 小圆 =πR2-πr2 =π(R2-r2) 立体图形 图形名称 图形 总棱长(L )公式 表面积(S )公式 体(容)积(V )公式 正方体 总棱长=棱长×12 L=12a S=一个面的面积×6 S=a×a×6 =6a2 体积=棱长×棱长×棱长 V= a×a×a=a3 长方体 总棱长=长×4+宽×4+高×4=4(长+宽+高) L=4(a+b+h ) 表面积=(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh) 体积=长×宽×高 V=abh 圆柱体 侧面积=底面周长×高 S 侧=ch=dπh=2πrh 表面积=底面积×2+侧面积 S 表= S 底×2+ S 侧 圆柱的表面积公式: (1)有两个底面的圆柱的表面积公式: S 表= S 底×2+ S 侧=πr2×2+πdh =πr2×2+2πrh=2πr (r+h ) (2)只有1个底面的圆柱的表面积公式: S 表= S 底+ S 侧=πr2+πdh =πr2+2πrh=πr (r+2h ) (3)两个底面都没有的圆柱的表面积公式:S 表=S 侧 =ch =πdh =2πrh 体积=底面积×高=侧面积÷2×半径 V= S 底×h =πr2 h 圆筒 大圆柱直径为D ,半径为R ,周长为C ;小圆柱直径为d ,半径为r ,周长为c ;高都为h S 表= S 大圆柱侧+ S 小圆柱侧+(S 大圆柱底-S 小圆柱底)×2 = C 大圆柱h+c 小圆柱h+(πR2-πr2)×2 =Dπh+dπh+(πR2-πr2)×2 =πh (D+d )+2π(R2-r2) =2πh (R+r )+2π(R2-r2) V= V 大圆柱-V 小圆柱 = S 大圆柱底×h -S 小圆柱底×h =πR2 h -πr2×h =πh (R2 -r2) 圆锥体 体积=底面积×高÷3 d r a a b h

【北师大版】七年级数学下册《活用乘法公式进行计算的六种技巧》专题试题(附答案)

北师大版七年级数学下册专题训练系列(附解析)

专训1活用乘法公式进行计算的六种技巧名师点金: 乘法公式是指平方差公式和完全平方公式,公式可以正用,也可以逆用.在使用公式时,要注意以下几点:(1)公式中的字母a,b可以是任意一个式子;(2)公式可以连续使用;(3)要掌握好公式中各项的关系及整个公式的结构特点; (4)在运用公式时要学会运用 一些变形技巧. 巧用乘法公式的变形求式子的值 1.已知(a+b)2=7,(a-b)2=4.求a2+b2和ab的值. 2.已知x+1 x=3,求x 4+ 1 x4的值.

巧用乘法公式进行简便运算 3.计算: (1)1982;(2)2 0042; (3)2 0172-2 016×2 018; (4)1002-992+982-972+…+42-32+22-12. 巧用乘法公式解决整除问题 4.试说明:(n+7)2-(n-5)2(n为正整数)能被24整除.

应用乘法公式巧定个位数字 5.试求(2+1)(22+1)(24+1)…(232+1)+1的个位数字. 巧用乘法公式解决复杂问题(换元法) 6.计算20 182 0172 20 182 0162+20 182 0182-2 的值. 巧用乘法公式解决实际问题(分类讨论思想) 7.王老师在一次团体操队列队形设计中,先让全体队员排成一方阵(行与列的人数一样多的队形,且总人数不少于

25人),人数正好够用,然后再进行各种队形变化,其中一个队形需分为5人一组,手执彩带变换队形,在讨论分组方案时,有人说现在的队员人数按5人一组分将多出3人,你说这可能吗? 答案 1.解:(a+b)2=a2+2ab+b2=7, (a-b)2=a2-2ab+b2=4, 所以a2+b2=1 2×(7+4)= 1 2×11= 11 2, ab=1 4×(7-4)= 1 4×3= 3 4. 2.解:因为x+1 x=3,所以? ? ? ? ? x+ 1 x 2 =x2+ 1 x2+2=9. 所以x2+1 x2=7.所以? ? ? ? ? x2+ 1 x2 2 =x4+ 1 x4+2=49.

