文档视界 最新最全的文档下载
当前位置:文档视界 › 材料的结构与性能特点

材料的结构与性能特点

材料的结构与性能特点
材料的结构与性能特点

第一章材料的结构与性能

固体材料的性能主要取决于其化学成分、组织结构及加工工艺过程。所谓结构就是指物质内部原子在空间的分布及排列规律。

材料的相互作用

组成物质的质点(原子、分子或离子)间的相互作用力称为结合键。主要有共价键、离子键、金属键、分子键。

离子键

形成:正、负离子靠静电引力结合在一起而形成的结合键称为离子键。

特性:离子键没有方向性,无饱和性。NaCl晶体结构如图所示。

性能特点:离子晶体的硬度高、热膨胀系数小,但脆性大,具有很好的绝缘性。典型的离子晶体是无色透明的。

共价键

形成:元素周期表中的ⅣA、ⅤA、ⅥA族大多数元素或电负性不大的原子相互结合时,原子间不产生电子的转移,以共价电子形成稳

定的电子满壳层的方式实现结合。这种由共用电子对产生的结合键称为共价键。氧化硅中硅氧原子间共价键,其结构如图所示。

性能特点:共价键结合力很大,所以共价晶体的强度、硬度高、脆性大,熔点、沸点高,挥发度低。

金属键

形成:由金属正离子与电子气之间相互作用而结合的方式称为金属键。如图所示。

性能特点:

1)良好的导电性及导热性;

2)正的电阻温度系数;

3)良好的强度及塑性;

4)特有的金属光泽。

分子键

形成:一个分子的正电荷部位与另一分子的负电荷部位间以微弱静电引力相引而结合在一起称为范德华键(或分子键)。

特性:分子晶体因其结合键能很低,所以其熔点很低,硬度也低。但其绝缘性良好。

材料的结合键类型不同,则其性能不同。常见结合键的特性见表1-1。

晶体材料的原子排列

所谓晶体是指原子在其内部沿三维空间呈周期性重复排列的一类物质。晶体的主要特点是:①结构有序;②物理性质表现为各向异性;③有固定的熔点;④在一定条件下有规则的几何外形。

理想的晶体结构

1.晶体的基本概念

(1) 晶格与晶胞

晶格是指描述晶体排列规律的空间格架。从晶格中取出一个最能代表原子排列特征的最基本的几何单元,称为晶胞。晶胞各棱边的尺寸称为晶格常数。

(2) 晶系

按原子排列形式及晶格常数不同可将晶体分为七种晶系

(3) 原子半径

原子半径是指晶胞中原子密度最大方向相邻两原子之间距离的一半。

(4) 晶胞中所含原子数

晶胞中所含原子数是指一个晶胞内真正包含的原子数目。

(5) 配位数和致密度

配位数是指在晶体结构中,与任一原子最近邻且等距离的原子数。

致密度(K)是指晶胞中原子所占体积分数,即K = n v′/ V 。式中,n为晶胞所含原子数、v′为单个原子体积、V为晶胞体积。

2 .常见金属的晶格类型

(1)体心立方晶格(bcc晶格)

1)原子排列特征体心立方晶格的晶胞如图所示。

2)晶格常数a=b=c,α=β=γ=90°。

3)原子半径。

4)晶胞所含原子数2个原子。

5)配位数8。

6)致密度68%。

7)具有体心立方晶格的金属:α-Fe、β-Ti、Cr、W、Mo、V、Nb等30余种金属。

(2)面心立方晶格(fcc晶格)

1)原子排列特征面心立方晶格的晶胞如图所示。

2)晶格常数a=b=c,α=β=γ=90°。

3)原子半径。

4)晶胞所含原子数4个原子。

5)配位数12。

6)致密度74%。

7)具有面心立方晶格的金属:γ-Fe、Ni、Al、Cu、Pb、Au、Ag等。

(3)密排六方晶格(hcp晶格)

1)原子排列特征密排六方晶格的晶胞

2)晶格常数

3)原子半径

4)晶胞所含原子数6个原子。

5)配位数12。

6)致密度74%。

7)具有密排六方晶格的金属:Mg、Cd、Zn、Be、α-Ti等。

3 .立方晶系的晶面、晶向表示方法

在晶体中,由一系列原子所组成的平面称为晶面。任意两个原子之间的连线称为原子列,其所指方向称为晶向。表示晶面的符号称为晶面指数;表示晶向的符号称为晶向指数。

注意:

1)每一个晶面指数(或晶向指数)泛指晶格中一系列与之相平行的一组晶面(或晶向)。

2)立方晶系中,凡是指数相同的晶面与晶向是相互垂直的。

3)原子排列情况相同但空间位向不同的晶面(或晶向)统称为一个晶面(或晶向)族。

4)不同晶体结构中不同晶面、不同晶向上的原子排列方式和排列紧密程度是不一样的。

4.晶体的各向异性

金属晶体不同方向上性能不同,这种性质叫做晶体的各向异性。

实际晶体结构

一块晶体内部晶格位向完全一致,称该晶体为单晶体。由多晶粒构成的晶体称为多晶体。

实际晶体中存在的晶体缺陷,按缺陷几何特征可分为以下三种:

1.点缺陷

点缺陷是指在三维尺度上都很小而不超过几个原子直径的缺陷。

⑴空位

⑵间隙原子

⑶置换原子,如图所示。

点缺陷破坏了原子的平衡状态,使晶格发生了扭曲—晶格畸变,使金属的电阻率、屈服强度增加,金属的密度发生变化。

2.线缺陷

线缺陷是指二维尺度很小而另一维尺度很大的缺陷。它包括

各种类型的位错。所谓位错是指晶体中一部分晶体相对另一部分晶体发生了一列或若干列原子有规律的错排现象。第一个图为刃型位错,第二个图为螺型位错。

位错密度可用单位体积中位错线总长度来表示,即

式中,ρ为位错密度(m-2);ΣL为位错线的总长度(m);V为体积(m3)。位错的存在极大地影响金属的力学性能,如图所示。

3.面缺陷

面缺陷是指二维尺度很大而另一尺度很小的缺陷。金属晶体中的面缺陷主要有晶界和亚晶界。

晶粒与晶粒之间的接触界面称为晶界。如图(a)所示。

亚晶粒之间的交界称为亚晶界。如图(b)所示。

晶界、亚晶界处具有许多特殊性能。

非晶态材料中的原子排列

所谓非晶体是指原子在其内部沿三维空间呈紊乱、无序排列的一类物质。非晶体的特点是:①结构无序;②物理性质表现为各向同性;③没有固定的熔点;④热导率(导热系数)和膨胀性小等。

合金的晶体结构

组成合金的最基本独立单元叫做组元。由两个组元组成的合

金称为二元合金,由三个组元组成的合金称为三元合金。

合金的相结构、组织及其关系

相是指合金中具有同一化学成分、同一结构和原子聚集状态,并以界面相互分开的、均匀的组成部分。

所谓组织是指用肉眼或显微镜观察到的不同组成相的形态或各相形态之间的组合状态。

组织是由组成相的形态所构成的。同一相在不同的条件下可具有不同的形态,因而可形成不同的组织。

固溶体

合金的组元通过溶解形成一种成分及性能均匀的、且结构与组元之一相同的固相,称为固溶体。与固溶体结构相同的组元为溶剂,其它组元为溶质。

1.固溶体的分类

⑴按溶质原子在溶剂晶格中的位置,固溶体可分为置换固溶体与间隙固溶体两种。

⑵按溶质原子在固溶体中的溶解度,固溶体可分为有限固溶体和无限固溶体两种。

⑶按溶质原子在固溶体内分布是否有规则,固溶体分为有序固溶体和无序固溶体两种。

金属化合物

合金组元相互作用形成的晶格类型和特性完全不同于任一组元的新相即为金属化合物,或称中间相。其性能特点是熔点一般较高,硬度高,脆性大。金属化合物是许多合金的重要组成相(常作为强化相)。

