文档视界 最新最全的文档下载
当前位置:文档视界 › 湘江江水源热泵空调系统方案

湘江江水源热泵空调系统方案

湘江江水源热泵空调系统方案
湘江江水源热泵空调系统方案

中泰财富湘江江水源热泵中央空调系统

目录

第一章项目概况................................................

1.1 项目简介...............................................

1.2 项目负荷及能源价格.....................................

1.2.1 项目负荷.........................................

1.2.2 当地能源价格.....................................

1.3 项目发展背景...........................................

1.3.1 能源背景.........................................

1.3.2 国家相关政策.....................................

1.4编制依据 ...............................................

1.4.1 空调系统相关规范.................................

1.4.2 智能控制相关规范................................. 第二章项目空调技术方案设计....................................

2.1项目系统形式 ...........................................

2.2水源热泵技术 ...........................................

2.2.1 水源热泵系统技术原理.............................

2.2.2 水源热泵系统的特点...............................

2.3水源热泵系统设计 .......................................

2.3.1 能源中心面积及装机配置...........................

2.3.2 能源中心配电容量.................................

2.3.3水源热泵系统水源水小时流量的计算.................

2.3.4 取回水方式确定...................................

2.3.5 取回水管线的布置.................................

2.3.6水源水管确定 .....................................

2.3.7水处理主要措施 ...................................

2.3.8水处理工艺流程 ................................... 第三章年运行费用及初投资分析..................................

3.1系统年运行费用 .........................................

3.1.1 夏季运行成本.....................................

3.1.2 冬季运行成本.....................................

3.1.3 年运行维护成本...................................

3.2系统初投资 .............................................

3.2.1投资估算范围及内容 ...............................

3.2.2 投资费用估算表................................... 第四章商业合作模式............................................

4.1合同能源管理 ...........................................

4.1.1合同能源管理EPC操作模式.........................

4.1.2 合同能源管理EPC操作流程.........................

4.1.3合同能源管理融资模型 .............................

4.1.4合同能源管理盈利模型 .............................

4.1.5 合同能源管理合作模式.............................

4.2设计施工总承包 .........................................

4.3合作模式的建议 .........................................

第一章项目概况

1.1 项目简介

中泰?财富湘江地处滨江南路与衡山路(规划中)交叉口,总占地206.55亩,规划总建筑面积约为64万平方米,总投资约为25亿元人民币,是株洲中泰房地产开发有限公司进军株洲的开山之作。项目紧邻长江南路、滨江南路两大城市干道,交通快捷,出行方便。项目东拥风光旖旎湘江风光带、烟波浩渺波光粼粼的湘江、堆绿叠翠的山地生态公园,空气清新,是株洲最为宜居之地。

中泰?财富湘江项目涵盖滨江大宅、园景公寓、主题独立商业三大物业形态,由32栋高层半围合布局,新古典主义的建筑立面风格,ArtDeco的时尚演绎,俯江瞰山大势蔚然。高雅建筑和碧波荡漾的湘江、满眼皆绿的永久性生态公园(枫溪山生态公园)融为一体,舒展成一幅人居山水图。目前正在开发的是中泰财富湘江一期项目,总占地4万平方米,总建筑面积15万平方米,计划于2012年年底开工,2014年12月竣工。

图1-1 项目效果图

1.2 项目负荷及能源价格

1.2.1 项目负荷

本项目规划用地13.7万㎡,总建筑面积63.6万㎡,其中地上建筑面积49.3万㎡,地下建筑面积14.1万㎡。建筑类型有高层住宅、公寓、酒店式公寓、沿街商铺与集中商业、办公楼与配套公建等,其中的高层住宅占35万㎡,项目经济技术指标如下:

表1-1项目经济技术指标

项目住宅公寓、商业办公区冷负荷指标分别取80w/㎡、120w/㎡,热负荷指标均取60w/㎡,则可知项目空调负荷如下表:

表1-2项目空调负荷分析表

夏季空调制冷按120天计,冬季供热均取90天;住宅和公寓每天24小时供能,商业办公区12小时供能;日平均负荷系数均取0.7。由此可知该项目全年供能量,具体如下表:

表1-3项目全年供能量分析表

则全年总冷量为46500MWH,全年总热量为24562MWH。

1.2.2 当地能源价格

1、株洲市一般工商业电价为0.906元/KWh;

2、市政自来水价格为2.83元/立方米;

3、株洲市天然气价格为3.0元/立方米;

1.3 项目发展背景

1.3.1 能源背景

1、全球能源背景

能源已经成为全球经济与社会发展的基本动力,而矿物能源消费的迅速增长是造成环境恶化的主要因。特别是近100年来,全球能源消耗平均以每年3%的速度递增,到1998年,全世界一次能源消耗量已超过121亿吨标准煤。随着全球绝大多数发展中国家工业化进程的加快,未来世界能源消耗仍将以3.0%的速

度增长。由于能源的大量消耗,不仅大大加快了传统化石能源的耗竭速度,同时还排放出大量的SO2、CO2、NOx和粉尘,给生态环境造成极大破坏,使得地球变暖,自然灾害频繁,严重制约了全球经济的发展。

2、我国能源背景

能源资源不足是我国目前面临的一个严重问题。我国人口众多,人均占有资源相对贫乏。政府部门的统计资料显示,我国人均剩余可开采石油储量仅为3.0吨,约为世界平均水平的1/9,石油对外依赖度已经超过40%;煤炭、天然气和森林资源的人均拥有量分别仅为世界平均值的约1/2、1/23和1/6。按照现有用能速度,我国目前已探明的石油资源只能使用20年,而煤炭作为我国的主要能源资源也只能使用100年。另一方面,我国目前的人均能源消耗水平仅为世界平均水平的55%,相当于美国人均能源消耗水平的10%,其增长潜力巨大。一边是能源存量短缺,另一边是能源消耗快速增长,我国能源形势十分严峻。人均能耗消费水平见图1-1。

图1-2 人均能耗消费水平

我国城乡建筑每年都要消耗大量的能源。根据统计,到2000年,房屋建筑耗能量为3.5亿tce,约占全国总能源消耗量的27.5%,并且呈逐年稳步增长趋势。一方面,我国正处在高速建设期,每年城乡房屋建筑竣工面积约为20亿m2;另一方面,我国单位建筑面积能耗高,单位面积采暖能耗达到气候条件相近的发达国家的三倍以上。大量的高能耗建筑的投入使用必将导致建筑能耗总量快速上升。以我国现有建筑能耗水平计算,到2020年建筑能耗将达到10.89亿tce,为2000年的3倍,也就是说,差不多相当于2000年全国能源总消耗量。建筑能耗增长见图1-2。

图1-3 建筑能耗增长趋势图

3、环境污染

我国是世界上少数几个以煤为主要能源的国家之一,煤炭的消费量占能源总消费量的75%(1996),这种消费结构给环境造成了巨大压力。我国大气污染严重,是世界上大气污染排放最大的国家之一。世界上污染最严重的十个城市中,仅中国就占了其中七个。

环境状况是我国面临的另一大问题。2002年燃煤造成的SO2和烟尘排放量

约占排放总量的70~80%;SO2排放形成的酸雨面积已占国土面积的1/3;CO2

排放量约9.0亿吨,约占全球排放总量的13%。中国主要污染物排放总量均居世界第一位。城市热岛效应也日益严重。环境污染直接或间接造成的经济损失占国民生产总值的比例已经达到3~4%。

1.3.2 国家相关政策

毋庸讳言,能源和环保问题已经成为制约我国经济增长、实现到2020年人均国内生产总值在2000年基础上翻两番的国民经济发展战略目标的瓶颈因素。为此,中央提出建设节约型社会、构建资源节约型和环境友好型社会的战略目标,从而促进能源、环境和经济社会的协调、和谐、可持续发展。

2007年10月15日胡锦涛主席在代表十六届中央委员会向十七大作报告时,提出了实现全面建设小康社会奋斗目标的新要求,指出进一步的工作方向为“建设生态文明,基本形成节约能源资源和保护生态环境的产业结构、增长方式、消费模式”。

国务院办公厅发布了一系列关于节能减排的通知。国务院关于做好建设节约型社会近期重点工作的通知中,明确指出开发利用可再生能源。国务院关于加强节能工作的决定指出,推进建筑节能,全面实施重点节能工程。国家发展与改革委员会编制了“中长期节能专项规划”,建筑节能被列为重点节能领域之一,建筑节能工程成为十大节能工程之一,建筑节能工程包括:新建建筑全面严格执行50%节能标准,四个直辖市和北方严寒、寒冷地区实施新建建筑节能65%的标准,并实行全过程严格监管。建设低能耗、超低能耗建筑以及可再生能源与建筑一体化示范工程,对现有居住建筑和公共建筑进行城市级示范改造,推进新型墙体材料和节能建材产业化。建设部制定了“建设部建筑节能‘九五’计划及2010年规划”、“建设部建筑节能‘十五’计划纲要”、“建设部建筑节能技术政策”、“民用建筑节能管理规定”、“关于固定资产投资工程项目可行性研究报告节能篇(章)编制及评估的规定”等一系列政策、规定。建设部、财政部关于推进可再生能源在建筑中应用的实施意见中指出,推进可再生能源在建筑中应用是贯彻落实科学发展观,调整能源结构,保证国家能源安全的重要举措;推进可再生能源在建筑中应用是实施国家能源战略的必然选择;推进可再生能源在建筑中应用是满足能源需求日益增长,改善人民生活质量,提高建筑用能效率的现实要求。国

