文档视界 最新最全的文档下载
当前位置:文档视界 › 基于人口统计的大数据融合算法

基于人口统计的大数据融合算法

基于人口统计的大数据融合算法
基于人口统计的大数据融合算法

基于人口统计多源数据融合算法的提出

目录

一、算法需求背景 (1)

二、D-S算法简介 (2)

三、算法过程简述 (2)

(一) 先确定证据框架 (2)

(二) 基本概率分配 (3)

(三) 计算信任函数 (3)

(四) 似然函数 (4)

(五) 证据合成 (4)

(六) 计算扩样系数 (5)

(七) 计算扩样结果 (6)

一、算法需求背景

目前公司在人口统计算法上已逐步形成系列,但算法在地理区域适应性上易体现出精度不高的现象。目前的做法是按照统计区域,做出不同的扩样策略。这将导致在每个区域需要大量专业人力去做扩样策略,为了提高算法的精确度以及减少算法人员的重复人力消耗,从而提出人口统计的多源融合算法。如果该算法经过验证,该算法是公司将要开发的SaaS平台中动态模型引擎里重要的一环。

人口统计多源数据融合算法可以融合包括影响精度的所有因素,如:地理环境、城市类型、城市等级、城市周边、面积、年鉴、人口结构等等。

传统的算法是将影响精度的因素或因素所含的因子,按照策略赋以权值,然后在利用组合规则进行n-1 次的上层统计学算法得出结果。该方法在因素的可信度上难以有一个较精确的权值,并且对因素的“环境”变化无法动态分析。

人口统计应该是用一个概率区间而不是单一概率数值去建模不确定性。所以有了下面的构思。

二、D-S算法简介

1、D-S证据理论源于20世纪60年代Dempster在多值映射方面的工作,从本质上讲,属于人工智能的范畴,它由于具有处理不确定性的能力以及在工程上表现出来的实用性能,近年来在不确定推理多传感器信息融合、模式识别、不确定信息决策等领域得到了广泛的应用。.

2、基于D-S证据理论算法,与概率推理等理论相比,D-S证据理论在不确定性的度量上更灵活,推理机制更简洁,尤其对于未知的处理更接近于人的自然思维习惯。该理论的核心超越了概率统计推断的理论框架,可以适应于专家系统、人工智能、模式识别和系统决策等领域的实际问题,而且此理论很快发展成了智能学习和多源信息融合的重要组成部分。该算法理论经过多年的发展,在智能交通、医学、航空、人工智能科学等应用广泛。

3、D-S合成规则的标准化过程中,因为证据因素过多,证据之间容易产生大量冲突,比如有些低可信度的证据往往却是真命题。这也是该算法相比于其它算法不同的地方,冲突证据合成一直是D-S证据理论所关注的重要问题之一。距离(每多个证据之间的距离)法解决证据之间的冲突是多年来国内外研究的结果,经过多年的演变,也有多个不同的版本。

三、算法过程简述

(一) 先确定证据框架

算法假定有一个影响模型数据精度的证据框架,该证据框架可以是用字母Θ表示的因素集合,该集合是一个具有互斥和可穷举元素的集合:

Θ= { θ1 , θ2 , …, θn }

其中:θ1 可以表示城市等级因子的子集合,θ2可以表示城市类型因子的子集合,θn 可以表示城市地理划分因子的子集合:

θ1 = { 一线, 新一线 , 二线,三线,四线,五线 };

θ2 = { 超大, 特大 , 大 , 中 , 小,建制区县,建制镇 };

θ3 = { 工业,商业,港口,文化,旅游,政治,经济,宗教,综合 };

θ3 = { 长江三角洲,珠江三角洲,闽南金三角洲 };

……

θ n = { 沿海, 内陆 , 边陲 }。

注意,上述集合中的因子都是互斥的,假定 θn 是一个有限集合,且其因子在集合内是连续变量。

(二) 基本概率分配

在贝叶斯理论中,后验概率随着证据而改变是所需要的。同样地,在D-S 理论中,关于证据的信任也可以改变。在D-S 理论中,习惯上把证据的信任度类似于物理对象的质量去考虑,即证据的质量(Mass )支持了一个信任。关于质量这一术语也被称为基本概率分配。

基本概率分配,简称BPA 。在证据框架Θ上的BPA 是一个2 Θ→[0, 1]的函数m ,称为mass 函数。并且满足

m(?) = 0 且 (1)

这里的m(A ) 就称为A 的基本概率分配函数,其中m(A) ≥ 0,它表示对命题A 的精确信任度。

(三) 计算信任函数

在证据框架Θ内,m 为Θ的基本概率分配函数,定义函数: ()1

A m A ?Θ=∑

? bel ∶2Θ →?0,1?bel (AA )= ∑m (B )(?A ∈2Θ)

