文档视界 最新最全的文档下载
当前位置:文档视界 › MATLAB变声器

MATLAB变声器

MATLAB变声器
MATLAB变声器

MATLAB变声器

MATLAB变声器

电子工程学院

摘要

语音信号处理中的变声处理已经有了比较成熟的算法,本文阐述了变声算法的基础原理,利用数字滤波器,自相关法,LPC,LPC系数求根法等方法在MATLAB上改变语音信号的基频和共振峰以实现变声,并总结了现有变声算法的缺陷,对用不同的变换域能否改进变声算法做了粗略分析。

关键词:变声算法,LPC,变换域

目录

研究背景 (5)

变声原理 (5)

语音基本概念 (5)

变声原理 (6)

变声过程 (7)

分帧处理 (7)

计算LPC系数 (8)

计算原始激励 (8)

计算基音周期 (8)

计算激励能量 (9)

合成脉冲序列 (9)

更改声道参数 (9)

合成变声语音 (10)

程序设计 (10)

传统变声算法缺陷 (12)

合成激励与原始激励差别较大 (12)

不能实现定向变声 (13)

实现定向变声的猜想 (14)

小波域是否存在恒定音色参数粗略分

析 (14)

统计上的变换是否利于寻找恒定音色

参数猜想 (14)

下一步研究计划 (15)

研究背景

语音信号是人们日常生活中十分常见的信号,语音也是人与人之间传递信息的一种十分重要的方式。随着智能终端以及互联网的普及,语音信号大量地以数字形式出现,语音信号处理变得越来越重要,变声处理是语音信号处理的基础之一,所以在这样的大背景下,研究变声算法并改进变声算法是很有意义而且有必要的。

另一方面,传统的变声算法是对发声过程的简单模拟进行语音合成,在模拟过程中改变参数以实现变声,而传统的变声算法存在一些缺陷,若要改进变声算法使其更灵活有效,那么细致的研究传统的变声算法是很有必要的。

变声原理

语音基本概念

1. 声道:声道是很多动物及人类都有的一个腔室,从声源产生的声音经由此处滤出。人的声道包括声道则包括喉腔、咽头、口腔和鼻腔。

2. 基音:一般的声音都是由发音体发出的一系列频率、振幅各不相同的振动复合而成的。这些振动中有一个频率最低的振动,由它发出的音就是基音,其余为泛音。发音体整体振动产生的音,叫做基音,决定音高;发音体部分振动产生的音,叫做泛音,决定音色;基音和泛音结合一起而形成的音,叫做复合音,日常我们所听到的声音多为复合音。

3.共振峰:共振峰是指在声音的频谱中能量相对集中的一些区域,共振峰是语音音质的决定因素,反映了声道(共振腔)的物理特征。声音在经过共振腔时,受到腔体的滤波作用,使得频域中不同频率的能量重新分配,一部分因为共振腔的共振作用得到强化,另一部分则受到衰减,得到强化的那些频率在时频分析的语图上表现为浓重的黑色条纹。由于能量分布不均匀,强的部分犹如山峰一般,故而称之为共振峰。在语音声学中,共振峰决定着元音的音质,在计算机音乐中,共振峰是决定音色和音质的重要参数。

4,短时平稳特性:语音信号是一种随时间而变化的信号,主要分为浊音和清音两大类。浊音的基音周期、清浊音信号幅度和声道参数等都随时间而缓缓变化。由于发生器官的惯性运动,可以认为在一小段时间里(一般为10~30ms)语音信号的

频域特性近似不变,即语音信号具有短时平稳性。因而处理语音信号之前要把语音信号分为一些短段(称为分析帧),然后再来进行处理。

人声和乐器声的产生需要两个阶段,一个是发声系统,如人的声带或乐器的振动簧片,另一个是共鸣系统。乐器不同的共鸣系统使其在一定频域中的语音信号的振幅得以突出,这样,这些区域就产生了这个乐器所特有的共振峰值,这些共振峰值同共鸣体的大小、形状的材料密切相关。由于乐器的结构是稳定的,因此在乐器发出的所有音调中,不论基频如何,都会表现出相同的共振峰值,只不过其显著性有强有弱罢了。这就可以解释为什么同一乐器所发出的不同音调具有相同的音质。

在语音声学中,人声也同样受自身生理如鼻孔、咽腔、口腔大小的影响有自身的共振峰区。人在说话的过程中,正是通过利用这些共鸣空间的形状和大小不同的变化(例如改变嘴形),以能改变声音的共振峰说出不同的元音。我们之所以能够区分不同的人声、元音,主要也是依靠它们的共振峰分布的位置。简单来讲不同的人说同一句话的共振峰不同,同一个人说不通的话共振峰也不同。

变声原理

变声是通过改变人声的基音频率和共振分分布以达到变声的目的,其具体过程是是模拟人声的发声过程,以脉冲信号代替声带振动,以FIR滤波器代替声道,用脉冲信号通过FIR滤波器进行语音合成。首先对原始语音信号进行分解,然后得出原始激励参数(基音周期和激励能量)和声道参数(共振峰分布),用得出的参数构建激励和滤波器,再根据变声需要更改参数,就可以达到变声的目的。过程如下

变声过程

分帧处理

语音信号具有短时平稳特性,所以在处理之前要进行分帧处理,将一段长的语音信号分解为10~30ms的语音信号逐段进行处理。语音信号的分帧是采用可移动的有限长度窗口进行加权的方法来实现的。一般每秒帧数约为33~100帧,视实际情况而定。分帧一般要采用交叠分段的方法。如图所示,这是为了使帧与帧之间平滑过渡,保持其连续性。前一帧和后一帧的交叠部分称为帧移,帧移与帧长的比值一般取为0~0.5。

在程序中对语音信号加Hamming窗处理,方法是用窗序列沿着语音样点值序列逐帧从左向右移动。

●计算LPC系数

线性预测编码(LPC)是主要用于音频信号处理与语音处理中根据线性预测模型的信息用压缩形式表示数字语音信号谱包络(en:spectral envelope)的工具。它是最有效的语音分析技术之一,也是低位速下编码方法高质量语音最有用的方法之一,它能够提供非常精确的语音参数预测。

LPC就是根据之前的P个信号构建滤波器,对之后的信号进行预测。

MATLAB中就有LPC函数,其形式为:

[A,E]=lpc(s_w,P);

其中A是LPC预测系数,用来构建滤波器,E是预测误差,在后面会用来计算激励能量,s_w是语音信号,P是预测阶数。

●计算原始激励

用得到的LPC系数构建滤波器,对语音信号进行逆滤波就可以得到语音信号的激励,另外应该注意在系数变化的情况下连续滤波,需要维持滤波器的状态不变,要利用filter函数的和参数。

程序如下

[exc1,zi_pre] = filter(A,1,s_f,zi_pre);

exc1就是原始激励,用于计算基音周期。

●计算基音周期

程序中用自相关法计算基音周期。

如果s(n)是一个周期为P的信号,则其自相关函数也是周期为P的信号,且在信号周期的整数倍处,自相关函数取最大值。语音的浊音信号具有准周期性,其自相关函数在基音周期的整数倍处取最大值。计算两相邻最大峰值间的距离,就可以估计出基因周期。

其实现代码如下

function PT=findpitch(s)

[B,A]=butter(5,700/4000);

s=filter(B,A,s);

R=zeros(143,1);

for k=1:143

R(k)=s(144:223)'*s(144-k:223-k);

end

[R1,T1]=max(R(80:143));

T1=T1+79;

R1=R1/(norm(s(144-T1:223-T1))+1);

[R2,T2]=max(R(40:79));