家重点支持相关技术领域中应用可再生能源的示范工程、技术集成及标准制定,其中包括地表水及地下水丰富地区利用淡水源热泵技术供热制冷工程。

近年来,为了推动全社会节约能源,提高能源利用效率,保护和改善环境,促进经济社会全面协调可持续发展,1997年颁布了《中华人民共和国节约能源法》;为促进可再生能源的开发利用,增加能源供应,改善能源结构,保障能源安全,保护环境,实现经济社会的可持续发展,2005年颁布了《中华人民共和国可再生能源法》,鼓励城镇建筑及其住户采用可再生能源供暖、制冷、制备生活热水。与此同时,《公共建筑节能设计标准》、《夏热冬冷地区居住建筑节能设计标准》、《民用建筑节能设计标准(采暖居住建筑部分)》、《建筑照明设计标准》等一系列节能标准相继出台,《建筑能效测评与标识管理办法》与《建筑能效测评与标识技术导则》已进入征求意见阶段,《居住建筑节能设计标准》也在编制中。各地方也相继编制了地方性节能标准实施细则以及相关的节能检验标准。

各级政府部门的高度重视和相关法律、规章、标准的颁布执行必将推动我国建筑节能工作的发展。可以说,建筑节能已成为我国国民经济发展中的一个重要方面,建筑的节能环保已经成为当今建筑产业发展的一个重要方向,相关产业的发展刻不容缓。

1.4编制依据

1.4.1 空调系统相关规范

1、《公共建筑节能设计标准》(GB50189-2005)

2、《采暖通风与空气调节设计规范》(GB50019-2003)

3、《全国民用建筑工程设计技术措施—暖通空调·动力》(2009)

4、《夏热冬暖地区居住建筑节能设计标准》(JGJ26—2010)

5、《地源热泵系统工程技术规范》(GB50366-2005)

6、《城市热力网设计规范》(CJJ34-2002)

7、《全国民用建筑工程设计技术措施—给水排水》(2009)

8、《建筑给水排水设计规范》(GB50015-2003)

9、《公共建筑节能设计标准黑龙江省实施细则》

1.4.2 智能控制相关规范

1、《智能化系统工程检测规程》(DB32/365-1999)

2、《民用建筑电气设计规范》(JCJ/T16-92)

3、《智能建筑设计标准》(DBJ-08-47-95)

4、《电气装置工程施工及验收规范》(GBJ232-82)

5、《自动控制设计规范》(采暖、通风和空气调节系统)

第二章项目空调技术方案设计

2.1项目系统形式

中泰?财富湘江项目所在地临近湘江,水资源丰富,该项目拟采用江水源热泵系统,取用湘江中的江水做为空调系统的冷热源,拟建立一个能源中心,向项目各建筑集中供能。在冬季极端状况下用电锅炉辅助供热。

能源站选址:

1、能源站尽量建设在负荷中心区处,以减少冷热水的输送能耗及能量散失;

2、能源站尽量建设于绿化带下方,有利于降低噪声;

3、能源站的建设位置需考虑取回水管网的布置,尽量降低取回水管网的投资;

根据以上原则,从项目附近湘江上游取水,下游回水,能源站位置如下图所示:

图2-1 能源站位置示意图

2.2水源热泵技术

2.2.1 水源热泵系统技术原理

水源热泵技术是利用地球表面浅层水源如地下水、河流和湖泊中吸收的太阳能和地热能而形成的低温低位热能资源,并采用热泵原理,通过少量的高位电能输入,实现低位热能向高位热能转移的一种技术。?

地球表面浅层水源如地下水、地表的河流和湖泊和海洋中,吸收了太阳进入地球的相当的辐射能量,并且水源的温度一般都十分稳定。水源热泵机组工作原理在夏季制冷时将建筑物的热量转移到水源中,由于水源温度低,所以可以高效地带走热量。水源热泵机组工作的系统示意图如下:

图2-2水源热泵系统示意图

水源热泵根据对水源的利用方式的不同,可以分为闭式系统和开式系统两种。闭式系统是指在水侧为一组闭式循环的换热套管,该组套管一般水平或垂直埋于地下或湖水海水中,通过与土壤或海水换热来实现能量转移。(其中埋于土壤中的系统又称土壤源热泵,埋于海水中的系统又称海水源热泵)。开式系统是指从地下抽水或地表抽水后经过换热器直接排放的系统。?

与锅炉(电、燃料)和空气源热泵的供热系统相比,水源热泵具明显的优势。锅炉供热只能将90%~98%的电能或70~90%的燃料内能转化为热量,供用户使用,因此地源热泵要比电锅炉加热节省三分之二以上的电能,比燃料锅炉节省二分之一以上的能量;由于水源热泵的热源温度全年较为稳定,一般为10~28℃,其制冷、制热系数可达3.5~4.4,与传统的空气源热泵相比,要高出40%左右,其运行费用为普通中央空调的50~60%。

2.2.2 水源热泵系统的特点

由于水源热泵技术利用地表水作为空调机组的制冷制热的源,所以其具有以下优点:

1、可再生能源利用技术

水源热泵是利用了地球水体所储藏的太阳能资源作为冷热源,进行能量转换的供暖空调系统。其中可以利用的水体,包括地下水或河流、地表的部分的河流和湖泊以及海洋。地表土壤和水体不仅是一个巨大的太阳能集热器,而且是一个巨大的动态能量平衡系统,所以说,水源热泵利用的是清洁的可再生能源的一种技术。

2、高效节能

水源热泵机组可利用的水体温度冬季为10-22℃,水体温度比环境空气温度高,所以热泵循环的蒸发温度提高,能效比也提高。而夏季水体为18-35℃,水体温度比环境空气温度低,所以制冷的冷凝温度降低,使得冷却效果好于风冷式和冷却塔式,机组效率提高。据美国环保署EPA估计,设计安装良好的水源热泵,平均来说可以节约用户30~40%的供热制冷空调的运行费用。

3、运行稳定可靠

水体的温度一年四季相对稳定,其波动的范围远远小于空气的变动。是很好的热泵热源和空调冷源,水体温度较恒定的特性,使得热泵机组运行更可靠、稳定,也保证了系统的高效性和经济性。不存在空气源热泵的冬季除霜等难点问题。极端工况下有电锅炉作为辅助热源,保证了供暖的可靠性。

4、环境效益显着

水源热泵的使用电能,电能本身为一种清洁的能源,但在发电时,消耗一次能源并导致污染物和二氧化碳温室气体的排放。所以节能的设备本身的污染就小。设计良好的水源热泵机组的电力消耗,与空气源热泵相比,相当于减少30%以上,与电供暖相比,相当于减少70%以上。

水源热泵技术采用的制冷剂,可以是R22或R134A、R407C和R410A等替代工质。水源热泵机组的运行没有任何污染,可以建造在居民区内,没有燃烧,没有排烟,也没有废弃物,不需要堆放燃料废物的场地,且不用远距离输送热量。

5、一机多用,应用范围广

水源热泵系统可供暖、空调,还可供生活热水,一机多用,一套系统可以替换原来的锅炉加空调的两套装置或系统。特别是对于同时有供热和供冷要求的建筑物,水源热泵有着明显的优点。不仅节省了大量能源,而且用一套设备可以同时满足供热和供冷的要求,减少了设备的初投资。水源热泵可应用于宾馆、商场、办公楼、学校等建筑,小型的水源热泵更适合于别墅住宅的采暖、空调。?