B ∈ AA (2)

为Θ的信任函数。 A 的信任函数可以表示为其自己成员的BPA 之和。其中bel(A ) 称为事件A 的信任值,表示了证据对A 为真的信任度。

(四) 似然函数

仅仅依靠一个事件A 的信任函数来描述证据因素的信任程度是不够的,因为bel(A)还不能反映出客观事实对A 的怀疑度。为了描述对A 的信任度, 从而引入似然函数,通过似然函数来描述对集合为非假的信任度。

(3)

在证据理论中,对于识别框架Θ 中的某个假设A ,根据基本概率分配BPA 分别计算出关于该假设的信任函数Bel(A)和似然函数Pl(A)组成信任区间[Bel(A), Pl(A)],用以表示对某个假设的确认程度。

(五) 证据合成

对于?A ∈Θ,Θ上的有限个mass 函数m1, m2, … , m n 的合成规则:

(n )(AA )=1KK ∑m 1(A 1)?m 2(A 2)???m n (A n )A 1∩A 2∩…∩A n

其中K 为归一常数:

…………………………(4) 1111221122()()()1()()()n n n n A A n n A A K m A m A m A m A m A m A ≠?=?

=?=??∑∑ ()()

B A Pl A m B ≠?=∑

设m 1,m 2,…,m n 。是同一识别框架Θ下的n 个证据,|Θ|=N ,2Θ= {A i | i=1,2,…,2N }

定义m1,m2的距离:

dd (mm 1,mm 2)= ?(M 1? M 2)T ?D (M 1? M 2)2? (5)

式(5)中,M i = [ m i (A 1) . m i (A 2) … m i (A 2N )] T , i = 1, 2, … D = (D ij ) 是一个2N x 2N

阶的矩阵, D ij = | A i ∩ A j | / | A i ∪ A j | , i, j = 1,2, … , 2N

D = ………………………………………………………………(6) 其中式(6)就是计算各个证据之间距离,矩阵原始d ij 就是证据i 和 证据 j 之间的距离。

m 1, m 2 的距离计算方法为:

dd (mm 1,mm 2)= ?()+ ?2)2? (7)

式(7)中 = ∑∑m 1(A i )m 2 (A j )D ij 2N j=12N i=1

证据合成一个主要的步骤是证据之间的距离计算,距离算法可以处理证据之间的冲突,且收敛速度较明显。其实关于距离的算法还衍生出多种版本,

(六) 计算扩样系数

距离与相似度是一对互反的概念,两个证据体之间的距离越小,它们之间的相似度就越大。证据冲突将依据证据的相对可信度进行分配,所以新的合成公式定义为:

?m (?)=0m (A )= ∑∏m j ′1 ≤ j ≤n (A i )∩A i = A 1 + K ′? δ(A,m ),A ∈?, A ≠ ? (8)

0 d 12 … d 1n

d 21 0 ... d 2n ? ? 0 ? d n1 d n2 0

其中,式(8)中,

K’ =??m j′

1 ≤ j ≤n (A i)

∩A i= A1 表示修正后证据模型的总冲突。

(七) 计算扩样结果

R = r ?1KK

其中:R为扩样后的值,r原始为计算值。

(完整版)信息融合算法

信息融合算法 1 概述 信息融合又称数据融合,是对多种信息的获取、表示及其内在联系进行综合处理和优化的技术。经过融合后的传感器信息具有以下特征:信息冗余性、信息互补性、信息实时性、信息获取的低成本性。 1、组合:由多个传感器组合成平行或互补方式来获得多组数据输出的一种处理方法,是一种最基本的方式,涉及的问题有输出方式的协调、综合以及传感器的选择。在硬件这一级上应用。 2、综合:信息优化处理中的一种获得明确信息的有效方法。 例:在虚拟现实技术中,使用两个分开设置的摄像机同时拍摄到一个物体的不同侧面的两幅图像,综合这两幅图像可以复原出一个准确的有立体感的物体的图像。 3、融合:当将传感器数据组之间进行相关或将传感器数据与系统内部的知识模型进行相关,而产生信息的一个新的表达式。 4、相关:通过处理传感器信息获得某些结果,不仅需要单项信息处理,而且需要通过相关来进行处理,获悉传感器数据组之间的关系,从而得到正确信息,剔除无用和错误的信息。 相关处理的目的:对识别、预测、学习和记忆等过程的信息进行综合和优化。