1.正常价化合物

组元间电负性相差较大,且形成的化合物严格遵守化合价规律,此类化合物称为正常价化合物。例如:Mg2Si、Cu2Se、ZnS、AlP等。性能特点是硬度高、脆性大。

2.电子化合物

组元间形成化合物不遵守化合价规律,但符合一定电子浓度(化合物中价电子数于原子数之比),则此类化合物称为电子化合物。此类化合物的熔点和硬度较高,塑性较差,在许多有色金属中作为重要的强化相。

3.间隙化合物

由过渡族元素与碳、氮、氢、硼等原子半径较小的非金属元素形成的化合物称为间隙化合物。

1)间隙相当非金属原子半径与金属原子半径之比小于0.59时,形成具有简单晶格的间隙化合物,称为间隙相。一些间隙相及晶格类型见表1-6。间隙相具有金属特性,有极高的熔点及硬度,非常

稳定,见表1-7。

2)复杂结构的间隙化合物当非金属原子半径与金属原子半径之比大于0.59时,形成具有复杂结构的间隙化合物。钢中的Fe3C、Cr23C6、FeB、Fe4W2C、Cr7C3、Fe2B等均属于这类化合物。

合金性能

1.固溶体与固溶强化

通过形成固溶体使金属强度和硬度提高的现象称为固溶强化。固溶强化是金属强化的重要方式之一。固溶体的综合力学性能较好,常作为合金材料的基体相。

2.化合物与第二相强化

化合物的性能特点是熔点一般较高,硬度高,脆性大。金属化合物是许多合金的重要组成相(常作为强化相)。

以第二相(化合物等)作为强化相来提高合金材料的强度称为第二相强化。其强化效果取决于化合物的形态。

高聚物的结构

高分子材料是以高分子化合物为主要组分的材料。高分子化合物是分子量很大的化合物,每个分子可含几千、几万甚至几十万个原子。

大分子链的结构

1. 结构单元的化学组成

在元素周期表中只有ⅢA、ⅣA、ⅤA、ⅥA中部分非金属、

亚金属元素(如N、C、B、O、P、S、Si、Se等)才能形成高分子链。由于高聚物中常见的C、H、O、N等元素均为轻元素,所以高分子材料具有密度小的特点

2.高分子链的形态

(1)高分子链的几何形态

1)线型分子链由许多链节组成的长链,通常是卷曲成线团状。这类结构高聚物的特点是弹性、塑性好,硬度低,是热塑性材料的典型结构。

2)支化型分子链在主链上带有支链。这类结构高聚物的性能和加工都接近线型分子链高聚物。

3)体型分子链分子链之间由许多链节相互横向交联。具有这类结构的高聚物硬度高、脆性大、无弹性和塑性,是热固性材料的典型结构。

(2)高分子链的构象及柔顺性

1)链的构象

由于单链内旋转所产生的大分子链的空间形象称为大分子链的构象。

2)柔顺性

由于构象变化获得不同卷曲程度的特性。这种能拉伸、回缩的性能称为分子链的柔性,这是聚合物具有弹性的原因。

高聚物的聚集态结构

高分子化合物的聚集态结构是指高聚物内部高分子链之间

的几何排列或堆砌结构,也称超分子结构。依分子在空间排列的规整性可将高聚物分为结晶型、部分结晶型和无定型(非晶态)三类。

在实际生产中大多数聚合物都是部分晶态或完全非晶态。晶态结构在高分子化合物中所占的质量分数或体积分数称为结晶度。结晶度越高,分子间作用力越强,因此高分子化合物的强度、硬度、刚度和熔点越高,耐热性和化学稳定性也越好;而与键运动有关的性能,如弹性、伸长率、冲击韧性则降低。

陶瓷的结构

陶瓷亦称无机非金属材料,是指用天然硅酸盐(粘土、长石、石英等)或人工合成化合物(、氧化物、碳化物、硅化物等)为原料,经粉碎、配置、成型和高温烧制而成的无机非金属材料。陶瓷的基本相结构主要有:晶相、玻璃相、气相等。

晶体相

晶体相是陶瓷的主要组成相:主要有硅酸盐、氧化物和非氧化物等。它们的结构、数量、形态和分布,决定陶瓷的主要性能和应用。

玻璃相

玻璃相是一种非晶态物质。其作用:

①粘连晶体相,填充晶体相间空隙,提高材料致密度;

②降低烧成温度,加快烧结;

③阻止晶体转变,抑制其长大;

④获得透光性等玻璃特性;

⑤不能成为陶瓷的主导相:对陶瓷的机械强度、介电性能、耐热耐火性等不利。

气相

气相是陶瓷内部残留的孔洞;成因复杂,影响因素多。

陶瓷根据气孔率分致密陶瓷、无开孔陶瓷和多孔陶瓷。

气孔对陶瓷的性能不利(多孔陶瓷除外)

气孔率:普通陶瓷5%~10%

特种陶瓷5%以下

金属陶瓷低于0.5%

陶瓷的性能主要取决于晶相。同时还与各相的组织有关。

工程材料的性能

工程材料的力学性能

1.强度

强度是指材料在外力作用下抵抗永久变形和破坏的能力,单位为MPa。

1)弹性与刚度材料在弹性范围内,应力与应变的比值σ/ε称为弹性模数E(单位MPa)。E标志材料抵抗弹性变形的能力,用以表示材料的刚度。

2)屈服点σs 表示材料抵抗微量塑性变形的能力,单位为MPa 。铸铁等材料没有明显的屈服现象, 则用条件屈服点(σ0.2)来表示,即产生0.2%残余应变时的应力值。零(构)件在工程中一般不允许发生明显的塑性变形,所以σs是设计时的主要参数。

3)抗拉强度σb 表示材料抵抗最大均匀变形的应力,单位为MPa 。σb是设计选材的主要参数之一。

(2)变载时的强度

最常用的时疲劳强度。材料在大小和方向重复偱环变化载荷作用下抵抗破坏的能力,用σ-1来表示,单位为MPa。

(3)高温强度

材料在高温下的强度必须考虑温度和时间的影响。常用蠕变极限σT 和持久强度σT来表示。

2.塑性

塑性是指材料在外力作用下产生塑性变形而不破坏的能力。其大小以伸长率和断面收缩率来表示。

1)伸长率,以δ表示。

式中,l0为标距原长,l1为断裂后标距长度。

2)断面收缩率,以ψ表示。

式中,A0为试样原始横截面积,A1为断口处的横截面积。

δ、ψ愈大,表示材料的塑性愈好。塑性是压力加工成形的重要参数,另一方面,材料具有一定塑性可以提高零件使用的可靠性

3.硬度

《材料结构与性能》习题

《材料结构与性能》习题 第一章 1、一25cm长的圆杆,直径2.5mm,承受的轴向拉力4500N。如直径拉细成2.4mm,问: 1)设拉伸变形后,圆杆的体积维持不变,求拉伸后的长度; 2)在此拉力下的真应力和真应变; 3)在此拉力下的名义应力和名义应变。 比较以上计算结果并讨论之。 2、举一晶系,存在S14。 3、求图1.27所示一均一材料试样上的A点处的应力场和应变场。 4、一瓷含体积百分比为95%的Al2O3(E=380GPa)和5%的玻璃相(E=84GPa),计算上限及下限弹性模量。如该瓷含有5%的气孔,估算其上限及下限弹性模量。 5、画两个曲线图,分别表示出应力弛豫与时间的关系和应变弛豫和时间的关系。并注出:t=0,t=∞以及t=τε(或τσ)时的纵坐标。