6、使用方便

可根据各区域的实际需要开启关闭空调,各区域的空调使用独立方便,对租售的功能调整,可轻松更换机组,满足大范围负荷的不同需求,轻松配合二次装修与区域分隔,并可根据需要独立电表计费。

7、自动运行

水源热泵机组由于工况稳定,所以可以设计简单的系统,部件较少,机组运行简单可靠,维护费用低;自动控制程度高,使用寿命长可达到30年。当然,像任何事物一样,水源热泵也不是十全十美的,其应用也会受到制约。

2.3水源热泵系统设计

2.3.1 能源中心面积及装机配置

该项目能源中心装机冷负荷为30.425MW,拟配置6MW的水源热泵主机4台,7MW水源热泵主机1台,考虑冬季最不利工况下,热泵系统效率低下,增设电锅炉辅助调节负荷,电锅炉装机8.8MW。能源中心的机房面积约1500㎡。

2.3.2 能源中心配电容量

能源中心装机冷负荷为30.425MW,夏季系统COP约为3.8,并考虑10%的配电余量,则装机配电量预估为9MW。

1、夏季热泵主机水源水最大小时取水流量的计算

夏季最大冷负荷为30425KW,热泵主机cop约为4.5,加上机组的输入功率,则取冷凝器总的换热量约为30425×(1+1/4.5)kw=37186kw,水源水进出水温度为25/32℃,温差为7℃。则夏季小时最大需水源水量为:

式中:q------水源水小时流量,m3/h;

Q------冷凝器总的换热量,kw;

Δt-----冷凝器换热温差,℃。

2.3.4 取回水方式确定

1、取水多方案比较

固定式取水构筑物,位置固定不变,安全可靠,应用较为广泛。由于水源的水位变化幅度、岸边的地形地质和航运等因素,可有多种布置。常见的有四种:(1)江/河边进水头式

由取水头部、进水管、集水井和取水泵房组成。常用于岸坡较陡、深水线靠近岸边、高低水位相差不大、含砂量不高的江河和湖泊(图2-3)。源水通过设在水源最低水位之下的进水头部,经过进水管流至集水井,然后由重力自流或泵房加压送至水厂。集水井可与泵房分建或合建。当取水量小时,可以不建的集水井而由水泵直接吸水。取水头部外壁进水口上装有格栅,集水井内装有滤网以防止原水中的大块漂流杂物进入水泵,阻塞通道或损坏叶轮。

图2-3江边进水头部式取水原理图

(2)江心桥墩式

也称塔式。常用于水库,建于尚未蓄水时。构筑物高耸于水体中,取水、泵水设施齐全,用输水管送水上岸。可以在不同深度取水,以得到水质较好的原水。

(3)岸边广口井顶管式

集水井与泵房分建或合建于岸边,原水直接由进水口进入。一般适用于岸坡较缓,深水线离岸边较远的江河。对含砂量大或冰凌严重或两者均出现的河流,取水量又较大时,可采用斗槽式取水构筑物,它是一种特殊的岸边式取水构筑物,其前以围堤筑成一个斗槽,粗砂将在斗槽内沉淀,冰凌则在槽内上浮。中国西北地区有多处斗槽式取水构筑物。

图2-4 广口井顶管取水原理图

(4)岸边广口井渗水式

集水井与泵房分建或合建于岸边,原水由石间缝隙渗水至集水井。

图2-5广口井渗水取水原理图

(5)梁式悬臂桥取水形式

梁式悬臂桥形式见图2-6,由钢筋混凝土悬臂桥、深井泵、输水管、水泵安装检修起重架四部分组成。使用范围为岸陡水深的取水部位。悬臂的长度以丰枯水位差和湖(河)岸坡度来确定,在枯水位保证吸入口伸入水面1m,由于钢筋混凝土悬臂自重较大,悬臂长度宜控制在20m 以内。

图2-6 悬臂桥取水构筑物剖面示意图

2、取水方案及水源管线的设置方案

结合本项目水源条件以及以上各方案对比,建议该项目采用江边进水式取水方式。由取水头部、进水管、集水井组成。源水输送采用重力自流式或泵房加压送至能源站的方式,利用水源站室循环水处理泵的余压提升回水至江里。取水口端部设闸板,用于调节水量和关闭、开启输水管线。为保证水源站室的安全性,防止水淹,所有与源水管线连接的设备均为封闭式。进入水源站室的原水管线设置专用控制阀门。

2.3.5 取回水管线的布置

取水管线和回水管线,尽量沿道路敷设,拟取水口负责能源站取水,回水口负责能源站回水,管线布置方案:取水管线直接在能源站所在空地下埋管铺设进能源站。回水管线也通过地下埋管铺设,排水口可设置若干个喷头,扩大排水区域,使得排水口附近的局部温升控制在环境允许之内。该取回水管线只是初步决定,具体实施时还要据具体情况而定。

1、所需水源水管径计算

水源水管径,取流速v=2.6m/s,则水源水管半径r:

则水源水管径经综合考虑,规格取DN800。

2、所需水源水管长度估算

由于项目所在区域临靠湘江,则水源水取回水管总长度预估为1000m。

(1)一级过滤处理:取水口前设置斜板过滤装置(格栅)作为一级处理,有效去除水体中大型悬浮物、水藻等物体。防止水源中的大块漂流杂物、水藻等进入水泵,阻塞通道或损坏叶轮以及换热管(板)。常采用斜板式机械格栅,一般为10目-20目。

(2)二级过滤处理:为了保障系统的安全运行,加装二级机械旋流除砂器,可以有效去除水中的砂子等细小颗粒,可有效保护主机等设备的安全稳定运行。

(3)三级过滤处理:为了保障系统安全运行,在二级过滤器后,加装三级机械过滤器或自动反冲洗装置,过滤等级为80目/英寸。过滤等级更高,确保细小的藻类等杂物无法进入机组换热器而影响换热器的正常换热。

图2-7水源水处理工艺流程图

地表水源热泵作为地源热泵的一种形式,水质的影响远大于土壤源耦合热泵和地下水源热泵。地表水源热泵系统的良好运转,必须解决水源引起的相关问题,而水源的问题主要集中在水温和水质两个方面。本项目将根据湖水水质特点,制定合理可行的水处理方案,妥善解决泥沙、藻类堵塞、微生物繁殖等主要问题。

第三章年运行费用及初投资分析

3.1系统年运行费用

3.1.1 夏季运行成本

1、该项目全年总制冷量为46500MWH。夏季采用水源热泵空调系统供冷,由于江水温度一般为27~28℃,较冷却塔32℃的进水温度低4~5℃,对于主机而言,冷却水温度每降低1℃,主机的效率将提高3%左右,因此水源热泵主机的效率比同类的冷水机组效率一般高12%~15%。一般冷水机组+冷却塔系统COP为3.3,则水源热泵系统制冷平均能效比约可达到3.8,平均电价取0.906元/KWH,可知水源热泵空调系统制冷运行电费为:

单位制冷量的电费成本为0.906元/KWH/3.8=0.2384元/KWH

3.1.2 冬季运行成本

2、该项目全年总制热量为24562MWH。水源热泵系统制热平均能效比约为

3.3,平均电价取0.906元/KWH,可知水源热泵空调系统制热运行电费为:

单位制热量的电费成本为0.906元/KWH/3.3=0.2745元/KWH

3.1.3 年运行维护成本

能源站按照12名工作人员配置,每人每年的支出为5万元,其它办公管理费用为每年40万元,则能源站的每年的人工及管理费用预估为100万元。

有上述计算可知:该项目采用江水源热泵空调系统供能,全年运行电费及人工管理费总计为1882.9万元。

3.2系统初投资

1、工程投资

(1)能源中心机房部分投资

①站房设备及安装费

主要为热泵主机、电锅炉、水泵、机房管网、阀门及配套系统设备及安装。

②水处理费

主要包括:旋流除砂器、压滤器、胶球装置。

③自控系统费用

主要为冷热量自动计量及收费管理系统及节能监控及自动化控制系统费用。

④高低压配电费用

(2)取水回水建设费用

(3)室外管网投资费用

(4)空调末端投资费用

2、工程建设其他费用

(1)勘察设计费用

根据国家发改委、建设部“计价格【2002】10号”文件标准计取。

(2)监理费

根据国家发改委、建设部“发改价格【2007】670号”文件标准计取。

(3)建设单位管理费

根据“财建【2002】394号”有关文件标准计取。

(4)可行性研究、环境影响评价等前期费用

根据“财建【2002】394号”有关文件标准计取。

(5)招投标代理费

根据“计价格【2002】1980号”有关文件标准计取。

(6)竣工图编制费

根据有关文件标准计取。

(7)工程结算审查费

根据有关文件标准计取。(以上费用汇总为项目的总投资)

3.2.2 投资费用估算表

本项目采用江水源热泵空调系统,包含空调末端与室外管网,系统初投资17151.4万元,空调建筑面积为49.3万㎡,则单位建筑面积投资额347.9元/㎡。

水源热泵中央空调(免费).

勤诫创业 技术文件Page 1 of 4 bm.moq -lcr^ro-hu.ma:. r 水源热泵中央空调 水系统存在问题及解决方案 1 .水源热泵概念 水源热泵是一种利用地下浅层地热资源(也称地能,包括地下水、土壤或地表水等)或再生水源(包括生活污水、工业废水、热电厂冷却水,油田废水等)的,既可供热又可制冷的高效节能空调系统。水源热泵通过输入少量的高品位能源(如电能),实现低温位热能向高温位转移。地能分别在冬季作为热泵供暖的热源和夏季空调的冷源,即在冬季,把地能中的热量“取”出来,提高温度后,供给室内采暖;夏季,把室内的热量取出来,释放到地能中去。通常水源热泵消耗1KW勺能量,用户可以得到4KW以上的热量或冷量。 2. 水源热泵中央空调工作原理 “热泵”是借鉴“水泵”一词得来。在自然环境中,水向低处流动,热向低温位传递。水泵将水从低处送至高处,而热泵可将低温位热能交换至高温位提供利用。热泵在本质上是与制冷机相同的,只是运行工况不同。其工作原理是,由电能驱动压缩机,使水质循环运动反复发生,在蒸发器吸热,冷凝器放热,使热量不断交换传递,并通过阀门切换使机组实现制热式制冷式功能。水源热泵工程是一项系统工程,一般由水源系统,水源热泵机组和末端散热器三部分组成。水源系统包括水源、取水构筑物、输水管网和水处理设备。 3. 水源热泵中央空调水系统存在的问题 a. 由于水源热泵机组采用地下水来做为外循环水,地下水含有一定量的泥砂和悬浮物,使其在进入设备时会对机组和管、阀造成磨损,含砂量高和浑浊度高的地下水,若在使用过程中未处理,则回灌时会造成含水层堵塞,使回水量逐渐降低。 b. 地下水还含有不同的离子、分子、化合物和气体,使地下水具有酸碱度、硬度、腐蚀性等化学性质,会对机组材质造成一定的影响。特别是在冬季制热工况下,水温常常在50C以上,水中的钙、镁离子容易析出结垢,影响换热效果。 4. 水源热泵中央空调水系统存在问题之水处理方案 如果水源的水质不适宜地源热泵机组使用时可以采取相应的技术措施进行水质处理,使其符合机组要求。 在水源系统中经常采用的水处理技术有以下几种:

空调水施工工艺

二、空调水系统 管道系统工程安装主要施工工序 施工工艺流程图: 准,有质量技术要求并有产品合格证。 Ⅱ、孔洞及预埋铁件 1、凡属预制墙板楼板需要剔孔洞,必须在装修或抹灰前剔凿,其直径与管外径的间隙不得超过30mm,遇有剔混凝土空心楼板肋或断钢筋,必须先征得有关部门的同意及采取相应补救措施后,方可剔凿。 2、竖井剔凿时应先与结构工程师确认后再进行剔凿。 3、剔凿过程中应注意隔墙保护,并严禁夜间施工。

Ⅲ、套管安装 1、管道穿墙壁或楼板,应设置钢制套管。根据所穿部位的厚度及管径尺寸确定套管规格、长度。一般非保温管道套管内径应大于管道外径30mm;安装保温水管,其套管内径应满足设计规定厚度的保温层通过。安装在楼板内的套管,其顶部应高出地面20mm,底部应与饰面相平;套管与管道之间用非燃性保温材料填实;穿过厕所、厨房等潮湿房间的立管,套管与管道之间可用油麻填实。 2、关于防水套管安装(见下图) 1)、柔性穿墙防水套管用于管道穿过墙壁之处受有震动或有严密防水要求的构筑物,做法见下图: 柔性穿墙防水套管安装图 注:1-套管;2-翼环;3-挡圈;4-橡皮条;5-螺母;6-双头螺母; 7-法兰盘;8-短管;9-翼盘。 2)、刚性套管适用于钢管穿过墙壁之处有严密防水要求的构筑物。

刚性穿墙防水套管安装图 Ⅳ、管道安装施工方法: 1、管材及连接 1)、空调系统的供回水管采用碳素钢管,公称直径DN≥50mm者,采用无缝钢管;DN<50mm者,采用普通焊接钢管。空调系统的凝结水管采用镀锌钢管。管道直径小于DN40一般采用丝接,管道直径大于等于DN40的采用焊接或法兰连接。 2)、供回水坡度为0.003,凝结水管沿水流方向应有>0.01的坡度,坡向卫生间及凝结水立管,凝水管干管始端设清扫口。 2、管路连接工艺: 1)、丝接工艺 (1)、螺纹应用符合要求的套丝机加工,套丝过程中应经常加油,从最后的1/3长度处起,板牙应逐渐放松,以便形成锥状。 (2)、检查螺纹应端正、清楚、完整、光滑,不得有毛刺、乱丝、断丝和缺丝现象。 (3)、螺纹加工时,应用力均匀,不得用加套管接长手柄的方法进行套丝。 (4)、螺纹连接时,应在管段螺纹外面敷上填料(聚四氟乙稀带或一氧

水源热泵技术介绍及工作原理

水源热泵技术介绍及工作原理 水源热泵技术是利用地球表面浅层水源中吸收的太阳能和地热能而形成的低温低位热能资源,并采用热泵原理,通过少量的高位电能输入,实现低位热能向高位热能转移的一种技术。 地球表面浅层水源(地下水、河流、湖泊、海洋等)中吸收了太阳进入地球的相当的辐射能量,并且水源的温度一般都十分稳定。水源热泵中央空调系统是由末端系统,水源热泵中央空调主机系统和水源热泵水系统三部分组成。冬季为用户供热时,水源热泵中央空调系统从水源中提取低品位热能,通过电能驱动的水源热泵中央空调主机(热泵)“泵”送到高温热源,以空气或水作为载冷剂提升温度后送到建筑物中满足用户供热需求。夏季为用户供冷时,水源热泵中央空调系统将用户室内的余热通过水源中央空调主机(制冷)转移到水源水中,由于水源温度低,所以可以高效地带走热量,以满足用户制冷需求。通常水源热泵消耗1kW的能量,用户可以得到4kW以上的热量或冷量。 水源热泵的特点及优势 属于可再生能源利用技术 水源热泵是利用了地球水体所储藏的太阳能资源作为冷热源,进行能量转换的供暖空调系统。其中可以利用的水体,包括地下水或河流、地表的部分的河流和湖泊以及海洋。地表土壤和水体不仅是一个巨大的太阳能集热器,收集了47%的太阳辐射能量,比人类每年利用能量的500倍还多(地下的水体是通过土壤间接的接受太阳辐射能量),而且是一个巨大的动态能量平衡系统,地表的土壤和水体自然地保持能量接受和发散的相对的均衡。这使得利用储存于其中的近乎无限的太阳能或地能成为可能。所以说水源热泵是一种清洁的可再生能源的技术。 高效节能 水源热泵机组可利用的水体温度冬季为12-22℃,水体温度比环境空气温度高,所以热泵循环的蒸发温度提高,能效比也提高。而夏季水体为18-35℃,水体温度比环境空气温度低,所以制冷的冷凝温度降低,使得冷却效果好于风冷式和冷却塔式,机组效率提高。

水源热泵方案及节能说明

水源热泵设计方案说明 一、工程概况: 本项目位于江苏省无锡市,建筑面积23729平方米,总空调面积约14290M2,其中一至二层为超市;三至四层为餐饮部,五到十层全部为客房,有热水需求。根据客户提供情况,从节能环保角度考虑,采用中央空调提供制冷,主机采用水源热泵机组。 二、设计依据 1、甲方提供的相关图纸及文件; 2、《采暖通风与空气调节设计规范》; 3、《通风与空调工程施工及验收规范》; 4、《实用供热空调设计手册》及国家其它有关规范。 三、设计参数 1、室外主要气象参数:夏季计算干球温度T g= 33.4 ℃,湿球温度T S= 28.4 ℃。 2、室内空气设计参数:夏季温度为:T=24-28℃,冬季16-20℃ 四、设备选型与计算 主要技术指标

1、总冷负荷为:Q = 2186KW ,考虑将来同时最大使用系数和适应无锡夏季空调负荷日变化较大等因素。故选用“宏星”牌水冷螺杆式水源热泵机组40STD-E645HS 1 台和“宏星”水冷螺杆式热回收水源热泵机组:40STD-E540HSB 2台(用于制取热水);40STD-E645HS制冷量:645.4KW 双压缩机,输入功率105.8 KW;40STD-E540HSB制热量:542.9KW热回收量:162.9Kw,输入功率89 KW; 五、能量调节与控制 主要控制设备 1、空调主机:采用40STD-E645HS 40STD-E540HSB的“宏星”牌主机,该系列的机组为我司最成熟的机种之一,机组配备微电脑控制系统,具有故障显示、运行情况显示;装配缺相逆相保护、电机过载保护、防冻保护、高低压压力保护等多项保护措施;压缩机共有6级能量卸载,0%、

空调水系统施工工艺流程(新)

空调水系统施工工艺流程 一、设备到货后对设备进行开箱检查: 1、设备名称、型号和规格; 2、设备有无缺件、表面有无损坏和锈蚀; 3、设备和易损备件、安装和检修工具以及设备所带的资料应齐全; 4、设备所带资料取出统一保存好,以便竣工验收后交与物业管理部; 5、用记号笔在风机盘管底部做好型号标识,吊装后便于核对机型。 二、设备吊架加工及软连接安装: 1、设备采用防晃减震吊架,具体做法为[5槽钢+¢10通丝杆组成。首先把 成品槽钢分为3段(便于操作方便),根据要求(每段55mm为宜)在成品槽钢上做好切割标识。 2、按照槽钢上的切割标识居中进行开孔,开孔直径应比所穿丝杆大2号,开 孔时必须使用专用开孔机具,严禁使用电气焊。 3、根据切割标识切割,利用专用打磨机具进行槽钢块的毛刺打磨,然后做防 腐处理,码放整齐。 4、根据风机盘管的吊装标高进行通丝杆下料,下料的半成品通丝杆两端应使 用专用打磨机具打磨,便于螺母安装。 5、按照施工要求进行软连接下料,宽度一般不能超过250mm,然后用镀锌铁 皮条采用铆固形式与出风口连接。 6、软连接安装完毕后把机体放回对应的包装箱里码放整齐。 二、划线定位: 1、认真熟悉施工图纸并结合精装隔墙及天花图确定风机盘管吊装位置。 2、按照每个机型用薄木板画出吊装孔洞尺寸做模具,根据风机盘管定位尺寸 用模具作打眼标识。 3、在顶板上用记号笔做好对应的风机盘管型号,便于吊装时核对。 三、风机盘管吊装: 1、参照顶板标注型号进行风机盘管吊装,吊装时必须注意以下几点: (1)风机盘管吊装标高须结合精装天花图二级吊顶标高,必须满足使用功能。