2 技术发展现状 信息融合技术的方法,概括起来分为下面几种: 1)组合:由多个传感器组合成平行或互补方式来获得多组数据 输出的一种处理方法,是一种最基本的方式,涉及的问题有 输出方式的协调、综合以及传感器的选择。在硬件这一级上 应用。 2)综合:信息优化处理中的一种获得明确信息的有效方法。例: 在虚拟现实技术中,使用两个分开设置的摄像机同时拍摄到 一个物体的不同侧面的两幅图像,综合这两幅图像可以复原 出一个准确的有立体感的物体的图像。 3)融合:当将传感器数据组之间进行相关或将传感器数据与系 统内部的知识模型进行相关,而产生信息的一个新的表达式。 4)相关:通过处理传感器信息获得某些结果,不仅需要单项信 息处理,而且需要通过相关来进行处理,获悉传感器数据组 之间的关系,从而得到正确信息,剔除无用和错误的信息。 相关处理的目的:对识别、预测、学习和记忆等过程的信息 进行综合和优化。 3 算法描述 3.1 Bayes融合 Bayes融合是融合静态环境中多传感器低层数据的一种常用方法。

数据融合

1数据融合定义 1.1数据融合的定义 数据融合是面对不同级别,不同层次的对数据的处理流程,它的功能主要表现在将来自相异数据源的信息自动地做预处理,关联,预测更新和整合等相关处理。为了正规化管理数据融合中的专属词汇,美国国家安全部专门成立了一个特别的行动组织团体进行这项工作,从而实现了对数据融合的研究目的,定义和它的相关功能的预研究目的。随后数据融合的相关定义又被华尔兹和利纳斯进行了改进和补充。简而言之,人类本身就好比是一个天然的数据融合系统,我们的鼻子,嘴巴,耳朵,四肢以及眼睛就好比是一个个传感器,它们将各自获取的“数据”先进行“预处理”,也就是靠各自单一的感官去感觉,最后反馈给大脑这个中央处理器,大脑再对这些多源的“数据”进行处理,滤波和估计。 数据融合的定义基本上体现了数据融合的三个关键功能:(1)由于每个层级表示信息处理的不同级别,因此数据融合是在若干个层级上对空间分布的信息源进行操作的;(2)数据融合的本质其实就是对锁定的目标进行观测,追踪,状态预测和整合;(3)在数据融合操作完毕后会得到的高关联正确率的状态估计以及实时的威胁判断,这些处理结果将成为用户有价值的先验知识,从而使决策者做出正确的操作。 由数据融合的定义也可以看出,数据融合的过程是依托不同的层次来逐步完成的,一般主要由四层来共同完成。第一层主要是把各个传感器上获取的观测数据进行预处理,包括时间空间校对,坐标系变换等等;第二层主要是评估低层上得到的数据信息的态势,包括对现阶段态势的判断和未来时间的态势预测;第三层是面向整体态势的一种评估,其中有对总体态势的把握以及威胁级别的估计等等一系列。第四层主要是制定相关的补充计划。 1.2数据融合模型

多传感器信息融合方法综述

万方数据

万方数据

万方数据

万方数据

万方数据

多传感器信息融合方法综述 作者:吴秋轩, 曹广益 作者单位:上海交通大学电子信息与电气工程学院,上海,200030 刊名: 机器人 英文刊名:ROBOT 年,卷(期):2003,25(z1) 被引用次数:2次 参考文献(5条) 1.周锐;申功勋;房建成基于信息融合的目标图像跟踪 1998(12) 2.张尧庭;桂劲松人工智能中的概率统计方法 1998 3.何友;王国宏;彭应宁多传感器信息融合 2000 4.罗志增;叶明Bayes方法的多感觉信息融合算法及其应用[期刊论文]-传感技术学报 2001(03) 5.张文修;吴伟业;梁吉业粗糙集理论与方法 2001 本文读者也读过(8条) 1.臧大进.严宏凤.王跃才.ZANG Da-jin.YAN Hong-feng.WANG Yue-cai多传感器信息融合技术综述[期刊论文]-工矿自动化2005(6) 2.多传感器信息融合及应用[期刊论文]-电子与信息学报2001,23(2) 3.赵小川.罗庆生.韩宝玲.ZHAO Xiao-chuan.LUO Qing-sheng.HAN Bao-ling机器人多传感器信息融合研究综述[期刊论文]-传感器与微系统2008,27(8) 4.范新南.苏丽媛.郭建甲.FAN Xin-nan.SU Li-yuan.GUO Jian-jia多传感器信息融合综述[期刊论文]-河海大学常州分校学报2005,19(1) 5.咸宝金.陈松涛智能移动机器人多传感器信息融合及应用研究[期刊论文]-宇航计测技术2010,30(2) 6.韩增奇.于俊杰.李宁霞.王朝阳信息融合技术综述[期刊论文]-情报杂志2010,29(z1) 7.肖斌多传感器信息融合及其在工业中的应用[学位论文]2008 8.丁伟.孙华.曾建辉.DING Wei.SUN Hua.ZENG Jian-hui基于多传感器信息融合的移动机器人导航综述[期刊论文]-传感器与微系统2006,25(7) 引证文献(2条) 1.武伟.郭三学基于多传感信息融合的轮胎气压监测系统[期刊论文]-轮胎工业 2006(5) 2.魏东.杨洋.李大寨.宗光华基于多传感器融合的机器人微深度环切[期刊论文]-传感器技术 2005(11) 本文链接:https://www.docsj.com/doc/4b6694075.html,/Periodical_jqr2003z1037.aspx