【湘教版】七年级数学下册:2.2.3《运用乘法公式进行计算》教案

运用乘法公式进行计算 教学目标: 1、知识与技能:熟练地运用乘法公式进行计算; 2、过程与方法:能正确地根据题目的要求选择不同的乘法公式进行运算。 3、情感、态度与价值观:培养思维的灵活性,增强学好数学的信心 教学重点:正确选择乘法公式进行运算。 教学难点:综合运用平方差和完全平方公式进行多项式的计算。 教学方法:范例分析、探索讨论、归纳总结。 教学过程: 一、预学 (一)复习乘法公式 1、平方差公式:()()22b a b a b a -=-+ 2、完全平方公式:2222)(b ab a b a ++=+ 2222)(b ab a b a +-=- 3、三个数的和的平方公式:2)(c b a ++==bc ac ab c b a 2222 22+++++ 4、运用乘法公式进行计算: (1)()()b a b a --- (2)()()b a b a +-- (3)())1)(1(12-++x x x 二、探究 例1运用乘法公式计算: (1)()()22b a b a --+ (2)()()22b a b a -++ 解:(1)()()2 2b a b a --+ =()())]()][([b a b a b a b a --+-++ =()ab b a 2)2(2=? 想一想:这道题你还能用什么方法解答? (2)()()2 2b a b a -++ =()()222222b ab a b ab a +-+++ =2 22222b ab a b ab a +-+++ =2222b a + 三、精导 运用乘法公式计算: (1))1)(1(-+++y x y x (2))1)(1(-++-b a b a 解:(1))1)(1(-+++y x y x =]1)][(1)[(-+++y x y x

小学数学所有图形计算公式

小学数学图形计算公式 一、平面图形 1、正方形C周长S面积a边长 周长=边长×4 面积=边长×边长 C=4a S=a×a (或S=a2) 2 、长方形 C周长S面积a边长 周长=(长+宽)×2 面积=长×宽 C=2(a+b) S=ab 练习:①长方形的宽是3.4m,长是宽的1.8倍,请计算出长方形的周长和面积。 ②一个长方形画框,周长是1.8m,长是宽的2倍,它的长是多少?宽呢?面积呢? 3、三角形 s面积a底h高 面积=底×高÷2 三角形高=面积×2÷底三角形底=面积×2÷高s=ah÷2 h=s×2÷a a =s×2÷h (必须取相对应的底和高来计算,所谓相对应,就是底和高要互相垂直。) 练习:

4、平行四边形 s面积a底h高 面积=底×高 s=ah 5、梯形 s面积a上底b下底h高 面积=(上底+下底)×高÷2 练习: s=(a+b)× h÷2 8 圆形 S面积C周长π圆周率d直径r半径 (1)周长=直径×π=2×π×半径 C=πd=2πr (2)(已知半径)面积=半径×半径×π s=πr2 (已知直径)面积=(直径÷2)2×π S=(d÷2)2×π (已知周长)面积=(周长÷π÷2)2×π S=(c÷π÷2)2×π 街心花园中圆形花坛的周长是18.84m,它的面积是多少?

立体图形 1、正方体:V:体积a:棱长 表面积=棱长×棱长×6 体积=棱长×棱长×棱长S表=a×a×6 V=a×a×a 2、长方体V:体积s:面积a:长b: 宽h:高 (1)表面积=(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh) (2)体积=长×宽×高 V=abh (1、计算式一定要先分清楚长、宽、高的数据,不能弄错) (2、计算表面积是,看好题目给算的是几个面的面积,比如算教室房间的粉刷面积,要把底面积和门窗的面积去掉;鱼缸所用材料、泳池粉刷面积就要把顶面积去掉。) (3如果是求桶的制作材料,要看题目是否要求有盖子,是一个还是一对)(4、如果是求烟囱、通风筒,那要去掉两个底面的面积) 练习:①有一块长方形的铁皮,长60厘米,宽40厘米。在这块铁皮的四角剪去边长5厘米的小正方形,然后制成一个无盖的长方体盒子,求这个长方体盒子的体积。 ②要制作12节长方体的铁皮烟囱,每节长2米,宽4分米,高3分米,至少要用多少平方米的铁皮? ③一个长方体形状的儿童游泳池,长40米、宽14米,深1.2米。现在要在四壁和池底贴上面积为16平方分米的正方形瓷砖,需要多少块? ④一种无盖的长方体形铁皮水桶,底面是边长4分米的正方形,高1米。做一

小学数学中的计算公式大全{完整

小学数学中的计算公式大全 1、每份数×份数=总数总数÷每份数=份数 总数÷份数=每份数 2、1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数 3、速度×时间=路程路程÷速度=时间 路程÷时间=速度 4、单价×数量=总价总价÷单价=数量 总价÷数量=单价 5、工作效率×工作时间=工作总量 工作总量÷工作效率=工作时间 工作总量÷工作时间=工作效率 6、加数+加数=和和-一个加数=另一个加数 7、被减数-减数=差被减数-差=减数 差+减数=被减数 8、因数×因数=积积÷一个因数=另一个因数 9、被除数÷除数=商被除数÷商=除数 商×除数=被除数 小学数学图形计算公式 1、正方形:C周长S面积a边长 周长=边长×4C=4a 面积=边长×边长S=a×a

