文档视界 最新最全的文档下载
当前位置:文档视界 › 碳纳米管-导电聚合物复合材料与电化学储能

碳纳米管-导电聚合物复合材料与电化学储能

碳纳米管-导电聚合物复合材料与电化学储能
碳纳米管-导电聚合物复合材料与电化学储能

 万方数据

中国有色金属学报2004年10月

电站的调峰辅助装置具有优势,而超大电容器则可能成为高容量移动型电源的间歇或脉冲式高功率动力源。

超大电容器的科学名称为电化学电容器(elec—trochemicalcapacitor)[4。引。根据储电机理可分为2类。一种是以固、液界面上的双电层为基础,将多孑L高比表面惰性导电材料,例如活性炭和碳纳米管(carbonnanotubes,CNT),制成电极,与高离子导电率、高介电率电解液一起构成的“双层电容器”(double—layercapacitor)。另一种是以薄层电池或薄膜电极的快速可逆嵌入过程为基础,将固体电化学活性物质,例如无定型水合氧化钌(a—Ru0。?nH20),聚苯胺(polyaniline,PAn)和聚吡咯(poly—pyrrole,PPy),制成薄膜电极,与含电极嵌入离子的电解液一起构成的“假电容器”(pseudo—capaci—tor)。双层电容器具有电压高,充放电速度快,循环寿命长等优点,但比电容较低(一般低予200F?g_1)。假电容器的工作原理与二次电池类似,比电容高(可大于1000F?g_1),但充放电速度、循环寿命和材料价格等指标尚与商业化要求有差距。

目前超大电容器研究和应用面临的另一问题是活性材料的“质量比电容”和“电极电容”之间的差距。质量比电容一般是在较严格的实验室条件下,用微量(毫克级)活性材料制成电极而测出的参数(具有热力学意义)。然而,当电极材料量增加时,特别是电极的厚度增加时,电极电容并不总是成比例增加,有些情况下还会减少。这种差距的主要原因是电子和离子在电极中运动所受到的动力学阻力。例如,电极材料本身的电子导电率不高,离子向电极内部迁移困难等。

近年来,作为超大电容器中的新型电极材料,碳纳米管一导电聚合物多孔复合材料薄膜受到了学术界和工业界的广泛关注。本研究组报告了一种简单有效的制备多孔碳纳米管一导电聚合物复合材料薄膜的电化学方法,并对所得薄膜的电化学电容性能和材料结构进行了不同程度的研究,获得了较高的电化学电容量(电极电容超过3F?cm-2)[8q2|。在此,作者介绍了这一工作的主要结果,研究了碳纳米管与导电聚合物各种相互作用及其对复合材料电化学电容性能的影响。

1电化学合成与材料结构特征

将电弧法或气相催化沉积法制备的碳纳米管加入H。SO。与HNO。的混合液中进行加热回流反应。产品用水清洗后得到中性或弱酸性的碳纳米管悬浊液。由于酸氧化作用,碳纳米管表面生成羟、羧基而带负电[13’14]。向悬浊液中加入聚合物单体,如吡咯或苯胺,并视情况决定是否添加电解质,在一定条件下电解,在阳极上沉积碳纳米管一导电聚合物复合材料薄膜[8’9]。得到的复合膜厚度可达毫米级(过厚可能降低电容性能)。当电化学聚合反应可在中性溶液中进行时,例如吡咯的电化学聚合,悬浊液中表面带负电荷的碳纳米管可以传导电流,因而不必添加电解质。电化学合成的碳纳米管一聚吡咯复合材料的电镜照片如图1所示。可见,电解得到的复合膜中全部碳纳米管被聚合物均匀包裹。在弱酸性悬浊液中进行电化学聚合反应,例如苯胺的电化学聚合,由于碳纳米管表面羟、羧基团的质子化,负电荷减少,需要在悬浊液中添加电解质,例如HCI或KCl,来提高离子导电率。电解得到的复合膜中则只有部分碳纳米管被聚合物均匀包裹,同时含有单独的聚合物相。实验结果表明,沉积复合膜中的碳纳米管含量与悬浊液中的碳纳米管含量有对应关系。同时,碳纳米管表面包裹聚合物层的厚度则随悬浊液中的碳纳米管含量的增加而降低。由于聚合物包裹的碳纳米管的无规则堆积,在沉积复合膜中构成有纳米和微米2个层次的多孔结构。

Fig.1TypicalTEM(a)andSEM(b)

imagesofelectrochemicallysynthesised

CNT—PPy

composites

 万方数据

 万方数据

 万方数据

碳纳米管-导电聚合物复合材料与电化学储能

作者:陈政

作者单位:诺丁汉大学,化学环境与矿业工程系,诺丁汉市,NG7 2RD,英国;武汉大学,化学与分子科学学院,武汉,430072

刊名:

中国有色金属学报

英文刊名:THE CHINESE JOURNAL OF NONFERROUS METALS

年,卷(期):2004,14(z3)

参考文献(14条)

1.Conway B E Transition from supercapacitor to battery behavior in electrochemical energy-storage[外文期刊] 1991

2.Oriji G;Katayama Y;Miura T Investigation on V(Ⅳ)/V(Ⅴ)species in a vanadium redox flow battery[外文期刊] 2004(19)

3.Paulenova A;Creager S E;Navratil J D Redox potentials and kinetics of the Ce3+/Ce4+ redox reaction and solubility of cerium sulfates in sulfuric acid solutions 2002(02)

4.Sandler J;Shaffer M;Prasse T Development of a dispersion process for carbon nanotubes in an epoxy matrix and the resulting electrical properties[外文期刊] 1999

5.Shaffer M S P;Fan X;Windle A H Dispersion and packing of carbon nanotubes[外文期刊] 1998(11)

6.Hughes M;Chen G Z;Shaffer M S P Controlling the nanostructure of electrochemically grown nanoporous composites of carbon nanotubes and conducting polymers[外文期刊]

7.Snook G A;Chen G Z;Fray D J Studies of deposition of and charge storage in polypyrrole-chloride and polypyrrole-carbon nanotube composites with an electrochemical quartz crystal microbalance[外文期刊] 2004

8.Hughes M;Chen G Z;Shaffer M S P Tailoring the electrochemical properties of carbon nanotubepolypyrrole composite films for electrochemical capacitor applications 2002

