文档视界 最新最全的文档下载
当前位置:文档视界 › 聚乙烯醇(PVA)新纤维研究与应用进展

聚乙烯醇(PVA)新纤维研究与应用进展

聚乙烯醇(PVA)新纤维研究与应用进展
聚乙烯醇(PVA)新纤维研究与应用进展

聚乙烯醇(PVA)新纤维研究与应用进展

赵兴 张兴祥* 张华

天津工业大学功能纤维研究所, 天津(300160)

摘要:回顾了PVA纤维的发展,综述了高强高模聚乙烯醇纤维、水溶性聚乙烯醇纤维、阻燃聚乙烯醇纤维、疏水性聚乙烯醇纤维等的制备方法和主要性能用途,并对聚乙烯醇纤维的发展做了展望。

关键词:高强高模 水溶性 阻燃 性能 应用

1.引言

我国早在50年代就有一些科研单位从事PVA和维纶的研究和开发工作,经过近半个世纪的发展,各相关企业不断采用新技术、新工艺,引进国外先进装置和改扩建,使我国PVA 及其纤维工业在产量、质量、科研、品种开发和用途开拓、节能降耗等方面都取得了很大的进展。但在科研、品种开发和用途开拓等方面和国际先进水平还有不少差距。

聚乙烯醇(PVA)纤维的最初应用在于其性能与棉花相似,其强度、耐磨、耐晒、耐腐蚀性比棉花好,比重比棉花轻,吸湿率接近棉花。当年,日本、朝鲜、中国等大力发展PVA 纤维的主要目的都是以解决人民的衣着问题为主[1,2]。但是,随着使用性能更加优良的涤纶、锦纶和腈纶的崛起和后来居上,由于存在抗皱性差、尺寸不稳定、染色性差等缺点,使其在服用领域的应用受到限制。

目前,经过改性和新工艺生产的聚乙烯醇纤维越来越受到重视。科研人员成功研制出了阻燃聚乙烯醇纤维、高强高模聚乙烯醇纤维、水溶性聚乙烯醇纤维等一批高性能的纤维新品种。这大大提升了聚乙烯醇纤维在增强、渔业、包装等领域的使用性能并开辟了在医学及离子交换吸附等方面的应用。聚乙烯醇纤维有了良好的发展前景。

2.高强高模聚乙烯醇纤维

PVA是有潜力制得超高强纤维的柔性链聚合物之一,与根据PVA大分子主链键能理论的计算值相比,目前商品PVA纤维的最高强度仅为理论强度的10%,最高模量为理论极限值的30%[3]。因此,寻找方法开发研究高强高模PVA纤维是可行的。

纤维断裂的微观机理,一般有分子链滑移和分子链断裂两种说法,其共同点是假设纤维中的分子链是沿纤维轴平行取向排列,应力在纤维横截面上均匀分布的。所以,纤维的强度主要取决于纤维截面上大分子链数目、化学键能和链伸展的均匀性。因此高分子量、分子链高度伸直取向和充分结晶,成为制造高强高模纤维的三个基本理论条件[4,5]。

2.1 高强高模PVA纤维制造方法

纺丝是制造高强高模量PVA纤维的关键,因为只有结构均匀、分子间和分子内缠结少、低结晶或不结晶的初生纤维,才有好的可拉伸性,从而进行高倍拉伸,使大分子充分取向和结晶,才可制成高强高模量纤维。高强高模PVA纤维的成型[1,4,6,7],一般可采用湿法加硼纺丝、凝胶纺丝、直接醇解纺丝、相分离纺丝、交联纺丝等工艺技术。

- 1 -

湿法加硼纺丝是日本仓敷人造丝公司在20世纪60年代提出的,是较早被采用的制备高强高模PVA纤维的技术。湿法加硼纺丝是在PVA溶液中加入硼酸作为交联剂,利用硼、钛、铜、钒等化合物,与PVA形成交联凝胶结构,从而抑制PVA分子内或分子间氢键的形成以及减少大分子缠结程度,抑制纺丝过程中大分子结晶,有利于初生纤维的后拉伸。国内在湿法加硼纺丝工艺方面也取得了很大进展,采用该技术制得的PVA强度、模量以及断裂伸长可达10~

13cN/dtex、200~400cN/dtex和4%~9%[1]。

直接醇解纺丝是用PVAc直接喷丝,在纺丝浴中醇解成PVA纤维,然后进行再醇解,中和、水洗、热处理[8]。

凝胶纺丝法是目前制备高性能PVA纤维的一种较理想且易于工业化的方法。凝胶纺丝法是在一定温度下,将PVA与有机溶剂配成纺丝原液,纺丝进入气体介质,经冷却浴冷却为凝胶体,使初生纤维中的大分子处于低缠结状态,经萃取后进行高倍热拉伸或不经萃取进行高倍热拉伸,从而得到高强高模PVA纤维。这种方法的优点是可以加工分子量很大的聚合物,使得到的纤维中因大分子本身末端造成的缺陷大大减少。此法常用溶剂有:二甲基亚砜、己二醇、丙三醇、萘,冷却液为石蜡油和十氢萘等。

日本可乐丽公司将高聚合度的PVA溶解在有机溶剂配制成纺丝溶液,纺丝成形后在另一有机溶剂浴中低温骤冷固化成凝胶原丝,然后经拉伸和热处理使纤维大分子高度取向和结晶,从而制得高强度的PVA纤维,并于1997年开始试销售商品名为“Kuralon K-Ⅱ”的高强度PVA纤维,其强度约为15cN/dtex。可乐丽公司将其这种方法称为“溶剂湿法冷却凝胶纺丝”。

国内的科研机构和厂商也在积极地探索新的纺丝工艺研究,如东华大学与上海石化股份有限公司合作进行的高强高模PVA凝胶纺丝工艺等,并取得了一定的进展[1]。

2.2 高强高模PVA纤维的应用

高强高模PVA纤维(维纶)由于其良好的亲水性、粘结性和抗冲击性以及加工中易于分散等性能,在工业、建筑等领域有着广泛的应用[3,9-16]。高强高模PVA纤维可以应用于建筑中混凝土的加强等方面,其用于增强水泥有很多优点:(1)机械性能良好,可提高建筑材料的韧性和抗冲击强度; (2)耐酸碱性好,适用于各种等级的水泥;(3)分散性好,建筑材料表面可长时间保持光滑,且无剥落现象发生;(4)水泥板和水泥砖的弯曲温度和耐寒性能;(5)用量少(如PVA用量仅为石棉的1/5),因此制品的单位重量可有效减少,操作条件明显得到改善;(6)混凝土的透气性低,可阻止补强钢筋的腐蚀,因此混凝土不易风化、不易受气候影响。

高强高模PVA纤维还可以应用在玻璃纤维的替代上。玻璃纤维具有较高的强度和模量,因此建筑轻质材料一般采用玻璃纤维做为增强材料,但是由于其耐碱性不够理想,因此弯曲强度会随时间的延长而下降。此外,在施工中会刺激工作人员的皮肤并影响环保。高强高模PVA纤维因具有独特性能,可以成为玻璃纤维在建材应用中的一个比较好的替代材料。

高强高模PVA纤维还可以用于橡胶增强材料或轮胎帘子线,还可以利用其高强拉伸及耐腐蚀等特性,用于生产渔网、绳索、帆布、传送带等。

3.水溶性PVA纤维

水溶性PVA纤维是维纶差别化纤维的一种。日本是最早开发水溶纤维的国家,上个世纪

- 2 -

60年代就投入了工业化生产,90年代日本可乐丽公司采用“溶剂湿法冷却凝胶纺丝法”制得水溶温度范围为5~90℃的“K-II SS”聚乙烯醇水溶性纤维[17,18]。我国开发水溶纤维最早的是北京维纶厂,产品于1985年通过鉴定。其后各维纶厂相继开发水溶纤维。湖南湘维有限公司于1991年开始研制水溶纤维,用聚合度l700~1800的PVA生产出90℃左右水溶的纤维,l994年通过省级鉴定,产品除内销外,还出口韩国、美国,创造了较好的经济效益[19]。上海石化维纶厂1996年成功开发出70℃左右水溶的维纶并已开始批量生产 ,这些水溶纤维在溶解温度以下性能稳定,具有良好的白度、抱合力和抗静电性。四川维尼纶厂与四川大学合作,采用干湿法和湿法凝胶纺丝技术制造的水溶纤维,是l0℃、50℃、60℃和70℃等系列低温水溶纤维[20]。