T2=T2+39;

R2=R2/(norm(s(144-T2:223-T2))+1);

[R3,T3]=max(R(20:39));

T3=T3+19;

R3=R3/(norm(s(144-T3:223-T3))+1);

Top=T1;

Rop=R1;

if R2>=0.85*Rop

Rop=R2;

Top=T2;

end

if R3>0.85*Rop

Rop=R3;

Top=T3;

end

PT=Top;

return

●计算激励能量

激励能量G用于构建脉冲序列时当作脉冲序列的振幅,激励能量和线性预测

误差E和基音周期PT有关,其公式为

G = sqrt(E*PT);

●合成脉冲序列

合成的脉冲序列可根据变声的需要更改原始的基音周期PT,如

PT1 =floor(PT/2);

而后以PT1为周期,G为振幅构建脉冲序列,作为合成语音的激励

●更改声道参数

利用LPC求根法以更改共振峰分布。

具体过程为,对由线性预测系数A构成的多项式求根,而共振峰频率F和频

谱宽带B 和这些根有对应关系。设i i i i e r z θ?=为一个根,则其共轭值i i i i e r z θ-?=也是一个根,i 对应的共振峰频率F 和3dB 带宽B 存在以下关系:

i θπ=i TF 2 i T

B r e i =-π

所以

T i πθ2F i = T r

i πln B i -=

其中T 是采样周期。

在程序中,我们只更改共振峰频率,程序如下

poles = roots(A);

deltaOMG =100*2*pi/fs;

for p=1:10

if imag(poles(p))>0

poles(p) = poles(p)*exp(peak*1j*deltaOMG); %peak 是变声系数 elseif imag(poles(p))<0

poles(p) = poles(p)*exp(-peak*1j*deltaOMG);

end

end

A1=poly(poles);

A1是更改过声道参数的线性预测系数,用以构建滤波器合成变声语音。

合成变声语音

用脉冲序列作为激励,A1作为滤波器参数,合成变声语音,

[s_syn1_t,zi_syn_t] = filter(1,A1,exc_syn1_t,zi_syn_t);

程序设计

利用MATLAB 的GUI 进行程序设计,结果如下:

从图中可看出,经过变声器处理以后,语音信号的频域发生了很明显的变化,共振峰发生明显的移动。从听觉角度来说,变声效果也比较明显。

传统变声算法缺陷

传统的变声算法形成时间较早,是对发声系统粗略的模仿实现语音合成,虽然能实现明显的变声效果,但还存在一些缺陷,这里只针对研究开发过程中发现的不足来说。

合成激励与原始激励差别较大

合成激励是以原始激励的基音周期为周期的脉冲序列,忽视了原始激励中的泛音频率,而语音信号中泛音频率也是决定声音音色的重要因素,所以对泛音的忽视直接影响了变声效果。

完成变声器的编程之后,我尝试用基音周期不变的合成激励与原始的声道参数进行语音合成,对比合成语音和原始语音,结果如下

可以很明显地看出合成激励和原始激励在频谱上有较大区别,而从听觉上而言,虽然能听出二者音色相似,但用合成激励合成的语音中有较多杂音。

从这个简单的实验可以看出,激励中的泛音对语音信号也有着相当重要的作用,当激励中去除泛音时,对语音信号的频谱分布和听觉上有着较大影响。所以变声算法中,只考虑基音来构建合成激励是有很大缺陷的。

不能实现定向变声

所谓定向变声,是指把一个人的声音定向地变成另一个人的声音。

每个人都有自己独特的音色,也就意味着每个人的声音信号有独特且恒定的参数存在,一开始我猜想是这个参数便是共振峰分布,后来发现,虽然不同的人说相同的话的语音共振峰确实有明显的区别,但是同一个人说不同的话共振峰的区别也非常大,下图分别是同一个人读“为中华崛起而读书”和“现在开始录音”的时域和频域图:

可见共振峰分布并不相同,其实每个元音的共振峰分布本来就不一样,这就意味着,共振峰分布不仅决定了音色,也决定了语音内容。而实际上,仅仅在很短的时间内(10~30ms),共振峰的分布才是不变的,这也是语音信号的出来都要在短时内进行的原因。

综上可见,传统变声算法单纯从频域上对语音进行分析处理,是不能够提取出具有个人特征的声色参数的,所以不能进行定向变声。

实现定向变声的猜想

我们能从语音中分辨出发声者,又有古语“未见其人先闻其声”也证明每个人确确实实有自己独特的易于辨识的恒定的音色参数,如果不能从频域上找到该参数,或许可以从其他的变换域中找到。

●小波域是否存在恒定音色参数粗略分析

小波变换是一种新型的变换分析方法,它可以通过变换能够充分突出问题某些方面的特征,能对时间(空间)频率的局部化分析,通过伸缩平移运算对信号(函数)逐步进行多尺度细化,最终达到高频处时间细分,低频处频率细分,能自动适应时频信号分析的要求,从而可聚焦到信号的任意细节,解决了傅立叶变换的困难问题,成为继傅立叶变换以来在科学方法上的重大突破。

我认为小波变换寻找恒定音色参数的优势有:

1,小波变换可以对非平稳信号进行分析

语音信号是非平稳信号,只有在短时间内(10~30ms)才具有平稳特性,意味着只有在短时间内语音信号在频域上才具有恒定的参数,又由观察可知音色只有在较长的一段时间的语音信号中才能显现出来的,而小波变化可以对非平稳信号进行分析,那么语音信号在小波域上具有恒定参数的可能性就非常大。

2,小波变换中考虑了时域特性

我们可以观察发现,音色是需要较长的语音信号才能显现出来的,如果让两个人只发10ms的声音(可能的话),那么辨认两者的音色应该是不太可能的,所以我认为恒定的音色参数一定是与频域和时域同时相关的。

综上,我认为小波变换是非常有优势去寻找恒定音色参数的。

●统计上的变换是否利于寻找恒定音色参数猜想

如上文所说,恒定的音色参数是需要较长时间的语音信号才能显现出来的,而且时间越长越能显现出固定的音色参数,而时间长的语音信号其实就是数据量更大的语音信号,能否从大量语音信号中数据中,用统计的数学方法形成新的变换基,以用来寻找恒定的音色参数呢?我认为答案是肯定的。