9.Hughes M;Chen G Z;Shaffer M S P Composites of carbon nanotubes and polypyrrole for electrochemical supercapacitors 2002

10.Chen G Z;Shaffer M S P;Coleby D Carbon nanotubes and polypyrrole composites:coating and doping 2000

11.Emmenegger C;Mauron P;Sudan P Investigation of electrochemical double-layer(ECDL)capacitors electrodes based on carbon nanotubes and activated carbon materials[外文期刊] 2003(01)

12.Shiraishi S;Oya A Electric double layer capacitance properties of carbon nanotubes and carbon nanofibers-The present state as capacitor electrode 2003

13.Conway B E Electrochemical Supercapacitors 1999

14.Sum E;Skyllaskazacos M A Study of the V(ii)/V(iii)redox couple for redox flow cell applications 1985

本文链接:https://www.docsj.com/doc/513864986.html,/Periodical_zgysjsxb2004z3075.aspx

碳纳米管

碳纳米管简介 潘春旭 =================================== 武汉大学 物理科学与技术学院 地址:430072湖北省 武汉市 武昌区 珞珈山 电话:027-8768-2093(H);8721-4880(O) 传真:027-8765-4569 E-Mail: cxpan@https://www.docsj.com/doc/513864986.html,;cxpan@https://www.docsj.com/doc/513864986.html, 个人网页:https://www.docsj.com/doc/513864986.html,/cxpan =================================== 1. 什么是碳纳米管? 1991年日本NEC公司的饭岛纯雄(Sumio Iijima)首次利用电子显微镜观察到中空的碳纤维,直径一般在几纳米到几十个纳米之间,长度为数微米,甚至毫米,称为“碳纳米管”。理论分析和实验观察认为它是一种由六角网状的石墨烯片卷成的具有螺旋周期管状结构。正是由于饭岛的发现才真正引发了碳纳米管研究的热潮和近十年来碳纳米管科学和技术的飞速发展。 按照石墨烯片的层数,可分为: 1) 单壁碳纳米管(Single-walled nanotubes, SWNTs):由一层石墨烯片组成。单壁管典型的直 径和长度分别为0.75~3nm和1~50μm。又称富勒管(Fullerenes tubes)。 2) 多壁碳纳米管(Multi-walled nanotubes, MWNTs):含有多层石墨烯片。形状象个同轴电缆。 其层数从2~50不等,层间距为0.34±0.01nm,与石墨层间距(0.34nm)相当。多壁管的典 型直径和长度分别为2~30nm和0.1~50μm。 多壁管在开始形成的时候,层与层之间很容易成为陷阱中心而捕获各种缺陷,因而多壁管的管壁上通常布满小洞样的缺陷。与多壁管相 比,单壁管是由单层圆柱型石墨层构成, 其直径大小的分布范围小,缺陷少,具有 更高的均匀一致性。无论是多壁管还是单 壁管都具有很高的长径比,一般为100~ 1000,最高可达1000~10000,完全可以 认为是一维分子图1 碳纳米管原子排列结构示意图 2. 碳纳米管的独特性质 1) 力学性能 碳纳米管的抗拉强度达到50~200GPa,是钢的100倍,密度却只有钢的1/6,至少比常规石墨纤维高一个数量级。它是最强的纤维,在强度与重量之比方面,这种纤维是最理想的。如果用碳纳米管做成绳索,是迄今唯一可从月球挂到地球表面而不会被自身重量拉折的绳索,如果用它做成地球——月球载人电梯,人们来往月球和地球献方便了。用这种轻而柔软、结实的材料做防弹背心那就更加理想了。 除此以外,它的高弹性和弯曲刚性估计可以由超过兆兆帕的杨氏模量的热振幅测量证实。对于具有理想结构的单层壁的碳纳米管,其抗拉强度约800GPa;对于多层壁,理论计算太复杂,难于给出一确定的值。碳纳米管的结构虽然与高分子材料的结构相似,但其结构却比高分子材料稳定得多。

碳纳米管导电涂料修订稿

碳纳米管导电涂料 WEIHUA system office room 【WEIHUA 16H-WEIHUA WEIHUA8Q8-

碳纳米管导电涂料 简介: 碳纳米管(CNT)具有优异的力学、电学、光学等性能,骨架结构中含有sp3和sp2杂化的碳原子,且在其边壁和端帽部分存在大量结构缺陷,可与电子给体和电子受体发生掺杂。故碳纳米管以其独特的结构和电子特性的纳米尺寸的碳质管状物引起了全球物理、化学和材料等科学界的重视。碳纳米管作为一种新型的纳米材料,其奇异的性质倍受青睐。 碳纳米管具有良好的导电性,同时又拥有较大的长径比,因而很适合做导电填料,相对于其它金属颗粒和石墨颗粒其很少的用量就能形成导电网链,且其密度比金属颗粒小得多,不易因重力的作用而聚沉。利用碳纳米管的这些特性将其作为导电介质加入到涂料中,对涂料的导电性会产生强烈影响。目前,碳纳米管在导电涂料中的应用研究主要是通过改变碳纳米管的的结构及含量,改进碳纳米管在导电涂料中的分散性,以及对碳纳米管进行表面处理来均衡东电涂料的导电性和其他各项性能。 碳纳米管的结构: 碳纳米管是由单层或多层石墨片绕中心按一定角度卷曲而成的无缝、中空纳米管(原子排列结构见图1)。按照所含石墨片层数的不同,碳纳米管可以分成单壁碳纳米管(Single-wallednanotubes,SWNTs)和多壁碳纳米管(Multi-wallednanotubes,MWNTs)。其中,SWNTs由一层石墨片组成;MWNTs由多层石墨片组成,形状与同轴电缆相似(剖面结构见图2)。