水溶性PVA纤维可由常规湿法纺丝法、有机溶剂湿法纺丝、干湿法纺丝、干法纺丝、半熔融法纺丝等工艺来生产[21]。

目前,水溶性PVA纤维广泛应用在造纸、非织造织物开发、用即弃产品生产等领域,如放射性尘埃防护服、手术服等。水溶性PVA纤维也可用于传统纺织领域。

水溶纤维与羊毛混纺技术是日本可乐丽公司与国际羊毛局(IWS)在1993年共同开发利用的[22,23]。该技术利用水溶性纤维的低温水溶性,以约10%~20%的比例和羊毛混合中进行混纺或交捻进行纺纱、织造,然后在染色、整理阶段将水溶性纤维溶解除去,其结果可以使羊毛支数提高20%左右,并增加羊毛纤维间的空隙,使羊毛织物轻量化、柔软化,更具蓬松性和保暖性。由于PVA纤维的增强效果使羊毛的纺织生产工艺性得到提高,从而使羊毛的原料使用范围扩大。

水溶性PVA纤维还可以用于无捻织物的开发[20,22,23],可以制造无捻毛巾、浴巾、婴幼儿用品、宾馆用品、体育用品织物等。普通织物中棉纱形成的茸毛被加捻,在后处理过程中茸毛变形、变硬致使吸水性变差。采用将水溶性PVA纤维与其它单纱合股逆捻或包缠纱生产技术,其中用水溶性PVA纤维作为包缠纤维包缠短纤维纱条,织成织物后再溶去水溶性PVA纤维部分即可得到织物中纱线的无捻效果,这样获得的织物具有手感丰满、柔和,高吸水性等特点。

水溶性PVA纤维还可以应用于皱效应面料、桃绒毛面料、镂空面料等方面的生产。今后还将有更多的应用领域被发掘出来,水溶性PVA纤维将获得更大的发展空间。

4.阻燃PVA纤维

阻燃维纶又称维氯纶,维氯纶是阻燃PVA纤维中最主要的产品,日本于1968年试制成功,其化学名称又叫聚乙烯醇-氯乙烯接枝共聚纤维。日本兴人公司制造的阻燃维纶商品名为柯泰伦(Cordelan)。

阻燃维纶的制造方法主要有三种[24-28],一种是先在低分子量聚乙烯醇的水溶液中,加入引发剂和氯乙烯单体,使氯乙烯在聚乙烯醇上发生接枝共聚。反应终了可获得外观为青蓝色的半透明状液体,随后再混以适量常规聚乙烯醇的水溶液使之增稠。用湿法进行纺丝,得到初生纤维后,经拉伸、热处理和缩醛化等加工得到成品纤维。利用接枝共聚,然后共混制取阻燃维纶方法的优点是所得阻燃纤维具有永久性,燃烧时不熔融,纤维手感柔软,而且纤维成本低。另一种是将聚乙烯醇和聚氯乙烯乳液混合后纺丝制备维氯纶纤维,天津纺织工学院

- 3 -

开展了该方面的研究工作。再一种是在常规聚乙烯醇中添加阻燃剂,常用的阻燃剂有磷酸铵、聚磷酸铵、聚磷酰胺、溴代磷酸酯、三氧化二锑等。

另外,还可以通过对普通PVA织物进行阻燃整理来使织物获得阻燃性能。其主要方法有两类:一类是刮胶法,常用的刮胶布主要是PVC刮胶布和PVC加阻燃剂的刮胶布;另一类是通过浸轧阻燃剂对维纶织物进行阻燃整理。

阻燃维纶具有燃烧无熔滴物,强力较高,防霉、防蛀等优点,可用于军工、消防、冶金、森林等部门。

5.研究新进展

近年来,国内外聚乙烯醇纤维的研究日渐活跃,并取得了一定的成果[29-41]。

杨国成等人应用静电纺丝技术(electrospinning technique)成功制得了具有对光反应变色性质的PVA/H SiW O 超细纤维聚集体(ultrafine fiber aggregates),并研究了

H SiW O 组分含量的作用、该纤维集合体的照射时间及其对光反应变色的机理。

4124041240江雷研究小组在超疏水性纳米界面材料方面的研究又取得了突破性的进展,他们利用一种双亲性的高分子聚乙烯醇为原料,制备了具有超疏水性表面的纳米纤维。曹惠等通过凝胶纺丝获得聚乙烯醇/乙烯-乙烯醇(PVA/EVOH)纤维,经拉伸可获得不同机械性能的纤维。另外,在PVA中加入少量的EVOH可以提高拉伸倍数,适当的PVA/EVOH配比及适当的拉伸倍数可获得机械性能较好的纤维。四川大学徐僖等以丙烯腈与醋酸乙烯酯共聚后经水解制成丙烯腈-乙烯醇聚合物,并制成纤维。薛华育等用不同聚合度聚乙烯醇与少量氯化钠盐混合物水溶液的静电纺丝,由于离子的作用可以使喷射流表面电荷密度增大,静电纺丝可得到比单纯聚乙烯醇更细的纳米纤维。梁列峰等研究了壳聚糖与聚乙烯醇的共混成纤的条件,为工业化制备壳聚糖/聚乙烯醇复合纤维提供可参考的工艺技术路线。彭志勤等研究了研究了纳米级的无机晶须对聚乙烯醇纤维的改性,发现无机晶须可提高聚乙烯醇纤维的强度、模量。

张华等以高强高模聚乙烯醇纤维为原料,通过控制缩醛化和半碳化工艺及条件对原料纤维进行缩苯甲醛化和半碳化处理,制备出具有适宜交联度的纤维,然后用硫酸对交联纤维进行磺化处理,制备了高强度高容量聚乙烯醇基阳离子交换纤维。张华等还应用缩苯甲醛化及半碳化处理后的高强聚乙烯醇纤维为原料,利用它与巯基乙酸的酯化反应将-SH基团引入合成纤维骨架,制成一种新型的巯基聚乙烯醇螯合纤维。邓新华等以部分中和的丙烯酸(AA)为单体,在聚乙烯醇(PVA)水溶液中共聚,由聚合液进行溶液纺丝制备了PAA-AANa/PVA高吸水纤维。张春雪等人由电纺制备聚乙烯醇(PVA)超细纤维膜等等。

随着我国科研水平的不断提高,通过大力开拓产业用途,尤其是在建材和包装材料领域,聚乙烯醇纤维将有广阔的应用前景。另外,要根据市场的需求不断开发高性能高附加值的聚乙烯醇纤维品种,我国的聚乙烯醇纤维市场将再次辉煌。

- 4 -

参考文献

[1] 肖长发,高强度聚乙烯醇纤维结构与性能研究,高科技纤维与应用,2005,(2):11-16。

[2] 林伯樵,高强高模PVA纤维开发方案探讨,维纶通讯,1996,16(2):14-18。

[3] 李明星,王恺,高强高模聚乙烯醇(PVA)纤维的研究进展,合成纤维,2003,(1):21-23。

[4] 朱本松,蔡夫柳等,高强高模聚乙烯醇纤维的制造技术,维纶通讯,1992,12(4):14-18。

[5]孙付霞,章悦庭,高强聚乙烯醇纤维纺丝工艺设计的探讨,金山油化纤,2002,(1):1-4。

[6] 丁伟峰,高强高模PVA纤维的制造和发展,金山油化纤, 1992,(1):53-55。

[7]何文波,超高强超高模PVA纤维的制备,合成纤维工业, l991,14(2):45-47。

[8] 钱文华等,聚乙烯醇高强高模纤维的应用开发,金山油化纤,1998,l7(3):12-14。

[9] 薛福连,高强度聚乙烯醇纤维在建材中的应用,江西建材,2004,(1):18-19。

[10]黄平,高强高模聚乙烯醇纤维的研究进展,合成纤维工业, 20O1,2(5):26-29。

[11]邹曙光,新型PVA纤维的开发与应用,济南纺织化纤科技,2002,1:13-15。

[12]高强度聚乙烯醇纤维,化学文摘,2002,(2)。

[13]金洪生,陈学军,高强高模聚乙烯醇纤维的应用开发,维纶通讯,2001,21(1):1-6。

[14]吴清基,祁波夫,朱介民,高强高模聚乙烯醇纤维的研制,中国纺织大学学报,1993,19(6):37-46。

[15]戴礼兴,喻绍勇,周正华,高强高模聚乙烯醇纤维研究进展,产业用纺织品,1999,(10):5-8。

[16]徐建军,叶光斗,李守群,用于混凝土增强的化学纤维,纺织科技进展,2006,(2):12-13。

[17]胡绍华,章悦庭,常温可溶的水溶性聚乙烯醇强力纤维,维纶通讯,1997,17(4):22-35。

[18] 喻绍勇,戴礼兴,部分醇解的聚乙烯醇纤维结构件能初探,合成技术及应用,2002,17(1):1 8~21。

[19]尹哲等,水溶性聚乙烯醇纤维的开发与应用,产业用纺织品,1998,(1):25-27。

[20]何云,聚乙烯醇水溶长丝的应用,四川纺织科技,2004,(1):29-32。

[21]李盛林,秦峰,水溶性聚乙烯醇纤维和聚乙烯醇干法纺丝,维纶通讯,2004,24(4):7-11。

[22]巩清建,聚乙烯醇水溶性纤维的应用,四川纺织科技,2203,(4):32-35。

[23]敖利民,唐雯,李向红,王联军,水溶性聚乙烯醇纤维在传统纺织领域的应用,山东纺织科技,2003,

(1):8-11。

[24]于永忠,吴启鸿,葛世成等,《阻燃材料手册》,北京:群众出版社,1991。

[25]郭新章,丁文瑶等,阻燃维纶的研究概况。

[26]周向东,接枝改性聚乙烯醇的纯棉织物阻燃整理,印染,2001,(6):27-28。

[27]郑东朝,许诸才,阻燃维纶的生产,维纶通讯,1996,l6(3):4-7。

[28]马志领,赵文革,胡汉芳,刘志广,溴代磷酸酯接枝PVA及其阻燃机理研究,高分子材料科学与工程,

1998,14(6):99-100。

[29]Guocheng Yang, Yan Pan, Fengmei Gao, Jian Gong, Xiujun Cui, Changlu Shao,Yihang Guo, Lunyu

Qu.(2005) A novel photochromic PVA fiber aggregates contained H4SiW12O40. Materials Letters 59:450–455.