多传感器数据融合算法.

一、背景介绍: 多传感器数据融合是一种信号处理、辨识方法,可以与神经网络、小波变换、kalman 滤波技术结合进一步得到研究需要的更纯净的有用信号。 多传感器数据融合涉及到多方面的理论和技术,如信号处理、估计理论、不确定性理论、最优化理论、模式识别、神经网络和人工智能等。多传感器数据融合比较确切的定义可概括为:充分利用不同时间与空间的多传感器数据资源,采用计算机技术对按时间序列获得的多传感器观测数据,在一定准则下进行分析、综合、支配和使用,获得对被测对象的一致性解释与描述,进而实现相应的决策和估计,使系统获得比它的各组成部分更充分的信息。 多传感器信息融合技术通过对多个传感器获得的信息进行协调、组合、互补来克服单个传感器的不确定和局限性,并提高系统的有效性能,进而得出比单一传感器测量值更为精确的结果。数据融合就是将来自多个传感器或多源的信息在一定准则下加以自动分析、综合以完成所需的决策和估计任务而进行的信息处理过程。当系统中单个传感器不能提供足够的准确度和可靠性时就采用多传感器数据融合。数据融合技术扩展了时空覆盖范围,改善了系统的可靠性,对目标或事件的确认增加了可信度,减少了信息的模糊性,这是任何单个传感器做不到的。 实践证明:与单传感器系统相比,运用多传感器数据融合技术在解决探测、跟踪和目标识别等问题方面,能够增强系统生存能力,提高整个系统的可靠性和鲁棒性,增强数据的可信度,并提高精度,扩展整个系统的时间、空间覆盖率,增加系统的实时性和信息利用率等。信号级融合方法最简单、最直观方法是加权平均法,该方法将一组传感器提供的冗余信息进行加权平均,结果作为融合值,该方法是一种直接对数据源进行操作的方法。卡尔曼滤波主要用于融合低层次实时动态多传感器冗余数据。该方法用测量模型的统计特性递推,决定统计意义下的最优融合和数据估计。 多传感器数据融合虽然未形成完整的理论体系和有效的融合算法,但在不少应用领域根据各自的具体应用背景,已经提出了许多成熟并且有效的融合方法。多传感器数据融合的常用方法基本上可概括为随机和人工智能两大类,随机类方法有加权平均法、卡尔曼滤波法、多贝叶斯估计法、产生式规则等;而人工智能类则有模糊逻辑理论、神经网络、粗集理论、专家系统等。可以预见,神经网络和人工智能等新概念、新技术在多传感器数据融合中将起到越来越重要的作用。 数据融合存在的问题 (1)尚未建立统一的融合理论和有效广义融合模型及算法; (2)对数据融合的具体方法的研究尚处于初步阶段; (3)还没有很好解决融合系统中的容错性或鲁棒性问题; (4)关联的二义性是数据融合中的主要障碍; (5)数据融合系统的设计还存在许多实际问题。 二、算法介绍: 2.1多传感器数据自适应加权融合估计算法: 设有n 个传感器对某一对象进行测量,如图1 所示,对于不同的传感器都有各自不同的加权因子,我们的思想是在总均方误差最小这一最优条件下,根据各个传感器所得到的测量值以自适应的方式寻找各个传感器所对应的最优加权因子,使融合后的X值达到最优。