碳纳米管的性能: 碳纳米管因其小尺寸效应和独特的分子结构,具有优异的物理化学性能。一维分子材料和六边形完美连接结构使碳纳米管具有质量轻、强度高的特点;较大长径比及sp2、sp3杂化几率不同使碳纳米管具有优良的弹性;直径、螺旋角以及层间作用力等存在的差异使碳纳米管兼具导体和半导体的特性;独特的螺旋状分子结构使碳纳米管构筑的吸波材料具有比一般吸收材料高得多的吸收率。此外,碳纳米管还具有独特的光学性能,良好的热传导性,极高的耐酸、碱性和热稳定性。 碳纳米管的导电机理: 以加溴多壁碳纳米管微观体系模型来研究溴对多壁碳纳米管的作用及导电机理。溴在多壁碳纳米管上的作用主要体现在对多壁碳纳米管π电子云的影响。多壁碳纳米管上的π电子与溴的p孤对电子形成p-π共轭,由于溴的诱导效应,使多壁碳纳米管内的电子云偏向溴,类似于分子的偶极化,多壁碳纳米管出现电子离位而产生穴载流子,同时吸引出的电子仍具有一定的自由移动能力,整个体系的载流子数目(自由电子与窄穴)增多,载流子的浓度增大,提高了多壁碳纳米管的导电性。图3Ⅰ为加溴前的多壁碳纳米管以及单质溴分子体系模型,管内的黑点代表自由电子,分布于管壁之间;图3Ⅱ代表溴的吸附过程模型;图3Ⅲ为加溴多壁碳纳米管的共轭体系模型。

电磁屏蔽导电复合材料

电磁屏蔽导电复合材料 Ξ 杜仕国 高欣宝 (军械工程学院)摘 要 在介绍电磁屏蔽原理的基础上,论述了近年来电磁屏蔽用表层导电材料和导电复合材料的特性与发展,展望了其研究趋势及应用前景。 关键词 电磁屏蔽 导电材料 复合材料 随着现代电子工业的高速发展和各类电子产品的普遍使用而产生一种新的公害,即电磁波干扰(E M I )。一方面,电磁波辐射对周围的电子电气设备造成干扰,产生错误动作;另一方面,其本身对周围的电磁干扰又十分敏感,从而造成计算机信息泄漏等严重的社会问题。为此,许多发达国家及国际组织近年都制定了相应的法规及标准,如德国的VD E 法规、美国的FCC 法规以及国际无线电抗干扰特别委员会(ISPR )制定的国际标准和试验方法等,以限制电子公害的发展〔1~3〕。然而,出于降低成本和便于大规模工业化生产的考虑,这些电子产品的壳体材料大都是采用工程塑料制成,而塑料本身无导电性,对E M I 丧失了屏蔽能力。为了解决这一问题,采用导电复合材料进行电磁屏蔽是一种行之有效的方法。 1 电磁屏蔽的基本原理 电磁屏蔽主要用来防止高频电磁场的影响,从而有效地控制电磁波从某一区域向另一区域进行辐射传播。其基本原理是:采用低电阻的导体材料,并利用电磁波在屏蔽导体表面的反射和在导体内部的吸收以及传输过程的损耗而产生屏蔽作用,通常用屏蔽效果( S E )表示〔4〕。屏蔽效果为没有屏蔽时入射或发射电磁波与在同一地点经屏蔽后反射或透射电磁波的比值,即为屏蔽材料对电磁信号的衰减值,其单位用分贝(dB )表示,可写成如下的方程式〔5〕: S E =20log (E b E a ) S E =20log (H b H a ) (1) S E =10log (P b P a )式中,E b 、E a 为屏蔽前、后的电场强度,H b 、H a 为屏蔽前、后的磁场强度,P b 、P a 为屏蔽前、后的能量场强度。 衰减值越大,表明屏蔽效果越好。根据Schelkunoff 电磁屏蔽理论,金属材料的屏蔽效果可用下式表示: 第22卷 第6期1999年 11月 兵器材料科学与工程ORDNANCE MA TER I AL SC IENCE AND EN G I N EER I N G V o l .22 N o.6 N ov . 1999 Ξ1998年12月14日收到稿件 杜仕国 军械工程学院 石家庄市 050003

关于碳纳米管的研究进展综述

关于碳纳米管的研究进展 1、前言 1985年9月,Curl、Smally和Kroto发现了一个由个60个碳原子组成的完美对称的足球状分子,称作为富勒烯。这个新分子是碳家族除石墨和金刚石外的新成员,它的发现刷新了人们对这一最熟悉元素的认识,并宣告一种新的化学和全新 的“大碳结构”概念诞生了。之后,人们相继发现并分离出C 70、C 76 、C 78 、C 84 等。 1991年日本的Iijima教授用真空电弧蒸发石墨电极时,首次在高分辨透射电子显微镜下发现了具有纳米尺寸的碳的多层管状物—碳纳米管。年,日本公司的科学家和匆通过改进电弧放电方法,成功的制备了克量级的碳纳米管。1993年,通过在电弧放电中加入过渡金属催化剂,NEC和IBM研究小组同时成功地合成了单壁碳纳米管;同年,Yacaman等以乙炔为碳源,用铁作催化剂首次针对性的由化学气相沉积法成功地合成了多壁碳纳米管。1996年,我国科学家实现了碳纳米管的大面积定向生长。1998年,科研人员利用碳纳米管作电子管阴极同年,科学家使用碳纳米管制作室温工作的场效应晶体管;中国科学院金属研究所成会明研究小组采用催化热解碳氢化合物的方法得到了较高产率的单壁碳纳米管和由多根单壁碳纳米管形成的阵列以及由该阵列形成的数厘米长的条带。1999年,韩国的一个研究小组制成了碳纳米管阴极彩色显示器样管。2000年,日本科学家制成了高亮度的碳纳米管场发射显示器样管。2001年,Schlitter等用热解有纳米图形的前驱体,通过自组装合成了单壁碳纳米管单晶,表明已经可以在微米级制得整体材料的单壁碳纳米管,并为宏量制备指出了方向。 2、碳纳米管的制备方法 获得大批量、管径均匀和高纯度的碳纳米管,是研究其性能及应用的基础。而大批量、低成本的合成工艺是碳纳米管实现工业化应用的保证。因此对碳纳米管制备工艺的研究具有重要的意义。目前,常用的制备碳纳米管的方法包括石墨电弧法、化学气相沉积法和激光蒸发法。一般来说,石墨电弧法和激光蒸发法制备的碳纳米管纯度和晶化程度都较高,但产量较低。化学气相沉积法是实现工业化大批量生产碳纳米管的有效方法,但由于生长温度较低,碳纳米管中通常含有