[30]中科院化学所制备成功聚乙烯醇超疏水性纳米纤维,国内外石油化工快报,2003,(5):18。

[31]逯阳,张华,高强聚乙烯醇离子交换纤维的制备和应用,天津工业大学学报,2004,(6):5-8。

[32]曹惠,戴礼兴,PVA/EVOH纤维力学性能研究,苏州大学学报(工科版),2004,(4):30-33。

[33]W.XIAO,L.XIAO,K.XU,K.CHEN,X.XU.(2001)Studies on Fibers Spun from Poly(vinyl

alcohol-bacrylonitrile)Emulsions Prepared by Ultrasonic Technique.I.Characterization of Fiber Structure.Journal of Applied Polymer Science 79:979–988.

[34]W.XIAO,L.XIAO,K.XU,K.CHEN,X.XU.(2001)Studies on Fibers Spun from Poly(vinyl

alcohol-bacrylonitrile)Emulsions Prepared by Ultrasonic Technique.II.Properties of the Fibers.Journal of Applied Polymer Science 79:989–994.

- 5 -

[35]张 华,逯 阳,巯基聚乙烯醇纤维的制备及其吸附性能的研究,天津工业大学学报,2005,24(6):1-4。

[36]薛华育,刘 芸,戴礼兴,含氯化钠的聚乙烯醇静电纺丝研究,合成技术及应用,2006,21(1):12-14。

[37]彭志勤,章倩,章悦庭,陈大俊,纳米无机晶须改性聚乙烯醇纤维的研究,维纶通讯,2005,4:16-18。

[38]梁列峰,张 霞,邹传勇,壳聚糖与聚乙烯醇共混成纤的可行性研究,年现代纺织技术,2006,(1):

1-4。

[39]邓新华,孙 元,吴世臻,PAA-AANa/PVA高吸水纤维的制备及性能测试,高分子材料科学与工程,2006,

22(1):182-185。

[40]江镇海,胶原蛋白/聚乙烯醇复合纤维具有良好的市场前景,合成材料老化与应用,2006,35(1):57。

[41]张春雪,袁晓燕,邬丽丽,盛京,电纺聚乙烯醇超细纤维膜的性能研究,高分子学报,2006,(2):294-296。

Research and Application of New PVA Fibers

Xing Zhao, Xingxiang Zhang* , Hua Zhang

Functional Fiber Department of Tianjin Polytechnic University, Tianjin 300160

Abstract

The producing method and performance of high-strength and high-modulus poly(vinyl alcohol) fibers, water soluble poly(vinyl alcohol) fibers and flame retardant poly(vinyl alcohol) fibers etc are reviewed in this paper. Prospects are also made with the development of PVA fibers.

Keywords:high-strength and high-modulus; water soluble; flame retardant; performance; application.

- 6 -

高性能碳纤维的性能及其应用

科技进展 高性能碳纤维的性能及其应用 张新元 何碧霞 李建利 张 元 (陕西省纺织科学研究所) 摘要: 探讨高性能碳纤维的性能及其应用领域。介绍了碳纤维的分类、制备、性能特征、应用以及国内 外产业发展状况,分析了国际碳纤维产业的情况和我国碳纤维产业的现状及发展趋势。碳纤维应用涉及航空航天、体育运动、一般制造业、土木建筑、能源开发等领域。随着科技的发展和碳纤维应用技术的不断完善,碳纤维产业的发展空间必将越来越广。 关键词: 碳纤维;强度;比电阻;结晶度;聚丙烯腈;碳纤维机织物 中图分类号:TS102 .52+7 2 文献标志码:A 文章编号:1001 7415(2011)04 0065 04Property and Application of H igh perfor m ance Carbon Fiber Zhang X i n yuan H e B i x ia L i J i a nli Zhang Y uan (Shaanx iT extil e Sc i ence and T echno logy Instit ute) A bstrac t H igh perfor m ance carbon fi ber prope rty and appli cati on we re d i scussed .C l assifi cation and m anu fact ure o f carbon fiber w ere i ntroduced ,carbon fi ber property ,appli cation ,deve l op m ent at hom e and abroad w ere i n troduced as w ell as .The applica ti on fie l d i nc l udes aerospace field ,spo rts field ,genera l m anufacturi ng field ,civ il constructi on fi e l d and energy dev elopment fi e l d et a.l Interna ti ona l carbon fi ber i ndustry situati on ,current situati on and deve lop m ent trend o f dom estic carbon fi be r industry w ere ana l y sed .carbon fiber i ndustry dev elopment w ou l d be m ore and mo re w i de l y as the deve lopment o f techno logy and the perfection o f carbon fibe r app licati on technology . K ey W ords Carbon F i ber ,Strength ,Specific R esistance ,Cry sta lli nity ,Po l yacrylon itr ile ,Carbon F i ber W oven F abr i c 高性能纤维具有高强度、高模量、耐高温、耐气候、耐化学试剂等特性,是近年来纤维高分子材料领域中发展迅速的一类特种纤维。高性能纤维品种较多,目前已规模化生产的有碳纤维、芳纶纤 维等,既可作为结构材料承载负荷,又可作为功能材料发挥作用,是性能优越的战略性新型材料。 目前,高性能纤维中碳纤维是大规模生产的一个品种,具有较高的比强度、比模量和较小的体积质量。碳纤维既具有碳材料的固有特性,又兼备纺织纤维的柔软可加工性,具有优异的力学性能,近年来被广泛应用于航空、航天、汽车、化工、能源、交通、建筑、电子、体育运动器材等领域。 1 碳纤维的制备及分类 碳纤维的制备目前是采用一些含碳的有机纤维(如尼龙丝、腈纶丝、人造丝等)做原料,将有机 作者简介:张新元(1962-),男,高级工程师,西安,710038 收稿日期:2010 12 23 纤维与塑料树脂结合在一起,放在稀有气体的环境中,在一定张力、温度、压强下,经过一定时间的 预氧化、碳化和石墨化处理等强热过程制成。碳纤维按原丝类型可分为聚丙烯腈(P AN )基碳纤维、沥青基碳纤维、粘胶基碳纤维和酚醛基碳纤维4类。P AN 基碳纤维是目前制备碳纤维的第一大原料,其产量约占世界总产量的95%左右。沥青基碳纤维约占4%,粘胶基碳纤维约占1%,酚醛基碳纤维尚处于实验室研究,未形成产业化。 碳纤维按形态可分为长丝、短纤维和短切纤维。长丝应用在工业结构件和宇航结构件中,短纤维主要应用在建筑行业,如短碳纤维石墨低频电磁屏蔽混凝土、工业用碳纤维毡等。碳纤维按力学性能分为通用型和高性能型。通用型碳纤维强度为1000M Pa 、模量为100GPa 左右。高性能型碳纤维又分为高强型(强度2000MPa 、模量250GPa )和高模型(模量300GPa 以上)。强度大于4000MPa 的又称为超高强型;模量大于450GPa 的称为超高模型。

聚乙烯醇pva的用途和应用

聚乙烯醇 PVA 的用途和应用 【新海湾-徐江】 聚乙烯醇(简称PVA)外观为白色粉末,是一种用途相当广泛的水溶性高分子聚合物,性能介于塑料和橡胶之间,它的用途可分为纤维和非纤维两大用途。 由于PVA具有独特的强力粘接性、皮膜柔韧性、平滑性、耐油性、耐溶剂性、保护胶体性、气体阻绝性、耐磨性以及经特殊处理具有的耐水性,因此除了作纤维原料外,还被大量用于生产涂料、粘合剂、纸品加工剂、乳化剂、分散剂、薄膜等产品,应用范围遍及纺织、食品、医药、建筑、木材加工、造纸、印刷、农业、钢铁、高分子化工等行业。 产品性能:聚乙烯醇树脂系列产品系白色固体,外型分絮状、颗粒状、粉状三种;无毒无味、无污染,可在80--90℃水中溶解。其水溶液有很好的粘接性和成膜性;能耐油类、润滑剂和烃类等大多数有机溶剂;具有长链多元醇酯化、醚化、缩醛化等化学性质。 产品用途:主要用于纺织行业经纱浆料、织物整理剂、维尼纶纤维原料;建筑装潢行业107胶、内外墙涂料、粘合剂;化工行业用作聚合乳化剂、分散剂及聚乙烯醇缩甲醛、缩乙醛、缩丁醛树脂;