(2)风机盘管托水盘尾部与冷凝水出水口保持5mm坡度(出水口低)。(3)固定风机盘管的通丝杆保持垂直,机体孔洞上口备1颗螺母,下口加减震垫片然后备2颗螺母。通丝杆在螺母下口外露30—50mm(便于进行 风机盘管标高微调)。 (4)吊装完风机盘管后用包装箱内的塑料袋做好成品保护。 四、管道预制: 1、断管:根据现场测绘草图,在选好的管材上画线,按线断管。使用砂轮锯或 手锯断管,断管后要将管口断面的铁膜、毛刺清除干净。 2、套丝:将断好的管材,按管径、尺寸分次套制丝扣,一般以管径15-32mm者 套二次,40-50mm者套三次。 3、扫口:管道套丝完毕后,用套丝机对管道进行扫口。 4、配装管件:根据现场测绘草图,将已套好丝扣的管材配装管件,配装管件时应将所有管件带入管丝扣,试试松紧度(一般用手带入3口为宜),在丝扣处涂铅油、缠麻后带入管件,然后用管钳将管件拧紧,使丝扣外露2-3扣,去掉麻头,擦净铅油,编号放到适当位置等待调直。 5、管段调直:将已装好管件的管段,在安装前进行调直。在装好管件的管段丝扣处涂铅油,连接两段或数段,联接时不能只顾预留口方向而要照顾到管材的弯曲度,互相找正后再将预留口方向转到合适部位并保持正直。管段连接后,调直前必须按设计图纸核对其管径、预留口方向、变径部位是否正确。 五、管道安装: 1、管道安装坡度按图纸注明要求施工,无注明处其坡度应为:空调冷热水、采暖管道≥0.003。系统最高点设排气阀,最低点设泄水阀。安装管道时须注意以下几点:

水源热泵与地源热泵优缺点的比较

水源热泵与地源热泵优缺点的比较 一、水源热泵深井技术介绍 1、水源热泵原理 地下水是一个巨大的天然资源,其热惰性极大,全年的温度波动很小,一般说来,埋藏于地表20M以下的浅表层地下水可常年维持在该地区年平均温度左右,是理想的天然冷热源。水源热泵系统正是利用地下水的特性而工作的一种新型节能空调。在水源热泵的水井系统中,水源热泵一般成井深度为50米到300米,因为此部分地下水主要由地表水补给,且不适宜饮用,故用于水源热泵中央空调是极佳选择水源中央空调系统的是由末端(室内空气处理末端等)系统,水源中央空调主机(又称为水源热泵)系统和水源水系统三部分组成。 为用户供热时,水源中央空调系统从水源中中提取低品位热能,通过电能驱动的水源中央空调主机(热泵)“泵”送到高温热源,以满足用户供热需求。为用户供冷时,水源中央空调将用户室内的余热通过水源中央空调主机(制冷)转移到水源中,以满足用户制冷需求。 1.1系统原理图:制热工况为例(制冷工况可通过阀门切换来实现,即使水源水进冷凝器,蒸发器的冷冻循环水接用户系统),系统原理见下图:

分类:水源热泵根据对水源的利用方式的不同,可以分为闭式系统和开式系统两种。 闭式系统是指在水侧为一组闭式循环的换热套管,该组套管一般水平或垂直埋于地下或湖水海水中,通过与土壤或海水换热来实现能量转移。 开式系统也就是通常所说的深井回灌式水源热泵系统。通过建造抽水井群将地下水抽出,通过二次换热或直接送至水源热泵机组,经提取热量或释放热量后,由回灌井群回地下。. 水源热泵原理图:

深井回灌开式环路

地下水平式封闭环路 2.水源热泵优点 2.1高效节能 水源热泵是目前空调系统中能效比(COP值)最高的制冷、制热方式,。4~6,实际运行为7理论计算可达到. 水源热泵机组可利用的水体温度冬季为12~22℃,水体温度比环境空气温度高,所以热泵循环的蒸发温度提高,能效比也提高。而夏季水体温度为18~35℃,水体温度比环境空气温度低,所以制冷的冷凝温

中央空调水系统施工工艺

、施工准备??()机具仪表准备:套丝机、试压泵、台钻、冲击钻、砂轮切割机、砂轮机、坡口机、交流电焊机、倒链、管钳、扳手、钢直尺、卷尺、角尺、压力表、水平尺、线坠等。?()现场作业条件:?①与空调水系统管道和设备安装有关的土建工程已施工完毕并经检验合格,且能保证空调水系统与设备安装正常开展。 ②所需图纸资料和技术文件齐备。 ③管道、阀门及管道附件等经检验合格。?④施工方案或技术措施中规定的施工机具已齐备。?⑤设备配管时,该设备应安装结束并检查合格,达到配管施工要求。? 、施工工艺?? ()工艺流程?技术交底→支架制作防腐→支架安装→管道安装→水压试验→设备安装→系统冲洗→管道与制冷机组、空调机组贯通→检查验收??()支架制作安装?①制作前,应根据管道安装所在空间位置、管径大小等要求选择适宜的支、吊、托架型式;根据管道安装的标高、坡度、管径大小等要求,用号钢线或棉线在管道的首、末端及吊架型钢的吊孔中心位置上拉直绷紧,结合吊卡间距实际测量计算后,才能进行中间型钢吊架、吊杆的制作。 ②支架宜用砂轮切割机进行下料。?③支吊架开孔应采用钻孔或冲孔,不得采用气焊割孔,吊杆、管卡等部件的螺纹可采用板牙扳丝,也可用车床加工。 ④支吊架组对焊接过程中,应边组对边矫形、边点焊边连接,直至成型,经点焊成型的支、吊应用标准样板进行校核,确认无误后方可正式焊接。焊缝必须饱满,保证具有足够的承载能力,外观检查应无漏焊、裂焊等缺陷,焊接后应对焊接变形进行矫正。?⑤支吊制作完成后,必须除锈和清理焊渣,并及时涂刷防锈漆作防锈处理,按设计图纸要求进行镀锌处理。

⑥支吊架的安装位置应正确,与管道接触紧密、牢固、可靠,吊架、吊杆应垂直安装。固定在建筑结构上的管道支吊架不得影响结构的安全,当固定在空心砖墙上时,严禁使用膨胀螺栓。? ()管道制作安装 ? .套管制作安装 ①套管管径应比穿墙板的干管、立管管径大号,保温管道的套管应留出保温层间隙。镀锌铁皮套管适用于过墙支管,要求卷制规整,咬口接缝,套管两端平齐,剔除毛刺,管内外须防腐。位于混凝土墙、楼板内的套管应在钢筋绑扎时放入,可点焊或绑扎在钢筋上,套管内应填以松散材料,防止混凝土浇筑时堵塞套管。对有防水要求的套管应设止水环,套管应安装牢固、位置正确、无歪斜。?②管径小于采用镀锌钢管、丝扣连接;管径大于或等于采用无缝钢管、法兰或焊接连接。冷冻水系统无缝钢管与镀锌钢管连接处使用法兰连接。?管道下料后套丝前,应先用所属管件试扣。管道管件上好后,应进行管道调直。管道弯曲时,弯曲半径应符合:?热弯时,不小于管道外径的倍;?冷弯时,不小于管道外径的倍; 冲压弯头,弯曲半径不小于管道外径。? .干管安装?①管道干管安装采用吊卡固定时,在安装前,必须先把吊卡按坡向顺序依次穿在型钢上,安装管路时先反吊卡按卡距套在管道上,把吊卡抬起将吊卡按坡度调整好,再穿上螺栓螺母,将管道安装好。?②托架上安装管道时,先把管道架在托架上,上管前先把第一节管道带上形卡,而后安装第二节管道,各节管道照此进行。?③管道安装前要检查管内有无杂物,安装时在丝头处缠好生料带或铅油麻丝,一人在末端找平,一人在接口处把第一节管道相对固定,