导电聚合物复合材料

导电聚合物复合材料综述 及其在金属管道防腐方面的应用 摘要 本文主要讨论了复合型导电聚合物材料的分类情况、研究现状和存在问题等,并对于用于金属管道防腐方面的导电聚合物涂料的研究和制备提出了初步的思路和设计方案。 关键字:导电;聚合物;复合材料 引言 聚合物材料易成型,易加工,耐腐蚀,比强度高,由于具有优良的特性,在新一代材料中的应用受到了极大的重视,但由于其本身电阻率多处于10-10-lO-20S/m之间,属于绝缘体材料,使其在电子材料领域的应用受到限制,为使其电阻率得到可观规模的下降,并可以广泛应用于能源、光电子器件、信息、传感器、分子导线和分子器件,以及电磁屏蔽、金属防腐和隐身技术中,有关新型的、具有导电性能的聚合物材料研究具有深刻意义。 1.导电聚合物材料的分类 按照结构与组成,导电聚合物材料可分为两大类:一类是本身或经过掺杂处理后具有导电功能的聚合物材料,称为结构型导电高分子材料;另一类是以聚合物材料为基体添加具有高导电性能的有机、无机、金属等导电填料,经过各种手段使其在基体中分散从而形成具有导电性的复合材料,称为复合型导电聚合物材料,又称导电聚合物复合材料。 对于结构型导电聚合物材料,由于分子主链上刚性共轭双键结构和分子间强范德华力作用力,使结构型导电聚合物通常不熔化不溶解。这些特殊的物理性质导致其加工性能差,限制了其的使用和生产。相比之下,导电复合材料可在较大尺度上控制材料性能,而且成本低、品种繁多,易加工和工业化生产,已经被广泛应用于电子、电器、纺织和煤炭开采等领域。此外,导电聚合物复合材料还具有一些特殊的物理现象,如绝缘体向半导体的突变,电阻率对温度、压力、气体浓度敏感性,电流-电压非线性行为,电流噪音等,从而得到广泛的研究与应用。 导电聚合物复合材料主要是由高电导率的导电填料和绝缘性的聚合物基体组成,其中导电填料提供载流子,通过导电填料之间的相互作用来实现载流子在聚合物复合材料中的迁移。将导体或半导体无机材料分散到高分子材料基体中,

碳纳米管纳米材料的应用要点

碳纳米管及其复合材料在储能电池中的应用 摘要碳纳米管具有良好的机械性能和导电性、高化学稳定性、大表面积以及独特的一维结构,选择合适的方法制备出碳纳米管复合材料,可以使其各种物理化学性能得到增强, 因而在很多领域有着极大的应用前景,尤其是在储能电池中的应用。本文分析了碳纳米管及其复合材料的特点,总结了碳纳米管的储锂机理,对其发展趋势作了展望。 关键词碳纳米管复合材料储能电池应用 Abstract carbon nanotubes(CNTs) are nanometer-sized carbon materials with the characteristics of unique one-dimensional geometric structure,large surface area,high electrical conductivity,elevated mechanical strength and strong chemical inertness. Selecting appropriate methods to prepare carbon nanotube composites can enhance physical and chemical properties , and these composites have a great future in many areas,especially in energy storage batteries . In this paper, based on the analysis and comparison of the advantages and disadvantages of carbon nanotube composites,the enhancement mechanisms of the CNTs catalysts are introduced. Afterward,the lithium ion storage properties are summarized according to the preparation methods of composite materials. Finally, the prospects and challenge for these composite materials are also discussed. Keywords carbon nanotube; composite; energy storage batteries; application 1 引言 碳纳米管(CNTs)在2004 年被人们发现,是一种具有特殊结构的一维量子材料, 它的径向尺寸可达到纳米级, 轴向尺寸为微米级, 管的两端一般都封口, 因此它有很大的强度, 同时巨大的长径比有望使其制作成韧性极好的碳纤维。碳纳米管由于其独特的一维纳米形貌被作为锂离子电池负极材料广泛研究,通过对碳纳米管进行剪切,官能化及掺杂等方法进行改性处理,能有效的减少碳纳米管的首次不可逆容量,增加可逆的储锂比容量。此外,碳纳米管的中空结构也成为抑制高容量金属及金属氧化物体积膨胀理想复合基体。本文中,我们研究了碳纳米管的储锂性能,考察了碳纳米管作为锡类复合材料基体,其内部限域空间对高容量金属及金属氧化物的储锂性能促进的具体原因。该研究结果为碳纳米管以及其他具有限域空间的结构在锂离子电池中的应用提供了参考。 2 碳纳米管的储锂机理和应用 相比广泛应用的石墨类材料,碳纳米管在锂离子电池负极材料中有其独特的应用优势。首先,碳纳米管的尺寸在纳米级,管内及间隙空间也都处于纳米尺寸级,因而具有纳米材料的小尺寸效应,能有效的增加锂离子在化学电源中的反应活性空间;其次,碳纳米管的比表面积较大,能增加锂离子的反应活性位,并且随着

