文档视界 最新最全的文档下载
当前位置:文档视界 › 常用均值不等式与证明证明

常用均值不等式与证明证明

常用均值不等式与证明证明
常用均值不等式与证明证明

常用均值不等式及证明证明

Hn

n

概念

1、调和平均数:

1 1 :

1

a 1

a 2

a n

1

2 、几何平均数 :

Gn

a 1 a 2

a n n

3

a 1

a 2

a n

、算术平均数 :

A n

n

4 、平方平均数 :

Q n

a 12 a 22

a n 2

n

这四种平均数满足

Hn Gn An Qn

a 、 a 、 、a

n R

,当且仅当

a

a

2

a

n 时取“ =”号

12

1

1

r r r r

D a 1

a 2

a n

均值不等式的一般形式:设函数

x

n

( 当

1

r 0

时);

D x

a 1a 2

a n n

( 当 r

0 时 )( 即

1

D 0

a 1a 2

a n

n

则有:当 r=-1 、 1、0、 2 注意到 Hn ≤ Gn ≤ An ≤ Qn

仅是上述不等式的特殊情形,即 D(-1) ≤D(0) ≤ D(1) ≤ D(2)

由以上简化,有一个简单结论,中学常用

2

a b

a

2

b 2

1 1 ab

2

2

a

b

均值不等式的变形:

(1) 对实数 a,b ,有 a

2

b

2

2ab

( 当且仅当 a=b 时取“ =”号 ) , a 2 , b 2

0 2ab

(2)对非负实数 a,b ,有 a

a b

b 2 ab 0 ,即

ab 0

2

(3)对负实数 a,b ,有

(4)对实数 a,b ,有

a b -2 ab 0 a a - b b a - b

(5)对非负实数 a,b ,有a2b ab

0 22

(6)对实数 a,b ,有a2b2a b22ab

2

(7)对实数 a,b,c ,有a

2b2c2a b c2

3

(8)对实数 a,b,c ,有a2b2c2ab bc ac

(9)对非负数 a,b ,有a

2ab b2 3 a b 2

4

(10)对实数 a,b,c ,有a b c3abc

3

均值不等式的证明:

方法很多,数学归纳法(第一或反向归纳)、拉格朗日乘数法、琴生不等式法、排序不等式法、柯西不等式法等等

用数学归纳法证明,需要一个辅助结论。

引理:设 A≥0, B≥ 0,则A

n

nA n -1 B BA n

注:引理的正确性较明显,条件A≥ 0, B≥ 0 可以弱化为 A≥0, A+B≥0 ( 用数学归纳法 ) 。

a1 a2n

a n

a1a2 a n

原题等价于:

n

当n=2 时易证;

假设当 n=k 时命题成立,即

a1a2

k

a k a

1a2a k k

那么当 n=k+1 时,不妨设a k1是 a 1 , a 2 ,, a k 1中最大者,

则ka k 1a1a2a

k 1

s a1a2a k

a1 a 2

a

k 1

k1k 1

s ka k 1 - s

k1k k k 1

k1

s k

s

k1ka k 1- s

k k

k k1

s k

a k1 a 1 a 2 a k1

用引理

k

用归纳假设

下面介绍个好理解的方法

琴生不等式法

琴生不等式:上凸函数 f x , x1 , x2 ,, x n是函数f x 在区间(a,b)内的任意 n 个点,x1x2x n f x1 f x2 f x n

则有:

f n n

设 f x ln x , f x为上凸增函数所以,

ln x

1x2x n ln x1ln x2ln x n n n

ln x1 x2 x n 1 n

x1x2x n1

x1 x2x n n 即n

在圆中用射影定理证明(半径不小于半弦)

高中数学不等式的几种常见证明方法(县二等奖)

高中数学不等式的几种常见证明方法 摘 要:不等式是中学数学的重要知识,考察学生对不等式理论熟练掌握的程度也是衡量学生数学水平的重要方面,同时,不等式也是高中数学的基础,因此,在每年的数学高考题中,有关不等式的相关题目都有所出现,本文介绍了几种不等式的证明方法,并举例进一步加强对各种不等式的理解. 关键字:不等式;数学归纳法;均值;柯西不等式 一、比较法 所谓比较法,就是通过两个实数a 与b 的差或商的符号(范围)确定a 与b 大小关系的方法,即通过“0a b ->,0a b -=,0a b -<;或1a b >,1a b =,1a b <”来确定a ,b 大小关系的方法,前者为作差法,后者为作商法. 例 1 设,x y R ∈,求证:224224x y x y ++≥+. 证明: 224224x y x y ++-- =2221441x x y y -++-+ =22(1)(21)x y -+- 因为 2(1)0x -≥, 2(21)0y -≥ ∴ 22(1)(21)0x y -+-≥ ∴2242240x y x y ++--≥ ∴224224x y x y ++≥+ 例 2 已知:a >b >c >0, 求证:222a b c a b c ??>b c a c b c a b c +++??. 证明:222a b c b c a c b c a b c a b c +++????=222a b c b a c c b c a b c ------?? >222a b c b a c c b c c c c ------??