造纸行业用作纸品粘合剂;农业方面用于土壤改良剂、农药粘附增效剂和聚乙烯醇薄膜;还可用于日用化妆品及高频淬火剂等方面。 使用方法:聚乙烯醇树脂系列产品均可以在95℃以下的热水中溶解,但由于聚合度、醇解度高低的不同,醇解方式等不同在溶解时间、温度上有一定的差异,因此在使用不同品牌聚乙烯醇树脂时,溶解方法和时间需要进行摸索。溶解时,可边搅拌边将本品缓缓加入20℃左右的冷水中充分溶胀、分散和挥发性物资的逸出(切勿在40℃以上的水中加入该产品直接进行溶解,以避免出现包状和皮溶内生现象),而后升温到95℃左右加速溶解,并保温2~小时,直到溶液不再含有微小颗粒,再经过28目不锈钢过滤杂质后,即可备用。 搅拌速度 70~100转/分,升温时,可采用夹套、水浴等间接加热方式,也可采用水蒸汽直接加热;但是,不可用明火直接加热,以免局部过热而分解,若没有搅拌机,可用蒸汽以切线方向吹入的方法,进行溶解。 聚乙烯醇树脂系列产品水溶液浓度一般在12~14%以下;低醇解度聚乙烯醇树脂产品水溶液浓度一般可在20%左右。

全球碳纤维材料知名企业

全球碳纤维材料知名企业——全球碳纤维顶尖企业 东丽公司 东丽公司是一家综合型化工企业,以生产合成纤维为主,是世界最大的碳纤维生产公司,在塑料、复合材料、化工、水处理事业、电子材料、医药、医疗器械等领域在全世界各地展开着广泛的业务。创立日期 1926年1月总销售额 1兆5,460亿日元(2007年3月)员工人数约36,000人(日本国内约16,500人、海外20,100人)关连公司日本国内118家、海外在20个国家和地区有124家,合计238家经营内容(1)综合化学公司:合成纤维、树脂、薄膜、碳纤维、电子材料、医药医疗设备、水处理事业等(2)世界第一的纤维公司:从原料到聚合、纺丝、织布、印染、缝制的一条龙生产业务(3)积极开展的海外事业:为各国的经济发展(技术水平提高、扩大出口、增加就业机会)做贡献 1960年以来,在东南亚3国展开合成纤维一条龙事业、薄膜事业 1980 年以来,在欧美展开纤维、薄膜、碳纤维事业 1990年以来,在中国展开合成纤维的一条龙生产业务、塑料加工事业等 2000年以来,在经济增长地区设立控股管理公司,向地区本部制过渡(4)重视基础研究.基本技术(5)注重安全.防灾.环保及保护地球环境 西格里集团 西格里集团创建于 1992 年,由德国 SIGRI 集团与美国大湖碳素(Great Lakes Carbon)集团合并而成,总部位于德国威斯巴登。西格里集团(SGL Group - The Carbon Company)是全球领先的碳素石墨材料以及相关产品的制造商之一。拥有从碳石墨产品到碳纤维及复合材料在内的完整业务链。凭借对原材料透彻深入的了解、精湛的生产技术以及广泛的应用和工程技能,能够为客户提供量身定做的解决方案。通过遍布欧洲、北美和亚洲40 多个生产基地所形成的全球网络,我们与客户更加贴近。 三菱丽阳株式会社 三菱丽阳株式会社创立于1933年8月31日,是日本三菱集团旗下最著名的高分子材料制造商。所生产的聚乙烯中空纤维膜,被广泛应用在供水、排水、水处理设备及医院手术用的无菌水装置、发电厂的叶轮机液化水过滤等领域。 产品范围:MBR专用中空纤维微滤膜片、MBR专用膜组器、净水专用中空纤维微滤膜组件、水处理装置、商用/家庭用净水器、全屋净水装置。 三菱丽阳自1933年作为人造短纤维的生产公司创业以来,应用合成纤维和合成树脂领域所积累的高分子技术,不断拓展中空纤维膜、光纤、碳素纤维等新兴业务领域。现在,三菱丽阳集团已经建立了世界上独特且强有力的丙烯系列业务实体(MMA[甲基丙烯酸甲酯]系列及AN[丙烯腈]系列),发展成为以此为支柱业务的高分子化学制造企业。 Hexcel Composites

碳纤维的特性及应用

碳纤维的特性及应用 碳纤维是高级复合材料的增强材料,具有轻质、高强、高模、耐化学腐蚀、热膨胀系数小等一系列优点,归纳如下: 一、轻质、高强度、高模量 碳纤维的密度是1.6-2.5g/cm3,碳纤维拉伸强度在2.2Gpa以上。因此,具有高的比强度和比模量,它比绝大多数金属的比强度高7倍以上,比模量为金属的5倍以上。由于这个优点,其复合材料可广泛应用于航空航天、汽车工业、运动器材等。 二、热膨胀系数小 绝大多数碳纤维本身的热膨胀系数,室内为负数(-0.5~-1.6)×10-6/K,在200~400℃时为零,在小于1000℃时为1.5×10-6/K。由它制成的复合材料膨胀系数自然比较稳定,可作为标准衡器具。 三、导热性好 通常无机和有机材料的导热性均较差,但碳纤维的导热性接近于钢铁。利用这一优点可作为太阳能集热器材料、传热均匀的导热壳体材料。 四、耐化学腐蚀性好 从碳纤维的成分可以看出,它几乎是纯碳,而碳又是最稳定的元素之一。它除对强氧化酸以外,对酸、碱和有机化学药品都很稳定,可以制成各种各样的化学防腐制品。我国已从事这方面的应用研究,随着今后碳纤维的价格不断降低,其应用范围会越来越广。 五、耐磨性好 碳纤维与金属对磨时,很少磨损,用碳纤维来取代石棉制成高级的摩檫材料,已作为飞机和汽车的刹车片材料。 六、耐高温性能好 碳纤维在400℃以下性能非常稳定,甚至在1000℃时仍无太大变化。复合材料耐高温性能主要取决于基体的耐热性,树脂基复合材料其长期耐热性只达300℃左右,陶瓷基、碳基和金属基的复合材料耐高温性能可与碳纤维本身匹配。因此碳纤维复合材料作为耐高温材料广泛用于航空航天工业。 七、突出的阻尼与优良的透声纳 利用这二种特点可作为潜艇的结构材料,如潜艇的声纳导流罩等。 八、高X射线透射率 发挥此特点已经在医疗器材中得到应用。 九、疲劳强度高 碳纤维的结构稳定,制成的复合材料,经应力疲劳数百万次的循环试验后,其强度保留率仍有60%,而钢材为40%,铝材为30%,而玻璃钢则只有20%-25%.因此设计制品所取的安全系数,碳纤维复合材料为最低。

聚乙烯醇缩甲醛的制备

聚乙烯醇缩甲醛的制备 一、 令狐采学 二、实验目的 了解聚乙烯醇缩甲醛的化学反应的原理,并制备红旗牌胶水。 三、实验原理 聚乙烯醇缩甲醛是利用聚乙烯醇与甲醛在盐酸催化作用下而制得的,其反应如下: 聚乙烯醇缩醛化机理: 聚乙烯醇是水溶性的高聚物,如果用甲醛将它进行部分缩醛化,随着缩醛度的增加,水溶液愈差,作为维尼纶纤维用的聚乙烯醇缩甲醛其缩醛度控制在35%左右,它不溶于水,是性能优良的合成纤维。本实验是合成水溶性的聚乙烯醇缩甲醛,即红旗牌胶水。反应过程中需要控制较低的缩醛度以保持产物的水溶性,若反应过于猛烈,则会造成局部缩醛度过高,导致不溶于水的物质存在,影响胶水质量。因此在反应过程中,特别注意要严格控制崐催化剂用量、反应温度、反应时间及反应物比例等因素。聚乙烯醇缩甲醛随缩醛化程度的不同,性质和用途各有所不同,它能溶于甲酸、乙酸、二氧六环、氯化烃(二氯乙烷、氯仿、二氯甲烷)、乙醇甲苯混合物(30∶70)、乙醇甲苯混合物(40∶60)以及60%的含水乙醇中。缩醛度为75%~85%的聚乙烯醇缩甲醛重要的用途是制造绝缘漆和粘合