下一步研究计划

●尝试利用语音合成TTS技术优化变声算法中激励的合成。

●尝试用小波变换和数学统计方法实现定向变声。

变声器的原理分类实现及应用

变声器的原理、分类、实现及应用 2009130309 徐佩 变声器的原理:变声器是通过改变输入声音频率,进而改变声音的音色、音调,使输出声音在感官上与原声音不同。变声器是借助对声音音色和音调的双重复合改变, 实现输出声音的改变的。通过自己发音,共振峰频率的改变是基本重采样实 现的,从重采样原理知道,这也同时引发了基频的变化,为保证基频变化和 共振频率变化的独立、互不相关,在基频移动是必须考虑抵消重采样带来的 偏移,理论上只要基频检测足够精确,确保可以保证基频改变和共振峰频率 改变间的互不相关,通过搬移和改变基频、语速,实现变声。 变声器的分类:根据变声器材质不同,变声器分为变声器硬件和变声器软件。变声器硬件,即通过硬件实现变声的工具变声原理。无论是硬件变声器,还是软件变声 器,其原理都是,通过改变输入声音频率,进而改变声音的音色、音调, 使输出声音在感官上与原声音不同。我们每个人的声音不同,源于我们 的每个人的音色和音调不同,我们所说的男中音、男高音,就是音调的 不同,而即便音调一致,我们依然能区分出两个不同人的声音,或不同 乐器的声音,这就是音色的不同。变声器,正是借助对声音音色和音调 的双重复合改变,实现输出声音的改变。其功能要点如下: 1.无限制式多格式录音:可以对来自麦克风、系统等众多设备的声音进 行实时的录制,支持多设备选择性录音,录音不需要临时文件,并可一 次性保存为WAV/WMA/MP3等众多流行格式。在录音过程中还允许对声音 进行男女变声处理! 2.音乐重混音录制功能:允许您选择一首歌曲(音频或视频),然后对 其进行各种特效处理,比如保持原唱的同时进行节奏快慢处理,或者进 行男女声变换处理。在混录过程中也允许您随时调节各特效参数,就像 一个专业混音师那样!通过这些混录功能,您可以制作出和原音乐风格 不同的轻快歌曲或类似迪斯科类型的快速歌曲,也可以是更轻柔的背景 歌曲!然后您新创作的歌曲将可以保存为新的音频文件。 3.文件混音功能:支持对一首歌曲(音频或视频)进行裁剪并对结尾部分施 加淡出效果,或增大原音乐音量,同时还允许将其和其他音乐进行混音处理, 并允许保存为WAV/WMA/MP3等众多流行格式。 变声器的实现:插值以后重新抽样。基本过程是这样的:已知当前帧帧长FL (采样)点,采样频率Fs ,目标变换帧频率Fs’ ,则目标变换帧帧长FL’=FL*Fs’/Fs 。 记R ate = Fs’/Fs ,那么FL’=FL * Rate ,其中Rate 为基频变化率。变换 开始时,先求得FL 和FL’ 的最小公倍数AL ,再将原音频帧插值为AL 点,最后将插值后的语音段重新抽样,得到长FL’ 点的变声后的数据。 专用变音集成电路 1、特点:宽电压范围3.0-5.0V*无需外部存储器*低功耗*使用可变电阻 或者开关来调整声音效果*可选择高音低音放大音机器人声音可以应用于玩 具变声,电话系统或其他声音领域*有静音功能 2、概述:RTS0072B是一种单片CMOS大规模集成电路设计的语音转换IC, 它可以将声音移调或转变成另外一个声音,通过将输入的正常速率的声音信

变频器过温问题的一般处理方法

变频器过温问题的一般处理方法 随着夏天温度的升高,工厂里的各种设备又要经受一次高温的考验。变频器作为一个发热的设备,也可能会出现温度过高而造成停机的现象。分析一下它的原理和原因,过温故障也不难处理。 现在常用的低压变频器属于交-直-交变频器,三相电源经过整流器得到直流电,通过直流母线向逆变器供电。一般情况下,功率器件发热量大是造成变频器过温故障的罪魁祸首。 功率器件包括整流器里的二极管和逆变器里的IGBT。对于二极管,由于工作比较稳定,通断频率低,自然换向,发热量小一点(整流器温度典型值:小于75摄氏度)。对于IGBT,由于频繁通断,开关损耗直接决定了发热量,工作电流越大,开关频率越高,发热量越大(逆变器温度典型值:小于140度)。 现在变频器内的整流器和逆变器都已模块化,为了便于整流器和逆变器散热,都会将两者可靠的连接到散热片上,导热硅胶与接合面要紧密接触。散热片里有通风管,变频器的风扇就在通风管下端,向上吹气,把热量带走。 在变频器的整流器、逆变器、散热片、IGBT等部位都安装有温度传感器,如果测量值超过报警温度就报警(Alarm),如果超过跳闸温度就跳闸(Fault Trip)。 西门子变频器对环境温度要求一般在0 ~ 40度。具体温度值,可以参考相应的样本。大功率变频器对环境温度要求更苛刻一些。另外,对于装在柜子里的变频器,对其安装位置和环境通风量也有严格要求。其主要目的,也是为了散热。这些数据都是在工程设计时必须要考虑的。 所以,如果变频器出现过温故障,那么相应的处理方法有: (1)检查环境温度是否在变频器工作范围内。环境温度过高,变频器需要降容使用,参考样本降容曲线。可以使用大型通风机或工业空调,控制环境温度。 (2)检查柜内安装空间是否足够,检查柜内风扇是否正常,检查通风量能否满足变频器的要求。变频器允许的通风量,可以参考样本数据。通风量越大超好。 (3)检查参数设置,尽可能降低IGBT的开关频率,即脉冲频率。这可能会使电机工作噪声变大。 (4)限制变频器输出电流,或者降低电流。与电流相关的因素就是电机的输出力矩。电机不能长期处于过载状态,可试图减小电机负载以减小电流。 (5)除尘。变频器长期使用后,内部如果灰尘太多,会降低散热效果。在断电情况下,吹出灰尘。 (6)如果完成以上工作,还报过温故障,建议报修。可能是内部温度传感器故障,也可能是CPU运行故障。

基于matlab变声器的设计

基于matlab变声器的设计 【摘要】为了实现由男声变换到女声,在语音信号参数分析过程采用短时自相关法提取语音信号的基音周期,同时用LPC倒谱分析法分析共振峰的范围,通过matlab编写程序修改语音参数并接近于女声的范围,构置GUI界面。在实验中,输入一段语音信号,输出时即实现了由男声到女声的变换效果。因此对于语音信号参数的修改能够实现男女声音之间的变换。 【关键词】短时自相关法;LPC倒谱;语音信号;matlab;GUI 随着生活水平的提高,科技的不断进步,很多人为了娱乐,从而希望改变自己的声音;还有如今的许多的访问节目为了保护被访问者,都对声音进行了相应的处理。本设计通过编写matlab程序,修改相关声音参数,使其频率发生相应的变化,在输出时达到变声。 1.变声原理 在进行性别变声时,主要考虑基音周期、基频和共振峰频率的变化。其中男生、女生和和童声的基频、共振峰的关系如图1所示;基音周期改变时,基频、共振峰同时变化,若伸展既有男变女、女变童,反之亦可。本实验是基于男生录制的声音进行相关参数提取,修改接近于女声,实现男声到女声的变换。 2.提取参数 2.1 基于短时自相关法的基音周期估值 进行自相关的计算可采用两种方法,一种是对语音信号进行低通滤波,另一种是对语音信号进行中心削波处理。本实验采用第一种方法,通过matlab③编程采用自相关算法可以实现基音周期的估值,即对语音信号进行低通滤波,然后进行自相关计算。在低通滤波时,采用巴特沃斯滤波器。 2.1.1 构建巴特沃斯低通滤波器 根据人的说话特征设定相应指标参数,对本段语音设计算出巴特沃斯模拟滤波器的阶数N为5,3dB截止频率,,算出为0.175,归一化低通原型系统函数为: 根据设定的滤波器编写matlab程序,当信号经过低通滤波器后,对原始信号滤波产生结果如图2所示,低通滤波后,保留基音频率,然后再用2kHz采样频率进行采样,采样序列为x(n),后进行下一步的自相关计算。 2.1.2 语音信号的短时自相关函数① 定义语音信号自相关函数如下:

MATLAB变声器

MATLAB变声器 电子工程学院 摘要 语音信号处理中的变声处理已经有了比较成熟的算法,本文阐述了变声算法的基础原理,利用数字滤波器,自相关法,LPC,LPC系数求根法等方法在MATLAB上改变语音信号的基频和共振峰以实现变声,并总结了现有变声算法的缺陷,对用不同的变换域能否改进变声算法做了粗略分析。 关键词:变声算法,LPC,变换域