6、一Al2O3晶体圆柱(图1.28),直径3mm,受轴向拉力F ,如临界抗剪强度τc=130MPa,求沿图中所示之一固定滑移系统时,所需之必要的拉力值。同时计算在滑移面上的法向应力。 第二章 1、求融熔石英的结合强度,设估计的表面能为1.75J/m2;Si-O的平衡原子间距为1.6×10-8cm;弹性模量值从60到75GPa。 2、融熔石英玻璃的性能参数为:E=73GPa;γ=1.56J/m2;理论强度。如材料中存在最大长度为的裂,且此裂垂直于作用力的方向,计算由此而导致的强度折减系数。 3、证明材料断裂韧性的单边切口、三点弯曲梁法的计算公式:

与 是一回事。 4、一瓷三点弯曲试件,在受拉面上于跨度中间有一竖向切口如图2.41所示。如果E=380GPa,μ=0.24,求KⅠc值,设极限载荷达50㎏。计算此材料的断裂表面能。 5、一钢板受有长向拉应力350 MPa,如在材料中有一垂直于拉应力方向的中心穿透缺陷,长8mm(=2c)。此钢材的屈服强度为1400MPa,计算塑性区尺寸r0及其与裂缝半长c的比值。讨论用此试件来求KⅠc值的可能性。 6、一瓷零件上有以垂直于拉应力的边裂,如边裂长度为:①2mm;② 0.049mm;③2μm,分别求上述三种情况下的临界应力。设此材料的断裂韧性为 1.62 MPa·m2。讨论诸结果。

材料成分结构性能三者间的关系

从钢铁材料看材料成分-结构-性能关系 钢铁从被利用开始至今一直是人类不可替代的原材料,是衡量一个国家综合国力和工业水平的重要指标。 我们都知道初铁外,C的含量对钢铁的机械性能起着重要作用,钢是含碳量为0.03%-2%的铁碳合金。随着碳含量的升高,碳钢的硬度增加、韧性下降。同时含碳量对工艺性能也有很大影响。对可锻性而言,低碳钢比高碳钢好。由于钢加热呈单相奥氏体状态时,塑性好、强度低,便于塑性变形,所以一般锻造都是在奥氏体状态下进行。对焊接性而言,一般来说含碳量越低,钢的焊接性能越好,所以低碳钢比高碳钢更容易焊接。而那些比例极小的合金加入,可以对钢的性能产生很大影响。可以说普通钢、优质钢和高级优质钢就是在这些比例极小的成分作用下分别出来的。那些合金成分的加入可以使钢的组织结构和性能都发生一定的变化,从而具有一些特殊性能。比如说,铬的加入不仅能提高金属的耐腐蚀性和抗氧化性,也能提高钢的淬透性,显著提高钢的强度、硬度和耐磨性;锰可提高钢的强度,提高对低温冲击的韧性;稀土元素可提高强度,改善塑性、体温脆性、耐腐蚀性及焊接性能等等。 钢铁材料的结构特征包括晶体结构、相结构和显微组织结构。钢铁是属于由金属键构成的晶体,因此就具有金属晶体的特性,如延展性。同时这也注定钢的机械性能不仅与其化学性能有关,而其晶体的结构和晶粒的大小影响更大。 铁碳合金的基本组元是纯Fe和Fe3C。铁存在同素异构转变,即在固态下有不同的结构。不同结构的铁与碳可以形成不同的固溶体。碳溶解于 -Fe中形成的固溶体成为铁素体,其含碳量非常低,所以性能与纯铁相似,硬度低、塑性高,并有铁磁性。其显微组织与工业纯铁也相似。碳溶于 -Fe形成的固溶体为奥氏体,具有面心立方结构,可以溶解较多的碳。在一般情况下,奥氏体是一种高温组织,故奥氏体的硬度较低,塑性高。通常在对钢铁材料进行热变形加工,都应将其加热呈奥氏体状态。 由此,从钢铁材料中,我们看到,材料的成分,结构和性能是密不可分的三者。成分和结构往往可以极大的影响材料的性能,而成分和结构之间也是相互影响的。 1、C的含量对钢铁的机械性能起着重要作用,随着碳含量的升高,碳钢的硬度增加、韧性下降。同时含碳量对工艺性能也有很大影响对可锻性而言,低碳钢比高碳钢好。对焊接性而言,一般来说含碳量越低,钢的焊接性能越好。 2、合金成分的加入可以使钢的组织结构和性能都发生一定的变化,从而具有一些特殊性能。比如说,铬的加入不仅能提高金属的耐腐蚀性和抗氧化性,也能提高钢的淬透性,显著提高钢的强度、硬度和耐磨性。 3、钢铁是属于由金属键构成的晶体,因此就具有金属晶体的特性,如延展性。同时这也注定钢的机械性能不仅与其化学性能有关,而其晶体的结构和晶粒的大小影响更大。 4、铁存在同素异构转变,即在固态下有不同的结构。不同结构的铁与碳可以形成不同的固溶体。碳溶解于 -Fe中形成的固溶体成为铁素体,其含碳量非常低,所以性能与纯铁相似,硬度低、塑性高,并有铁磁性。其显微组织与工业纯铁也相似。碳溶于 -Fe形成的固溶体为奥氏体,具有面心立方结构,可以溶解较多的碳。

注塑材料特性

ABC是什么ABS树脂吧! 一、PBT:聚对苯二甲酸丁二醇酯 聚对苯二甲酸丁二醇酯,英文名polybutylece terephthalate(简称PBT),属于聚酯系列,是由丁二醇glycol)与对苯二甲酸(PTA)或者对苯二甲酸酯(DMT)聚缩合而成,并经由混炼程序制成的乳白色半透明到不透明、结晶型热塑性聚酯树脂。与PET一起统称为热塑性聚酯,或饱和聚酯。 PBT理化特性 PBT为乳白色半透明到不透明、结晶型热塑性聚酯。具有高耐热性、韧性、耐疲劳性,自润滑、低摩擦系数,耐候性、吸水率低,仅为%,在潮湿环境中仍保持各种物性(包括电性能),电绝缘性,但体积电阻、介电损耗大。耐热水、碱类、酸类、油类、但易受卤化烃侵蚀,耐水解性差,低温下可迅速结晶,成型性良好。缺点是缺口冲击强度低,成型收缩率大。故大部分采用玻璃纤维增强或无机填充改性,其拉伸强度、弯曲强度可提高一倍以上,热变形温度也大幅提高。可以在140℃下长期工作,玻纤增强后制品纵、横向收缩率不一致,易使制品发生翘曲。 PBT加工工艺 PBT又可称为热塑性聚酯塑料,为适用于不同加工业者使用,一般多少会加入添加剂,或与其它塑料掺混,随着添加物比例不同,可制造不同规格的产品。由于PBT具有耐热性、耐候性、耐药品性、电气特性佳、吸水性小、光泽良好,广泛应用于电子电器、汽车零件、机械、家用品等,而PBT产品又与PPE、PC、POM、PA等共称为五大泛用工程塑料。 PBT 结晶速度快,最适宜加工方法为注塑,其他方法还有挤出、吹塑、涂覆和各种二次加工成型,成型前需预干燥,水分含量要降至%。 PBT的注塑工艺特性与工艺参数的设定: PBT的聚合工艺成熟、成本较低,成型加工容易。未改性PBT性能不佳,实际应用要对PBT进行改性,其中,玻璃纤维增强改性牌号占PBT的70%以上。 1 PBT的工艺特性 PBT具有明显的熔点,熔点为225~235℃,是结晶型材料,结晶度可达40%。 PBT熔体的粘度受温度的影响不如剪切应力那么大,因此,在注塑中,注射压力对PBT熔体流动性影响是明显。 PBT在熔融状态下流动性好,粘度低,仅次于尼龙,在成型易发生“流延”现象。 PBT成型制品各向异性。PBT在高温下遇水易降解。 2 注塑机 选用螺杆式注塑机时。应考虑如下几点。 ①制品的用料量应控制在注塑机额定最大注射量的30%~80%。不宜用大注塑机生产小制品。 ②应选用渐变型三段螺杆,长径比为15~20,压缩比为~。 ③应选用自锁式喷嘴,并带有加热控温装置。 ④在成型阻燃级PBT时,注塑机的有关部件应经防腐处理。 3 制品与模具设计 ①制品的厚度不宜太厚,PBT对缺口很敏感,因此,制品的直角等过渡处应采用圆弧连接。 ②未改性PBT的成型收缩率较大,在%~%,模具要有一定的脱模斜度。 ③模具需要设排气孔或排气槽。