水源热泵有哪些优点

水源热泵有哪些优点 (资料来源:中国联保网)水源热泵与常规空调技术相比,有以下优点: 高效节能 水源热泵是目前空调系统中能效比(COP值)最高的制冷、制热方式,理论计算可达到7,实际运行为4~6。 水源热泵机组可利用的水体温度冬季为12~22℃,水体温度比环境空气温度高,所以热泵循环的蒸发温度提高,能效比也提高。而夏季水体温度为18~35℃,水体温度比环境空气温度低,所以制冷的冷凝温度降低,使得冷却效果好于风冷式和冷却塔式,从而提高机组运行效率。水源热泵消耗1kW.h的电量,用户可以得到4.3~5.0kW.h的热量或5.4~6.2kW.h的冷量。与空气源热泵相比,其运行效率要高出20~60%,运行费用仅为普通中央空调的40~60 %。 可再生能源 水源热泵是利用了地球水体所储藏的太阳能资源作为热源,利用地球水体自然散热后的低温水作为冷源,进行能量转换的供暖空调系统。其中可以利用的水体,包括地下水或河流、地表的部分的河流和湖泊以及海洋。地表土壤和水体不仅是一个巨大的太阳能集热器,收集了47%的太阳辐射能量,比人类每年利用能量的500倍还多(地下的水体是通过土壤间接的接受太阳辐射能量),而且是一个巨大的动态能量平衡系统,地表的土壤和水体自然地保持能量接受和发散的相对的均衡。这使得利用储存于其中的近乎无限的太阳能或地能成为可能。所以说,水源热泵利用的是清洁的可再生能源的一种技术。 节水省地 以地表水为冷热源,向其放出热量或吸收热量,不消耗水资源,不会对其造成污染;省去了锅炉房及附属煤场、储油房、冷却塔等设施,机房面积大大小于常规空调系统,节省建筑空间,也有利于建筑的美观。

水源热泵控制系统

水源热泵控制系统 水源热泵作为一种用地下恒温水源代替冷却塔的高效节能空调,在实际应用中,为了进一步提高节能效果,还应尽可能减少主机、冷冻水泵和冷却水泵等主要耗能设备的用能。传统的空调水系统使用定流量的运行方式,水源热泵主机本身具有能量调节机构,根据负载变化输出的能量可以在额定值的25%-100%的范围内调整。但是,冷冻水泵和冷却水泵却不随着负载变化做出相应的调节,流量保持不变,导致水系统经常在大流量、小温差的工况下运行,电能浪费很大。采用定温差变流量的水系统控制,可以避免这种浪费。 采用这种控制方式,可以把进回水的温差固定在一个较大的给定值上,在用户负荷较小时,通过减少流量来满足用户要求,这样水泵的能耗可以大大减少。随着冷机技术的进步,蒸发器的流量可以在额定流量的60%-100%范围内变化,这样就为采用交流变频调速器对水源热泵系统中的水泵进行变流量节能控制提供了技术保证。本文将利用PLC、触摸屏和变频器对水源热泵进行变频节能控制。 2 变频节能控制方案 采用变频器配合可编程控制器组成控制单元,其中冷却水泵、冷冻水泵均采用温度自动闭环调节,即用温度传感器对冷却水、冷冻水的水温进行采样,并转换成电信号(一般为4-20 mA,0-10 V等)后送至PLC,通过PLC将该信号与设定值进行比较再作PID运算后,决定变频器输出频率,以达到改变冷冻水泵、冷却水泵转速,从而达到节能目的。 2.1冷冻水系统 系统采用定温差变流量的方式运行,在保证最末端设备冷冻水流量供给的情况下,确定一个冷冻水泵变频器工作的最小工作频率作为水泵运行的下限频率并锁定;将电动机工频设定为上限频率,改变变频器频率就可以调节系统的流量。

空调水系统冲洗方案教学教材

空调水系统冲洗方案

深圳观澜格兰云天大酒店 空调水系统冲洗方案 1.系统清洗、水压试验及运行 空调水系统安装过程中,各区段水压试验已经合格,在系统水冲洗时,因冲洗要求,拆除不能进行冲洗的阀门、过滤器及其它仪表,同时管系统中接入冲洗排水的临时管路。且冲洗时,制冷设备及空调未端设备不能进入冲洗,所以在系统冲洗合格,正式管系统复位后,再进行一次系统工作压力检漏。 1.1系统冲洗及水压试验前的条件及准备工作 ⑴各管道系统安装工作结束且符合设计图纸、文件的要求。 ⑵管道及支(吊)安装、找正、焊接工作结束,经自检质量合格,坡度正确。 ⑶固定或滑动支架设置符合设计图纸技术要求,且无歪斜和卡涩现象。 ⑷空调器、新风空调器及风机盘管等设备,各系统中手动调节阀、过滤器、控制仪表(含仪表阀门)等不准进入冲洗范围(可拆除阀芯、滤网后盖板,不能拆除全阀拆下并加接临时短管)。对此部分设备应接临时冲洗管,将设备进出水管直接连通。 ⑸接冲洗、试压用临时接管、试压泵、排水管连接结束。 ⑹各管道系统冲洗、压力试验用水采用自来水,水源就近取自总包提供之给水点。冷冻、冷却水管系统最低点排放取渣处可选在水泵进出口冲洗排放水处(此处水泵进出口处所有阀门全部拆除)。再由潜水泵将冲洗水排至总包提供之临时室外排水点,室外排水点应与市政排水井贯通。

⑺试压用压力表经检验、校验合格。表盘内最大读数应为试验压力的 1.5~2倍。压力表数不少于两只,压力表精度不低于1.5级。 1.2管道冲洗 空调水系统冷冻供/回水管、冷却供/回水管、补水管、凝结水管冲洗按系统分:开放式重力冲洗;封闭循环冲洗两部份进行。 此项工作在前述各管系统分段压力试验合格,在排除管内存水后进行。在条件许可的区域可由各分支水管排入立管(或主管)排放时可接入市政给水连续冲洗15分钟。 对管径≥DN100的管道,因为受临时给水管流量及压力限制,初步冲洗只作重力排放冲洗。 ⑴冷却供、回水管道系统开放式冲洗 冷却水系统正式冲洗分为: 1)冷却塔出水系统冲洗程序 关闭冷却水在冷水机房水泵进水处冲洗临时放闸阀开启冷却塔补水管阀当出水盘水位升至溢水位时,分别依次开启冲洗排放阀当确认排水口基本无异物后连接水泵进水口并加装临时滤网,一次不合格可重复再冲洗。 2)冷却塔供水管系统冲洗程序 开启冷却塔进水管阀(作冲洗灌水时放气用)关闭冷却水在机房水泵出水处临时排放闸阀由冷却塔进水主管端头接一临时冲洗供水管、用冷却塔补水水源向该管供水分别依次开启冷却水泵出水口处管道临时排放冲洗阀当确认排水口基本无异物后,连接水泵出水口(装上阀门)

什么是水源热泵中央空调 水源热泵机组原理及优缺点

什么是水源热泵中央空调水源热泵机组原理及优缺点 水源热泵中央空调是一项节能环保新技术,与地源热泵从大地中提取冷热量相比,水源热泵机组是利用地表水作为冷热源,然后进行能量转换的供暖空调系统。简单来说,水源热泵和地源热泵都是冷暖空调,不存在传统空调冬季化霜等难点问题,只不过水源热泵是通过地下水达到冷却制冷剂的效果,不占建筑面积。下面,我一起来看看水源热泵中央空调的定义、水源热泵机组原理及优缺点。 什么是水源热泵中央空调 水源热泵中央空调是一种利用地下浅层地热资源(如地下水、河流和湖泊中吸收地太阳能和地热能等)的既可供热又可制冷的高效节能空调系统。水源热泵机组以水为载体,在冬季采集来自湖水、河水、地下水的低品位热能,取得能量供给室内取暖;在夏季把室内的热量取出,释放到水中,以达到夏季空调供冷的目的。 水源热泵机组原理

夏季制冷时,水源热泵中央空调井水为机组的排热源。制冷剂在蒸发器内吸热蒸发,制取7℃冷水,送入房间使用,由于水体温度比环境空气温度低,所以制冷的冷凝温度降低,使得冷却效果好于风冷式和冷却塔式,机组效率提高;制冷剂再经压缩机压缩成高温高压的过热蒸汽,进入冷凝器,由井水带走热量并排至井中。 冬季制热时,水源热泵中央空调井水为机组的吸热源。制冷剂在蒸发器内吸取井水的热量蒸发,井水回灌井内,由于水体温度比环境空气温度高,所以热泵循环的蒸发温度提高,能效比也提高。制冷剂再经压缩机压缩成高温高压的过热蒸汽,进入冷凝器,加热循环水,制取45℃到50℃(最高可达65℃)的热水。 水源热泵机组原理的优缺点 水源热泵中央空调具有可再生能源利用技术、高效节能、制冷采暖生活热水三位一体、节省建筑空间、环境效益显著等多种优点,其缺点是对地下水质量要求比较高,需要良好的地下水源条件,用户在装水源热泵之前,需要先向各地水资委申请,申请通过之后才能装,