目录 研究背景 (3) 变声原理 (3) 语音基本概念 (3) 变声原理 (4) 变声过程 (5) 分帧处理 (5) 计算LPC系数 (5) 计算原始激励 (6) 计算基音周期 (6) 计算激励能量 (7) 合成脉冲序列 (7) 更改声道参数 (7) 合成变声语音 (8) 程序设计 (8) 传统变声算法缺陷 (9) 合成激励与原始激励差别较大 (9) 不能实现定向变声 (10) 实现定向变声的猜想 (11) 小波域是否存在恒定音色参数粗略分析 (12) 统计上的变换是否利于寻找恒定音色参数猜想 (12) 下一步研究计划 (12)

研究背景 语音信号是人们日常生活中十分常见的信号,语音也是人与人之间传递信息的一种十分重要的方式。随着智能终端以及互联网的普及,语音信号大量地以数字形式出现,语音信号处理变得越来越重要,变声处理是语音信号处理的基础之一,所以在这样的大背景下,研究变声算法并改进变声算法是很有意义而且有必要的。 另一方面,传统的变声算法是对发声过程的简单模拟进行语音合成,在模拟过程中改变参数以实现变声,而传统的变声算法存在一些缺陷,若要改进变声算法使其更灵活有效,那么细致的研究传统的变声算法是很有必要的。 变声原理 语音基本概念 1. 声道:声道是很多动物及人类都有的一个腔室,从声源产生的声音经由此处滤出。人的声道包括声道则包括喉腔、咽头、口腔和鼻腔。 2. 基音:一般的声音都是由发音体发出的一系列频率、振幅各不相同的振动复合而成的。这些振动中有一个频率最低的振动,由它发出的音就是基音,其余为泛音。发音体整体振动产生的音,叫做基音,决定音高;发音体部分振动产生的音,叫做泛音,决定音色;基音和泛音结合一起而形成的音,叫做复合音,日常我们所听到的声音多为复合音。 3.共振峰:共振峰是指在声音的频谱中能量相对集中的一些区域,共振峰是语音音质的决定因素,反映了声道(共振腔)的物理特征。声音在经过共振腔时,受到腔体的滤波作用,使得频域中不同频率的能量重新分配,一部分因为共振腔的共振作用得到强化,另一部分则受到衰减,得到强化的那些频率在时频分析的语图上表现为浓重的黑色条纹。由于能量分布不均匀,强的部分犹如山峰一般,故而称之为共振峰。在语音声学中,共振峰决定着元音的音质,在计算机音乐中,共振峰是决定音色和音质的重要参数。 4,短时平稳特性:语音信号是一种随时间而变化的信号,主要分为浊音和清音两大类。浊音的基音周期、清浊音信号幅度和声道参数等都随时间而缓缓变化。由于发生器官的惯性运动,可以认为在一小段时间里(一般为10~30ms)语音信号的频域特性近似不变,即语音信号具有短时平稳性。因而处理语音信号之前要把语

关于变频器的电动机与变压器噪声方面的问题

关于变频器的电动机与变压器噪声方面的问题 由于交流异步电动机主磁极的磁通是按照正弦规律来设计和运行的。为了使电动机的运行性能优良,电动机变频调速技术通常采用正弦波脉冲宽度调制的方法,简称SPWM方法。 由于在SPWM电压脉冲序列中,各个脉冲的幅度相等而脉冲的宽度不相等。宽度的变化取决于两个比较电压Ura(正弦波参考电压)和Ut(三角波电压。即所谓的载波频率电压)的交点及交点间的时间距离。在这个脉冲序列中,占空比按照正弦规律变化,因此脉冲序列的瞬时电压平均值是按正弦规律变化的。所谓SPWM就是用幅值相等而宽度不等的矩形脉冲序列去逼近和等效我们所需的正弦交流信号。 要想获得好的SPWM波形,正弦波参考信号Ura的大小与载波信号Ut的大小存在一定的关联,参考信号的频率与载波信号的频率关系决定着半个周期内SPWM的脉冲数目。 为表征这种关系,调制度M和载波比N的定义如下: M=Urm/Utm N=ft/fr 式中 Urm是参考信号的最大值。 Utm是载波信号的最大值。 Ft是载波信号的频率。 Fr是参考信号的频率。 通常,M的值在0.1~0.9之间比较合适。

N的值在理论上是越大越好,但实际受到大功率开关器件的开关频率的限制。所以,开关器件的性能如何对变频器的调速性能有较大影响。 实际应用时,变频器是采用双极性脉宽调制的方法。特征是参考信号和载波信号均为有正有负的双极性信号。 变频器输出的交流电的电压大小的调节是由改变参考信号的电压大小来实现的,输出交流电的频率调节则是由改变参考控制波的频率来实现的,并且这两个频率同样大小。 由于在SPWM方式下,当需要调节频率进行变频调速时,如果只调节参考控制信号的频率,就会带来谐波增大影响系统正常工作的问题;在低频低速时,半个周期内的脉冲数目或载波比不增加的话,就会带来转矩脉动等问题。 为了解决以上的问题,变频器电路则采用了不同的调制方式: 1.同步调制方式。 2.异步调制方式。 3.分段同步调制方式。 三种方式,各有利弊: 同步调制方式:在调制时,保持载波比N=ft/fr不变,即在参考控制信号的频率Fr改变时,同步地改变三角波载波频率Ft。这种方式在变频器输出电压每个周期内的三角波数目是固定的,因此所产生的SPWM 脉冲数也是固定不变的。 优点是:在变频器输出频率变化的整个范围内,可以保持输出波形的正负半周对称,半周内波形左右对称,有利于谐波的消除。并能够严格做到变频器输出三相波形之间具有相差120°电角度的对称关系。 缺点是:在变频器低频输出时,由于一个周期内的脉冲数(载波比N)太少,低次谐波分量比较大,电机会产生转矩脉动和噪声。频率越低,转矩脉动和转速脉动就越严重。

数字变声器的设计

摘要 变声器是通过改变输入音频的音色、音调,并将变声后的音频输出的工具。变声器是通过改变输入音频的音色、音调,并将变声后的音频输出的工具。根据变声器材质不同,变声器分为变声器硬件和变声器软件。变声器硬件,即通过硬件实现变声的工具本次课程设计是数字变声器的设计,整个程序使用MATLAB软件编写的。一个GUI界面实现录入一段10~15秒的语音,同时绘制出该语音的时域波形和频域波形,并实现了对该语音的保存和打开。 关键字:变声器;MATLAB软件;变声基本原理;语音;GUI;

目录 前言 (1) 第1章方案选择 (2) 1.1设计方案 (2) 1.2方案的选择 (2) 第2章变声的基本原理 (3) 2.1 基本概念 (3) 2.2 变声的原理 (4) 2.2.1 生成脉冲序列 (4) 2.2.2 计算预测系数 (5) 2.2.3 声道参数 (5) 第3章程序设计及仿真分析 (7) 3.1程序设计 (7) 3.1.1 分帧处理 (7) 3.1.2 计算预测系数 (7) 3.1.3 计算激励信号 (7) 3.1.4 重建语音 (8) 3.1.5 基音周期 (8) 3.1.6 合成激励的能量 (9) 3.1.7 变声处理 (10) 第4章GUI的设计 (11) 4.1 GUI简介 (11) 4.2 GUI界面设计 (11) 4.3 GUI界面运行流程图 (13) 4.4回调函数 (14) 4.4.1切换按钮 (14) 4.4.2 按钮 (15) 参考文献 (19) 设计总结 (20)