材料结构与性能试题及详细答案

一、名词解释(分) 原子半径,电负性,相变增韧、气团 原子半径:按照量子力学地观点,电子在核外运动没有固定地轨道,只是概率分布不同,因此对原子来说不存在固定地半径.根据原子间作用力地不同,原子半径一般可分为三种:共价半径、金属半径和范德瓦尔斯半径.通常把统和双原子分子中相邻两原子地核间距地一半,即共价键键长地一半,称作该原子地共价半径();金属单质晶体中相邻原子核间距地一半称为金属半径();范德瓦尔斯半径()是晶体中靠范德瓦尔斯力吸引地两相邻原子核间距地一半,如稀有气体.资料个人收集整理,勿做商业用途 电负性:等人精确理论定义电负性为化学势地负值,是体系外势场不变地条件下电子地总能量对总电子数地变化率.资料个人收集整理,勿做商业用途 相变增韧:相变增韧是由含地陶瓷通过应力诱发四方相(相)向单斜相(相)转变而引起地韧性增加.当裂纹受到外力作用而扩展时,裂纹尖端形成地较大应力场将会诱发其周围亚稳向稳定转变,这种转变为马氏体转变,将产生近地体积膨胀和地剪切应变,对裂纹周围地基体产生压应力,阻碍裂纹扩展.而且相变过程中也消耗能量,抑制裂纹扩展,提高材料断裂韧性.资料个人收集整理,勿做商业用途 气团:晶体中地扩展位错为保持热平衡,其层错区与溶质原子间将产生相互作用,该作用被成为化学交互作用,作用地结果使溶质原子富集于层错区内,造成层错区内地溶质原子浓度与在基体中地浓度存在差别.这种不均匀分布地溶质原子具有阻碍位错运动地作用,也成为气团.资料个人收集整理,勿做商业用途 二、简述位错与溶质原子间有哪些交互作用.(分) 答:从交互做作用地性质来说,可分为弹性交互作用、静电交互作用和化学交互作用三类.弹性交互作用:位错与溶质原子地交互作用主要来源于溶质原子与基体原子间由于体积不同引起地弹性畸变与位错间地弹性交互作用.形成气团,甚至气团对晶体起到强化作用.弹性交互作用地另一种情况是溶质原子核基体地弹性模量不同而产生地交互作用.资料个人收集整理,勿做商业用途 化学交互作用:基体晶体中地扩展位错为保持热平衡,其层错区与溶质原子间将产生相互作用,该作用被成为化学交互作用,作用地结果使溶质原子富集于层错区内,造成层错区内地溶质原子浓度与在基体中地浓度存在差别,具有阻碍位错运动地作用.资料个人收集整理,勿做商业用途 静电交互作用:晶体中地位错使其周围原子偏离平衡位置,晶格体积发生弹性畸变,晶格畸变将导致自由电子地费米能改变,对于刃型位错来讲,滑移面上下部分晶格畸变量相反,导致滑移面两侧部分地费米能不相等,导致位错周围电子需重新分布,以抵消这种不平衡,从而形成电偶极,位错线如同一条电偶极线,在它周围存在附加电场,可与溶质原子发生静电交互作用.资料个人收集整理,勿做商业用途 三、简述点缺陷地特点和种类,与合金地性能有什么关系(分) 答:点缺陷对晶体结构地干扰作用仅波及几个原子间距范围地缺陷.它地尺寸在所有方向上均很小.其中最基本地点缺陷是点阵空位和间隙原子.此外,还有杂质原子、离子晶体中地非化学计量缺陷和半导体材料中地电子缺陷等.资料个人收集整理,勿做商业用途 在较低温度下,点缺陷密度越大,对合金电阻率影响越大.另外,点缺陷与合金力学性能之间地关系主要表现为间隙原子地固溶强化作用.资料个人收集整理,勿做商业用途 四、简述板条马氏体组织地组织形态、组织构成与强度与韧性地关系.(分) 答:板条马氏体地组织形态主要出现在低碳钢中,由许多成条排列地马氏体板条组成,大致平行地马氏体条组成地领域为板条束.每个晶粒内一般有个板条束,束地尺寸约为μ.一个马氏体板条束又由若干个板条组成,这些板条具有相同地惯习面,位向差很小,而板条束之间

材料性能期中答案

1、What is the definition for Materials Properties (MP )?How do we classify materials properties?And please list some classification for MP.(材料特性(MP )的定义是什么?我们如何分类材料特性,请列出一些MP 的分类。) 答:MP :Materials ’Response to External Stimulus. 材料性能:材料在给定的外界条件下的行为。 怎样分类:根据材料对外界刺激做出的响应的类型进行分类。 分类:复杂性能(使用性能,工艺性能,复合性能) 化学性能(抗渗入性,耐腐蚀性等) 力学性能(刚度强度韧性等) 物理性能(热学光学磁学电学性能) 2. What is the core relationship between materials science and engineering? In order to obtain desired materials properties, what should we consider first to do with the materials? (材料科学与工程的核心是什么关系?为了获得所需的材料性能,我们应该首先考虑的材料的什么?) 答:材料科学与工程学的核心关系是性能(课件上面那个三角形的图) 为了提高对于材料性能的期望,我们首先要研究材料的结构与性能的关系,即研究材料学。 3. What is the most determinant for Materials mechanical properties? Why?(材料力学性能的决定因素是什么?为什么呢?) 答:材料的力学性能主要指材料在力的作用下抵抗变形和开裂的性能,影响材料力学性能的最重要的因素是材料的结构。这些结构包括:subatomic-atomic-molecular-nano-micro-macro.由于材料的结构决定了材料的屈服强度,塑性韧性,刚度等性质,所以材料的结构对材料的力学性能影响最大。 4. what is strength of materials? Please try to identify the difference yield strength ,tensile strength ,fatigue strength and theoretical fracture strength? (材料的强度是什么?请尝试找出屈服强度,拉伸强度,疲劳强度和理论断裂强度的差异?)(中文ppt) 材料在载荷作用下抵抗变形和破坏的能力就是材料的强度。 屈服强度代表材料开始产生明显塑性变形的抗力 疲劳强度是材料在承受大小和方向同时间做周期性变化的交变应力时,往往在远小于强度极限甚至小于屈服极限的应力作用下就发生断裂。 理论断裂强度是无缺陷材料的理论预测值, 其中E 为杨氏模量,为解理面的表面能,a 为材料内部原子间的距离 5.Please describe yielding phenomena for materials, and its practical/engineering meaning. As long as there are no yielding phenomena for some materials, how do we determine the yield strength? (请描述为材料的屈服现象(书上p16),其实际/工程意义。有一些材料没有屈服现象,我们如何确定的屈服强度?) 屈服现象是材料开始产生明显塑性变形的标志,对应图中bd 段, 2 1)(a E c s γσ≈