各种融合方法之间的结合对比

现代方法间的集成 遗传算法和模糊理论相结合 模糊理论和神经网络理论相结合 遗传算法和神经网络理论相结合 遗传算法和模糊神经网络相结合 经典方法与现代方法的结合 模糊逻辑和Kalman滤波相结合 小波变换和Kalman滤波相结合 模糊理论和最小二乘法相结合 小波变换和Kalman滤波相结合 在实际中,不同的传感器数据采集系统采集的数据具有不同的分辨率,因而,需要解决多分辨率数据的融合技术和方法,以便更好地利用不同分辨率数据的互补信息,达到更佳的融合效果。Kalman滤波对非平稳信号具有较强的估计能力,能对信号所有的频率成分同时进行处理。同时,小波变换具有高分辨力,对高频分量采用逐渐精细的时域和频域步长,可以聚焦到分析对象的任意细节。因此,小波变换与Kalman滤波结合可以取得良好的融合效果。 模糊理论和最小二乘法相结合 最小二乘法的准则是选取X 使得估计性能指标(估计误差的平方和)达到最小。它是以误差理论为依据,在诸数据处理方法中,误差最小,精确性最好,并在处理数据过程中不需要知道数据的先验信息。因而,刘建书等人利用模糊理论中的相关性函数对多传感器的相互支持程度进行计算,应用基于最小二乘原理的数据融合方法,对支持程度高的传感器数据进行融合。仿真结果表明:相比同类融合方法,该方法获得的结果具有更高的精度。模糊逻辑和Kalman滤波相结合 经典最优Kalman 滤波理论对动态系统提出了严格的要求,即当观测几何信息和动力学模型及统计信息可靠时,Kalman滤波计算性能较好。但在实践中很难满足这一条件,在使用不精确或错误的模型和噪声统计设计Kalman 滤波器时会导致滤波结果失真,甚至使滤波发散。为了解决此问题,产生了自适应Kalman 滤波。Escamilla,Ambrosio等人提出了一种基于模糊逻辑的自适应Kalman 滤波数据融合算法,该算法使用模糊逻辑调整Q和R 的值使之可以更好地符合协方差的估计值。接着scamilla,Ambrosio PJ等人又将上述算法用来建立集中式、分布式和混合式的自适应Kalman滤波多传感器融合算法。另外,TaftiA D等人还提出了一种可用于实时处理的自适应Kalman 滤波和模糊跟踪数据融合算法。 近年来,模糊Kalman滤波算法在实际中得到了非常广泛的应用,例如:目标跟踪、图像处理以及组合导航等。 遗传算法和神经网络理论相结合 神经网络技术是模拟人类大脑而产生的一种信息处理技术,它使用大量的简单处理单元(即神经元)处理信息,神经元按层次结构的形式组织,每层上的神经元以加权的方式与其他层上的神经元联接,采用并行结构和并行处理机制,因而,网络具有很强的容错

多传感器数据融合技术的理论及应用

多传感器数据融合技术的理论及应用 张宁110101256 摘要:多传感器数据融合技术是一门新兴前沿技术。近年来,多传感器数据融合技术已经受到广泛关注,它的理论和方法已经被应用到许多研究领域。本文主要论述了多传感器数据融合的基本概念、工作原理、数据融合特点与结构、数据融合方法及其应用领域,并总结了当前数据融合研究中存在的主要问题及其发展趋势。 关键词:多传感器;数据融合;融合方法 1引言 多传感器数据融合是一个新兴的研究领域,是针对一个系统使用多种传感器这一特定问题而展开的一种关于数据处理的研究。多传感器数据融合技术是近几年来发展起来的一门实践性较强的应用技术,是多学科交叉的新技术,涉及到信号处理、概率统计、信息论、模式识别、人工智能、模糊数学等理论。近年来,多传感器数据融合技术无论在军事还是民事领域的应用都极为广泛。多传感器数据融合技术已成为军事、工业和高技术开发等多方面关心的问题。这一技术广泛应用于复杂工业过程控制、机器人、自动目标识别、交通管制、惯性导航、海洋监视和管理、农业、医疗诊断、模式识别等领域。实践证明:与单传感器系统相比,运用多传感器数据融合技术在解决探测、跟踪和目标识别等问题方面,能够增强系统生存能力,提高整个系统的可靠性和鲁棒性,增强数据的可信度,并提高精度,扩展整个系统的时间、空间覆盖率,增加系统的实时性和信息利用率等。 2基本概念及融合原理 2.1多传感器数据融合概念 数据融合又称作信息融合或多传感器数据融合,对数据融合还很难给出一个统一、全面的定义。随着数据融合和计算机应用技术的发展,根据国内外研究成果,多传感器数据融合比较确切的定义可概括为:充分利用不同时间与空间的多传感器数据资源,采用计算机技术对时间序列获得的多传感器观测数据,在一定准则下进行分析、综合、支配和使用,获得对被测对象的一致性解释与描述,进而实现相应的决策和估计,使系统获得比它的各组成部分更充分的信息。