前言 我们每个人的声音不同,源于我们的每个人的音色和音调不同,我们所说的男中音、男高音,就是音调的不同,而即便音调一致,我们依然能区分出两个不同人的声音,或不同乐器的声音,这就是音色的不同。变声器,正是借助对声音音色和音调的双重复合改变,实现输出声音的改变。目前,语音伪装系统(变声器)被广泛应用于社会的各个领域。语音伪装设备经常出现在以下几个方面:为了防止打击报复,保护举报人的人身安全的匿名举报系统;记者采访时对采访对象声音的处理,保护被采访人的安全;应用于电台或电视台,可对热线电话进行声音的处理。独居女士和小孩;可用变声器应付骚扰电话和陌生人来访。另外,在智能手机或者平板电脑等便携式移动终端中利用变声器开发的小游戏等。因此,变声器的应用范围及其广泛。 我们每个人的声音不同,源于我们的每个人的音色和音调不同,我们所说的男中音、男高音,就是音调的不同,而即便音调一致,我们依然能区分出两个不同人的声音,或不同乐器的声音,这就是音色的不同。变声器,正是借助对声音音色和音调的双重复合改变,实现输出声音的改变。 本次课程设计就是运用我们所学到的理论知识,用MATLAB软件来实现对语音信号的变声处理,理论联系实际,从而更好地掌握以及运用所学习的知识。

变频器故障及处理方法

变频器故障及处理方法 在各种工业控制系统中,随着变频器等电力电子装置的广泛使用,系统的电磁干扰(EMI)日益严重,相应的抗干扰设计技术(即电磁兼容EMC)已经变得越来越重要。变频器系统的干扰有时能直接造成系统的硬件损坏,有时虽不能损坏系统的硬件,但常使微处理器的系统程序运行失控,导致控制失灵,从而造成设备和生产事故。因此,如何提高系统的抗干扰能力和可靠性是自动化装置研制和应用中不可忽视的重要内容,也是计算机控制技术应用和推广的关键之一。谈到变频器的抗干扰问题,首先要了解干扰的来源、传播方式,然后再针对这些干扰采取不同的措施。 一、变频器干扰的来源 首先是来自外部电网的干扰。电网中的谐波干扰主要通过变频器的供电电源干扰变频器。电网中存在大量谐波源如各种整流设备、交直流互换设备、电子电压调整设备,非线性负载及照明设备等。这些负荷都使电网中的电压、电流产生波形畸变,从而对电网中其它设备产生危害的干扰。变频器的供电电源受到来自被污染的交流电网的干扰后若不加处理,电网噪声就会通过电网电源电路干扰变频器。供电电源的干扰对变频器主要有(1)过压、欠压、瞬时掉电(2)浪涌、跌落 (3)尖峰电压脉冲 (4)射频干扰。 1、晶闸管换流设备对变频器的干扰

当供电网络内有容量较大的晶闸管换流设备时,由于晶闸管总是在每相半周期内的部分时间内导通,容易使网络电压出现凹口,波形严重失真。它使变频器输入侧的整流电路有可能因出现较大的反向回复电压而受到损害,从而导致输入回路击穿而烧毁。 2、电力补偿电容对变频器的干扰 电力部门对用电单位的功率因数有一定的要求,为此,许多用户都在变电所采用集中电容补偿的方法来提高功率因数。在补偿电容投入或切出的暂态过程中,网络电压有可能出现很高的峰值,其结果是可能使变频器的整流二极管因承受过高的反向电压而击穿。 其次是变频器自身对外部的干扰。变频器的整流桥对电网来说是非线性负载,它所产生的谐波对同一电网的其它电子、电气设备产生谐波干扰。另外变频器的逆变器大多采用PWM技术,当工作于开关模式且作高速切换时,产生大量耦合性噪声。因此变频器对系统内其它的电子、电气设备来说是一电磁干扰源。 变频器的输入和输出电流中,都含有很多高次谐波成分。除了能构成电源无功损耗的较低次谐波外,还有许多频率很高的谐波成分。它们将以各种方式把自己的能量传播出去,形成对变频器本身和其它设备的干扰信号。 (1)输入电流的波形变频器的输入侧是二极管整流和电容滤波电路。显然只有电源的线电压UL大于电容器两端的直流电压UD时,整流桥中才有充电电流。因此,充电电流总是出现在电源电压的振幅值附近,呈不连续的冲击波形式。它具有很强的高次谐波成分。有关资料表明,输入电流中的5次谐波和7次谐波的谐波分量是最大的,分别是50HZ基波的80%和70%。 (2)输出电压与电流的波形绝大多数变频器的逆变桥都采用SPWM调制方式,其输出电压为占空比按正弦规律分布的系列矩形式形波;由于电动机定子绕组的电感性质,定子的电流十分接近于正弦波。但其中与载波频率相等的谐波分量仍是较大的。 二、干扰信号的传播方式 变频器能产生功率较大的谐波,由于功率较大,对系统其它设备干扰性较强,其干扰途径与一般电磁干扰途径是一致的,主要分传导(即电路耦合)、电磁辐射、感应耦合。具体为:首先对周围的电子、电气设备产生电磁辐射;其次对直接驱动的电动机产生电磁噪声,使得电机铁耗和铜耗增加;并传导干扰到电源,通过配电网络传导给系统其它设备;最后变频器对相邻的其它线路产生感应耦合,感应出干扰电压或电流。同样,系统内的干扰信号通过相同的途径干扰变频器的正常工作。 (1)电路耦合方式即通过电源网络传播。由于输入电流为非正弦波,当变频器的容量较大时,将使网络电压产生畸变,影响其他设备工工作,同时输出端产生的传导干扰使直接驱动的电机铜损、铁损大幅增加,影响了电机的运转特性。显然,这是变频器输入电流干扰信号的主要传

双主体模式下校企教学建设探索与实践

双主体模式下校企教学建设探索与实践 [摘要]本文对广东科学技术职业学院“校企双主体”办学模式和“教学企业”这个专业人才培养的主基地的进行了深入的研究和总结,阐述了“教学企业”建设探索过程中面临的主要问题及解决措施,并提出了未来的建设方向,对高职院校办学体制改革创新具有一定的参考价值。 [关键词]双主体模式;教学企业;探索 [中图分类号]G640 [文献标识码]A [文章编号]1671-5918(2016)19-0047-02 doi:10.3969/j.issn.1671-5918.2016.19.023 [本刊网 址]http:∥https://www.docsj.com/doc/516548309.html, 2014年《国务院关于加快发展现代职业教育的决定》中明确提出“研究制定促进校企合作办学有关法规和激励政策,深化产教融合,鼓励行业和企业举办或参与举办职业教育,发挥企业重要办学主体作用。”从2009年学校确定“校企双主体”的办学理念以来,对于什么是校企双主体、如何实施校企双主体,广科院进行了前期的探索,开始建立了校企双主体人才培养主基地――“教学企业”,并取得了显著效果。 一、“校企双主体”的内涵

为走出学校单一主体办学带来的人才培养质量不能满足企业发展需求的困境,不少高职院校借鉴德国、新加坡等国家职业教育的先进经验,进行了人才培养模式改革探索。通过多种形式的校企合作来引入企业力量参与专业人才培养。这种做法取得了一定的效果,但仍未能满足企业对人才质量的需求。究其原因,最主要是仍然没有实现办学体制的有效突破,校企无法深度合作、产教不能真正融合。不管是在功能上还是法律上,企业作用都还没有得到充分发挥,还不能被称为专业人才培养的主体。为尝试解决单一主体办学带来的困境,在校长刘惠坚教授的带领下,学校在全国率先提出“校企双主体”的办学理念并挑选了几个重点专业开展试点实践。这一理念主要包括以下四层意思: (一)要实现“校企双主体”办学,必须要实现办学体制机制创新,这是实现双主体的根本条件。 (二)“双主体”的含义是指学校和企业两个主体,均成为办学和人才培养的主体力量。并且随着校企合作的不断深化、办学体制机制改革的不断创新,企业逐渐从功能主体走向法律位主体。 (三)企业要能够成为办学主体,则企业资源必须要作用于专业人才培养的全过程。因此在这个过程中,必须对企业在专业人才培养各环节的工作量进行量化,只有企业在其中的工作量超过50%才意味着企业成为了专业人才培养的