常用塑胶材料特性大全世界通用版

常用塑胶材料特性 一、丙烯腈-丁二烯-苯乙烯(ABS)(乳白色半透明) 优点: 1.力学性能和热性能均好,乳白色半透明,硬度高,表面易镀金属 2.耐疲劳和抗应力开裂、冲击强度高 3.耐酸碱等化学性腐蚀 4.加工成型、修饰容易 缺点: 1.耐候性差 2.耐热性不够理想, 3.拉伸率底 主要应用范围:机器盖、罩,仪表壳、手电钻壳、风扇叶轮,收音机、电话和电视机等壳体,部分电器零件、汽车零件、机械及常规武器的零部件 改性的ABS共聚物: 将ABS加入PVC中,可提高其冲击韧性、耐燃性、抗老化和抗寒能力,并改善其加工性能; 将ABS与PC共混,可提高抗冲击强度和耐热性;以甲基丙烯酸甲酯替代ABS中丙烯腈组分,可制得MBS塑料,即通常所说的透明ABS。 ABS/NYLON 耐热及抗化学性、流动性佳、低温冲击性、低成本 主要用于汽车车身护板、引擎室零组件、连接器、动力工具外壳 ABS/PVC PVC增加防火性、降低成本ABS提供耐冲击性 主要用于家电用品零组件、事务机器零组件 ABS/PC 增加ABS耐热尺寸安定性、改善PC低温、后壁耐冲性、降低成本 主要用于打字机外壳、文字处理器、计算机设备之外壳、医疗设备零组件、小家电零组件、电子

器材零组件、汽车头灯框、尾灯外罩、食物餐盘 ABS/SMA 增加耐热性、流动性、涂装性佳 主要用于电子零组件、罩子、家电器材零组件 模具设计 1.排气 为防止在充模时出现排气不良、灼伤、熔接缝等缺陷,要求开设深度不大于0.04mm 的排气槽。 壁厚 0.8 mm至3.2 mm之间,典型的壁厚约在2.5mm左右,3.8以上需要结构性发泡。圆角 最小在厚度的25%,最适当半径在厚度的60%。 收缩率:0.4%-0.7%一般取0.5% 加强筋:高<3T 宽度0.5T 筋间距>2T 脱模角:0.5°-1.5° 支柱加强筋高度4T,可达支柱高度的90%,宽度0.5T,长度2T, 支柱:外经是内径2倍 具体公司和型号: 日本油墨化学工业公司 ABS\MBS TI-500A 透明级价格较高,主要用于要求流动性好、小而透明、性能和ABS一样的零件台达化学工业股份有限公司 ABS 8540T 阻燃级,耐冲击强度、射出成型用、高流动性、难燃性可达UL94 1/16“V-0 主要用于商用机器、信息产品、肉薄或形状复杂产品。 余姚四塑阻燃塑料厂

工程材料的分类及性能

工程材料的分类及性能 字体: 小中大 | 打印发表于: 2006-11-09 15:38 作者: xlktiancai 来源: 中国机械资讯网 材料的分类 材料的种类繁多,用途广泛。工程方面使用的材料有机械工程材料、土建工程材料、电工材料、电子材料等。在工程材料领域中,用于机械结构和机械零件并且主要要求机械性能的工程材料,又可分为以下四大类: 金属材料具有许多优良的使用性能(如机械性能、物理性能、化学性能等)和加工工艺性能(如铸造性能、锻造性能、焊接性能、热处理性能、机械加工性能等)。特别可贵的是,金属材料可通过不同成分配制,不同工艺方法来改变其内部组织结构,从而改善性能。加之其矿藏丰富,因而在机械制造业中,金属材料仍然是应用最广泛、用量最多的材料。在机械设备中约占所用材料的百分之九十以上,其中又以钢铁材料占绝大多数。 随着科学技术的发展,非金属材料也得到迅速的发展。非金属材料除在某些机械性能上尚不如金属外,它具有金属所不具备的许多性能和特点,如耐腐蚀、绝缘、消声、质轻、加工成型容易、生产率高、成本低等。所以在工业中的应用日益广泛。作为高分子材料的主体——工程塑料(如聚乙烯、聚氯乙烯、聚苯乙烯、聚酰胺、ABS塑料、环氧塑料等)已逐渐替代一些金属零件,应用于机械工业领域中。古老的陶瓷材料也突破了传统的应用范围,成为高温结构材料和功能材料的重要组成部分。 金属材料和非金属材料在性能上各有其优缺点。近年来,金属基复合材料、树脂基复合材料和陶瓷基复合材料的出现,为集中各类材料的优异性能于一体开辟了新的途径,在机械工程中的应用将日益广泛。

9-1.gif 我也来说两句查看全部回复 最新回复 xlktiancai (2006-11-09 15:39:31) 材料的性能一、力学性能材料受力后就会产生变形,材料力学性能 是指材料在受力时的行为。描述材料变形行为的指标是应力ζ和应变ε,ζ是单位面积上的作用力,ε是单位长度的变形。描述材料力学性能的 主要指标是强度、延性和韧性。其中,强度是使材料破坏的应力大小的度 量;延性是材料在破坏前永久应变的数值;而韧性却是材料在破坏时所吸 收的能量的数值。设计师们对这些力学性能制订了各种各样的规范。例 如,对一种钢管,人们要求它有较高的强度,但也希望它有较高的延性,以增加韧性,由于在强度和延性二者之间往往是矛盾的,工程师们要做出 最佳设计常常需要在二者中权衡比较。同时,还有各种各样的方法确定材 料的强度和延性。当钢棒弯曲时就算破坏,还是必须发生断裂才算破坏? 答案当然取决于工程设计的需要。但是这种差别表明至少应有两种强度判 据:一种是开始屈服,另一种是材料所能承受的最大载荷,这说明仅仅描 述材料强度的指标至少就有两个以上。一般来说,描述材料力学性能的指 标有以下几项: 1.弹性和刚度图1-6是材料的应力—应变图(ζ—ε 图)。(a)无塑性变形的脆性材料(例如铸铁);(b)有明显屈服 点的延性材料(例如低碳钢);(c)没有明显屈服点的延性材料(例如纯铝)。在图中的ζ—ε曲线上,OA段为弹性阶段,在此阶段,如卸去 载荷,试样伸长量消失,试样恢复原状。材料的这种不产生永久残余变形 的能力称为弹性。A点对应的应力值称为弹性极限,记为ζe。材料在弹 性范围内,应力与应变成正比,其比值E=ζ/ε(MN/m2)称为弹性模量。