数据融合方法优缺点

数据融合方法 随着交通运行状态评价研究的不断发展,对数据的准确性和广泛覆盖性提出了更高的要求,在此基础上,不同的数据融合模型被引进应用于交通领域中来计算不同检测设备检测到的数据。现阶段,比较常用的数据融合方法主要有:表决法、模糊衰退、贝叶斯汇集技术、BP神经网络、卡尔曼滤波法、D.S理论等方法。 1现有方法应用范围 结合数据融合层次的划分,对数据融合方法在智能交通领域的应用作以下归纳总结: 表数据融合层次及对应的方法 2各种融合方法的优缺点 主要指各种融合方法的理论、应用原理等的不同,呈现出不同的特性。从理论成熟度、运算量、通用性和应用难度四个方面进行优缺点的比较分析,具体内容如下: (1)理论成熟度方面:卡尔曼滤波、贝叶斯方法、神经网络和模糊逻辑的理论已经基本趋于成熟;D—S证据推理在合成规则的合理性方

面还存有异议;表决法的理论还处于逐步完善阶段。 (2)运算量方面:运算量较大的有贝叶斯方法、D.S证据推理和神经网络,其中贝叶斯方法会因保证系统的相关性和一致性,在系统增加或删除一个规则时,需要重新计算所有概率,运算量大;D.S证据推理的运算量呈指数增长,神经网络的运算量随着输入维数和隐层神经元个数的增加而增长;运算量适中的有卡尔曼滤波、模糊逻辑和表决法。 (3)通用性方面:在这六种方法中,通用性较差的是表决法,因为表决法为了迁就原来产生的框架,会割舍具体领域的知识,造成其通用性较差;其他五种方法的通用性相对较强。 (4)应用难度方面:应用难度较高的有神经网络、模糊逻辑和表决法,因为它们均是模拟人的思维过程,需要较强的理论基础;D.S证据推理的应用难度适中,因其合成规则的难易而定:卡尔曼滤波和贝叶斯方法应用难度较低。 3 适用的交通管理事件 之前数据融合技术在交通领域中的应用多是在例如车辆定位、交通事件识别、交通事件预测等交通事件中,但是几乎没有数据融合技术在交通运行状态评价的应用研究,而本文将数据融合技术应用在交通运行状态评价中,为了寻找到最适用于交通运行状态评价的数据融合技术方法,有必要将之前适用于其它交通管理事件的数据融合技术进行评价比较。 表2 各种融合方法适用的交通管理事件的比较

多传感器数据融合

多传感器数据融合 多传感器数据融合1引言数据融合一词最早出现在20世纪70年代末期。几十年来,随着传感器技术的迅速发展,尤其在军事指挥系统中对提高综合作战能力的迫切要求,使其得到了长足的发展。其早期主要是应用在军事上,而随着工业系统的复杂化和智能化,近年来该技术推广到了民用领域,如医疗诊断、空中交通管制、工业自动控制及机械故障诊断等。数据融合是针对一个系统中使用多个传感器这一问题而展开的一种信息处理的新的研究方向,所以数据融合也称为传感器融合。数据融合一直没有一个统一的定义,一般认为:利用计算机技术,对按时间顺序获得的若干传感器的观测信息,在一定的准则下加以自动分析、综合,从而完成所需要的决策和估计任务而进行的信息处理过程称为数据融合。2

数据融合技术的分类多传感器数据融合涉及到多方面的理论和技术如信号处理、估计理论、不确定性理论、模式识别最优化技术、神经网络和人工智能等。很多学者从不同角度出发提出了多种数据融合技术方案。从技术原理角度,可分为假设检验型数据融合、滤波跟踪型数据融合、聚类分析型数据融合、模式识别型数据融合、人工智能型数据融合等;按判决方式分有硬判决型和软判决型数据融合;按传感器的类型分有同类传感器数据融合和异类传感器数据融合按对数据的处理方式,可分为象素级融合、特征级融合和决策级融合;从方法来分有Bayes推理法、表决法、D-S 推理法、神经网络融合法等。从解决信息融合问题的指导思想或哲学观点加以划分,可分为嵌入约束观点、证据组合观点和人工神经网络观点三大类。3常用的数据融合方法数据融合方法种类繁多,图1归纳了常用的一些信息融合方法。估计方法