碳纳米管性质及应用

碳纳米管性质及应用 摘要:碳纳米管的发现是现代科学界的重大发现之一。由于碳纳米管具有特殊的 导电性能、力学性质及物理化学性质等,故其在许多领域具有其广阔的应用前景,自问世以来即引起广泛关注。目前,国内外有许多科学家对碳纳米管进行研究,科研成果颇丰。本文简单综述碳纳米管的基本性质及应用。 关键词:碳纳米管;结构;制备;性质;应用 1 碳纳米管的发现 1991年,日本NEC科学家Lijima在制取C60的阴极结疤中首次采用高分辨隧道电子显微镜(HRTEM)发现一种外径为515nm、内径213nm、仅由两层同轴类石墨圆柱面叠合而成的碳结构。进一步的分析表明,这种管完全由碳原子构成,并看成是由单层石墨六角网面以其上某一方向为轴,卷曲360°而形成的无缝中空管。相邻管子之间的距离约为0.34nm,与石墨中碳原子层与层之间的距离0.335nm相近,所以这种结构一般被称为碳纳米管,这是继C60之后发现的碳的又一同素异形体,是碳团簇领域的又一重大科研成果[1]。 2 碳纳米管的结构 碳纳米管(CNT)又名巴基管,是一种具有特殊结构(径向尺寸为纳米量级,轴向尺寸为微米量级、管子两端基本上都封口)的一维量子材料。它是由单层或多层石墨片围绕中心轴按一定的螺旋角卷绕而成的无缝、中空的“微管”,每层由一个碳原子通过sp2杂化与周围3个碳原子完全键合后所构成的六边形组成的圆柱面。根据形成条件的不同,碳纳米管存在多壁碳纳米管(MWNTs)和单壁碳纳米管(SWNTs) 两种形式。MWNTs一般由几层到几十层石墨片同轴卷绕构成,层间间距为0.34nm左右,其典型的直径和长度分别为 2-30nm0.1-50μm.SWNTs由单层石墨片同轴卷绕构成,其侧面由碳原子六边形排列组成,两端由碳原子的五边形封顶。管径一般从10-20nm,长度一般可达数十微米,甚至长达20cm[2]。 3碳纳米管的制备 碳纳米管的合成技术主要有:电弧法、激光烧蚀(蒸发)法、催化裂解或催化化学气相沉积法(CCVD),以及在各种合成技术基础上产生的定向控制生长法等。 3.1电弧法利用石墨电极放电获得碳纳米管是各种合成技术中研究得最早的一种。研究者在优化电弧放电法制取碳纳米管方面做了大量的工作.T. W. Ebbeseo在He保护介质中石墨电弧放电,首次使碳纳米管的合成达到了克量级。为减少相互缠绕的碳纳米管在阴极上的烧结,D.T.Collbert将石墨阴极与水冷铜阴极座连接,大大减少了碳纳米管缺陷。C. Journet等在阳极中填人石墨粉末和铱的混合物,实现了SWNTs的大量制备。研究发现,铁组金属、一些稀土金属和铂族元素或以单个金属或以二金属混合物均能催化SWNTs合成。 近年来,人们除通过调节电流、电压,改变气压及流速,改变电极组成,改进电极进给方式等优化电弧放电工艺外,还通过改变打弧介质,简化电弧装置。 综上所述,电弧法在制备碳纳米管的过程中通过改变电弧放电条件、催化剂、电极尺寸、进料方式、极间距离以及原料种类等手段而日渐成熟。电弧法得到的碳纳米管形直,壁簿(多壁甚至单壁).但产率偏低,电弧放电过程难以控制,制备

聚合物基纳米复合材料研究进展

聚合物基纳米复合材料研究进展 摘要: 针对聚合物基纳米复合材料的某些热点和重点问题进行了总结和评述,并讨论了碳纳米管、石墨烯及纳米增强界面等以增强为主的纳米复合材料的研究状况和存在的问题;系统地评述了纳米纸复合材料、光电纳米功能复合材料以及纳米智能复合材料等以改善功能的纳米功能复合材料的研究动态。 关键词 : 复合材料;纳米材料;聚合物;功能材料 引言 复合材料作为材料大家族中的重要一员,已经深入到人类社会的各个领域,为社会经济与现代科技的发展作出了重要贡献。复合材料科学与技术的发展经历了从天然复合材料到人工复合材料的历程,而人工复合材料的诞生更是材料科学与技术发展中具有里程碑意义的成就。20 世纪 50 年代以玻璃纤维增强树脂的复合材料(玻璃钢)和 20 世纪 70 年代以碳纤维增强树脂的复合材料(先进复合材料) 是两代具有代表性的复合材料。这两代材料首先在航空航天和国防领域得到青睐和应用,后来逐渐扩大到体育休闲、土木建筑、基础设施、现代交通、海洋工程和能源等诸多领域,使得复合材料的需求越来越强烈,作用越来越显著,应用领域越来越广泛,用量也越来越多,而相应的复合材料科学与技术也在不断地丰富和发展。随着纳米技术的出现和不断发展,纳米复合材料已经凸显了很多优异的性能,从一定意义上有力地推进了新一代高性能复合材料的发展。纳米化与复合化已经成为新材料研发和推动新材料进步的重要手段和发展方向。 纳米复合材料是指以树脂、橡胶、陶瓷和金属等基体为连续相,以纳米尺寸的颗粒、纤维、纳米管等为分散相,通过合适和特殊的制备工艺将纳米相均匀地分散在基体材料中,具有特殊性能的新型复合材料。本研究的重点是讨论聚合物基纳米复合材料的研究概况,系统介绍利用碳纳米管、石墨烯、碳纳米纸、纳米界面改性等提升和改善复合材料力学性能及物理性能的机理与作用。 1 纳米增强复合材料 纳米复合材料的性能依据其基体材料和纳米增强相种类的不同而差异巨大,因此提高力学性能是纳米复合材料研究领域中最具代表性的研究工作之一。纳米相对聚合物基体的力学性能改性主要包括强度、模量、形变能力、疲劳、松弛、蠕变、动态热机械性能等。 1.1 碳纳米管纳米复合材料 碳纳米管是由碳原子形成的石墨片层卷成的无缝、中空管体,可依据石墨片层的数量分为单壁碳纳米管和多壁碳纳米管。由于纳米中空管及螺旋度共同作用,碳纳米管具有极高的强度和理想的弹性,其弹性模量甚至可达1.3 TPa,与金刚石

碳纳米管科普

碳纳米管科普 骞伟中?
一 心细如发,发真得够细吗??
中国有句谚语为"心细如发",用来形容一个人的心思缜密,细微程度达 到了头发丝的尺寸。 在古人的眼里, 头发丝已经是非常细的东西的代表了。 或者, 人们形容薄时,爱用“薄如蝉翼” ,但蝉翼真得够薄吗?然而,大家知识头发丝 的直径或蝉翼的厚度是什么尺度的吗?仅仅是几十微米而已。 有没有比头发丝更 细的丝及比蝉翼更薄的纸吗? 事实上还多得很。 比如铜丝,现代的加工技术可以将铜丝拉伸到小于 10 微米的级别。用于光 导通讯的玻璃纤维丝,也能达到这个级别。 而更绝的是,用激光刻蚀可以在硅片上刻出几十纳米(nm)的细槽,从而成 为现代超级计算机的基础。 但你可能更加想不到的是, 人类真得造出了直径仅 0.4‐1nm 的碳丝(图 1), 而 且还是中空结构。这种材料与头发丝相比,直径小了 1 万倍。另外一种比喻可以 让你进一步想象 1nm 有多大,人的指甲的生长速度几乎是不为人察觉的。人一 般觉得指甲长了,总得一周左右 的时间。但即使这样,您的指甲 仍以每秒 1nm 的速度在不停地生 长。但由于一个分子的大小也就 在 0.3nm(如氢气分子)到 0.6 nm(如苯分子),所以你可以想象 这种碳丝在本质上就是一种原子 线或分子线。但它的确构成了一 种长径比巨大的固体材料,成为 一种实物,而不再是无所束缚的, 到处乱跑的分子或原子。
图1 碳纳米管的三种卷曲结构 (从上而下的英文 字形结构;手性结构)?
armchair
zigzag
chiral
为:扶手椅式结构;Z