变声器设计方案

MATLAB变声器的设计 前言 随着生活水平的提高,科技的不断进步,很多人为了娱乐,从而希望改变自己的声音;还有如今的许多的访问节目为了保护被访问者,都对声音进行了相应的处理。本设计通过编写MATLAB程序,修改相关声音参数,使其频率发生相应的变化,在输出时达到变声。 1 变声原理 在进行性别变声时,主要考虑基音周期、基频和共振峰频率的变化。其中男生、女生和和童声的基频、共振峰的关系如图1所示;基音周期改变时,基频、共振峰同时变化,若伸展既有男变女、女变童,反之亦可。本实验是基于男生录制的声音进行相关参数提取,修改接近于女声,实现男声到女声的变换。 人基频分布H共振峰频率分 男声180] [50 , 偏低380] [160 , 女声中 1000] [400 , 童声偏高 图1 2 提取参数 基于短时自相关法的基音周期估值进行自相关的计算,通过MATLAB编程采用自相关算法可以实现基音周期的估值,即对语音信号进行低通滤波,然后进行自相关计算。在低通滤波时,采用巴特沃斯滤波器。 2.1.1 构建巴特沃斯低通滤波器 根据人的说话特征设定相应指标参数,对本段语音设计算出巴特沃斯模拟滤波器的阶数N 为5,3dB截止频率,算出0.175,归一化低通原型系统函数为 .其中,,将带人中,得到低通滤波器,将 根据设定的滤波 器编写MATLAB程序,当信号经过低通滤波器后,对原始信号滤波产生结果如图2所示,低通滤波后,保留基音频率,然后再用2kHz采样频率,后进行下一步的自相关计算。x(n)进行采样,采样序列为

图2 2.1.2语音信号的短时自相关函数 定义语音信号的自相关函数如下: 其中k为信号延迟点数;为语音信号;N为语音帧长度。经过低通滤波之后, 取160个样点数,帧长取10ms,对每帧语音求短时自相关,取得自相关最大点数,自相关函数在基音周期处表现为峰值,这些峰值点之间的间隔的平均值就是基音周期,从而估计出基音周期,但是由于图中存在野点,编写MATLAB程序除去野点算出对应基音周期如图3所示,设基音周期值为PT,调动PT,接近女 声,设新的为PT1; 图3 2.2 LPC倒谱法提取共振峰 通过线性预测分析得到合成滤波器的系统函数为: H(z)= 为冲击响应,为预测系数。其中h(n)是最H(z)首先根据同态分析方法有下面求h(n)的倒谱(n),,因为可以展开成级数形式,即小相位的,即在单位圆内是解析的,所以说,将式两端同(0)=0是存在的,设(n)的逆变换,就是说.时对求导,得到:

变频器干扰的解决方法,如何解决变频器的电磁干扰

变频器干扰的解决方法,如何解决变频器的电磁干扰 变频器(Variable-frequency Drive,VFD)是应用变频技术与微电子技术,通过改变电机工作电源频率方式来控制交流电动机的电力控制设备。在工业现场,变频器的干扰问题出现得比较多,且比较严重,甚至导致控制系统无法正常投入使用。比如使得PLC通讯控制变得不稳定,比如使得现场控制柜的指示灯常亮,让人误解。用户都非常苦恼因为变频器干扰带来的困扰。然而,变频器的工作原理注定其会产生强电磁干扰。 在各种工业控制系统中,随着变频器等电力电子装置的广泛使用,系统的电磁干扰(EMI)日益严重,相应的抗干扰设计技术(即电磁兼容EMC)已经变得越来越重要。变频器系统的干扰有时能直接造成系统的硬件损坏,有时虽不能损坏系统的硬件,但常使微处理器的系统程序运行失控,导致控制失灵,从而造成设备和生产事故。因此,如何提高系统的抗干扰能力和可靠性是自动化装置研制和应用中不可忽视的重要内容,也是计算机控制技术应用和推广的关键之一。谈到变频器的抗干扰问题,首先要了解干扰的来源、传播方式,然后再针对这些干扰采取不同的措施。 变频器包括整流电路和逆变电路,输入的交流电经过整流电路和平波回路,转换成直流电压,再通过逆变器把直流电压变换成不同宽度的脉冲电压(称为脉宽调制电压,PWM)。用这个PWM电压驱动电机,就可以起到调整电机力矩和速度的目的。这种工作原理导致以下三种电磁干扰: (1)射频辐射干扰:射频辐射干扰来自变频器的输入电缆和输出电缆。在上述的射频传导发射干扰的情形中,变频器的输入输出电缆上有射频干扰电流时,由于电缆相当于天线,必然会产生电磁波辐射,产生辐射干扰。变频器输出电缆上传输的PWM电压,同样包含丰富的高频的成分,会产生电磁波辐射,形成辐射干扰。辐射干扰的特征是,当其他电子设备靠近变频器时,干扰现象变得严重。 (2)谐波干扰:整流电路会产生谐波电流,这种谐波电流在供电系统的阻抗上产生电压降,导致电压波型发生畸变,这种畸变的电压对于许多电子设备形成干扰(因为大部分电

(完整版)变音信号产生电路的设计

变音信号产生电路的设计 1设计指标 设计一个变音信号发生器,使它能按一定规律交替发出两种不同的声音。两种声音的频率和节拍可通过电路参数调整根据需要改变,使声音达到满意的效果。 2设计方案及其比较 2.1方案一 方案一的原理图如图1所示,该电路由两片NE555芯片组成,第一片为多谐振荡,从3管脚输出周期性变化的高低电平接入右边的555的5管脚。当第一部分输出低电平时接入第二部分,第二部分中的管脚2、6的参考电压分别为1/3Vcc和2/3Vcc。当第一部分输出高电平时接入第二部分,第二部分中的管脚2、6的参考电压分别为1/2Vo1和Vo1。第二片芯片也能构成多谐振荡,但由于参考电压的不同,则会输出两种周期信号,且为交替发声。从而实现变音。调节R2可以改变声音的节拍,调节R4可以改变声音的频率。 图1方案一的原理图 2.2方案二 方案二的原理图如图2所示,在第一种方案的基础上,通过增加滑动变阻器Rv1和二极管,利用二极管的单向性,并改变Rv1,使电容C1的充放电时间基本相同,得到占空比接近0.5,稳定了电路,使输入的音频更加均匀,其电路工作原理与第一种相似。

图2方案二的原理图 2.3方案三 方案三的原理图如图3所示,该电路图由两片NE555芯片构成的低频两级多谐振荡器,彼此相互独立,两片芯片的输出端接一电容和电阻后级联接入到发生器中,通过调节输入电压,从而改变声音的音调,以此来实现变音效果。 图3方案三的原理图 2.4方案比较 以上三种方案都符合电路的运算公式,运用proteus进行了仿真发现精确度也相近,但是实际操作起来优劣势就出来了。对于第一种方案,电路简单,可以比较稳定的输出两