=0c =1 222a b c b c a c b c a b c a b c +++??∴??>1 ∴222a b c a b c ??>b c a c b c a b c +++?? 二、分析法 分析法:从求证的不等式出发,分析这个不等式成立的充分条件,把证明这个不等式的问题转化为证明这些条件是否具备的问题,如果能够肯定这些条件都已具备,那么就可以判定所证的不等式成立. 例 3 求证3< 证明: 960+>> 5456<成立运用分析法时,需积累一些解题经验,总结一些常规思路,这样可以克服无目的的乱写,从而加强针对性,较快地探明解题的途径. 三、综合法 从已知或证明过的不等式出发,根据不等式的性质及公理推导出欲证的不等式,这种证明方法叫做综合法. 例 4 已知,a b R +∈,1a b +=,求证:221125()()2 a b a b +++≥ 证明:∵ 1a b += ∴ 1=22222()22()a b a b ab a b +=++≤+ ∴ 221 2 a b +≥

(完整版)均值不等式及其证明

1平均值不等式及其证明 平均值不等式是最基本的重要不等式之一,在不等式理论研究和证明中占有重要的位置。平均值不等式的证明有许多种方法,这里,我们选了部分具有代表意义的证明方法,其中用来证明平均值不等式的许多结论,其本身又具有重要的意义,特别是,在许多竞赛的书籍中,都有专门的章节介绍和讨论,如数学归纳法、变量替换、恒等变形和分析综合方法等,这些也是证明不等式的常用方法和技巧。 1.1 平均值不等式 一般地,假设12,,...,n a a a 为n 个非负实数,它们的算术平均值记为 12...,n n a a a A n +++= 几何平均值记为 112(...)n n n G a a a == 算术平均值与几何平均值之间有如下的关系。 12...n a a a n +++≥ 即 n n A G ≥, 当且仅当12...n a a a ===时,等号成立。 上述不等式称为平均值不等式,或简称为均值不等式。 平均值不等式的表达形式简单,容易记住,但它的证明和应用非常灵活、广泛,有多种不同的方法。为使大家理解和掌握,这里我们选择了其中的几种典型的证明方法。供大家参考学习。 1.2 平均值不等式的证明 证法一(归纳法) (1) 当2n =时,已知结论成立。 (2) 假设对n k =(正整数2k ≥)时命题成立,即对 0,1,2,...,,i a i k >=有 1 1212...(...)k k n a a a a a a k +++≥。 那么,当1n k =+时,由于

121 1 (1) k k a a a A k +++++= +,1k G +=, 关于121,,...,k a a a +是对称的,任意对调i a 与j a ()i j ≠,1k A +和1k G +的值不改变,因此不妨设{}1121min ,,...,k a a a a +=,{}1121max ,,...,k k a a a a ++= 显然111k k a A a ++≤≤,以及1111()()0k k k a A a A +++--<可得 111111()k k k k A a a A a a +++++-≥. 所以 1111211 1(1)...k k k k k k kA k A A a a a A A k k k +++++++-+++-= == 2111...()k k k a a a a A k ++++++-=≥即12111...()k k k k k A a a a a A +++≥+- 两边乘以1k A +,得 111211112111...()...()k k k k k k k k k k A a a A a a A a a a a G ++++++++≥+-≥=。 从而,有11k k A G ++≥ 证法二(归纳法) (1) 当2n =时,已知结论成立。 (2) 假设对n k =(正整数2k ≥)时命题成立,即对 0,1,2,...,,i a i k >=有 12...k a a a +++≥ 那么,当1n k =+时,由于

高中不等式的证明方法

不等式的证明方法 不等式的证明是高中数学的一个难点,证明方法多种多样,近几年高考出现较为形式较为活跃,证明中经常需与函数、数列的知识综合应用,灵活的掌握运用各种方法是学好这部分知识的一个前提,下面我们将证明中常见的几种方法作一列举。 注意ab b a 22 2 ≥+的变式应用。常用2 222b a b a +≥ + (其中+ ∈R b a ,)来解决有关根式不等式的问题。 一、比较法 比较法是证明不等式最基本的方法,有做差比较和作商比较两种基本途径。 1、已知a,b,c 均为正数,求证: a c c b b a c b a ++ +++≥++1 11212121 证明:∵a,b 均为正数, ∴ 0) (4)(44)()(14141)(2 ≥+=+-+++=+-+-b a ab b a ab ab b a a b a b b a b a b a 同理 0)(41 4141)(2 ≥+= +-+-c b bc c b c b c b ,0) (414141)(2 ≥+=+-+-c a ac a c a c a c 三式相加,可得 01 11212121≥+-+-+-++a c c b b a c b a ∴a c c b b a c b a ++ +++≥++111212121 二、综合法 综合法是依据题设条件与基本不等式的性质等,运用不等式的变换,从已知条件推出所要证明的结论。 2、a 、b 、),0(∞+∈c ,1=++c b a ,求证: 31222≥ ++c b a 证:2 222)(1)(3c b a c b a ++=≥++?∴ 2222)()(3c b a c b a ++-++0 )()()(222222222222≥-+-+-=---++=a c c b b a ca bc ab c b a 3、设a 、b 、c 是互不相等的正数,求证:)(4 4 4 c b a abc c b a ++>++ 证 : ∵ 2 2442b a b a >+ 2 2442c b c b >+ 2 2442a c a c >+∴ 222222444a c c b b a c b a ++>++ ∵ c ab c b b a c b b a 2 2222222222=?>+同理:a bc a c c b 222222>+ b ca b a a c 222222>+ ∴ )(222222c b a abc a c c b b a ++>++ 4、 知a,b,c R ∈,求证: )(22 2 2 2 2 2 c b a a c c b b a ++≥++ ++ + 证明:∵ ) (2 2 2 2 2 2 2 2)(22b a b a b a b a ab ab +≥++≥+∴≥+