实际上, 这种神奇的材料的发现是基于非常偶然的机缘。 在 1985‐1990 年间, 科学家热衷于制造一种形状像足球的由 60 个碳组成的分子。这种分子通常是用 电弧放电,将石墨靶上的碳原子进行激发,然后进行自组装而得。而在偶然的机 缘里,科学家发现,只要能量足够,这些碳原子就会自动连接起来,形成一条碳 链。而利用放大倍数在 10 万倍至 100 万倍的电子显微镜下,科学家惊异地发现 这个丝状的材料竟然是中空的管状材料,所以,根据其元素,尺寸与形状,科学 家形象地称这种材料为“碳纳米管” 。应该说这种丝状材料与头发相比,才是真 正算得上细与小。当然如果说一个人“心细如碳纳米管” ,则恐怕不只是“心细 如发”的赞许与褒扬,而或许带有一种调侃或讽刺意味的“小心眼”了。由此可 见,社会科学中的词语包含了粗与细的平衡,什么事都得适可而止,非常玄妙。 然而,在追求真理与真知的“实心眼”科学家那里,却不是这样,自从 C60 与碳纳米管的发现,人类正式进行了纳米时代,可能大家都听过“纳米领带” , “纳米洗衣机” 或 “纳米药物” 。 不论这些东西是否属实, 却毫无疑问地夸耀 “细” 与“小”的作用。 事实上,追求细小或细微或精细,是人类科技进步的一条主线。 从人类走过的路程可以看到,从旧石器时代,新石器时代,以及青铜时代, 铁器时代,到火车轮船时代,以及飞机及计算机时代。从手工打造,铸造,到普 通车床加工, 再到数字车床加工, 激光刻蚀。 比如, 普通汽车与拖拉机的发动机, 一般有成千至万个零件。而飞机或火箭的发动机则有上百万个零件组成。而保证 这个零件良好组合或密封,以及长时间工作不损伤的关键因素,就在加工结构的 精细化与细微化。一般来说,汽车与拖拉机对应的加工精度为微米级,而计算机 与手机等通讯产品中硅片的加工精度则为纳米级。人类加工的产品越来越精细, 也就越来越有功能。而到达纳米级后,计算机硅片的加工要求又从 100 nm,小 到 60?nm,直到目前的 15?nm。这些数字减小的后面,是一代一代计算机的更新 换代与巨大的产业价值。 而我们故事的主人公:碳纳米管,竟然可以小至 0.4‐1nm。大家可以想见, 如果计算机的加工基础可以小到这个程度,或由这么小的材料来组装器件,则现 代的工业革命又将会发生什么样的变化。 在此开篇,有必要向大家介绍一下时空的概念。在时间尺度上,生物的新陈

基于石墨烯的导电复合材料

基于石墨烯的导电复合材料进展 课程:聚合物结构与性能学生:张恩重学号:201110102626 自2004年英国曼彻斯特大学Geim教授首次制备出单层石墨烯[1](graphene)以来,其独特的性质就引起了科学家们的广泛关注。石墨烯是单层碳原子紧密堆积而形成的炭质新材料,单层石墨烯是以二维晶体结构存在,厚度只有0.335nm,是目前世界上最薄的二维材料,它是构筑其它维度碳质材料的基本单元,可以包裹起来,形成零维的富勒烯,卷起来形成一维的碳纳米管,层层堆积形成三维石墨,如图1。石墨烯是一种没有能隙的半导体材料,具有比单晶硅高100倍左右的载流子迁移率(2×105cm(V·s))[2]在室温下具有微米级自由程和大的相干长度,因此它是纳米电路的理想材料。另外,石墨烯还具有良好的导热性(导热率为5000W(m·K)[3]、高强度高达130GPa[4]、高透明度(对自然光的吸收率只有2.3%左右)和超大的比表面积(2630m2/g)[5]。由于石墨烯具有上述优异的性能,使其有望在微电子、能源、信息材料和生物医药等领域具有重大的应用前景。 图1 2D结构的石墨烯片层演变成C60、碳纳米管和石墨的示意图 目前制约石墨烯和其复合材料发展的两个主要因素是:一、具有单层结构石

墨烯的大规模制备;二、石墨烯的可控功能化。本文将从聚合物复合导电材料、聚合物复合材料导电机理,石墨烯的制备和石墨烯聚合物复合导电材料的性能研究进展等方面介绍基于石墨烯的导电复合材料,并了解其未来研究领域。 导电高分子材料 近二十年,尤其导电高分子获得诺贝尔奖以来,导电高分子材料作为高分子材料发展的一个新领域,其研究与开发已成为功能高分子材料研究的一个重要方面。按导电机理的不同,导电高分子材料可以分为复合型和结构型两种:复合型导电高分子材料是利用向高分子材料中加入各种导电填料来实现其导电能力;结构型导电高分子材料是改变高分子结构使高分子自身具有导电性来实现其导电能力[6]。本文主要介绍以石墨烯为填料的复合型导电高分子材料。 复合型导电高分子材料 复合型导电高分子材料是指将各种导电填料和高分子材料通过不同的复合方法制备的具有导电功能的多相复合材料。这类材料既具有导电功能,同时又保持高分子材料的特点,并且成本较低,因而得到了广泛的应用。根据导电填料的不同它又可分为碳基材料填充型及金属材料填充型。 1、碳基材料填充型 碳基材料主要包括石墨烯、足球烯、碳纳米管、石墨。碳基材料填填充型导电材料是目前复合型导电材料中应用最广泛的一种,应用最多的碳基材料是石墨烯、碳纳米管和石墨,它的优点有以下几个方面:一、碳基材料填价格低廉,实用性强;二、碳基材料填能根据不同的导电要求有较大的选择余地;三是导电持久稳定[7]。 2、金属材料填充型 金属材料填充型复合导电材料的导电性能优良,比传统金属材料轻且易成型加工,是具有潜在优势的新型导电材料和屏蔽材料。近年来,金属纤维填充材料发展迅速。 复合型导电高分子材料的导电机理 复合型导电高分子材料导电性主要取决于填料的分散状态[8]。根据逾渗理论,原来孤立分散的填料微粒在体积分散达到某一临界含量以后就会形成连续的导