2、正方体:V:体积a:棱长 表面积=棱长×棱长×6 S表=a×a×6 体积=棱长×棱长×棱长V=a×a×a 3、长方形:C周长S面积a边长 周长=(长+宽)×2 C=2(a+b) 面积=长×宽S=ab 4、长方体:V:体积s:面积a:长b: 宽h:高 (1)表面积(长×宽+长×高+宽高)×2 S=2(ab+ah+bh) (2)体积=长×宽×高V=abh 5、三角形s面积a底h高 面积=底×高÷2 s=ah÷2 三角形高=面积×2÷底 三角形底=面积×2÷高 6、平行四边形:s面积a底h高 面积=底×高s=ah 7、梯形:s面积a上底b下底h高 面积=(上底+下底)×高÷2 s=(a+b)×h÷2 8 、圆形:S面C周长∏d=直径r=半径 (1)周长=直径×∏=2×∏×半径C=∏d=2∏r (2)面积=半径×半径×∏ 9、圆柱体:v:体积h:高s:底面积r:底面半径

数学计算公式大全

一、数学计算公式大全: 1、每份数×份数=总数总数÷每份数=份数总数÷份数=每份数 2、 1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数 3、速度×时间=路程路程÷速度=时间路程÷时间=速度 4、单价×数量=总价总价÷单价=数量总价÷数量=单价 5、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率 6、加数+加数=和和-一个加数=另一个加数 7、被减数-减数=差被减数-差=减数差+减数=被减数 8、因数×因数=积积÷一个因数=另一个因数 9、被除数÷除数=商被除数÷商=除数商×除数=被除数 小学数学图形计算公式 1 、正方形 C周长 S面积 a边长周长=边长×4 C=4a 面积=边长×边长S=a×a 2 、正方体 V:体积 a:棱长表面积=棱长×棱长×6 S表=a×a×6 体积=棱长×棱长×棱长V=a×a×a 3 、长方形: C周长 S面积 a边长 周长=(长+宽)×2 C=2(a+b) 面积=长×宽 S=ab 4 、长方体 V:体积 s:面积 a:长 b: 宽 h:高 (1)表面积(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh) (2)体积=长×宽×高 V=abh 5 三角形 s面积 a底 h高 面积=底×高÷2 s=ah÷2 三角形高=面积×2÷底 三角形底=面积×2÷高 6 平行四边形 s面积 a底 h高 面积=底×高 s=ah 7 梯形 s面积 a上底 b下底 h高 面积=(上底+下底)×高÷2 s=(a+b)× h÷2

S面积 C周长∏ d=直径 r=半径 (1)周长=直径×∏=2×∏×半径 C=∏d=2∏r (2)面积=半径×半径×∏ 9 圆柱体 v:体积 h:高 s;底面积 r:底面半径 c:底面周长 (1)侧面积=底面周长×高 (2)表面积=侧面积+底面积×2 (3)体积=底面积×高 (4)体积=侧面积÷2×半径 10 圆锥体 v:体积 h:高 s;底面积 r:底面半径 体积=底面积×高÷3 总数÷总份数=平均数 和差问题的公式 (和+差)÷2=大数 (和-差)÷2=小数 和倍问题 和÷(倍数-1)=小数 小数×倍数=大数 (或者和-小数=大数) 差倍问题 差÷(倍数-1)=小数 小数×倍数=大数 (或小数+差=大数) 植树问题 1 非封闭线路上的植树问题主要可分为以下三种情形: ⑴如果在非封闭线路的两端都要植树,那么: 株数=段数+1=全长÷株距-1 全长=株距×(株数-1) 株距=全长÷(株数-1) ⑵如果在非封闭线路的一端要植树,另一端不要植树,那么: 株数=段数=全长÷株距 全长=株距×株数 株距=全长÷株数 ⑶如果在非封闭线路的两端都不要植树,那么: 株数=段数-1=全长÷株距-1 全长=株距×(株数+1) 株距=全长÷(株数+1) 2 封闭线路上的植树问题的数量关系如下 株数=段数=全长÷株距 全长=株距×株数 株距=全长÷株数