材料结构与性能试题及详细答案

《材料结构与性能》试题 一、名词解释(20分) 原子半径,电负性,相变增韧、Suzuki气团 原子半径:按照量子力学的观点,电子在核外运动没有固定的轨道,只是概率分布不同,因此对原子来说不存在固定的半径。根据原子间作用力的不同,原子半径一般可分为三种:共价半径、金属半径和范德瓦尔斯半径。通常把统和双原子分子中相邻两原子的核间距的一半,即共价键键长的一半,称作该原子的共价半径(r c);金属单质晶体中相邻原子核间距的一半称为金属半径(r M);范德瓦尔斯半径(r V)是晶体中靠范德瓦尔斯力吸引的两相邻原子核间距的一半,如稀有气体。 电负性:Parr等人精确理论定义电负性为化学势的负值,是体系外势场不变的条件下电子的总能量对总电子数的变化率。 相变增韧:相变增韧是由含ZrO2的陶瓷通过应力诱发四方相(t相)向单斜相(m相)转变而引起的韧性增加。当裂纹受到外力作用而扩展时,裂纹尖端形成的较大应力场将会诱发其周围亚稳t-ZrO2向稳定m-ZrO2转变,这种转变为马氏体转变,将产生近4%的体积膨胀和1%-7%的剪切应变,对裂纹周围的基体产生压应力,阻碍裂纹扩展。而且相变过程中也消耗能量,抑制裂纹扩展,提高材料断裂韧性。 Suzuki气团:晶体中的扩展位错为保持热平衡,其层错区与溶质原子间将产生相互作用,该作用被成为化学交互作用,作用的结果使溶质原子富集于层错区内,造成层错区内的溶质原子浓度与在基体中的浓度存在差别。这种不均匀分布的溶质原子具有阻碍位错运动的作用,也成为Suzuki气团。 二、简述位错与溶质原子间有哪些交互作用。(15分) 答:从交互做作用的性质来说,可分为弹性交互作用、静电交互作用和化学交互作用三类。 弹性交互作用:位错与溶质原子的交互作用主要来源于溶质原子与基体原子间由于体积不同引起的弹性畸变与位错间的弹性交互作用。形成Cottrell气团,甚至Snoek气团对晶体起到强化作用。弹性交互作用的另一种情况是溶质原子核基体的弹性模量不同而产生的交互作用。 化学交互作用:基体晶体中的扩展位错为保持热平衡,其层错区与溶质原子间将产生相互作用,该作用被成为化学交互作用,作用的结果使溶质原子富集于层错区内,造成层错区内的溶质原子浓度与在基体中的浓度存在差别,具有阻碍位错运动的作用。 静电交互作用:晶体中的位错使其周围原子偏离平衡位置,晶格体积发生弹性畸变,晶格畸变将导致自由电子的费米能改变,对于刃型位错来讲,滑移面上下部分晶格畸变量相反,导致滑移面两侧部分的费米能不相等,导致位错周围电子需重新分布,以抵消这种不平衡,从而形成电偶极,位错线如同一条电偶极线,在它周围存在附加电场,可与溶质原子发生静电交互作用。 三、简述点缺陷的特点和种类,与合金的性能有什么关系(15分) 答:点缺陷对晶体结构的干扰作用仅波及几个原子间距范围的缺陷。它的尺寸在所有方向上均很小。其中最基本的点缺陷是点阵空位和间隙原子。此外,还有杂质原子、离子晶体中的非化学计量缺陷和半导体材料中的电子缺陷等。 在较低温度下,点缺陷密度越大,对合金电阻率影响越大。另外,点缺陷与合金力学性能之间的关系主要表现为间隙原子的固溶强化作用。

材料结构与性能(珍藏版)

材料结构与性能(珍藏版) 一、何为金属键?金属的性能与金属键有何关系? 二、试说明金属结晶时,为什么会产生过冷? 三、结合相关工艺或技术说明快速凝固的组织结构特点。 四、画出铁碳合金相图,并指出有几个基本的相和组织?说明它们的结构和 性能特点。 五、说明珠光体和马氏体的形成条件、组织形态特征和性能特点。 六、试分析材料导热机理。金属、陶瓷和玻璃导热机制有何区别?将铬、 银、Ni-Cr合金、石英、铁等物质按热导率大小排序,并说明理由。 七、从结构上解释,为什么含碱土金属的玻璃适用于介电绝缘? 八、列举一些典型的非线性光学材料,并说明其优缺点。 九、什么是超疏水、超亲水?超疏水薄膜对结构与表面能有什么要求? 十、导致铁磁性和亚铁磁性物质的离子结构有什么特征? 答案自测 特别重要的名词解释 原子半径:按照量子力学的观点,电子在核外运动没有固定的轨道,只是概率分布不同,因此对原子来说不存在固定的半径。根据原子间作用力的不同,原子半径一般可分为三种:共价半径、金属半径和范德瓦尔斯半径。通常把统和双原子分子中相邻两原子的核间距的一半,即共价键键长的一半,称作该原子的共价半径(r c);金属单质晶体中相邻原子核间距的一半称为金属半径 (r M);范德瓦尔斯半径(r V)是晶体中靠范德瓦尔斯力吸引的两相邻原子核间距的一半,如稀有气体。

电负性:Parr等人精确理论定义电负性为化学势的负值,是体系外势场不变的条件下电子的总能量对总电子数的变化率。 相变增韧:相变增韧是由含ZrO2的陶瓷通过应力诱发四方相(t相)向单斜相(m相)转变而引起的韧性增加。当裂纹受到外力作用而扩展时,裂纹尖端形成的较大应力场将会诱发其周围亚稳t-ZrO2向稳定m-ZrO2转变,这种转变为马氏体转变,将产生近4%的体积膨胀和1%-7%的剪切应变,对裂纹周围的基体产生压应力,阻碍裂纹扩展。而且相变过程中也消耗能量,抑制裂纹扩展,提高材料断裂韧性。 Suzuki气团:晶体中的扩展位错为保持热平衡,其层错区与溶质原子间将产生相互作用,该作用被成为化学交互作用,作用的结果使溶质原子富集于层错区内,造成层错区内的溶质原子浓度与在基体中的浓度存在差别。这种不均匀分布的溶质原子具有阻碍位错运动的作用,也成为Suzuki气团。

最新材料科学基础课后习题答案

《材料科学基础》课后习题答案 第一章材料结构的基本知识 4. 简述一次键和二次键区别 答:根据结合力的强弱可把结合键分成一次键和二次键两大类。其中一次键的结合力较强,包括离子键、共价键和金属键。一次键的三种结合方式都是依靠外壳层电子转移或共享以形成稳定的电子壳层,从而使原子间相互结合起来。二次键的结合力较弱,包括范德瓦耳斯键和氢键。二次键是一种在原子和分子之间,由诱导或永久电偶相互作用而产生的一种副键。 6. 为什么金属键结合的固体材料的密度比离子键或共价键固体为高? 答:材料的密度与结合键类型有关。一般金属键结合的固体材料的高密度有两个原因:(1)金属元素有较高的相对原子质量;(2)金属键的结合方式没有方向性,因此金属原子总是趋于密集排列。相反,对于离子键或共价键结合的材料,原子排列不可能很致密。共价键结合时,相邻原子的个数要受到共价键数目的限制;离子键结合时,则要满足正、负离子间电荷平衡的要求,它们的相邻原子数都不如金属多,因此离子键或共价键结合的材料密度较低。 9. 什么是单相组织?什么是两相组织?以它们为例说明显微组织的含义以及显微组织对性能的影响。 答:单相组织,顾名思义是具有单一相的组织。即所有晶粒的化学组成相同,晶体结构也相同。两相组织是指具有两相的组织。单相组织特征的主要有晶粒尺寸及形状。晶粒尺寸对材料性能有重要的影响,细化晶粒可以明显地提高材料的强度,改善材料的塑性和韧性。单相组织中,根据各方向生长条件的不同,会生成等轴晶和柱状晶。等轴晶的材料各方向上性能接近,而柱状晶则在各个方向上表现出性能的差异。对于两相组织,如果两个相的晶粒尺度相当,两者均匀地交替分布,此时合金的力学性能取决于两个相或者两种相或两种组织组成物的相对量及各自的性能。如果两个相的晶粒尺度相差甚远,其中尺寸较细的相以球状、点状、片状或针状等形态弥散地分布于另一相晶粒的基体内。如果弥散相的硬度明显高于基体相,则将显著提高材料的强度,同时降低材料的塑韧性。 10. 说明结构转变的热力学条件与动力学条件的意义,说明稳态结构和亚稳态结构之间的关系。 答:同一种材料在不同条件下可以得到不同的结构,其中能量最低的结构称为稳态结构或平衡太结构,而能量相对较高的结构则称为亚稳态结构。所谓的热力学条件是指结构形成时必须沿着能量降低的方向进行,或者说结构转变必须存在一个推动力,过程才能自发进行。热力学条件只预言了过程的可能性,至于过程是否真正实现,还需要考虑动力学条件,即反应速度。动力学条件的实质是考虑阻力。材料最终得到什么结构取决于何者起支配作用。如果热力学推动力起支配作用,则阻力并不大,材料最终得到稳态结构。从原则上讲,亚稳态结构有可能向稳态结构转变,以达到能量的最低状态,但这一转变必须在原子有足够活动能力的前提下才能够实现,而常温下的这种转变很难进行,因此亚稳态结构仍可以保持相对稳定。 第二章材料中的晶体结构 1. 回答下列问题: (1)在立方晶系的晶胞内画出具有下列密勒指数的晶面和晶向: 32)与[236] (001)与[210],(111)与[112],(110)与[111],(132)与[123],(2 (2)在立方晶系的一个晶胞中画出(111)和(112)晶面,并写出两晶面交线的晶向指数。 解:(1)