证明不等式的几种方法

证明不等式的几种方法 淮安市吴承恩中学 严永飞 223200 摘要:不等式证明是中学数学的重要内容,证明方法多种多样.通常所用的公式法、放缩法只能解决一些较简单的问题,对于较难的问题则束手无策.本文给出了几种特殊方法.如倒数变换法、构建模型法、逆用等比数列求和公式等方法,使解题容易,新颖独特. 关键词:不等式,公式法,构建模型法 前言 证明不等式是中学数学的重要内容之一,内容抽象,难懂,证明方法更是变化多端.通常所用的一些方法如公式法、放缩法只能解决一些较简单的问题,较难的问题则无法解决.本文给出了几种特殊方法.如倒数变换法、构建模型法、逆用等比数列求和公式等方法. 这里所举的几种证明不等式的特殊方法看似巧妙,但如果认真思考,广泛联系,学以致用,一定能使问题得到很好的解决. 1 运用倒数变换证明不等式 这里所说倒数变换是根据具体的题目要求把不等式的部分进行倒数变换,通过化简后使不等式变得简单,更好更快的解决证明问题. 例1 设+∈R z y x ,,,且xyz =1 求证:)(13z y x ++)(13z x y ++)(13y x z +≥2 3 分析 如果先通分再去分母,则不等式将变得很复杂. 令A x =-1,B y =-1 ,C z =-1 ,则+∈R C B A ,,且1=ABC . 欲证不等式可化为 C B A +2+A C B +2+B A C +2≥23(*) 事实上,a 2+22b λ≥ab λ2 (+∈R b a ,,λ), 而当b >0时, a 2/b ≥b a 22λλ-. (*)式左边≥A λ2-2λ(C B +)+ B λ2-2λ(C A +)+C λ2-2λ(A B +) = λ2(λ-1)(C B A ++) ≥λ6(λ-1)3ABC = λ6(λ-1). 令λ=21时,C B A +2+A C B +2+ B A C +2 ≥6×21×(1-21)=23 得证. (这里用到二元平均不等式的变形和三元平均不等式.) 例 2 已知z y x ,,>0,n 为大于1的正整数,且n n x x +1+n n y y +1+n n z z +1=1 求证:n x x +1+n y y +1+n z z +1≤n n 12-

不等式证明的常用基本方法

证明不等式的基本方法 导学目标:1.了解证明不等式的基本方法:比较法、综合法、分析法、反证法、放缩法.2.会用比较法、综合法、分析法、反证法、放缩法证明比较简单的不等式. [自主梳理] 1.三个正数的算术—几何平均不等式:如果a ,b ,c>0,那么_________________________,当且仅当a =b =c 时等号成立. 2.基本不等式(基本不等式的推广):对于n 个正数a 1,a 2,…,a n ,它们的算术平均不小于它们的几何平均,即a 1+a 2+…+a n n ≥n a 1·a 2·…·a n ,当且仅当__________________时等号成立. 3.证明不等式的常用五种方法 (1)比较法:比较法是证明不等式最基本的方法,具体有作差比较和作商比较两种,其基本思想是______与0比较大小或______与1比较大小. (2)综合法:从已知条件出发,利用定义、______、______、性质等,经过一系列的推理、论证而得出命题成立,这种证明方法叫综合法.也叫顺推证法或由因导果法. (3)分析法:从要证明的结论出发,逐步寻求使它成立的________条件,直至所需条件为已知条件或一个明显成立的事实(定义 、公理或已证明的定理、性质等),从而得出要证的命题成立为止,这种证明方法叫分析法.也叫逆推证法或执果索因法. (4)反证法 ①反证法的定义 先假设要证的命题不成立,以此为出发点,结合已知条件,应用公理、定义、定理、性质等,进行正确的推理,得到和命题的条件(或已证明的定理、性质、明显成立的事实等)矛盾的结论,以说明假设不正确,从而证明原命题成立,我们把它称为反证法. ②反证法的特点 先假设原命题不成立,再在正确的推理下得出矛盾,这个矛盾可以是与已知条件矛盾,或与假设矛盾,或与定义、公理、定理、事实等矛盾. (5)放缩法 ①定义:证明不等式时,通过把不等式中的某些部分的值________或________,简化不等式,从而达到证明的目的,我们把这种方法称为放缩法. ②思路:分析观察证明式的特点,适当放大或缩小是证题关键. 题型一 用比差法与比商法证明不等式 1.设t =a +2b ,s =a +b 2+1,则s 与t 的大小关系是( A ) ≥t >t ≤t 0;②a 2+b 2≥2(a -b-1);③a 2+3ab>2b 2;④,其中所 有恒成立的不等式序号是 ② . ②【解析】①a=0时不成立;②∵a 2+b 2-2(a-b-1)=(a-1)2+(b+1)2≥0,成立;③a=b=0时不成立;④a=2,b=1时不成立,故恒成立的只有②.