小学数学图形计算公式归纳总结

小学数学图形计算公式归纳总结 小学是我们整个学业生涯的基础,所以小朋友们一定要培养良好的学习习惯,下面XX为同学们特别提供了小学数学图形计算公式,希望对大家的学习有所帮助! 1、正方形(C:周长S:面积a:边长)周长=边长×4C=4a 面积=边长×边长S=a×a 2、正方体(V:体积a:棱长) 表面积=棱长×棱长×6S表=a×a×6 体积=棱长×棱长×棱长V=a×a×a 3、长方形(C:周长S:面积a:边长) 周长=(长+宽)×2C=2(a+b) 面积=长×宽S=ab 4、长方体(V:体积s:面积a:长b:宽h:高) (1)表面积(长×宽+长×高+宽×高)×2S=2(ab+ah+bh) (2)体积=长×宽×高V=abh 5、三角形(s:面积a:底h:高) 面积=底×高÷2s=ah÷2 三角形高=面积×2÷底三角形底=面积×2÷高 6、平行四边形(s:面积a:底h:高) 面积=底×高s=ah 7、梯形(s:面积a:上底b:下底h:高) 面积=(上底+下底)×高÷2s=(a+b)×h÷2

8、圆形(S:面积C:周长лd=直径r=半径) (1)周长=直径×л=2×л×半径C=лd=2лr (2)面积=半径×半径×л 9、圆柱体(v:体积h:高s:底面积r:底面半径c:底面周长) (1)侧面积=底面周长×高=ch(2лr或лd)(2)表面积=侧面积+底面积×2 (3)体积=底面积×高(4)体积=侧面积÷2×半径 10、圆锥体(v:体积h:高s:底面积r:底面半径) 体积=底面积×高÷3 11、总数÷总份数=平均数 12、和差问题的公式 (和+差)÷2=大数(和-差)÷2=小数 13、和倍问题 和÷(倍数-1)=小数小数×倍数=大数(或者和-小数=大数) 14、差倍问题 差÷(倍数-1)=小数小数×倍数=大数(或小数+差=大数) 15、相遇问题 相遇路程=速度和×相遇时间 相遇时间=相遇路程÷速度和 速度和=相遇路程÷相遇时间

湘教版数学七年级下册精练精析:(十五)2.2.3运用乘法公式进行计算.docx

初中数学试卷 温馨提示: 此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。关闭Word文档返回原板块。 课时作业(十五) 运用乘法公式进行计算 (30分钟50分) 一、选择题(每小题4分,共12分) 1.若a2+ab+b2+A=(a-b)2,则A式应为( ) A.ab B.-3ab C.0 D.-2ab 2.计算(m-2n-1)(m+2n-1)的结果为( ) A.m2-4n2-2m+1 B.m2+4n2-2m+1 C.m2-4n2-2m-1 D.m2+4n2+2m-1 3.计算(2a+3b)2(2a-3b)2的结果是( ) A.4a2-9b2 B.16a4-72a2b2+81b4 C.(4a2-9b2)2 D.4a4-12a2b2+9b4 二、填空题(每小题4分,共12分) 4.计算(-3x+2y-z)(3x+2y+z)= . 5.矩形ABCD的周长为24,面积为32,则其四条边的平方和为. 6.已知a-b=3,则a(a-2b)+b2的值为. 三、解答题(共26分)

7.(8分)求代数式(a+2b)(a-2b)+(a+2b)2-4ab的值,其中a=1,b=1 . 10 8.(8分)计算:(x+1)(x+2)(x+3)(x+4). 【拓展延伸】 9.(10分)我国古代数学的许多发现都曾位居世界前列,其中“杨辉三角”就是一例.如图,这个三角形的构造法则:两腰上的数都是1,其余每个数均为其上方左右两数之和,它给出了(a+b)n(n为正整数)的展开式(按a的次数由大到小的顺序排列)的系数规律.例如,在三角形中第三行的三个数1,2,1,恰好对应(a+b)2=a2+2ab+b2展开式中的系数;第四行的四个数1,3,3,1,恰好对应着(a+b)3=a3+3a2b+3ab2+b3展开式中的系数等等. (1)根据上面的规律,写出(a+b)5的展开式. (2)利用上面的规律计算:25-5×24+10×23-10×22+5×2-1. 答案解析 1.【解析】选B.因为(a-b)2=a2-2ab+b2,所以a2+ab+b2+A=a2-2ab+b2,所以A=-3ab. 2.【解析】选A.(m-2n-1)(m+2n-1) =[(m-1)-2n][(m-1)+2n] =(m-1)2-4n2 =m2-2m+1-4n2 =m2-4n2-2m+1.

相关文档