数据融合各种算法整理汇总

数据融合各种算法及数学知识汇总 粗糙集理论 理论简介 面对日益增长的数据库,人们将如何从这些浩瀚的数据中找出有用的知识? 我们如何将所学到的知识去粗取精?什么是对事物的粗线条描述什么是细线条描述? 粗糙集合论回答了上面的这些问题。要想了解粗糙集合论的思想,我们先要了解一下什么叫做知识?假设有8个积木构成了一个集合A,我们记: A={x1,x2,x3,x4,x5,x6,x7,x8},每个积木块都有颜色属性,按照颜色的不同,我们能够把这堆积木分成R1={红,黄,蓝}三个大类,那么所有红颜色的积木构成集合X1={x1,x2,x6},黄颜色的积木构成集合X2={x3,x4},蓝颜色的积木是:X3={x5,x7,x8}。按照颜色这个属性我们就把积木集合A进行了一个划分(所谓A的划分就是指对于A中的任意一个元素必然属于且仅属于一个分类),那么我们就说颜色属性就是一种知识。在这个例子中我们不难看到,一种对集合A的划分就对应着关于A中元素的一个知识,假如还有其他的属性,比如还有形状R2={三角,方块,圆形},大小R3={大,中,小},这样加上R1属性对A构成的划分分别为: A/R1={X1,X2,X3}={{x1,x2,x6},{x3,x4},{x5,x7,x8}} (颜色分类) A/R2={Y1,Y2,Y3}={{x1,x2},{x5,x8},{x3,x4,x6,x7}} (形状分类) A/R3={Z1,Z2,Z3}={{x1,x2,x5},{x6,x8},{x3,x4,x7}} (大小分类) 上面这些所有的分类合在一起就形成了一个基本的知识库。那么这个基本知识库能表示什么概念呢?除了红的{x1,x2,x6}、大的{x1,x2,x5}、三角形的{x1,x2}这样的概念以外还可以表达例如大的且是三角形的 {x1,x2,x5}∩{x1,x2}={x1,x2},大三角{x1,x2,x5}∩{x1,x2}={x1,x2},蓝色的小的圆形({x5,x7,x8}∩{x3,x4,x7}∩{x3,x4,x6,x7}={x7},蓝色的或者中的积木{x5,x7,x8}∪{x6,x8}={x5,x6,x7,x8}。而类似这样的概念可以通过求交运算得到,比如X1与Y1的交就表示红色的三角。所有的这些能够用交、并表示的概念以及加上上面的三个基本知识(A/R1,A/R2.A/R3)一起就构成了一个知识系统记为R=R1∩R2∩R3,它所决定的所有知识是 A/R={{x1,x2},{x3,x4},{x5},{x6},{x7},{x8}}以及A/R中集合的并。 下面考虑近似这个概念。假设给定了一个A上的子集合X={x2,x5,x7},那么用我们的知识库中的知识应该怎样描述它呢?红色的三角?****的大圆? 都不是,无论是单属性知识还是由几个知识进行交、并运算合成的知识,都不能得到这个新的集合X,于是我们只好用我们已有的知识去近似它。也就是在所有的现有知识里面找出跟他最像的两个一个作为下近似,一个作为上近似。于是我们选择了“蓝色的大方块或者蓝色的小圆形”这个概念: {x5,x7}作为X的下近似。选择“三角形或者蓝色的”{x1,x2,x5,x7,x8}作为它的上近似,值得注意的是,下近似集是在那些所有的包含于X的知识库