聚合物基纳米复合材料的结构与性能研究

聚合物基纳米复合材料的结构与性能研究 摘要:聚合物的结构与性能是材料科学研究的重点。通过改变或优化材料的结构,而得到性能更为优越的材料也一直是人们的研究方向,随着研究的不断深入,所采取的方法也越来越为多元化,其中,在高分子聚合物材料中引入纳米结构就是材料改型的一种办法。以下对聚合物基纳米复合材料的结构和性能的研究作一总结。分析了由插层复合法、溶胶一凝胶法和纳米微粒直接共混法制备的聚合物基纳米复合材料的结构和性能的紧密联系。 关键词:高分子聚合物;纳米材料;结构;性能 1、引言 1.1高分子聚合物材料概述[1] 材料是各门科学技术应用和发展的基础和载体。按照传统的分类,可将材料分为金属、半导体、陶瓷和有机高分子材料,而在科学技术迅速发展的今天,与其它材料相比,聚合物材料的研究与应用呈现非常快的增长趋势,有着广阔的发展前景。 聚合物材料作用和功能的发挥,与它的结构有着密切的关系。为了合成具有指定性能的高分子材料,人们总是从化学结构开始设想,为了改进高分子材料的某种性能,人们也总是首先从改变其结构入手。无数的事实表明:人们无时无刻不在利用高聚物结构与性能间的关系,根据需要选择高分子材料,改性高分子材料,创造高新的高分子材料。高聚物结构与性能间的关系是高分子材料设计的基础,同时也是确定高分子材料加工成型工艺的依据。 对于实际应用中的高分子材料或制品,有的时候它们的高级结构,如相态结构和聚集态结构,对高分子材料、尤其是高分子功能材料的影响更为明显,并且其使用性能直接决定于加工成形过程中的聚集态结构,因此对高分子聚集态结构的研究有着重要的理论意义和实际意义。了解高分子聚集态结构特征、形成条件及其与材料性能之间的关系,对于获得具有理想性能的材料是必不可少的,同时也可为新型高聚物材料的物理改性和材料设计提供科学的依据。 高分子聚合物的结构主要包括高分子链结构和聚集态结构。高分子链结构分为近程结构和远程结构,近程结构包括化学组成、单体单元的键合(键合方式、序列)、高分子的构型(结构单元空间排列)、单个高分子链的键接(交联与支化)。远程结构包括高分子的大小(分子量及其分布)、高分子链的尺寸(末端距、旋转半径)、高分子的形态(构象、柔性、刚性)。高分子的聚集态结构包括晶态、非晶态、取向态、液晶态、织态等。 高分子结构特点主要有五点:①链式结构②链的柔顺性③不均一性(多分散性)④聚集态结构的复杂性。⑤交联网状结构。聚集态结构是决定高分子材料使用性能的直接因素,交联程度对橡胶弹性体或热固性聚合物这类材料的力学性能有重要影响。除了一级结构,即分子链的化学结构,还有其高级结构,即高聚物在宏观上体现为若干高分子链以一定的规律堆集形成的状态,这种高分子链之间的排列和堆砌结构称为聚集态结构。高分子的链结构影响高分子的运动方式和堆砌方式,凝聚态结构将直接影响材料的力学、光学、热学、声学、电学等使用性能。经验证明:即使有同样链结构的同一种高聚物,由于加工成型条件不同,制品性能也有很大差别。例如:缓慢冷却的PET(涤纶片)是脆性的;迅速冷却,双轴拉伸的PET(涤纶薄膜)是韧性很好的材料。 对于高分子材料来讲,它具有密度小、强度高,易加工等优良性能,并且易于通过化学和物理方法进等行改性特性而拓展其应用范围。