水源热泵冷水机组的特点及原理

水源热泵冷水机组的特点及原理 水源热泵冷水机组凭借经济实用、环保、应用范围广等各方面优点,在生活中被广泛使用着。很多地区都将该系统运用在了建筑的配套设施之中,它符合可再生能源技术要求,响应了可持续发展的战略理念。小编现在为大家介绍下什么是水源热泵冷水机组?它与空调有什么区别? 一、什么是水源热泵冷水机组 “水源热泵”型冷水机组又称为冷暖型冷水机组,冷暖型机组可在夏季向空调系统提供冷冻水源。而在冬季可向空调系统提供空调热水水源,或直接向室内提供冷风和热风。冷水机组的热泵工作原理是利用冷水机组的蒸发器从环境中取热,经过压缩机所消耗的功(电能)起到补偿作用,冷水机组的冷凝器则向用户排热,制出所需要的热水。 二、水源热泵冷水机组与空调之间的区别 传统设计的空调系统中较多采用的是冷水机供冷、锅炉供热的方式,或者采用溴化锂机组同时提供冷水和热水。利用锅炉作为热源,存在着环境污染和运行费用高的问题,降低能源消耗;而冷水机组以热泵方式运行来供热和提供热水,使得不仅采用电力这种清洁能源,而且提高了冷水机组的综合能效比,降低了能耗。 地球表面浅层水源(一般在1000 米以内),如地下水、地表的河流、湖泊和海洋,吸收了太阳进入地球的相当的辐射能量,并且水源的温度一般都十分稳定。水源热泵技术的工作原理就是:通过输入少量高品位能源(如电能),实现低温位热能向高温位转移。水体分别作为冬季热泵供暖的热源和夏季空调的冷源,即在夏季将建筑物中的热量"取"出来,释放到水体中去,由于水源温度低,所以可以高效地带走热量,以达到夏季给建筑物室内制冷的目的;而冬季,则是通过水源热泵机组,从水源中"提取"热能,送到建筑物中采暖。 水源热泵是目前空调系统中能效比(COP值)最高的制冷、制热方式,理论计算可达到7,实际运行为4~6。 水源热泵机组可利用的水体温度冬季为12~22℃,水体温度比环境空气温度高,所以热泵循环的蒸发温度提高,能效比也提高。而夏季水体温度为18~35℃,水体温度比环境空气温度低,所以制冷的冷凝温度降低,使得冷却效果好于风冷式和冷却塔式,从而提高机组运行效率。水源热泵消耗1kW.h的电量,用户可以得到4.3~5.0kW.h的热量或5.4~6.2kW.h的冷量。与空气源热泵相比,其运行效率要高出 20~60%,运行费用仅为普通中央空调的40~60%。

水源热泵空调系统简介

水源热泵空调系统简介 一、背景 环境污染和能源危机已成为当今社会的两大难题,如何在享受的同时付出最少的代价逐渐成为人类的共识,在这种背景下以环保和健康为主要特征的绿色建筑应运而生。尽可能少地消耗能源为建筑物创造舒适环境已经成为空调的发展方向,开发利用天然的冷/热源能够为空调带来节能和环保双重效益,因而越来越受到人们的重视。地下水是一个巨大的天然资源,其热惰性极大,全年的温度波动很小,一般说来,埋藏于地表50m以下的深井水可常年维持在该地区年平均温度左右,是一种理想的天然冷热源。 二、水源热泵简介 水源中央空调系统是一种从地下水资源中提取热量的高效、节能、环保、可再生的供热(冷)系统。该系统是成熟的热泵技术、暖通空调技术配套地质勘察成井技术于一体,在地下50~100米相对稳定的水体温度下高效、稳定、经济的运行。水源中央空调系统是由末端(室内空气处理末端等)系统、水源中央空调主机(又称为水源热泵)系统和水源水系统三部分组成。为用户供热时,水源中央空调系统从水源中提取低品位热能,通过电能驱动的水源中央空调主机(热泵)“泵”送到高温热源,以满足用户供热需求。为用户供冷时,水源中央空调系统将用户室内的余热通过水源中央空调主机(制冷)转移到水源水中,以满足用户制冷需求。 用户(室内末端等)系统由用户侧水管系统、循环水泵、水过滤器、静电水处理仪、各种末端空气处理设备、膨胀定压设备及相关阀门配件等组成。 水源中央空调主机系统由压缩机、蒸发器、冷凝器、膨胀阀、各种制冷管道

配件和电器控制系统等组成。 水源水系统由取水装置、取水泵、各种水处理设备、水源水管系统和阀门配件等组成。 制冷工况的实现只需通过合理地设计用户系统和水源水系统管道和阀门,切换阀门来实现进蒸发器的水源水改进冷凝器,进冷凝器的用户系统循环水改进入蒸发器,以达到制冷的目的。(反之则为供热工况) 水源热泵是利用了地球水体所储藏的太阳能资源作为冷热源,进行能量转换的冷暖空调系统。地表土壤和水体不仅是一个巨大的太阳能集热器,收集了47%的太阳辐射能量,比人类每年利用能量的500倍还多(地下的水体是通过土壤间接的接受太阳辐射能量),而且是一个巨大的动态能量平衡系统,地表的土壤和水体自然地保持能量接受和发散相对的均衡。这使得利用储存于其中的似乎无限的太阳能或地能成为可能。所以说,水源热泵是利用可再生能源的一种有效途径。 三、水源热泵中央空调系统的工作原理图 在上图中,供水井的地下水通过潜水泵进入机组并进行能量提取后回灌入回水井,构成井水循环系统。机组提取地下水中的低位能量并将其聚变为高位能量,然后输送给冷暖水循环系统(用户末端)。整个系统仅消耗电能,无任何污染。由于地下水循环使用.因此也不会造成地层沉降。主机占地面积比传统方式大大减少,可放置在地下室等空间。

湘江江水源热泵空调系统方案

中泰财富湘江江水源热泵中央空调系统 项 目 建 议 书

目录 第一章项目概况 (4) 1.1 项目简介 (4) 1.2 项目负荷及能源价格 (5) 1.2.1 项目负荷 (5) 1.2.2 当地能源价格 (6) 1.3 项目发展背景 (6) 1.3.1 能源背景 (6) 1.3.2 国家相关政策 (8) 1.4编制依据 (10) 1.4.1 空调系统相关规范 (10) 1.4.2 智能控制相关规范 (10) 第二章项目空调技术方案设计 (11) 2.1项目系统形式 (11) 2.2水源热泵技术 (12) 2.2.1 水源热泵系统技术原理 (12) 2.2.2 水源热泵系统的特点 (13) 2.3水源热泵系统设计 (15) 2.3.1 能源中心面积及装机配置 (15) 2.3.2 能源中心配电容量 (15) 2.3.3水源热泵系统水源水小时流量的计算 (15) 2.3.4 取回水方式确定 (15) 2.3.5 取回水管线的布置 (18) 2.3.6水源水管确定 (18) 2.3.7水处理主要措施 (19) 2.3.8水处理工艺流程 (19) 第三章年运行费用及初投资分析 (21) 3.1系统年运行费用 (21) 3.1.1 夏季运行成本 (21) 3.1.2 冬季运行成本 (21) 3.1.3 年运行维护成本 (21) 3.2系统初投资 (22) 3.2.1投资估算范围及内容 (22) 3.2.2 投资费用估算表 (23) 第四章商业合作模式 (24) 4.1合同能源管理 (24) 4.1.1合同能源管理EPC操作模式 (24) 4.1.2 合同能源管理EPC操作流程 (24) 4.1.3合同能源管理融资模型 (25) 4.1.4合同能源管理盈利模型 (26)

空调水系统施工组织方案[上传版]

工程 空调水系统施工方案 编制人: 审核人: 核定人: 南通有限公司

2012年6月25日 目录 一、工程概况 2 二、编制依据 2 三、本工程施工难点 3 四、设计概况 3 五、施工要求及质量标准5 六、主要项目施工方法 6 七、施工质量保证措施 15 八、施工安全管理措施 15

通风空调水系统施工方案 一、工程概况xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 建设单位:xxxxxxxxxxxxxxxxxxxx 监理单位:xxxxxxxxxxxxxxxxxx 设计单位:xxxxxxxxxxxxxxxxxxxx 施工单位:南通xxxxxxxxxx有限公司 二、编制依据 1、《采暖通风和空气调节设计规范》(GB50019-2003) 2、《综合医院建筑设计规范》(JGJ49-88 ) 3、《医院洁净手术部建筑技术规范》(GB50333-2002 ) 4、《公共建筑节能设计标准》(GB50189-2005) 5、《高层民用建筑设计防火规范》(GB50045-95)(2005版) 6、《建筑设计防火规范》(GB50016-2006)(2006版)

7、《通风与空调工程施工及验收规范》(GB50243-2002) 8、《人民防空地下室设计规范》(GB50038-2005) 9、《公共建筑节能设计标准》(DGJ32/96-2010) 三、本工程通风施工难点 1、本工程设备、管道在吊顶内布置十分密集,施工作业前需对各空调水系统以及其他专业的管道设备进行考虑,确保管道在吊顶内的均衡布置 2、由于本工程为三级甲等医院,门诊量大、人员流动性强、功能分区多,管理复杂,能耗高,相对普通公共建筑而言,它是功能复杂、使用频率高、影响范围极广的建筑群,所以对通风系统的要求十分高 四、设计概况 本次设计范围包括本期工程空调、通风、防排烟设计.其中净化空调以及放射科、核医科、检验科等 冷热源: 1、冷源:夏季空调东区总冷负荷11970kw,选用6台2110KW的离心式水冷机组作为空调冷源,制冷机房设于地下一层。冷冻水供水7°C,回水12°C。 2、热源:冬季东区总热负荷7500kw,由市政提供0.4Mp(表压)的蒸汽,经减压后经过换热器换热后,提供60/50°C热水供空调供热。