利用均值不等式证明不等式

1,利用均值不等式证明不等式 (1)均值不等式:设12,,...,n a a a 是n 个正实数,记 12111n n n H a a a = ++???+ n G = 12n n a a a A n ++???= n Q =它们分别称为n 个正数的调和平均数,几何平均数,算术平均数,平方平均数。有如下关系: n n n n H G A Q ≤≤≤.等号成立的充要条件是12n a a a ==???=。 先证n A n =当n=k+1n a ≤≤ 1 111= i k i k a A +==+ +∑∑ 111 111(1)(11).1k i i i i k i i i i k k k a a a a k k a A a k k k k ====++? ? ? ? ? ? ?=+-+-==+ ? ? ? ? ? ?? ? ? ??? ∑ 1111 1.1k k k k k k k k k A G a n k A G +++++∴≥==+所以对时亦成立。原不等式成立。 . n n A G ≥证法二:用反向数学归纳法证明:

20,n n n n n A G A G =-=≥≥当时,成立。 ++k N ∈k k 1假设:n=2()时成立,当n=2时: ++++1 +1 1 ++ = =.i i i i i i a a a A G ===≥ ≥=∑∑∑k 1 k k 1 k k 1k 12222k k 2k 1 222 2 2 2 +,k N ?∈k 即,对当n=2时,结论成立。 假设1 t t tA G t ++证法三:0.k b = >令: 111)k k k k k k b b b ----+ +≥11 k k k k b b --即:k kb 且:11112211[(1)]n n n k n n k k k n k k k k k A b b b kb k b a G b --===-==≥--== 12n ===.n n G A a a a ∴≤等号成立当且仅当: 上述不等式在数学竞赛中应用极为广泛,好的、难的不等式问题往往只需用它们即可解决,而无需过分追求所谓更“高级”的不等式,这是应该引起我们注意的。 例1:求证下列不等式: (1) ()1 3a a b b + ≥-,(0)a b >>

证明不等式的几种常用方法

证明不等式的几种常用方法 证明不等式除了教材中介绍的三种常用方法,即比较法、综合法和分析法外,在不等式证明中,不仅要用比较法、综合法和分析法,根据有些不等式的结构,恰当地运用反证法、换元法或放缩法还可以化难为易.下面几种方法在证明不等式时也经常使用. 一、反证法 如果从正面直接证明,有些问题确实相当困难,容易陷入多个元素的重围之中,而难以自拔,此时可考虑用间接法予以证明,反证法就是间接法的一种.这就是最“没办法”的时候往往又“最有办法”,所谓的“正难则反”就是这个道理. 反证法是利用互为逆否的命题具有等价性来进行证明的,在使用反证法时,必须在假设中罗列出各种与原命题相异的结论,缺少任何一种可能,则反证法都是不完全的. 用反证法证题的实质就是从否定结论入手,经过一系列的逻辑推理,导出矛盾,从而说明原结论正确.例如要证明不等式A>B,先假设A≤B,然后根据题设及不等式的性质,推出矛盾,从而否定假设,即A≤B不成立,而肯定A>B成立.对于要证明的结论中含有“至多”、“至少”、“均是”、“不都”、“任何”、“唯一”等特征字眼的不等式,若正面难以找到解题的突破口,可转换视角,用反证法往往立见奇效. 例1 设a、b、c、d均为正数,求证:下列三个不等式:①a+b<c+d; ②(a+b)(c+d)<ab+cd;③(a+b)cd<ab(c+d)中至少有一个不正确. 反证法:假设不等式①、②、③都成立,因为a、b、c、d都是正数,所以

不等式①与不等式②相乘,得:(a +b)2<ab +cd ,④ 由不等式③得(a +b)cd <ab(c +d)≤( 2 b a +)2 ·(c +d), ∵a +b >0,∴4cd <(a +b)(c +d), 综合不等式②,得4cd <ab +cd , ∴3cd <ab ,即cd <31 ab . 由不等式④,得(a +b)2<ab +cd < 34ab ,即a 2+b 2<-3 2 ab ,显然矛盾. ∴不等式①、②、③中至少有一个不正确. 例2 已知a +b +c >0,ab +bc +ca >0,abc >0,求证:a >0,b >0, c >0. 证明:反证法 由abc >0知a ≠0,假设a <0,则bc <0, 又∵a +b +c >0,∴b +c >-a >0,即a(b +c)<0, 从而ab +bc +ca = a(b +c)+bc <0,与已知矛盾. ∴假设不成立,从而a >0, 同理可证b >0,c >0. 例3 若p >0,q >0,p 3+q 3= 2,求证:p +q ≤2. 证明:反证法 假设p +q >2,则(p +q)3>8,即p 3+q 3+3pq (p +q)>8, ∵p 3+q 3= 2,∴pq (p +q)>2. 故pq (p +q)>2 = p 3+q 3= (p +q)( p 2-pq +q 2), 又p >0,q >0 ? p +q >0, ∴pq >p 2-pq +q 2,即(p -q)2 <0,矛盾.