剂。 四、实验药品及仪器 药品:聚乙烯醇(7g)---、甲醇(4.6mL) ---、盐酸(40%工业纯1:4)、氢氧化钠(1.5mL)(8%)、蒸馏水(90+34mL)等; 仪器:恒温水浴锅、搅拌器、三口烧瓶、球型冷凝管、温度计、吸管、天平、量筒、pH试纸等。 五、实验装置图 六、实验步骤与现象分析 步骤(1): 在250ml三颈瓶中,加入90ml去离子水(或蒸馏水),7g聚乙烯醇,搅拌下升温溶解。 现象:[白色晶状聚乙烯醇溶解] 分析:[聚乙烯醇可溶于蒸馏水中] 步骤(2): 等聚乙烯醇完全溶解后,于90℃左右加入4.6ml甲醛(40%工业纯),搅拌15min,再加入1:4的盐酸,使溶液PH为1~3,保持温度90℃左右,继续搅拌。 分析:[调节PH使之为酸性,是因为H离子作为羟醛缩合的催化剂。升温是由于甲醛沸点低易挥发,缩合反应不可

醇解法制备聚乙烯醇

醇解法制备聚乙烯醇

第一章产品简介 (6) 1.1 产品的性质 (6) 1.2 产品的应用 (7) 第二章原料规格及性质 (9) 2.1 原料规格 (8) 2.2 原料性质 (9) 第三章合成原理及工艺路线 (10) 第四章流程图 (12) 4.1 生产设备 (12) 4.2 工艺流程 (12) 第五章操作步骤及工艺参数 (13) 5.1 操作步骤 (15) 第六章产品规格及标准 (17) 第七章消耗定额及成本核算 (18) 7.1 工程投资 (18) 7.2 生产投资 (18) 7.3 年利润核算 (18) 第八章参考文献 (19) 附图说明 (20)

1.1 产品的性质 聚乙烯醇是以乙烯法生产的醋酸乙烯为原料,经溶液聚合、无水低碱醇解得。聚乙烯醇(PV A)其充填密度约0.20~0.48g/cm3,折射率为1.51~1.53。聚乙烯醇的熔点难于直接测定,因为它在空气中的分解温度低于熔融温度。用间接法测得其熔点在230℃左右。聚乙烯醇的玻璃化温度约80℃。玻璃化温度除与测定条件有关外,也与其结构有关。聚乙烯醇工艺具有物耗低、能耗低、污染小的特点,是一种环保型产品,聚乙烯醇主要有完主醇解型和部分醇解型两大类。聚乙烯醇的端基较复杂,除了羟基外,还有羧基、羰基和二甲基乙氰基等。这些基团表现了复杂的行为。它们除了影响到维尼维纤维的着色、染色性能、吸湿性能,并促使聚乙烯醇溶解部分的增加。根据羟基空间分布的位臵,可分为全同结构聚乙烯醇(I-PV A)、间位结构聚乙烯醇(S-PV A)和无规结构聚乙烯醇(A-PV A)。 聚乙烯醇的一般性质:1) 外观:白色或微黄色片状、颗粒状固体。2) 填充比重:0.4~0.5g/ml 3) 水溶性:本品在冷水中仅溶胀,随水温的升高而逐渐溶解,在搅拌情况下至95℃能迅速溶解。在热水中的最高浓度达16%左右。其水溶液具有良好的成膜性和粘接性。4) 耐化学药品性:本品耐弱酸、弱碱及有机溶剂,耐油性极好。5) 热稳定性:在40℃以下没有显著变色,至160℃时颜色逐渐变深,超过220℃开始分解,生成水、乙酸、乙醛等。6) 贮存稳定性:本品贮存稳定性良好,长期贮存不发霉,不变质。但其水溶液长期贮存时,需加一定的防霉剂,如FF02等。而且由于聚乙烯醇主链大分子上有大量仲羟基,在化学性质方面有许多与纤维素相似之处。聚乙烯醇可与多种酸、酸酐、酰氯等作用,生成相应的聚乙烯醇的酯。但其反应能力低于一般低分子醇类。聚乙烯醇的醚化反应较酯化反应容易进行。醚化反应后,聚乙烯醇分子间作用力有所减弱,制品的强度、软化点和亲水性等都有所降低。在聚乙烯醇水溶液

纳米碳纤维及其应用

功能材料论文:纳米碳纤维及其应用 学校:上海电力学院 班级:应用化学110103 姓名:赵立 学号:ys1110122026

纳米碳纤维及其应用 摘要:作为一种新型碳基纳米材料,纳米碳纤维由于具有优异物理化学性能和可控微结构受到越来越多研究者的重视。本文主要介绍了纳米碳纤维的现状与发展,包括纳米碳纤维的制备、性能与应用。并讨论了纳米碳纤维的市场和发展前景。 关键词:纳米碳纤维;性能;应用;发展前景 一、前言 作为高性能纤维的一种,碳纤维既有碳材料的固有本征。又兼备纺织纤维的柔软可加工性,是新一代军民两用新材料,已广泛用于航空航天、交通、体育与休闲用品、医疗、机械、纺织等各领域。纳米碳纤维是当代纤维研究领域的前沿课题。也是一项多学科交叉、多技术集成的系统工程。 纳米碳纤维(Carbon Nanofibers 简称CNF)是化学气象生长碳纤维的一种形式,是由通过裂解气相碳氢化合物制备的非连续石墨纤维。纳米碳纤维的研究开始于1991年,日本科学家饭岛利用高分辨电子显微镜在石墨棒放电所形成的阴极沉积物中发现纳米碳纤维,自从发现了纳米碳纤维,它就引起了理论研究者以及工业应用者的兴趣。纳米碳纤维/聚合物基复合材料在世界范围内的研究工作刚刚起步,我国亦在进行跟踪研究。 从物理尺寸、性能和生产成本来看纳米碳纤维的构成是以碳黑、富勒烯、单壁和多壁纳米碳管为一端,以连续碳纤维为另一端链节中的一环。纳米碳纤维的直径在50~200nm之间,但目前不少研究工作者把直径在100nm以下的中空纤维称之为纳米碳管,亦即纳米碳纤维的直径介于纳米碳管和气相生长碳纤维之间[1]。与纳米碳管相比纳米碳纤维的制备更易于实现工业化生产。CNFs除了具有CVD法碳纤维低密度、高比模量、高比强度、高导电、热稳定性等特性外,还具有缺陷数量非常少、长径比大、比表面积大、结构致密等优点。由于纳米碳纤维具有许多优异的物理和化学性质,因此可应用于电子器件、聚合物添加剂、储能材料、催化剂载体、电磁屏蔽材料、防静电材料、电磁波吸收材料等诸多领域。 二、制备 制备纳米碳纤维的三种主要方法以及特性是: (1) 基体法在石墨或陶瓷基体上分散纳米级催化剂颗粒的“种粒”,并在高温下通人碳氢气体化合物,热解后在催化剂颗粒上析出纳米碳纤维[2]。利用基体法可制备出纯度较高的纳米碳纤维,但由于超细催化剂颗粒的制备较为困难,且受从板温度和热解气体浓度不均及催化剂粒子在基板上分布不均等因素的影响,纤维生长疏密不匀,也很难得到直径较细的制品。此外,纳米碳纤维仅在有催化剂的基体上生长,产量不高,难以连续生长,不易实现工业生产。 (2) 喷淋法在苯等液体有机化合物中掺人催化剂,并将含催化剂的混合溶液在外力作用下喷淋到高温反应室中,制备出纳米碳纤维[3]。喷淋法可实现催化剂连续喷入,为工业化连续生产提供了可能,但催化剂与烃类气体的比例难以优化,喷淋过程中催化剂颗粒分布不

聚乙烯醇水凝胶的制备方法及设备

1.实验 1.1试剂和仪器 (1)仪器:Alpha-Centau“FT.IR型红外光谱仪 (日本岛津),S540—SEM型扫描电镜(日本日立),热 分析(DT A_TG)(Du Pont 1090B型热分析仪),紫 外一可见光谱仪(日本日立)UV-3400紫外可见分光光度计,PH孓3C型精密pH计(上海精密科学有限 公司)。 (2)试剂:壳聚糖(CS)(浙江玉环县化工厂,分 子量:1.5×105,脱乙酰度:93%),聚乙烯醇(PVA) (佛山市化工实验厂,日本进口分装,Mw一1.o× 105),冰乙酸(分析纯),甲醛(37%,分析纯),盐酸 (分析纯),氢氧化钠(分析纯)。 1.2水凝胶的制备及其溶胀性能测试 1.2.1水凝胶的制备 取50mL圆底烧瓶,向其中加入o.5 g CS、 15mL二次水和2mL冰乙酸(3 m01/L),搅拌均匀 后,再加入o.39 PVA,搅拌混合均匀,然后抽真空, 向其中加入2mL甲醛(37%),室温反应24h;成胶 后,取出,切成1mm3左右的颗粒,用二次水浸泡,每 天换1次水,1周后取出;真空干燥,最后置于干燥 器中备用。