空调水系统管道安装工程施工方案

空调水系统管道安装工程施工方案 一、空调系统简介 1、冷热源 本工程冷热源分别由设在地下室的制冷机房和锅炉房提供,夏季提供 7 ~12 ℃冷冻水;制冷机房选用两台离心式冷水机组和一台螺杆式冷水机 组;冬季空调热源由地下一层锅炉房换热站供给50 /40℃热水,经机房内分集水器供给楼内;空调水系统为四管制,风机盘管回水管上设温控电动两 通阀,新风机组、空调机组回水管上设动平衡电动调节阀,根据负荷变化, 对水路系统进行自动控制,有利于节能。局部区域采用两管制。 2、系统形式 采用风机盘管加新风系统,风机盘管负担房间内负荷,新风机组负担新风部分负荷。新风由各层的新风口经空气处理机进行预热交换后,经风管送到各房间。风机盘管设于吊顶内。局部区域采用全空气系统,设置空调送回风。 由新风竖井和新风管道向空调机组补充新风。 二、施工准备 1、施工准备 熟悉图纸 图纸会审 编制施工技术方案 人员配置施工机具准备编制设备材料 加工计划 核定设备 材料成本

加工定货

2、施工物资准备 材料、设备、配件、制品、机具是保证施工顺利进行的物资基础,这些物 资准备工作必须在工程开工之前完成。根据各种物资的需要量计划,分别落实货源,安排运输和储备,使其满足连续施工的要求。 A、物资准备工作程序:(如流程图)

施工预算施工进度计划 施工方法 资源需要量计划 加工订货,签订供应合同 确定运输方式和计划 组织进场,按平面图堆放 储存保管 使用 B、施工材料进场计划 空调专业主要材料进场计划表: 序号名称 规格单 型号位参考 进场时间备注数量 1 镀锌钢管 DN20 ~ 100 米分批2 无缝钢管DN15 ~米分批

水源热泵与其它空调形式运行费用比较1

常用几种中央空调系统比较分析 随着国内外建筑空调技术的日新月异,尤其是市场经济促使空调设备得到了空前的发展,各种新技术、新设备层出不穷。具体到空调冷热源系统,各种形式的电制冷机组、溴化锂吸收式机组、各种热泵机组、蓄冷设备等,品种繁多,各有特色。设计人员或业主在决定空调方案时,有了更多余地。但雾里看花,何种方案技术经济最优,让人日感困惑。各设备厂家为力争市场,在推销自己产品的同时,也提供一些产品技术经济比较资料,但往往是各持一端,带有较大的片面性。所以,设计人员或业主在选择空调设备时,应结合建筑物用途、特点,综合考虑各种因素,最终选择一种最适合建筑物的机型。下面就从运行费用来比较各种空调系统的经济性,供业主在选择空调系统时作参考。 一、常用中央空调冷热源设备方案 1、地源/水源热泵空调系统:冬夏两季均采用地源/水源热泵设备供冷供暖,为 电制冷设备,此方案的最大的特点是充分利用了地下储藏的自然能源(地下水或地下土壤所含的巨大能源)。 2、水冷冷水机组加燃气锅炉:夏季采用水冷冷水机组供冷,冬季采用燃气锅炉供 暖。水冷冷水机组为电制冷设备,燃气锅炉则采用天然气作能源。 3、风冷热泵机组加燃气锅炉:夏季采用风冷热泵供冷,过渡季节可采用风冷热泵 机组供暖,冬季则采用燃气锅炉供暖。风冷热泵机组为电制冷设备,燃气锅炉则采用天然气作能源。 4、直燃型溴化锂冷热水机组:冬夏两季均采用溴化锂冷热水设备供冷供暖,采用天然气作能源。 二、运行费用计算 运行费用计算依据: 以12000平米办公楼项目为例,按夏季负荷制冷量1519KW,冬季满负荷制热量1564KW计算,所有设备均投入运行,电价按0.6元/度计算,每日按10小时运行时间计算,水价按3元/M3,空调负荷率按0.6系数计算(说明:由于机组的功率通常是按夏季最热、冬季最冷的时间计算的,所以一般时间使用,机组的制冷或制热量要远大于房间负荷,这时机组经常属于停机状态,这就象家用空调或冰箱一样。

水源热泵系统运行能耗分析与节能控制

水源热泵系统运行能耗分析与节能控制摘要:在全球资源日益紧张、生态环境日益恶化的社会背景下,水源热泵作为一种使用地下水作为空调机组的冷热源的制冷供热 新技术,具有十分鲜明的优势和特点,但如何有效分析水源热泵系统运行能耗的影响因素,采取有针对性的节能控制措施,仍旧值得我们进行深入的研究和探讨。 关键词:水源热泵;供热制冷;空调;能耗分析;节能控制 abstract: in the global resources of the growing tension, worsening ecological environment of social background, the water source heat pump, as a kind of underground water is used as the air conditioning unit of cold and heat sources of refrigeration heating new technology, have very distinct advantages and characteristics, but how to effectively analyze water source heat pump system running the influence factors of energy consumption, to adopt targeted saving energy control measures, still worth us further research and discussion. keywords: water source heat pump; heating refrigeration; air conditioning; energy consumption analysis; energy control 中图分类号:te08文献标识码:a 文章编号: 前言

空调水系统施工方案

空调水系统施工方案文件排版存档编号:[UYTR-OUPT28-KBNTL98-UYNN208]

苏州工业园区271号地块超高层项目苏州国际金融中心 空调水系统施工方案 苏州工业园区271号地块超高层项目部 二Ο一五年柒月贰拾捌日 目录

第一章工程概况 本项目位于苏州工业园区 271 号地块内。西面正对金鸡湖,北临翠园路,南接河道,西近华池路,东靠规划路。项目总建筑面积367,679㎡。建筑高度450m。建成后将成为苏州地标式建筑,江苏省第一高楼。 本工程为综合大型公共建筑。汇集了甲级办公楼、精品特色酒店、豪华单层及高端复式酒店式公寓等高端物业。地下四层,主要功能为停车库、设备站房以及后勤用房(地下四层和三层具备区域设有人防)。地上分为 T1、T2、T3三部分,其中 T1 部分为超高层塔楼综合体,自下往上分别包括办公、公寓、酒店三种业态,T1 地上总层数为 90 层(包括屋顶设备层为 94 层),主体建筑屋面标高 410m,女儿墙顶部标高 450m。T2 为板式高层裙房公寓,由 T1 西侧引伸出来,屋面结构标高,地上 13 层。南部独立的商业裙房 T3,地上 3 层,主要功能为商业营业厅,屋面最高结构标高为 20m。 第二章空调水系统说明 1、空调水系统 A. T1 塔楼办公、T3 及 T1 办公大堂 (1) 空调冷冻水系统: 为该区域服务的中央制冷机系统设置在地下三层,冷源为电制冷离心式冷水机组,空调冷冻水系统分为六个区,分别为 T1 办公 5F-13F(包括 T1 办公大堂)、T1 办公15F-28F、T1 办公31F-45F、T1 办公 48F-62F、T1 办公 65F-83F 以及 T3 商业裙房。空调冷冻水的供回水温度为℃ /℃。为降低末端空调设

水源热泵空调系统可行性分析

水源热泵技术应用于商住项目可行性分析报告

目录 一、水源热泵的概念 二、水源热泵的原理 三、水源热泵空调的优点 四、与锅炉(电、)和空气源热泵的相比的优势体现 五、水源热泵的应用 六、水源热泵对水源系统的要求 七、水源热泵空调与其他空调形式的费用比较 八、可再生能源建筑应用专项资金管理暂行办法 九、水源热泵相关政策 十、河水源热泵设计方案

水源热泵空调系统可行性分析 一、水源热泵的概念: 水源热泵是利用地球水所储藏的作为冷、热源,进行转换的技术。水源热泵又称,包括地下水热泵、地表水(江、河、湖、海)热泵、。 二、水源热泵的原理:地球表面浅层水源(一般在1000 米以内),如地下水、地表的河流、湖泊和海洋,吸收了太阳进入地球的相当的,并且水源的温度一般都十分稳定。水源热泵技术的工作原理就是:通过输入少量高品位能源(如),实现低温位向高温位转移。水体分别作为冬季热泵供暖的热源和夏季的冷源,即在夏季将建筑物中的热量“取”出来,释放到水体中去,由于水源温度低,所以可以高效地带走热量,以达到夏季给建筑物室内制冷的目的;而冬季,则是通过

水源热泵机组,从水源中“提取”热能,送到建筑物中采暖。 三、 水源热泵空调的优点: 水源热泵与常规空调技术相比,有以下优点: 1 、高效节能 水源热泵是目前空调系统中(COP 值)最高的制冷、制热方式,理论计算可达到7,实际运行为4~6。 水源热泵机组可利用的水体温度冬季为12~22℃,水体温度比环境空气温度高,所以热泵循环的蒸发温度提高,能效比也提高。而夏季水体温度为18~35℃,水体温度比环境空气温度低,所以制冷的冷凝温度降低,使得冷却效果好于风冷式和式,从而提高机组。水源热泵消耗的电量,用户可以得到~的热量或~的冷图1-1制冷工况示意 图1-2制热工况示意图

相关文档
相关文档 最新文档