证明n元均值不等式

学习好资料 欢迎下载 证明n 元均值不等式 1212n n n a a a n a a a +++≥证明: 首先证明,23n 2,222当,,,,时,不等式成立。 显然,12122a a a a +≥, 又因为412341234123412342+2222=4a a a a a a a a a a a a a a a a +++≥≥?, 同理可以证明得到n 2也成立。 再证明,当k k+1n 22∈(,) 也成立。 k k n=2+i 1i 2-1≤≤不妨设 ,其中,则有k k k k 21212 222a a a a a a ++ +≥, k+1k+1k+1k+121212 222a a a a a a ++ +≥ 则k k k 121222+12+i =++ +n a a a a a a a a +++++ +(), k k k k k k k k k k k k k k k k+1212 22k 2+i 1212 22+12+i 1222+1k 2+i 12 22+1 2++1 2+i i 2+2-i =++++2-i 2i i n a a a a a a a a a a a a a a a a a a a a a a a +++++++ ?+≥? (则()()) k k k k k k k k k 2+i 12 22+1 2+i k 2+i 12 22+1 2+i 2-2i i -a a a a a a a a a a 其中可以看成是()个相()加所得。 k k k k k k k k k k k k 2+i 12 22+12+i k 2+i 1212 22+12+i 22+1 2+i 2-i ++ +2+i a a a a a a a a a a a a a a a ?++ +≥()最后,在式两边同时减去就得到了()() 1212 n n n a a a n a a a ++ +≥即:得证。

高等数学中不等式的证明方法

高等数学中不等式的证明方法 摘要:各种不等式就是各种形式的数量和变量之间的相互比较关系或制约关系,因此, 不等式很自然地成为分析数学与离散数学诸分支学科中极为重要的工具,而且早已成为 专门的研究对象。高等数学中存在大量的不等式证明,本文主要介绍不等式证明的几种 方法,运用四种通法,利用导数研究函数的单调性,极值或最值以及积分中值定理来解 决不等式证明的问题。我们可以通过这些方法解决有关的问题,培养我们的创新精神, 创新思维,使一些较难的题目简单化、方便化。 关键词:高等数学;不等式;极值;单调性;积分中值定理 Abstract: A variety of inequality is the various forms of high-volume and variable comparison between the relationship or constraints. Therefore, Inequality is natural to be a very important tool in Analysis of discrete mathematics and various bran(https://www.docsj.com/doc/4d14019423.html, 毕业论文参考网原创论文)ches of mathematics .It has been a special study.Today there are a large number of inequalities in higher mathematics .This paper introduces the following methods about Proof of Inequality ,such as the using of several general methods, researching monotone function by derivative, using extreme or the most value and Integral Mean Value Theorem . We can resolve the problems identified through these methods. It can bring up our innovative spirit and thinking and some difficult topics may be more easy and Convenient , Keyword: Higher Mathematics; Inequality; Extreme value Monotonicity; Integral Mean Value Theorem 文章来自:全刊杂志赏析网(https://www.docsj.com/doc/4d14019423.html,) 原文地址: https://www.docsj.com/doc/4d14019423.html,/article/16be7113-df3a-4524-a9c3-4ba707524e72.htm 【摘要】不等式证明是高等数学学习中的一个重要内容,通过解答考研数学中出现的 不等式试题,对一些常用的不等式证明方法进行总结。 【关键词】不等式;中值定理;泰勒公式;辅助函数;柯西 施瓦茨;凹凸性 在高等数学的学习过程当中,一个重点和难点就是不等式的证明,大多数学生在遇到不 等式证明问题不知到如何下手,实际上在许多不等式问题都存在一题多解,针对不等式的证 明,以考研试题为例,总结了几种证明不等式的方法,即中值定理法、辅助函数法、泰勒公

经典不等式证明的基本方法

不等式和绝对值不等式 一、不等式 1、不等式的基本性质: ①、对称性: 传递性:_________ ②、 ,a+c >b+c ③、a >b , , 那么ac >bc ; a >b , ,那么ac <bc ④、a >b >0, 那么,ac >bd ⑤、a>b>0,那么a n >b n .(条件 ) ⑥、 a >b >0 那么 (条件 ) 2、基本不等式 定理1 如果a, b ∈R, 那么 a 2+b 2≥2ab. 当且仅当a=b 时等号成立。 定理2(基本不等式) 如果a ,b>0,那么 当且仅当a=b 时,等号成立。即两个正数的算术平均不小于它们的几何平均。 结论:已知x, y 都是正数。(1)如果积xy 是定值p ,那么当x=y 时,和x+y 有最小值 ; (2)如果和x+y 是定值s ,那么当x=y 时,积xy 有最大值 小结:理解并熟练掌握基本不等式及其应用,特别要注意利用基本不等式求最值时, 一 定要满足“一正二定三相等”的条件。 3、三个正数的算术-几何平均不等式 二、绝对值不等式 1、绝对值三角不等式 实数a 的绝对值|a|的几何意义是表示数轴上坐标为a 的点A 到原点的距离: a b b a c a c b b a >?>>,R c b a ∈>,0>c 0> d c 2,≥∈n N n 2,≥∈n N n 2 a b +≥2 1 4 s 3 ,,3a b c a b c R a b c +++∈≥==定理如果,那么当且仅当时,等号成立。 即:三个正数的算术平均不小于它们的几何平均。2122,,,,n n n a a a a a n a a ++≥=== 11把基本不等式推广到一般情形:对于n 个正数a 它们的算术平均不小于它们的几何平均,即: 当且仅当a 时,等号成立。