《材料结构与性能》课程论文

《材料结构与性能》课程论文 刚玉-尖晶石浇注料微结构参数控制及其强度、热震稳定性和抗渣性能研究 学生姓名:周文英 学生学号:201502703043 撰写日期:2015年11月

摘要 本文通过使用环境对耐火材料的要求,耐火材料与结构参数的分析,耐火材 料结构控制措施进展分析等方面总结了耐火材料的使用现状,并提出了下一步耐 火材料的改进措施。分别是:在基质中加入一定量的硅微粉,改变液相的粘度, 提高抗渣性;控制铝镁浇注料基质的粒径分布,使大颗粒含量一定保证其高温强度;使用球形轻骨料代替原来的致密骨料,提高气孔率,降低体积密度,提高能 源利用率,降低能耗。 关键词:铝镁浇注料;高温强度;抗渣性;热震稳定性 Abstract Requirements of the apply for fire resistance, analysis of refractory materials and structure parameters, current application and the promotion about the refractory are introduced in this paper. It included that: add some sillicon power into matrix in order to improve the viscosity of the liquid for abtaining better slag resistance; control the distribution of the particle in the matrix to ensure the high temperature strength; use spherical light aggregate instead of the original density aggregate to improve porosity and the rate of energy. Keywords:Alumina-Magnesia castable; high temperature strength; slag resistance; themal shock resistance.

磁性材料的电子结构

磁性材料的电子结构 [文档副标题] [日期] https://www.docsj.com/doc/5a1836433.html, [公司地址]

一、磁性 磁性是物质的基本属性,就像物质具有质量和电性一样。 一切物质都具有磁性。 自然磁现象 ☆磁性:具有能吸引铁磁物质(Fe、Co、Ni)的一种特性。 ☆磁体:具有磁性的物体 ☆磁极:磁性集中的区域 ☆地磁:地球是一个大磁体。 二、磁矩和磁畴 物质的磁性来源于原子的磁性,原子的磁性来源于电子轨道磁矩和电子自旋磁矩。 磁矩:电子绕轨道运动时,相当于一个环形电流。若电子的电荷为e,绕轨道运行的周期为T,对应的电流则为i=e/T,环形电流所包围的面积为S,则所形成的磁矩为iS。 磁矩的最小单位是μB,称为玻尔磁子,是一常数,其数值为μB=9.27×10-24A·m2。 磁性的强弱是指物质本身固有的磁矩大小,与原子磁矩有关。 三、电子轨道磁矩 电子轨道磁矩与轨道角动量的大小有关,与角动量l 在数值上成正比,方向相反。原子中由各个电子形成的轨道总磁矩是各个电子轨道磁矩的向量和。

四、电子的自旋磁矩 一个电子自旋磁矩在外磁场方向(z)的大小正好是一个玻尔磁子(μB),其方向与外磁场的方向平行或反平行。 磁性物质的电子自旋磁矩一般要比电子轨道磁矩大,因此,很多固态物质的磁性,主要不是由电子轨道磁矩引起的,而是来源于电子的自旋磁矩。电子的自旋磁矩在一定条件下是物质内部建立起磁性的根源。 五、固有磁矩 物质是否呈现磁性与其是否存在固有磁矩有关。 当原子中某一电子层被电子填满时,该层的电子轨道磁矩互相抵消,该层的电子自旋磁矩也相互抵消,即该层的电子磁矩对原子的磁矩没有贡献。如果原子中所有电子层全被电子填满(如惰性元素),则净磁矩为零。此时称该元素不存在固有磁矩。 因此,能显示固有磁矩的,必然是那些电子壳层未被填满的元素。 六、磁畴理论 铁磁材料之所以具有高导磁性,是因为在它们的内部具有一种特殊的物质结构—磁畴。 磁畴因受外磁场作用而顺着外磁场的方向发生归顺性重新排列,在内部形成一个很强的附加磁场。 随着温度的升高,铁磁体的磁化能力逐渐减小,当温度

材料结构与性能复习题答案(仅供参考)讲课稿

1 钢分类的方法有哪几种?钢中常用合金元素有哪些是强碳化物形成元素?中强碳化物形成元素? 钢的分类方法有5种:1)按化学成分,有碳素钢(低碳钢,中碳钢,高碳钢),合金钢;2)按质量,有普通钢,优质钢,高级优质钢;3)按用途,有结构钢,工具钢,特殊钢;4)按炼钢方法,有转炉钢,平炉钢,电炉钢;5)按浇筑前脱氧程度,有镇静钢,沸腾钢,半镇静钢。 强碳化合物形成元素:Hf,Zr,Ti,Ta,Nb,V 中强碳化合物形成元素:W,Mo 2 合金钢的主要优点是什么?常用以提高钢淬透性的元素有哪些?强烈阻碍奥氏体晶粒长大的元素有哪些?提高回火稳定性的元素有哪些? 合金钢主要优点:优异的力学性能和其他性能,既有高的强度,又有足够韧性和塑性。 提高钢淬透性的元素:B,Mn,Cr,Mo,Si,Ni 强烈阻碍奥氏体晶粒长大的元素:Hf,Zr,Ti,Ta,Nb,V 提高回火稳定性的元素:V,Nb,Cr,Mo,W 3 解释下列现象:(1)大多数合金钢的热处理温度比相同含碳量的碳素钢高;(2)大多数合金钢比相同含碳量的碳素钢具有较高的回火稳定性;(3)含碳量为0.4%、含铬量为12%的铬钢属于过共析钢,而含碳量为1.5%、含铬量为12%的铬钢属于莱氏体钢;(4)高速钢在热断货热轧后经空冷获得马氏体钢。 1) 热处理目的是让碳及合金元素充分溶解,合金元素扩散速度慢,另外合金元素形成的碳化物溶解需要更高温度和时间。 2) 由于合金钢中含有较多的碳化物形成元素如,Cr、W、Mo、Ti、V等,它们与碳有较强的亲和力,使碳化物由马氏体向奥氏体溶解时,合金元素扩散困难,加之合金碳化物的稳定性高,使碳化物的溶解比较困难,合金钢在加热时需要较高的温度和较长的时间。因此,合金钢具有较高的回火稳定性。 3) 按照金相组织来看,含碳量为0.4%、含铬量为12%的铬钢平衡态是渗碳体加珠光体,含碳量为1.5%、含铬量为12%的铬钢平衡态出现莱氏体。 4)由于高速钢的合金元素含量高,C曲线右移,一般合金元素越高临界冷却速度越小,淬透性越好,当空冷的冷却速度大于临界冷却速度时,空冷即可获得马氏体。 4 有资料表明,南京长江大桥采用16Mn钢比普通碳素钢节约钢材15%,简要解释原因。低合金高强度钢是在碳素工程钢基础上加入少量合金元素(Mn,Si,Ti,Nb,V,Al等)形成的,以此获得较好的塑性,韧性,焊接性能,性能的提高使得在相同的工程条件要求下大大降低了钢材的使用量。16Mn属于低合金高强度结构钢,这类钢适应大型工程结构,减轻结构重量,提高使用的可靠性及节约钢材,因此与碳素钢相比可以节省15%材料。 5 试比较45钢与40Cr钢的应用范围,以此说明合金元素Cr在调质钢中的作用。 45钢属优质碳素结构钢,大量的模具生产会用到,做模具钢使用。 40Cr钢经调质后用于制造承受中等负荷及中等速度工作的机械零件,如汽车的转向节;经淬火及中温回火后用于制造承受高负荷、冲击及中等速度工作的零件,如齿轮;经淬火及低温回火后用于制造承受重负荷、低冲击及具有耐磨性、截面上实体厚度在25mm以下的零件,如蜗杆;经调质并高频表面淬火后用于制造具有高的表面硬度及耐磨性而无很大冲击的零件,如套筒;此外,这种钢又适于制造进行碳氮共渗处理的各种传动零件,如直径较大和低温韧性好的齿轮和轴。 Cr能增加钢的淬透性,提高钢的强度和回火稳定性,具有优良的机械性能。 6 说明渗碳钢、调质钢、弹簧钢、轴承钢的化学成分、最终热处理及组织、性能特点。 渗碳钢:一般都是低碳钢,碳的质量分数一般在0.12%-0.25%范围,主要合金元素有Ni,Cr,Mn