碳纳米技术发展综述

碳纳米管技术发展概况 学院:电子信息工程学院 专业:通信工程 姓名:彭昱 学号:3013204217 【摘要】随着社会经济的飞速发展,碳纳米材料的应用日趋广泛,以富勒烯、石墨烯和碳纳米管为代表的碳纳米材料。在经历20世纪90年代的研究高潮后,如今也已经进入了平稳扎实的研究阶段。随着研究的不断深入,碳纳米材料在人类生产生活中显示出越来越多不可替代的重要作用。碳纳米管(CNT)也是“纳米世界”中的重要一员,因其独特的结构和优异的物理化学性能,具有广阔的应用前景和商业价值。本文综述了碳纳米管的发展历程、结构性能,应用及其发展前景及展望。 【关键词】碳纳米管;发展历程;结构;特性;应用;前景 碳纳米管的发展历程 1985 年英国萨塞克斯大学的波谱学家Kroto 教授与美国莱斯大学的Smalley和Curl 两教授在合作研究中,发现碳元素可以形成由60 个或70 个碳原子构成的高度对称性笼状结构的C60和C70分子,被称为巴基球(Buckyballs);1991 年,日本NEC 科学家Iijima 在制取C60的阴极结疤中首次采用高分辨隧道电子显微镜发现一种外径为515nm、内径为213nm,仅由两层同轴类石墨圆柱面叠而成的碳纳米管;1992年,科研人员发现碳纳米管壁曲卷结构不同而呈现出半导体或良导体的特异导电性;1995年,科学家研究并证实其优良的场发射性能;1996年,我国科学家实现碳纳米管大面积定向生长;1998年,科研人员应用碳纳米管作电子管阴极,同年,科学家使用碳纳米管制作室温工作的场效应晶体管;1999年,韩国一个研究小组制成碳纳米管阴极彩色显示器样管;2000年,日本科学家制成高亮度的碳纳米管场发射显示器样管。 碳纳米管的结构 碳纳米管是由单层或多层石墨片绕中心按一定角度卷曲而成的无缝、中空纳米管。按照所含石墨片层数的不同,碳纳米管可分为:单壁碳纳米管和多壁碳纳米管。单壁管典型直径在0.6-2nm,多壁管最内层可达0.4nm,最粗可达数百纳米,但典型管径为2-100nm。下图为常见的碳纳米管结构图。虽然从本质上讲,碳纳米管都是有相同的石墨层构成的但它们的导电特性却并不一样,具体情况取决于起的是金属还是半导体的作用。 碳纳米管的特性 碳纳米管的独特结构决定了它具有许多特殊的物理和化学性质。组成碳纳米管的C=C 共价键是自然界最稳定的化学键,所以使得碳纳米管具有非常优异的力学性能。理论计算表明,碳纳米管具有极高的强度和极大的韧性。其理论值估计杨氏模量可达5TPa,强度约为钢的100 倍,而重量密度却只有钢的1/6。Treacy 等首次利用了TEM 测量了温度从室温到800 度变化范围内多壁碳纳米管的均方振幅,从而推导出多壁碳纳米管的平均杨氏模量约为1.8Tpa。而Salvetat 等测量了小直径的单壁碳纳米管的杨氏模量,并导出其剪切模量为1Tpa。Wong 等用原子力显微镜测量多壁碳纳米管的弯曲强度平均值为14.2±10.8GPa,而碳纤维的弯曲强度却仅有1GPa。碳纳米管无论是强度还是韧性,都远远优于任何纤维,被认为是未来的“超级纤维”。直径、螺旋角以及层间作用力等存在的差异是碳纳米管兼导体和半导体的特性;独特的螺旋分子结构使碳纳米管构筑的吸波材料具有比一般吸收材料高的吸收率。此外,碳纳米管还具有独特的光学性能,良好的热传导性,极高的耐酸、碱性和热稳定性。

导电复合材料

导电复合材料

导电复合材料的制备及应用浅析 摘要:随着电子工业及信息技术等产业的迅速发展,对于具有导电功能的高分子材料的需求越来越迫切。本文详细介绍了导电高分子材料的分类,介绍了导电复合材料的导电填料的种类及性质,总结了复合型导电高分子材料的制备方法和应用情况。 关键词:复合型;导电高分子材料;制备及应用; 1.前言 通常高分子材料的体积电阻率都非常高,约在1010-1020Ω·cm之间,作为电器绝缘材料使用无疑是非常优良的。但是,随着科学技术的进步,特别是电子工业、信息技术的迅速发展,对于具有导电功能的高分子材料需求愈来愈迫切。世界各国无论是学术界还是产业界都在积极地对这一新兴功能材料进行研究与开发。 关于导电高分子的定义,到目前为止国内外尚无统一的标准,一般是将体 积电阻率ρ V 小于1010Ω·cm的高分子材料统称为高分子导电材料。其中将ρ V 在106-1010Ω·cm之间的复合材料称为高分子抗静电材料;将ρ V 在100-106Ω·cm 之间的称为高分子半导电材料;将ρ V 小于100Ω·cm的称为高分子导电材料。 按照结构和制备方法的差异又可将导电高分子材料分为结构型导电高分子材料和复合型导电高分子材料两大类。结构型导电高分子材料(或称本征高分子导电材料)是指分子结构本身能导电或经过掺杂处理之后具有导电功能的共扼聚合物,如聚乙炔、聚苯胺、聚毗咯、聚噬吩、聚吠喃等。复合型导电高分子材料是指以聚合物为基体,通过加入各种导电性填料(如炭黑、金属粉末、金属片、碳纤维等),并采用物理化学方法复合制得的既具有一定导电功能又具有良好力学性能的多相复合材料。目前结构型导电高分子材料由于结构的特殊性与制备及提纯的困难,大多还处于实验室研究阶段,获得实际应用的较少,而且多数为半导体材料。复合型导电高分子材料,因加工成型与一般高分子材料基本相同,制备方便,有较强的实用性,故已较为广泛应用。本论文主要研究了复合型导电高分子材料的制备以及应用。 2.复合型导电高分子材料 2.1复合型导电高分子材料概述 复合型导电高分子材料在工业上的应用始于20世纪60年代。复合型导电高分子材料是采用各种复合技术将导电性物质与树脂复合而成的。按照复合技术分类有:导电表面膜形成法、导电填料分散复合法、导电填料层压复合法三种。 复合型导电高分子材料的分类方法有多种。根据电阻值的不同,可划分为半导电体、除静电体、导电体、高导电体。根据导电填料的不同,可划分为碳系(炭

聚合物碳纳米管复合材料研究综述

聚合物/碳纳米管复合材料研究综述 摘要 综述了目前碳纳米管在填充聚合物来制备介电、导电、吸波、导热等复合材料方面的应用。对常见的几种聚合物/碳纳米管复合材料的制备工艺以及碳纳米管在聚合物中的分散方法进行了详细地阐述。最后对聚合物/碳纳米管在研究过程中存在的问题和未来的研究方向进行了相应地分析和展望。 关键词:碳纳米管; 逾渗理论; 复合材料; 制备工艺; 分散 Review of Research on Polymer /Carbon Nanotube Composite Abstract The current carbon nanotube-filled polymer compound to prepare the electricity,conductive,absorbing,thermal conductivity,and other aspects of application of composite materials are reviewed.Several common polymer / carbon nanotube composite preparation process as well as the dispersion of carbon nanotubes in polymer are elaborated.Finally,the polymer /carbon nanotube in the study process and future research is analyzed and prospected. Key words: carbon nanotubes; percolation theory; composite; preparation; dispersion

聚合物基纳米复合材料的近代发展

汽车发动机地技术现状及发展趋势 摘要:自汽车发明以来,为人们地出行运输带来了极大地便利,促进了人类地大发展,一百多年后地今天,相关技术不断创新和走向成熟.但随之而来地问题则是,全球石油能源紧张,空气污染.因此,先进地发动机技术将在汽车节能、环保技术开发中起着关键地决定性地作用. 关键词:汽油直喷技术

相关文档
相关文档 最新文档