(完整版)均值不等式常考题型

均值不等式及其应用 一.均值不等式 1.(1)若R b a ∈,,则ab b a 22 2 ≥+ (2)若R b a ∈,,则2 2 2b a ab +≤(当且仅当b a =时取“=”) 2. (1)若*,R b a ∈,则ab b a ≥+2 (2)若* ,R b a ∈,则ab b a 2≥+(当且仅当b a =时取“=” ) (3)若* ,R b a ∈,则2 2? ? ? ??+≤b a ab (当且仅当 b a =时取“=”) 3.若0x >,则12x x + ≥ (当且仅当1x =时取 “=”);若0x <,则1 2x x +≤- (当且仅当1x =-时取“=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”) 3.若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”) 若0ab ≠,则 22-2a b a b a b b a b a b a +≥+≥+≤即或 (当且仅当b a =时取“=” ) 4.若R b a ∈,,则2 )2( 2 22b a b a +≤ +(当且仅当b a =时取“=”) 注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的 积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三相等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 应用一:求最值 例1:求下列函数的值域 (1)y =3x 2+12x 2 (2)y =x +1 x 解:(1)y =3x 2+1 2x 2 ≥2 3x 2·1 2x 2 = 6 ∴值域为[ 6 ,+∞) (2)当x >0时,y =x +1 x ≥2 x ·1 x =2; 当x <0时, y =x +1x = -(- x -1 x )≤-2 x ·1 x =-2 ∴值域为(-∞,-2]∪[2,+∞) 解题技巧: 技巧一:凑项 例1:已知5 4x < ,求函数14245 y x x =-+-的最大值。 解:因450x -<,所以首先要“调整”符号,又1 (42)45 x x --g 不是常数,所以对42x -要进行拆、凑项, 5,5404x x <∴->Q ,11425434554y x x x x ??∴=-+=--++ ?--? ?231≤-+= 当且仅当1 5454x x -= -,即1x =时,上式等号成立,故当1x =时,max 1y =。 评注:本题需要调整项的符号,又要配凑项的系数,使其积为定值。

证明不等式的种方法

证明不等式的13种方法 咸阳师范学院基础教育课程研究中心安振平 不等式证明无论在高考、竞赛,还是其它类型的考试里,出现频率都是比较高,证明难度也是比较大的.因此,有必要总结证明不等式的基本方法,为读者提供学习时的参考资料.笔者选题的标准是题目优美、简明,其证明方法基本并兼顾巧妙. 1.排序方法 对问题的里的变量不妨排出大小顺序,有时便于获得不等式的证明. 例1已知,,0a b c ≥,且1a b c ++=,求证: ()22229 1. a b c abc +++≥2.增量方法 在变量之间增设一个增量,通过增量换元的方法,便于问题的变形和处理.例2设,,a b c R + ∈,试证:2222 a b c a b c a b b c c a ++++≥+++.3.齐次化法 利用题设条件,或者其它变形手段,把原不等式转换为齐次不等式. 例3设,,0,1x y z x y z ≥++=,求证: 2222222221.16 x y y z z x x y z +++≤4.切线方法 通过研究函数在特殊点处的切线,利用切线段代替曲线段,来建立局部不等式.例4已知正数,,x y z 满足3x y z ++=,求证: 323235 x y +≤++.. 5.调整方法 局部固定,逐步调整,探究多元最值,便能获得不等式的证明. 例5已知,,a b c 为非负实数,且1a b c ++=,求证:13.4 ab bc ca abc ++-≤ 6.抽屉原理

在桌上有3个苹果,要把这3个苹果放到2个抽屉里,无论怎样放,我们会发现至少会有一个抽屉里面放2个苹果.这一简单的现象,就是人们所说的“抽屉原理”.巧用抽屉原理,证明某些不等式,能起到比较神奇的效果. 例6(《数学通报》2010年9期1872题)证明:在任意13个实数中,一定能找到两个实数,x y ,使得0.3.10.3x y x ->+7.坐标方法 构造点坐标,应用解析几何的知识和方法证明不等式. 例7已知a b c R ∈、、,a 、b 不全为零,求证: ()()()22 22222 22.a b ac a b bc a b c a b +++++≥+++8.复数方法 构造复数,应用复数模的性质,可以快速证明一些无理不等式. 例8(数学问题1613,2006,5)设,,,0,a b c R λ+ ∈≥求证:9.向量方法 构造向量,把不等式的证明纳入到向量的知识系统当中去. 例9已知正数,,a b c 满足1a b c ++=,求证: 4 ≤. 10.放缩方法 不等式的证明,关键在于恒等变形过程中的有效放大、或者缩小技巧,放和缩应当恰到好处. 例10已知数列{}n a 中,首项132 a = ,且对任意*1,n n N >∈,均有 11n n a a +=++()211332.42 n n n a -+<

均值不等式的证明方法

柯西证明均值不等式的方法 by zhangyuong (数学之家) 本文主要介绍柯西对证明均值不等式的一种方法,这种方法极其重要。 一般的均值不等式我们通常考虑的是n n G A ≥: 一些大家都知道的条件我就不写了 n n n x x x n x x x ......2121≥ +++ 我曾经在《几个重要不等式的证明》中介绍过柯西的这个方法,现在再次提出: 8444844)()(: 4422)()(abcdefgh efgh abcd h g f e d c b a abcd abcd cd ab d c b a d c b a ≥+≥+++++++=≥+≥+++=+++八维时二维已证,四维时: 这样的步骤重复n 次之后将会得到 n n n x x x x x x n 2 221221 (2) ...≥ +++ 令A n x x x x x x x x x x n n n n n n =+++= =====++......;,...,2122111 由这个不等式有 n n n n n n n n n n A x x x A x x x A n nA A 2 121 212 221)..(..2 )2(- -=≥ -+= 即得到 n n n x x x n x x x ......2121≥ +++ 这个归纳法的证明是柯西首次使用的,而且极其重要,下面给出几个竞赛题的例子: 例1: 1 1 12101(1,2,...,)11(...)n i i i n n n a i n a a a a =<<=≥ --∑ 若证明 例2:

1 1 1211(1,2,...,)1 1(...)n i i i n n n r i n r r r r =≥=≥ ++∑ 若证明 这2个例子是在量在不同范围时候得到的结果,方法正是运用柯西的归纳法: 给出例1的证明: 12121 2 212 2 123 4 211(1)2(1)(1) 11,(1)(2)2(1) 22(1)2(1)2211111111n a a a a a a p a q a q p p q p q pq q p q q q p q a a a a =+ ≥ ?- --≥----=+= ?--≥-+?-+≥?+≥+?≥+ + + ≥+ ----≥ 当时设,而这是元均值不等式因此此过程进行下去 因2 1 1 2 1221 1212221 12 2 1 1 2 11(...)...(...)112 2 (2) 1111() 111n n n n n n n n i i n n n n n n n n n i i n n i i a a a a a a a a a a G n a G G G G n a G =++-==≥ --=====+-≥ = ----≥ --∑ ∑ ∑ 此令有即 例3: 1 115,,,,1(1),,111,,11( )( ) 1 1 n n i i i i i i i i i n n n i i i i i i n n i i i i i i i i i i i n r s t u v i n R r S s n n T t U u V v n n n r s t u v R ST U V r s t u v R ST U V =>≤≤== = = = ++≥--∑∑∑∑∑∏ 已知个实数都记,求证下述不等式成立: 要证明这题,其实看样子很像上面柯西的归纳使用的形式

证明不等式的基本方法-比较法

第二讲证明不等式的基本方法 课题:第01课时不等式的证明方法之一:比较法 一.教学目标 (一)知识目标 (1)了解不等式的证明方法——比较法的基本思想; (2)会用比较法证明不等式,熟练并灵活地选择作差或作商法来证明不等式;(3)明确用比较法证明不等式的依据,以及“转化”的数学思想。 (二)能力目标 (1)培养学生将实际问题转化为数学问题的能力; (2)培养学生观察、比较、抽象、概括的能力; (3)训练学生思维的灵活性。 (三)德育目标 (1)激发学习的内在动机; (2)养成良好的学习习惯。 二.教学的重难点及教学设计 (一)教学重点 不等式证明比较法的基本思想,用作差、作商达到比较大小的目的 (二)教学难点 借助与0或1比较大小转化的数学思想,证明不等式的依据和用途 (三)教学设计要点 1.情境设计 用糖水加糖更甜,实际是糖的质量分数增大这个生活常识设置问题情境,激发学生学习动机,通过将实际问题转化为不等式大小的比较,引入新课。 2.教学内容的处理 (1)补充一系列不同种类的用作差、作商等比较法证明不等式的例题。 (2)补充一组证明不等式的变式练习。 (3)在作业中补充何时该用作差法,何时用作商法的习题,帮助同学们更好地理解比较法。 3.教学方法 独立探究,合作交流与教师引导相结合。 三.教具准备 水杯、水、白糖、调羹、粉笔等 四.教学过程 (一)、新课学习: 1.作差比较法的依据: a b a >b ? > - a a =b b - ? = a a

不等式证明的基本方法

不等式证明的基本方法 LELE was finally revised on the morning of December 16, 2020

绝对值的三角不等式;不等式证明的基本方法 一、教学目的 1、掌握绝对值的三角不等式; 2、掌握不等式证明的基本方法 二、知识分析 定理1 若a,b为实数,则,当且仅当ab≥0时,等号成立。 几何说明:(1)当ab>0时,它们落在原点的同一边,此时a与-b的距离等于它们到原点距离之和。 (2)如果ab<0,则a,b分别落在原点两边,a与-b的距离严格小于a与b到原点距离之和(下图为ab<0,a>0,b<0的情况,ab<0的其他情况可作类似解释)。 |a-b|表示a-b与原点的距离,也表示a到b之间的距离。 定理2 设a,b,c为实数,则,等号成立 ,即b落在a,c之间。 推论1 推论2 [不等式证明的基本方法]