基于LabVIEW的变声器设计

基于LabVIEW的变声器设计 摘要:数字信号处理技术在语音信号的处理中具有十分重要的意义,是语音变换的处理方法之一。基于在语音变换时的技术要求,本文介绍了一种在基音同步叠加(PSOLA)算法的前提下,结合重采样技术实现语音变调不变速的方法,在分析变换理论及具体算法的基础上,利用LabVIEW编程实现语音的多种频率变换以及男∕女声变换。 关键词:基音同步叠加(PSOLA)算法; 重采样; 频谱搬移; 语音转换LabVIEW-based variable sound design Abstract: Digital signal processing technology is of great significance in speech signal processing, is one of the processing method of voice transformation. Based on the technical requirements in the voice change, this paper describes a synchronous overlap in pitch (PSOLA) algorithm premise resampling technique combining voice tone does not shift method, based on the analysis of specific algorithms transform theory and on the use of LabVIEW programming a variety of voice frequency conversion and male / female transformation. Keyword: PSOLA; resampling; spectrum shifting; V oice conversion 0 引言 在音频信号处理中,将源说话人语音中的个性特征转换成目标说话人语音的个性特征的语音信号处理技术,称为语音变换技术。人的语音说话特征分为音段特性与超音段特性以及语言特性,音段特征包括谱包络,谱激励;超音段特性包括基频,时长,幅度[1]。 近几年来,语音信号处理技术在实用化方面取得了很多突破性进展,例如,随着在对声学语音学统计模型的深入研究,像语音识别,基于语音段的建模方法等逐渐成为研究热点。在语音合成方面,基于基音同步叠加(PSOLA)算法的波形编辑和拼接技术得到广泛应用[2],PSOLA算法的优势在于能在不改变语音音段的音质的基础上,能改变体现语音自然度的韵律特征的变化,进而获得更高的清晰度。

变频器引起传感器的干扰极其处理方法

变频器引起传感器的干扰极其处理方法 变频器调速技术是集自动控制、微电子、电力电子、通信等技术于一体的高科技技术。它以很好的调速、节能性能,在各行各业中获得了广泛的应用。由于其采用软启动,可以减少设备和电机的机械冲击,延长设备和电机的使用寿命。随着科学技术的高速发展,变频器以其具有节电、节能、可靠、高效的特性应用到了工业控制的各个领域中,如变频调速在供水、空调设备、过程控制、电梯、机床等方面的应用,保证了调节精度,减轻了工人的劳动强度,提高了经济效益,但随之也带来了一些干扰问题。现场的供电和用电设备会对变频器产生影响,变频器运行时产生的高次谐波也会干扰周围设备的运行。变频器产生的干扰主要有三种:对电子设备的干扰、对通信设备的干扰及对无线电等产生的干扰。对计算机和自动控制装置等电子设备产生的干扰主要是感应干扰;对通信设备和无线电等产生的干扰为放射干扰。如果变频器的干扰问题解决不好,不但系统无法可靠运行,还会影响其他电子、电气设备的正常工作。因此有必要对变频器应用系统中的干扰问题进行探讨,以促进其进一步的推广应用。下面主要讨论变频器的干扰及其抑制方法。 2 变频调速系统的主要电磁干扰源及途径 2.1 主要电磁干扰源 电磁干扰也称电磁骚扰(EMI),是以外部噪声和无用信号在接收中所造成的电磁干扰,通常是通过电路传导和以场的形式传播的。变频器的整流桥对电网来说是非线性负载,它所产生的谐波会对同一电网的其他电子、电气设备产生谐波干扰。另外,变频器的逆变器大多采用PWM技术,当其工作于开关模式并作高速切换时,产生大量耦合性噪声。因此,变频器对系统内其他的电子、电气设备来说是一个电磁干扰源。另一方面,电网中的谐波干扰主要通过变频器的供电电源干扰变频器。电网中存在大量谐波源,如各种整流设备、交直流互换设备、电子电压调整设备、非线性负载及照明设备等。这些负荷都使电网中的电压、电流产生波形畸变,从而对电网中其他设备产生危害的干扰。变频器的供电电源受到来自被污染的交流电网的干扰后,若不加以处理,电网噪声就会通过电网电源电路干扰变频器。供电电源对变频器的干扰主要有过压、欠压、瞬时掉电;浪涌、跌落;尖峰电压脉冲;射频干扰。其次,共模干扰通过变频器

数字变声器的设计-兰州理工大学

******************* 实践教学 ******************* 兰州理工大学 计算机与通信学院 2012年春季学期 计算机通信与网络课程设计 题目:数字变声器设计 专业班级:通信工程一班 姓名: 学号: 指导教师:蔺莹 成绩:

摘要 变声器的原理是通过改变输入声音频率,进而改变声音的音色、音调,使输出声音在感官上与原声音不同。变声器是借助对声音音色和音调的双重复合改变,实现输出声音的改变。通过自己发声,共振峰频率的改变是基于重采样实现的。 目前,语音伪装系统(变声器)被广泛应用于社会的各个领域。语音伪装设备经常出现在以下几个方面:为了防止打击报复,保护举报人的人身安全的匿名举报系统;记者采访时对采访对象声音的处理,保护被采访人的安全;应用于电台或电视台,可对热线电话进行声音的处理。独居女士和小孩;可用变声器应付骚扰电话和陌生人来访。另外,在智能手机或者平板电脑等便携式移动终端中利用变声器开发的小游戏等。因此,变声器的应用范围及其广泛。 关键字:变声器共振峰频率语音伪装

目录 摘要 (3) 目录 (4) 第一章数字变声器概述 (5) 1.1变声器定义 (5) 1.2变声器原理概述 (5) 第二章变声器原理及实现 (6) 2.1基本原理 (6) 2.2数字变声器的实现 (7) 2.3数字变声器的MATLAB实现 (8) 2.4仿真结果及分析 (11) 2.5结果分析 (13) 第三章课设总结 (15) 参考文献 (16) 致谢 (16)

第一章数字变声器概述 1.1变声器定义 变声器是通过改变输入音频的音色、音调,将变声后的音频输出的工具。根据变声器材质不同,变声器分为变声器硬件和变声器软件。变声器硬件,即通过硬件实现变声的工具,譬如,知名动画名侦探柯南中,柯南侦破案件时扮演毛利小五郎时,使用的蝴蝶结,就是一种变声器,柯南正是通过这一蝴蝶结,模拟成毛利小五郎的声音,进行案件侦破的,这一变声器可称之为蝴蝶结变声器。变声器软件,即通过软件实现变声的工具,软件类变声器,运行平台皆为电脑系统。 1.2变声器原理概述 无论是硬件变声器,还是软件变声器,其原理都是,通过改变输入声音频率,进而改变声音的音色、音调,使输出声音在感官上与原声音不同。我们每个人的声音不同,源于我们的每个人的音色和音调不同,我们所说的男中音、男高音,就是音调的不同,而即便音调一致,我们依然能区分出两个不同人的声音,或不同乐器的声音,这就是音色的不同。变声器,正是借助对声音音色和音调的双重复合改变,实现输出声音的改变。共振峰频率的改变是基于重采样实现的,从重采样原理知道,这也同时引发了基频的变化,为保证基频变化和共振峰频率变化的独立、互不相关,在基频移动时必须考虑抵消重采样带来的偏移,理论上只要基频检测足够精确,确实可以保证基频改变和共振峰频率改变间的互不相关。保证变声效果的自然度主要是没有采用基音检 测将基音移动和共振峰变化彻底隔离的缘故。 重采样使得信号的样本数目增加或减少,若以不变的采样频率播放,速度会变慢或变快,因此需要进行保持声调不变的变速处理(变速不变调),恢复到原来的样本数目。同时为了改变信号的基频,还必须对信号进行变调处理即基频移动,在运用变调因子时,必须抵消重采样引起的基频变化。