2. 实验 1.1 实验样品的制备 1.1.1 银溶胶的制备 将0.001mol/L的单宁酸和0.1mol/L的Naz COs溶液加热 至6O℃并搅拌,逐滴滴加0,001mol/L的AgNO3。当混合物颜 色逐渐加深至橙红色时,形成稳定的银溶胶。反应的关键是控 制AgNOa溶液的滴加速度和加入量。其反应机理l1]为: 6 AgNOs+ 6H52046+ 3 Na2C03— 6Ag +C76H52049+6 NaNO3+3 0 1.1.2 Ag/聚乙烯醇复合水凝胶的制备 制备浓度为1O%的PVA溶胶,将新制备的银溶胶在搅拌 的条件下加入PVA溶胶中,其混合液在室温下静置5min后倒 入模具中,放入THCD-04低温恒温槽中,采用冷冻一解冻法使之 结晶成型。每个循环的冷冻一解冻工艺见图1。按此做7个循环 制得样品,即得到Ag/PVA水凝胶。同理可制得Ag 浓度为 O%、0.125%、0.25 、0.5% (即Ag 占PVA的质量百分比 为:O%、1.25%、2.5 和5 )的Ag/PVA复合水凝胶。将样品制成哑铃形,测试区宽度约4mm,厚度约lmm(每个样品在测试前用千分尺精确测定其宽度和厚度)。每个样品裁5个样条,结果取平均值。2.1 Ag/PVA复合水凝胶的制备 微粒由于比表面积很大和表面不饱和键较多,具有很高的 表面能,所以极易团聚_3]。如果金属微粒发生团聚,则其光、电、

纳米碳纤维及其应用

综 述 纳米碳纤维及其应用 赵稼祥 (航天材料及工艺研究所,100076) 摘 要 介绍世界纳米碳纤维的现状与发展,包括纳米碳纤维的制备、性能、与应用。讨论纳米碳纤维的市场和发展前景。 关键词 碳纤维,纳米,应用 Carbon Nanofiber and It ’s Applications Zhao Jiaxiang (Aerospace Research Institute of Materials and Processing T echnology ,100076) ABSTRACT In this paper the present status and development of carbon nanofiber in the w orld were briefly introduced ,including manu facturing of carbon nanofiber ,properties and application of carbon nanofiber.The market and perspective of development were als o discussed. KEY WORDS carbon ,carbon nanofiber ,application ,market 1 前 言 2002年10~11月在美国北卡罗来纳州首府洛 利(Raleigh ,NC )参加了2002年世界碳纤维会(G lobal Outlook for Carbon Fiber 2002),会后参观、访问了北 卡罗来纳大学国家纺织实验室(State T extile Laborato 2ry ,N orth Carolina State University )和土木工程系,阿 拉巴马大学材料工程系(Department of Materials Engi 2neering ,University of Alabama ),乔治亚理工大学复合 材料教育研究中心(C om posite Education and Research Center ,G eorge University of T echnology )、材料科学与 工程系和机械工程系等,与有关教授、专家和学者,讨论、交换对碳纤维、复合材料与先进材料技术现状、应用与发展的看法,有很大收获[1]。本文简要介绍纳米碳纤维的定义、制备技术、性能、应用、生产与市场及其发展前景。 纳米碳纤维(Carbon Nanofibers 简称C NF )是化学气象生长碳纤维的一种形式,是由通过裂解气相碳氢化合物制备的非连续石墨纤维。从物理尺寸、性能和生产成本来看它是构成以碳黑、富勒烯、单壁和多壁纳米碳管为一端,以连续碳纤维为另一端链节中的一环。 纳米碳纤维的直径在50~200nm 之间,但目前不少研究工作者把直径在100nm 以下的中空纤维称之为纳米碳管,亦即纳米碳纤维的直径介于纳米碳管和气相生长碳纤维之间。与纳米碳管相比纳米碳纤维的制备更易于实现工业化生产。 表1 纳米碳纤维的性能 性 能热处理前 热处理后 抗拉强度(G Pa ) 2.77.0抗拉模量(G Pa )400600断裂应变(%) 1.50.5密度(g/cm 3) 1.8 2.1电阻率(Ωμ-cm )100055热导率(W/m -K ) 20 1950 2 制 备 制备纳米碳纤维的三种主要方法以及特性是:(1)基体法 在陶瓷或石墨基体上散布纳米催 化剂颗粒,高温下通入烃类气体,热解后析出纳米碳纤维[2]。基体法可制备出高纯纳米碳纤维,但纳米级催化剂颗粒制备困难,一般颗粒直径较大,较难制 第4期48  纤维复合材料N o.42003年12月 FIBER COMPOSITES Dec.,2003

聚乙烯醇PVA在各领域的应用

PVA自工业化生产以来,经过几十年的发展,其用途得到了极大的拓展,由最初的只用于维纶生产,逐步发展到用于纺织、造纸、建筑、化工、电子等行业,目前PVA新的用途仍在不断地被开发出来,PVA已经成为一个重要的、必不可少的材料。同时,PVA作为“最生态友好产品”,在环保和安全方面也得到了广泛的重视和应用。由于PVA具有许多优异的物理和化学性能,其在实际生产中具有十分广泛的用途,并且近些年得到了长足的发展,在各个新领域的应用开发如火如荼。

(1)织物及织物加工由于分子间的高黏着性,PVA具有良好的拉丝、成膜性,曾经奠定了PVA作为维纶纤维原料的地位。用PVA 制造的维纶纤维可与棉、毛、黏胶纤维混纺或纯纺,用于衣着及篷布、帘子线、绳索等生产,是石棉的理想代用品。近年开发的水溶性纤维具有水溶性、耐酸性、耐碱性、耐有机溶剂性以及良好的耐盐、耐化学药品性,可以根据需要在不同的水温中得以溶解,其废液经活性污泥处理后,完全降解而无公害,是一种极有应用前景、使用较广的环保材料。水溶性纤维主要作为造纸原料、无纺布原料、生产水溶性纱线或与其它纤维混纺后织成高档纺织品,以及制作军工用品的纺织材料。 织物加工对PVA的需求量最大,使用范围大致如下:浆料——经纱浆、印染浆、织物整理;改性剂——织物树脂整理;黏合剂——毡和无纺布等的黏合剂。 在上述应用中作为经纱浆料用的比例最大。PVA是一种能使经纱的抱合力,上浆纱强力、耐磨性、可挠性以及对大气条件变化的保护性等得以提高的一种理想的低成本经纱浆料。国外PVA浆料上百种,主要区别在于醇解度和聚合度,最常用的是1799和1788。 (2)纸加工PVA在造纸工业中主要用于表面施胶剂、颜料黏合剂和打浆机添加剂等。用PVA制作的纸张表面施胶剂,可增强纸品表面强度和内部张力、耐破裂度、耐折和耐磨强度,改善纸张的光泽及平滑性,提高纸张耐水性、耐油及耐有机溶剂性。由于PVA水溶液对纸的黏合力强,成膜性好,可代替价格昂贵、容易腐败的干酪素制作颜料胶黏剂,涂布纸的白度和光泽度好,不易卷曲,成本低,因此在美术纸、

碳纤维材料性能及应用

碳纤维材料的性能及应用 碳纤维是一种纤维状碳材料。它是一种强度比钢的大、密度比铝的小、比不锈钢还耐腐蚀、比耐热钢还耐高温、又能像铜那样导电,具有许多宝贵的电学、热学和力学性能的新型材料。 碳纤维的微观结构类似人造石墨,是乱层石墨结构。另外,碳纤维是指含碳量高于90%的无机高分子纤维。其中含碳量高于99%的称石墨纤维。 性能特点: 碳纤维的比重小,抗拉强度高,轴向强度和模量高,无蠕变,耐疲劳性好,比热及导电性介于非金属和金属之间,热膨胀系数小,耐腐蚀性好,纤维的密度低,X射线透过性好。但其耐冲击性较差,容易损伤,在强酸作用下发生氧化,与金属复合时会发生金属碳化、渗碳及电化学腐蚀现象。因此,碳纤维在使用前须进行表面处理。总之,碳纤维是一种力学性能优异的新材料。 应用领域: 用碳纤维与塑料制成的复合材料所做的飞机不但轻巧,而且消耗动力少,推力大,噪音小;用碳纤维制电子计算机的磁盘,能提高计算机的储存量和运算速度;用碳纤维增强塑料来制造卫星和火箭等宇宙飞行器,机械强度高,质量小,可节约大量的燃料。1999年发生在南联盟科索沃的战争中,北约使用石墨炸弹破坏了南联盟大部分电力供应,其原理就是产生了覆盖大范围地区的碳纤维云,这些导电性纤维使供电系统短路。 目前,人们还不能直接用碳或石墨来抽成碳纤维,只能采用一些含碳的有机纤维(如尼龙丝、腈纶丝、人造丝等)做原料,将有机纤维跟塑料树脂结合在一起,放在稀有气体的气氛中,在一定压强下强热炭化而成碳纤维是纤维状的碳材料,其化学组成中含碳量在90%以上。由于碳的单质在高温下不能熔化(在3800K以上升华),而在各种溶剂中都不溶解,所以迄今无法用碳的单质来制碳纤维。碳纤维可通过高分子有机纤维的固相碳化或低分子烃类的气相热解来制取。目前世界上产生的销售的碳纤维绝大部分都是用聚丙烯腈纤维的固相碳化制得的。其产生的步骤为A预氧化:在空气中加热,维持在200-300度数十至数百分钟。预氧化的目的为使聚丙烯腈的线型分子链转化为耐热的梯型结构,以使其在高温碳化时不熔不燃而保持纤维状态。B碳化:在惰性气氛中加热至1200-1600度,维持数分至数十分钟,就可生成产品碳纤维;所用的惰性气体可以是高纯的氮气、氩气或氦气,但一般多用高纯氮气。C石墨化:再在惰性气氛(一般为高纯氩气)加热至2000-3000度,维持数秒至数十秒钟;这样生成的碳纤维也称石墨纤维。碳纤维有极好的纤度(纤度的表示法之一是9000米长的纤维的克数),一般仅约为19克;拉力高达300KG/MM2;还有耐高温、耐腐蚀、导电、传热、彭胀系数小等一系列优异性能。目前几乎没有其他材料像碳纤维那样具有那么多的优异性能。目前,碳纤维主要是制成碳纤维增强塑料来应用。这种增强塑料比钢、玻璃钢更优越,用途非常广泛,如制造火箭、宇宙飞船等重要材料;制造喷气式发动机;制造耐腐蚀化工设备等。羽毛球:现在大部分羽毛球拍杆由碳纤维制成。【碳纤维】carbon fibre 含碳量高于90%的无机高分子纤维。其中含