1、比较法是证明不等式的一种最基本的方法,也是一种常用的方法,基本不等式就是用比较法证得的。 比较法有差值、比值两种形式,但比值法必须考虑正负。 比较法证不等式有作差(商)、变形、判断三个步骤,变形的主要方向是因式分解、配方,判断过程必须详细叙述。 如果作差后的式子可以整理为关于某一个变量的二次式,则可考虑用到判别式法证。 2、所谓综合法,就是从题设条件和已经证明过的基本不等式出发,不断用必要条件替换前面的不等式,直至推出要证明的结论,可简称为“由因导果”,在使用综合法证明不等式时,要注意基本不等式的应用。 所谓分析法,就是从所要证明的不等式出发,不断地用充分条件替换前面的不等式,或者是显然成立的不等式,可简称“执果索因”,在使用分析法证明不等式时,习惯上用“”表述。 综合法和分析法是两种思路截然相反的证明方法,其中分析法既可以寻找解题思路,如果表述清楚,也是一个完整的证明过程.注意综合法与分析法的联合运用。 3、反证法:从否定结论出发,经过逻辑推理,导出矛盾,证实结论的否定是错误的,从而肯定原结论是正确的证明方法。 4、放缩法:欲证A≥B,可通过适当放大或缩小,借助一个或多个中间量, 使得,,再利用传递性,达到证明的目的.这种方法叫做放缩法。 【典型例题】 例1、已知函数,设a、b∈R,且a≠b,求证: 思路:本题证法较多,下面用分析法和放缩法给出两个证明: 证明: 证法一:

不等式的证明方法习题精选精讲

不等式性质的应用 不等式的性质是解不等式、证明不等式的基础和依据。教材中列举了不等式的性质,由这些性质是可以继续推导出其它有关性质。教材中所列举的性质是最基本、最重要的,对此,不仅要掌握性质的内容,还要掌握性质的证明方法,理解掌握性质成立的条件,把握性质之间的关联。只有理解好,才能牢固记忆及正确运用。 1.不等式性质成立的条件 运用不等式的基本性质解答不等式问题,要注意不等式成立的条件,否则将会出现一些错误。对表达不等式性质的各不等式,要注意“箭头”是单向的还是双向的,也就是说每条性质是否具有可逆性。 例1:若0< B .a b a 11>- C .||||b a > D .22b a > 解:∵0<->-b a 。 由b a -< -11,b a 11>,∴(A )成立。 由0<< b a ,||||b a >,∴(C )成立。 由0>->-b a ,2 2 )()(b a ->-,2 2b a >,∴(D )成立。 ∵0<->-a b a , )(11b a a --<-,b a a ->11,∴(B )不成立。 故应选B 。 例2:判断下列命题是否正确,并说明理由。 (1)若0<c ,在2 2c b c a >两边同乘以2 c ,不等式方向不变。∴b a >。 (3)错误。b a b a 1 1,成立条件是0>ab 。 (4)错误。b a >,bd ac d c >?>,当a ,b ,c ,d 均为正数时成立。 2.不等式性质在不等式等价问题中的应用 例3:下列不等式中不等价的是( ) (1)2232 >-+x x 与0432 >-+x x (2)13 8112++ >++ x x x 与82>x (3)35 7354-+>-+x x x 与74>x (4) 023 >-+x x 与0)2)(3(>-+x x A .(2) B .(3) C .(4) D .(2)(3) 解:(1)0432232 2 >-+?>-+x x x x 。 (2)482>?>x x ,44,11 3 8112>?>-≠?++>++ x x x x x x 。

不等式的常见证明方法

不等式常见的三种证明方法 渠县中学 刘业毅 一用基本不等式证明 设c b a ,,都是正数。求证:.c b a c ab b ac a bc ++≥++ 证明:.22c b ac a bc b ac a bc =?≥+ .22b c ab a bc c ab a bc =?≥+ .22a c ab b ac c ab b ac =?≥+ ).(2)(2c b a c ab b ac a bc ++≥++ .c b a c ab b ac a bc ++≥++ 点评:可用综合法分析乘积形式运用不等式可以转化为所求。 思维训练:设c b a ,,都是正数。求证: .222c b a c b a a c b ++≥++ 二 放缩法证明不等式 已知,对于任意的n 为正整数,求证: 1+221+321+K +n 21<4 7 分析:通过变形将数列{n 21 }放缩为可求数列。 解:Θ n 21=n n ?1<)1(1-n n =11-n —n 1(n ≥2) ∴1+221+321+K +n 21<1+2 21+231?+341?+K +)1(1-n n =1+ 41+(21—31+31—41+K +11-n —n 1) =45+21—n 1 =47—n 1 点评:放缩为可求和数列或公式是高考重要思想方法。 思维训练:设c b a ,,都是正数,a+b>c,求证:a a +1+b b +1>c c +1

三 构造函数法证明 证明不等式3ln 3121112ln <+++++0有不等式x x 11ln - ≥,如果令x=k k 1+,则有111ln +>+k k k ,如果令x=1+k k ,则k k k ->+11ln ,即k k k k 1ln )1ln(11<-+<+,然后叠加不等式即可。 解:设函数x x x x f ln 1)(+-=,则易证0)(≥x f ,即不等式x x 11ln -≥对于x>0恒成立, 令x=k k 1+,则有111ln +>+k k k ,令x=1+k k ,则k k k ->+11ln ,即k k k 11ln <+成立。从而有k k k k 1ln )1ln(11<-+<+。 在不等式k k k 11ln <+中,分别令,3,,2,1n n n k K ++=得到一系列不等式相加为 )13ln()2ln()2ln()1ln(312111++++-+++->+++++n n n n n n n K K 即n n n 312111+++++K >113ln ++n n 2ln 1 22ln =++≥n n 在不等式1 11ln +>+k k k 中,分别令k=n,n+1,K 3n-1,并把所得的不等式相加,得 n n n 312111+++++K <3ln 3ln 3ln )1ln()1ln(ln ==++-++-n n n n n n K 即不等式3ln 3121112ln <+++++

相关文档 最新文档