材料结构与性能试题及答案

《材料结构与性能》试题2011级硕士研究生适用 一、名词解释(20分) 原子半径,电负性,相变增韧、Suzuki气团 原子半径:按照量子力学的观点,电子在核外运动没有固定的轨道,只是概率分布不同,因此对原子来说不存在固定的半径。根据原子间作用力的不同,原子半径一般可分为三种:共价半径、金属半径和范德瓦尔斯半径。通常把统和双原子分子中相邻两原子的核间距的一半,即共价键键长的一半,称作该原子的共价半径(r c);金属单质晶体中相邻原子核间距的一半称为金属半径(r M);范德瓦尔斯半径(r V)是晶体中靠范德瓦尔斯力吸引的两相邻原子核间距的一半,如稀有气体。 电负性:Parr等人精确理论定义电负性为化学势的负值,是体系外势场不变的条件下电子的总能量对总电子数的变化率。 相变增韧:相变增韧是由含ZrO2的陶瓷通过应力诱发四方相(t相)向单斜相(m相)转变而引起的韧性增加。当裂纹受到外力作用而扩展时,裂纹尖端形成的较大应力场将会诱发其周围亚稳t-ZrO2向稳定m-ZrO2转变,这种转变为马氏体转变,将产生近4%的体积膨胀和1%-7%的剪切应变,对裂纹周围的基体产生压应力,阻碍裂纹扩展。而且相变过程中也消耗能量,抑制裂纹扩展,提高材料断裂韧性。 Suzuki气团:晶体中的扩展位错为保持热平衡,其层错区与溶质原子间将产生相互作用,该作用被成为化学交互作用,作用的结果使溶质原子富集于层错区内,造成层错区内的溶质原子浓度与在基体中的浓度存在差别。这种不均匀分布的溶质原子具有阻碍位错运动的作用,也成为Suzuki气团。 二、简述位错与溶质原子间有哪些交互作用。(15分) 答:从交互做作用的性质来说,可分为弹性交互作用、静电交互作用和化学交互作用三类。 弹性交互作用:位错与溶质原子的交互作用主要来源于溶质原子与基体原子间由于体积不同引起的弹性畸变与位错间的弹性交互作用。形成Cottrell气团,甚至Snoek气团对晶体起到强化作用。弹性交互作用的另一种情况是溶质原子核基体的弹性模量不同而产生的交互作用。 化学交互作用:基体晶体中的扩展位错为保持热平衡,其层错区与溶质原子间将产生相互作用,该作用被成为化学交互作用,作用的结果使溶质原子富集于层错区内,造成层错区内的溶质原子浓度与在基体中的浓度存在差别,具有阻碍位错运动的作用。 静电交互作用:晶体中的位错使其周围原子偏离平衡位置,晶格体积发生弹性畸变,晶格畸变将导致自由电子的费米能改变,对于刃型位错来讲,滑移面上下部分晶格畸变量相反,导致滑移面两侧部分的费米能不相等,导致位错周围电子需重新分布,以抵消这种不平衡,从而形成电偶极,位错线如同一条电偶极线,在它周围存在附加电场,可与溶质原子发生静电交互作用。 三、简述点缺陷的特点和种类,与合金的性能有什么关系(15分) 答:点缺陷对晶体结构的干扰作用仅波及几个原子间距范围的缺陷。它的尺寸在所有方向上均很小。其中最基本的点缺陷是点阵空位和间隙原子。此外,还有杂质原子、离子晶体中的非化学计量缺陷和半导体材料中的电子缺陷等。 在较低温度下,点缺陷密度越大,对合金电阻率影响越大。另外,点缺陷与合金力学性能之间的关系主要表现为间隙原子的固溶强化作用。

材料结构和性能解答(全)

1、离子键及其形成的离子晶体陶瓷材料的特征。 答:当一个原子放出最外层的一个或几个电子成为正离子,而另一个原子接受这些电子而成为负离子,结果正负离子由于库仑力的作用而相互靠近。靠近到一定程度时两闭合壳层的电子云因发生重叠而产生斥力。这种斥力与吸引力达到平衡的时候就形成了离子键。此时原子的电中性得到维持,每一个原子都达到稳定的满壳层的电子结构,其总能量达到最低,系统处于最稳定状态。因此,离子键是由正负离子间的库仑引力构成。由离子键构成的晶体称为离子晶体。离子晶体一般由电离能较小的金属原子和电子亲和力较大的非金属原子构成。离子晶体的结构与特性由离子尺寸、离子间堆积方式、配位数及离子的极化等因素有关。 离子键、离子晶体及由具有离子键结构的陶瓷的特性有: A、离子晶体具有较高的配位数,在离子尺寸因素合适的条件下可形成最密排的结构; B、离子键没有方向性 C、离子键结合强度随电荷的增加而增大,且熔点升高,离子键型陶瓷高强度、高硬度、高熔点; D、离子晶体中很难产生自由运动的电子,低温下的电导率低,绝缘性能优良; E、在熔融状态或液态,阳离子、阴离子在电场的作用下可以运动,故高温下具有良好的离子导电性。 F、吸收红外波、透过可见波长的光,即可制得透明陶瓷。 2、共价键及其形成的陶瓷材料具有的特征。 答:当两个或多个原子共享其公有电子,各自达到稳定的、满壳层的状态时就形成共价键。由于共价电子的共享,原子形成共价键的数目就受到了电子结构的限制,因此共价键具有饱和性。由于共价键的方向性,使共价晶体不密堆排列。这对陶瓷的性能有很大影响,特别是密度和热膨胀性,典型的共价键陶瓷的热膨胀系数相当低,由于个别原子的热膨胀量被结构中的自由空间消化掉了。 共价键及共价晶体具有以下特点: A、共价键具有高的方向性和饱和性; B、共价键为非密排结构; C、典型的共价键晶体具有高强度、高硬度、高熔点的特性。 D、具有较低的热膨胀系数; E、共价键由具有相似电负性的原子所形成。 3、层状结构材料的各向异性。 答:层状结构中范德华力起着重要的作用,陶瓷的层状结构间有较强的若键存在使得层与层之间连接在一起。蒙脱石和石墨的结构层内键合类型不同于层间键合类型,因此材料显示出较高的各向异性。所有的这些层状结构的层与层之间很容易滑移,粘土矿物中的这种层状结构使它在有水的情况下容易发生塑性变形。 4、影响陶瓷材料密度的因素。 答:密度是指单位体积的质量,陶瓷材料的密度有四种表示方式,分别是:结晶学密度、理论密度、体积密度、相对密度。前三种在制作过程中没有形成气孔,在结构内的原子间只有间隙。陶瓷材料的密度主要取决于元素的尺寸,元素的质量和结构堆积的紧密程度。相对原子质量大的元素构成的陶瓷材料显示出较高的密度,如碳化钨、氧化铪等。金属键合和离子键合陶瓷中的原子形成紧密堆积,会使其密度比共价键键合陶瓷(较开放的结构)的密度更奥一些,如锆石英。 5、硬度所反映的材料的能力;静载荷压入法测定硬度的原理。

相关文档