聚乙烯醇的应用2

一:什么是聚乙烯醇? 聚乙烯醇,有机化合物,白色片状、絮状或粉末状固体,无味。溶于水,不溶于汽油、煤油、植物油、苯、甲苯、二氯乙烷、四氯化碳、丙酮、醋酸乙酯、甲醇、乙二醇等。 聚乙烯醇分子组成和分子结构 (CH3CHCOOCH3)m (CH2CHOH)n 其中:m+n表示聚合度,n/(m+n)×100%表示醇解度 二:聚乙烯醇的性质及特征 溶解性PVA溶于水,水温越高则溶解度越大,但几乎不溶于有机溶剂。PVA溶解性随醇解度和聚合度而变化。部分醇解和低聚合度的PVA溶解极快,而完全醇解和高聚合度PVA则溶解较慢。一般规律,对PVA溶解性的影响,醇解度大于聚合度。PVA溶解过程是分阶段进行的,即:亲和润湿一溶胀一无限溶胀一溶解。 成膜性PVA易成膜,其膜的机械性能优良,膜的拉伸强度随聚合度、醇解度升高而增强。 粘接性PVA与亲水性的纤维素有很好的粘接力。一般情况,聚合度、醇解度越高,粘接强度越强。 三:聚乙烯醇在油田中的应用 (1):聚乙烯醇作为水泥浆降失水剂 PVA 可用于制作油井水泥浆降失水剂,和其他油井水泥外加剂一起加入水泥,构成胶乳水泥体系。胶乳类水泥外

加剂体系是实现优良水泥浆性能、保证固井质量、保护油气井产能的有效手段之一。PVA 胶乳的一般配制方法:常用硼酸、钛酸、铬酸或相应的无机盐与PVA 混合而进行交联改性,也可以使用能与PVA 形成共价键的其他交联剂进行反应来达到改性目的。在胶乳聚合物与水泥混合过程中,水泥水化产物和胶乳聚合物通过胶乳颗粒相互结合,在已水化的水泥相与未水化的水泥间形成网状结构,这种结构既分散了水泥浆的应力集中,又增加了变形性,从而提高了聚合物胶乳水泥石的抗裂、抗渗、耐酸碱及耐腐蚀等性能。 (2)聚乙烯醇作为钻井泥浆防塌剂 作为钻井泥浆防塌剂:处于地层深处的泥页岩,受到上覆地层压力、水平方向应力及地层孔隙压力的作用,当井眼钻开后,破坏了地层原有的应力平衡,引起井眼周围应力的重新分布。若井壁周围岩石所受应力超过泥页岩本身的强度就会产生剪切破坏,造成井壁失稳(井塌)。PVA 在粘土表面既可以产成分子间力,也可以通过氢键形成物理吸附,同时PVA 是一种表面活性剂,分子结构具有两亲性,其亲水端与粘土矿物形成物理吸附后,憎水端则朝向钻井液,这样就能阻止钻井液滤液继续侵 入泥页岩,从而达到防止井壁失稳的作用。 PVA 作为钻井泥浆防塌剂的应用至今未见报道,但根

碳纤维复合材料应用研究报告Word版

碳纤维复合材料应用研究报告 摘要:本文对碳纤维复合材料的应用进行了综述,介绍了目前碳纤维复合材料的优异性能、国内外发展现状及趋势及在其所应用领域中的发展前景。同时,也指出了碳纤维复合材料在应用和发展中所存在的问题,并给出了解决这些问题的对策及建议。 关键字:碳纤维,复合材料,应用前景 1 前言 碳纤维复合材料是以碳纤维为增强体与树脂、陶瓷及金属等基体复合而成的结构材料。碳纤维是纤维状的碳素材料,含碳量在90% 以上。它是利用各种有机纤维在惰性气体中、高温状态下碳化而制得。碳纤维除了具有十分优异的力学性能外,碳纤维还具有低密度、耐高温、耐腐蚀、耐摩擦、抗疲劳、震动衰减性高、电及热传导性高、热膨胀系数低、穿透性高等优良性能[1]。基于此,到目前为止,用碳纤维与其他基体复合而成的先进基复合材料是目前用得最多,也是最重要的一种结构复合材料。 碳纤维复合材料与金属材料或其他工程材料相比有许多优良的性能,如表1-1所示[2]: 表1-1 各材料性能比较 通过比较可知,(1)碳纤维复合材料比强度是钢SAE1010(冷轧)的近20倍,是铝6061-T6 的近10倍;其比模量则超过这些钢和铝材的3倍。因此其具有高的比强度和比模量。(2)大多数碳纤维复合材料可通过设计增强纤维的取向及用量来对结构材料的性能实行剪裁,达到性能最佳。(3)碳纤维复合材料密度低,质量轻,能有效减轻构件重量。除此之外,碳纤维复合材料还有多选择性成型工艺、良好的耐疲劳性能及良好的抗腐蚀性等。

由于碳纤维复合材料具有优于其他材料的性能,世界各国都在大力发展碳纤维复合材料。2013年碳纤维复合材料总产值147亿美元,其中CFRP产值94亿美元,约占64%。碳纤维复合材料的需求7.2万t,2020年预计需求量将达14.6万t(图1-1),2010—2020年全球碳纤维复合材料年均增长率都将超过11%[3][4]。 2016、2020年的需求量为预测值。 图1-1 2011—2020年全球碳纤维和碳纤维复合材料的需求量 其中,欧洲的碳纤维复合材料需求占全球市场的40 %,美国占25 %,中国占20 %,其他国家与地区的碳纤维复合材料占市场份额在15 %上下。其中中国市场对碳纤维的需求每年也在逐步增加,中国碳纤维复合材料市场需求如图1-2所示: 图1-2 中国碳纤维复合材料市场需求 2015年,碳纤维制造商日本帝人公司扩大碳纤维复合材料合作领域,其目标是将他们

水溶性高分子聚乙烯醇的制备及其应用

水溶性高分子聚乙烯醇的制备及其应用 * 中山大学化学与化学工程学院应用化学广州 510275 摘要:本实验采用溶液聚合法,以AIBN作为引发剂合成聚乙酸乙烯酯,然后用NaOH的甲醇溶液进行醇解,得到聚乙烯醇5.527 g,产率54.0%,之后利用红外对聚乙酸乙烯酯与聚乙烯醇进行表征。之后利用聚乙 烯醇的缩醛化反应制备胶水,利用聚乙烯醇的性质制备面膜。 关键词:水溶性高分子聚乙烯醇聚乙酸乙烯酯红外光谱法 1.引言 水溶性高分子化合物又称水溶性树脂或水溶性聚合物,是一种亲水性的高分子材料,在水中能溶胀而形成溶液或分散液。1924年,德国化学家WO. Hermann和WW. Haehel首次将碱液加入到聚乙酸乙烯酯的甲醇溶液中,得到聚乙烯醇(PV A)。聚乙烯醇为白色絮状固体或片状固体,无毒无味,是使用最广泛的合成水溶性高分子,具有优良的力学性能和可调节的表面活性。PV A具有多羟基强氢键,以及单一的-C-C-单键结构,这样的结构不但使PV A具有亲水性,还有黏合性、成膜性、分散性、润滑性、增稠性等良好性能。 PV A的制备首先由乙酸乙烯酯聚合成聚乙酸乙烯酯,然后将其醇解生成PV A,其反应式如下: PVA的结构可以看成是交替相隔的碳原子上带有羟基的多元醇,因此,其发生的反应为多元醇反应,如醚化、酯化、缩醛化。聚乙烯醇和羰基化合物反应可得到缩醛化合物。本实验利用聚乙烯醇和甲醛反应,生产聚乙烯醇缩甲醛,作为胶水使用。 2.实验过程 2.1 实验仪器 三颈瓶,回流冷凝管,水浴锅,蒸汽蒸馏装置,滴液漏斗,pH试纸,培养皿,抽滤装置,滤纸,真空烘箱。2.2 实验试剂 偶氮二异丁腈(AIBN),甲醇,乙酸乙烯酯,NaOH,聚乙烯醇,甲酸,40%甲醛水溶液,盐酸,羧甲基纤维素,丙二醇,乙醇。 2.3 实验步骤