数字变声器

数字变声器 摘要为了实现由男声变换到女声,在语音信号参数分析过程采用短时自相关法提取语音信号的基音周期,同时用LPC倒谱分析法分析共振峰的范围,通过matlab编写程序修改语音参数并接近于女声的范围,构置GUI界面。在实验中,输入一段语音信号,输出时即实现了由男声到女声的变换效果。因此对于语音信号参数的修改能够实现男女声音之间的变换。 关键词短时自相关法 LPC倒谱语音信号 matlab GUI 前言 为了锻炼自己数字信号处理的实践能力,也为了更好的完成老师布置的作业,本设计通过编写matlab程序,修改相关声音参数,使其频率发生相应的变化,在输出时达到变声。

目录 数字变声器 (1) 第1章采样 (4) 1 一些基本概念 (4) 1.1声道 (4) 1.2基音 (4) 1.3共振峰 (4) 1.4物理原理 (4) 第2章设计方案 (5) 2.1 设计原理 (5) 2.2 设计步骤 (5) 第3章建模 (5) 3.1 基于短时自相关法的基音周期估值 (5) 3.1.1构建巴特沃斯低通滤波器 (5) 3.1.2语音信号的短时自相关函数 (6) 3.2 LPC倒谱法提取共振峰 (6) 3.3 线性预测语音信号合成 (7) 第4章 GUI界面设计以及仿真图形和程序 (8) 4.1 界面设计 (8) 4.2 仿真图形 (9) 4.2.1 原声 (10) 4.2.2 女声 (10) 4.2.3 童声 (10) 4.2.4 老人声 (10) 4.2.5 音调变高 (11) 4.2.6 音调变低 (11) 4.2.7 语速变慢 (11) 4.2.8 语速变快 (12) 4.3 程序流程图如下 (12) 4.4每个控件的程序如下 (13) 4.4.1“录音”radiobutton(radiobutton1) (13) 4.4.2“打开”radiobutton(radiobutton2) (13) 4.4.3“开始”按钮(pushbutton1) (14) 4.4.4“保存”按钮(pushbutton2) (14) 4.4.5“打开音频文件按钮”(pushbutton3) (15) 4.4.6“原声”按钮(pushbutton5) (15) 4.4.7“女声”按钮(pushbutton7) (16) 4.4.8“童声”按钮(pushbutton6) (17) 4.4.9“老人”按钮(pushbutton12) (19) 4.4.10“音调变高”按钮(pushbutton11) (20) 4.4.11“音调变低”按钮(pushbutton9) (21) 4.4.12“语速变慢”按钮(pushbutton14) (21)

变频器经常会出现的9大问题的处理方法

变频器经常会出现的9大问题的处理方法 变频器由主回路、电源回路、IPM驱动及保护回路、冷却风扇等几部分组成。其结构多为单元化或模块化形式。由于使用方法不正确或设置环境不合理,将容易造成变频器误动作及发生故障,或者无法满足预期的运行效果。为防患于未然,事先对故障原因进行认真分析尤为重要。 主回路常见故障分析 主回路主要由三相或单相整流桥、平滑电容器、滤波电容器、IPM逆变桥、限流电阻、接触器等元件组成。其中许多常见故障是由电解电容引起。电解电容的寿命主要由加在其两端的直流电压和内部温度所决定,在回路设计时已经选定了电容器的型号,所以内部的温度对电解电容器的寿命起决定作用。电解电容器会直接影响到变频器的使用寿命,一般温度每上升10℃,寿命减半。因此一方面在安装时要考虑适当的环境温度,另一方面可以采取措施减少脉动电流。采用改善功率因数的交流或直流电抗器可以减少脉动电流,从而延长电解电容器的寿命。 在电容器维护时,通常以比较容易测量的静电容量来判断电解电容器的劣化情况,当静电容量低于额定值的80%,绝缘阻抗在5 MΩ以下时,应考虑更换电解电容器。 主回路典型故障分析 故障现象:变频器在加速、减速或正常运行时出现过电流跳闸。 首先应区分是由于负载原因,还是变频器的原因引起的。如果是变频器的故障,可通过历史记录查询在跳闸时的电流,超过了变频器的额定电流或电子热继电器的设定值,而三相电压和电流是平衡的,则应考虑是否有过载或突变,如电机堵转等。在负载惯性较大时,可适当延长加速时间,此过程对变频器本身并无损坏。若跳闸时的电流,在变频器的额定电流或在电子热继电器的设定范围内,可判断是IPM模块或相关部分发生故障。首先可以通过测量变频器的主回路输出端子U、V、W,分别与直流侧的P、N端子之间的正反向电阻,来判断IPM模块是否损坏。如模块未损坏,则是驱动电路出了故障。如果减速时IPM模块过流或变频器对地短路跳闸,一般是逆变器的上半桥的模块或其驱动电路故

变声器设计方案复习过程

变声器设计方案

MATLAB变声器的设计 前言 随着生活水平的提高,科技的不断进步,很多人为了娱乐,从而希望改变自己的声音;还有如今的许多的访问节目为了保护被访问者,都对声音进行了相应的处理。本设计通过编写MATLAB程序,修改相关声音参数,使其频率发生相应的变化,在输出时达到变声。 1 变声原理 在进行性别变声时,主要考虑基音周期、基频和共振峰频率的变化。其中男生、女生和和童声的基频、共振峰的关系如图1所示;基音周期改变时,基频、共振峰同时变化,若伸展既有男变女、女变童,反之亦可。本实验是基于男生录制的声音进行相关参数提取,修改接近于女声,实现男声到女声的变换。 图1 2 提取参数 基于短时自相关法的基音周期估值进行自相关的计算,通过MATLAB编程采用自相关算法可以实现基音周期的估值,即对语音信号进行低通滤波,然后进行自相关计算。在低通滤波时,采用巴特沃斯滤波器。 2.1.1 构建巴特沃斯低通滤波器

根据人的说话特征设定相应指标参数,对本段语音设计算出巴特沃斯模拟滤波器的阶数N为5,3dB截止频率,算出 0.175,归一化低通原型系统函数为 其中,, . 将将带人中,得到低通滤波器, 根据设定的滤波器编写MATLAB程序,当信号经过低通滤波器后,对原始信号滤波产生结果如图2所示,低通滤波后,保留基音频率,然后再用2kHz采样频率进行采样,采样序列为x(n),后进行下一步的自相关计算。 图2 2.1.2语音信号的短时自相关函数 定义语音信号的自相关函数如下:

其中k为信号延迟点数;为语音信号;N为语音帧长度。经过低通滤波之后,取160个样点数,帧长取10ms,对每帧语音求短时自相关,取得自相关最大点数,自相关函数在基音周期处表现为峰值,这些峰值点之间的间隔的平均值就是基音周期,从而估计出基音周期,但是由于图中存在野点,编写MATLAB 程序除去野点算出对应基音周期如图3所示,设基音周期值为PT,调动PT,接近女 声,设新的为PT1; 图3 2.2 LPC倒谱法提取共振峰 通过线性预测分析得到合成滤波器的系统函数为: H(z)= 其中h(n)为冲击响应,为预测系数。 下面求h(n)的倒谱(n),首先根据同态分析方法有,因为H(z)是最小相位的,即在单位圆内是解析的,所以说可以展开成级数形式,即 ,就是说的逆变换(n)是存在的,设(0)=0,将式两端同时对求导,得到:

相关文档