碳纤维的应用领域及前景

碳纤维的应用领域及前景 carbonfibre application 作者(writer):杨成刚 Gang chengyang 摘要(Abrtrant): 1 碳纤维的成分结构 2 碳纤维的应用领域 3 碳纤维的发展前景 关键词(Keywords) 乱层石墨复合材料关键材料军工业民用行业潜力极大 正文(Text) 碳纤维是由有机纤维经碳化及石墨化处理而得到的微晶石墨材料。碳纤维的微观结构类似人造石墨,是乱层石墨结构。碳纤维是一种力学性能优异的新材料,它的比重不到钢的1/4,碳纤维树脂复合材料抗拉强度一般都在3500Mpa以上,是钢的7~9倍,抗拉弹性模量为230~430Gpa亦高于钢。因此CFRP的比强度即材料的强度与其密度之比可达到2000Mpa/(g/cm3)以上,而A3钢的比强度仅为59Mpa/(g/cm3)左右,其比模量也比钢高。材料的比强度愈高,则构件自重愈小,比模量愈高,则构件的刚度愈大,从这个意义上已预示了碳纤维在工程的广阔应用前景。综观多种新兴的复合材料(如高分子复合材料、金属基复合材料、陶瓷基复合材料)的优异性能,不少人预料,人类在材料应用上正从钢铁时代进入到一个复合材料广泛应用的时代。碳纤维编织布 碳纤维可加工成织物、毡、席、带、纸及其他材料。传统使用中碳纤维除用作绝热保温材料外,一般不单独使用,多作为增强材料加入到树脂、金属、陶瓷、混凝土等材料中,构成复合材料。碳纤维增强的复合材料可用作飞机结构材料、电磁屏蔽除电材料、人工韧带等身体代用材料以及用于制造火箭外壳、机动船、工业机器人、汽车板簧和驱动轴等。碳纤维 1994年至2002年左右,随着从短纤碳纤维到长纤碳纤维的学术研究,使用碳纤维制作发热材料的技术和产品也逐渐进入军用和民用领域。现在国内已经有使用长纤碳纤维制作国家电网电缆的使用案例多处。同时,碳纤维发热产品,碳纤维采暖产品,碳纤维远红外理疗产品也越来越多的走入寻常百姓家庭。碳纤维是军民两用新材料,属于技术密集型和政治敏感的关键材料。以前,以美国为首的巴黎统筹委员会(COCOM),对当时的社会主义国家实行禁运封锁政策,1994年3月,COCOM虽然已解散,但禁运封锁的阴影仍笼罩在上空,先进的碳纤维技术仍引不进来,特别是高性能PAN基原丝技术,即使我国进入WTO,形势也不会发生大的变化。因此,除了国人继续自力更生发展碳纤维工业外,别无其它选择。因此,国外尤其是碳纤维生产技术领先的日韩等国对中国的碳纤维材料及制品的出口一直保持相当谨慎的态度,只有为数很少的中国企业能够与其建立合作关系,拥有其产品的进口渠道。碳纤维广泛用于民用,军用,建筑,化工,工业,航天等领域。 ------------ 在人们印象中,碳纤维更多地与航空航天、军工产品及国防建设联系在一起,由于投资门槛高、技术难度大,特别是日本东丽 30 年"修得正果"的经历,一度让技术与资金均相对薄弱的中国化纤企业望而却步,导致了中国碳纤维长期严重依赖进口的状况。然而, 2004 年以来国际市场上出现以碳纤维为代表的高性能纤维供不应求的局面,已不仅仅影响到我国

聚乙烯醇及其缩丁醛的制备

五、聚乙烯醇及其缩丁醛的制备 一、实验目的 1.了解聚合物中官能团反应的常识,并学会其中的操作技术。 2.了解大分子的基本有机化学反应,在高分子链上有合适的反应基团时,均可 按小分子有机反应历程进行高分子反应。 3.了解通过高分子反应改性原理。 二、实验原理 由于单体乙烯醇并不存在,聚乙烯醇不可能从单体聚合而得,而只能以它的酯类(即聚乙酸乙烯酯)通过醇解在酸性条件下进行,通常用乙醇或甲醇作溶剂,酸性醇解时,由于痕量的酸极难自聚乙烯醇中除去,残留在产物中的酸,可能加速聚乙烯醇的脱水作用,使产物变黄或不溶于水;碱性醇解时,产品中含有副产品醋酸钠,目前工业上都采用碱性醇解法。 碱性醇解: 酸性醇解: 醇解在加热和搅拌下进行。初始时微量聚乙烯醇先在瓶壁析出,当约有60%的乙酰氨基被羟基取代后,聚乙烯醇即自溶液中大量析出,继续加热,醇解在两相中进行,在反应过程中,除了乙酸根被醇解外,还有支链的断裂,聚乙酸乙烯酯的支化度愈高,醇解后分子量降低就愈多。 聚乙烯醇是白色粉末,易溶于水,将它的水溶液自纺织头喷入Na 2SO 4-K 2SO 4的溶液中,聚乙烯醇即沉淀而出,再用甲醛处理就得高强度、密度大的人造纤维,商品名叫“维尼纶”。 聚乙烯醇水溶液在浓盐酸催化下与丁醛缩合制得的聚乙烯醇缩丁醛树脂,就C H 2H C OCOCH 3H 2C H C OCOCH 3CH OH NaOH C H 2H C OH H 2C H C OH +CH 3COONa +CH 3COOCH 3C H 2H C OCOCH 3H 2C H C OCOCH 3CH OH H 2SO 4 C H 2H C OH H 2C H C OH +CH 3COOH +CH 3COOCH 3

聚乙烯醇

聚乙烯醇的合成与应用 08206020222 08高分子<2>班吴家彬 【摘要】本文介绍聚乙烯醇的基本性质以及合成和应用,从不同方面说明聚乙烯醇的制备方法,同时介绍聚乙烯醇在工业以及生活上的应用和发展前景。【关键字】聚乙烯醇制备前景 聚乙烯醇,英文名称: polyvinyl alcohol,vinylalcohol polymer,poval,简称PVA 有机化合物,白色片状、絮状或粉末状固体,无味。溶于水,不溶于汽油、煤油、植物油、苯、甲苯、二氯乙烷、四氯化碳、丙酮、醋酸乙酯、甲醇、乙二醇等。微溶于二甲基亚砜。聚乙烯醇是重要的化工原料,用于制造聚乙烯醇缩醛、耐汽油管道和维尼纶合成纤维、织物处理剂、乳化剂、纸张涂层、粘合剂等。 聚乙烯醇的制备方法 聚乙烯醇的制备方法原料路线聚乙烯醇是由醋酸乙烯(VAc)经聚合醇解而制成,生产 PVA 通常有两种原料路线,一种是以乙烯为原料制备醋酸乙烯,再制得聚乙烯醇;另外一种是以乙炔 (分为电石乙炔和天然气乙炔)为原料制备醋酸乙烯,再制得聚乙烯醇。 ( 1)乙烯直接合成法)石油裂解乙烯直接合成法。目前,国际上生产聚乙烯醇的工艺路线以乙烯法占主导地位,其数量约占总生产能力的 72%。美国已完成了乙炔法向乙烯法的转变,日本的乙烯法也占 70%以上,而中国的生产企业只有两家为乙烯法。其工艺流程包括:乙烯的获取及醋酸乙烯(VAc)合成、精馏、聚合、聚醋酸乙烯(PVAc)醇解、醋酸和甲醇回收五个工序。石油乙烯法的工艺特点:生产规模较乙炔法大,产品质量好,设备易于维护、管理和清洗、热利用率高,能量节约明显,生产成本较乙炔法低 30%以上。 (2)电石乙炔合成法)电石乙炔合成法,最早实现工业化生产,其工艺特点是操作比较简单、产率高、副产物易于分离,因而国内至今仍有 1O 家工厂沿用此法生产,且大部分应用高碱法生产聚乙烯醇。但由于乙炔高碱法工艺路线产品能耗高、质量差、成本高,生产过程产生的杂质污染环境亦较为严重,缺乏市场竞争力,属逐渐淘汰工艺。国外先进国家早于 20 世纪 7O 年代已全部用低碱法生产工艺。 (3)天然气乙炔合成法)天然气乙炔为原料的 Borden 法,不但技术成熟,

相关文档
相关文档 最新文档