基于自适应动态均匀分簇的WSN数据融合算法

第39卷 第11A期2012年11月计算机科学 Comp uter ScienceVol.39No.11A Nov  2012杨 婷(1981-),女,硕士,讲师,主要研究方向为计算机网络、程序设计,E-mail:zkj no1@163.com。基于自适应动态均匀分簇的WSN数据融合算法 杨 婷 (绍兴文理学院元培学院 绍兴312000 )  摘 要 针对LEACH算法无法进行数据融合以及簇首分布不均匀引起的局部网络能耗过多、失效过快等问题,提出一种基于自适应动态均匀分簇的数据融合算法ADUC。ADUC算法在簇结构生成阶段引入逻辑区域划分机制和簇首能量优选机制,保证了簇首分布的均匀性和网络的能量均衡性;在数据融合阶段使用自适应加权融合机制来减小冗余和误差,并减少报文数据的数量。仿真结果证明,ADUC算法可以在提高监测数据精度的同时减少网络中43.1%的总体能耗。 关键词 数据融合,无线传感器网络,分簇,自适应,能耗中图法分类号 TP393 文献标识码 A  Adaptive Dynamic Uniform Clustering  Data Aggregation Algorithm for Wireless Sensor NetworksYANG Ting (College of Yuanpei,Shaoxing University,Shaoxing  312000,China)  Abstract In order to solve the problem of unable to do data aggregation operation and the problem of unbalanced ener-gy consumption cased by the nonuniform clustering  process in the LEACH protocol,an Adaptive Dynamic UniformClustering(ADUC)data aggregation algorithm is proposed.In the cluster construct phase of ADUC,the logic area di-vide mechanism and the cluster head energy optimize mechanism are introduced to ensure the uniformity of cluster headdistribution and the energy consumption balance of the network,in the data aggregation phase,the adaptive weightedmechanism is introduced to reduce the redundancy and errors of the monitoring data and control the amount of commu-nication packets.Simulation results prove that ADUC algorithm can not only improve the accuracy of monitoring databut also reduce more than 43.1%energy  consumption of the network.Keywords Data aggregation,Wireless sensor networks,Clustering,Adaptive,Energy consumption  无线传感器网络一般由一个与外部网络相连的基站节点 和一组带有计算能力和无线收发装置的传感器节点组成[ 1] 。分布在监测区域中的大量传感器节点可以自主地组成一个自组织网络,节点与节点之间、节点与基站之间以多跳形式进行通信。由于传感器节点通常由电池供电,而且数量巨大、难于回收, 能耗控制就成为关系到无线传感器应用前景的主要问题。数据融合技术就是对无线传感器网络进行能耗控制的核心技术之一。 数据融合是指在数据传输的过程中,对数据进行分布式的汇聚融合处理,去除冗余信息,组合成更有效、更简练、更精确的数据的过程。分簇算法是无线传感器网络调整拓扑结构、实现层次型路由的重要方式,优化的网络簇状拓扑结构可 以明显地降低网络的能耗。LEACH[2] 路由协议是一种典型 的无线传感器网络分簇算法,研究证明LEACH协议可以节省网络中15%的能量。但LEACH算法同时也具有簇分布不均匀、能量均衡度低、网络生存时间短、无法进行有效的数据融合操作等缺陷。本文在分析LEACH优缺点的基础上,提出一种全新的无线自组织网络自适应均匀分簇的数据融合算法ADUC(Adaptive Dynamic Uniform Clustering  data ag-gregation algorithm)。ADUC算法使用动态自适应均匀分簇机制和自适应加权数据融合方法,在保证簇结构均匀分布、节点负载均衡、 网络生存期延长的前提下,可以高效、精确地进行数据融合操作,在明显节省网络能量的同时,提高了监测数据的精度。 1 相关工作 1.1 LEACH算法 LEACH算法的基本思想是划分固定时间为监测周期,每个监测周期分为簇准备阶段和实时监测阶段,在每个监测周期开始时,首先进行等概率的簇首随机选择操作,将网络能耗平均分配到各个节点上,以达到延长网络生存期的目的。每个节点在簇准备阶段生成一个0到1之间的随机数,当随机数小于选择门限参数T(n)时,该节点为簇首节点,否则该节点自动成为簇成员节点,并选择最近的簇首节点进行簇加入操作。选择门限参数T(n)的取值动态地随监测周期数进行调整。当簇结构形成后,网络自动进入实时监测阶段,簇首节点将簇成员节点发送过来的数据进行融合后发送到基站节点。 · 301·

数据融合技术概述

数据融合是WSN中非常重要的一项技术,也是目前的一个研究热点,通过一定算法将采集到的数据进行各种网内处理,去除冗余信息,减少数据传输量,降低能耗,延长网络生命周期。本文以从降低传输数据量和能量方面对数据融合方法进行分类,介绍其研究现状。 1.与路由相结合的数据融合 将路由技术和数据融合结合起来,通过在数据转发过程中适当地进行数据融合,减轻网络拥塞,延长网络生存时间[1]。 1.1查询路由中的数据融合 定向扩散(directed diffusion)[2]作为查询路由的代表,数据融合主要是在其数据传播阶段进行,采用抑制副本的方法,对转发过的数据进行缓存,若发现重复数据将不予转发,该方法有很好的能源自适应性,但是他只能在他选择的随机路由上进行数据融合,并不是最优方案。 1.2分层路由中的数据融合 Wendi Rabiner Heinzelman 等提出了在无线传感器网络中使用分簇概念,其将网络分为不同层次的LEACH 算法[3] :通过某种方式周期性随机选举簇头,簇头在无线信道中广播信息,其余节点检测信号 并选择信号最强的簇头加入,从而形成不同的簇。每个簇头在收到本簇成员后进行数据融合处理,并将结果发送给汇集节点。LEACH算法仅强调数据融合的重要性,但未给出具体的融合方法。TEEN是LEACH 算法的改进[4],通过缓存机制抑制不需要转发的数据,进一步减少数据融合过程中的数据亮。

1.3链式路由中的数据融合 Lindsey S 等人在L EACH 的基础上,提出了PEGASIS 算法[5]每个节点通过贪婪算法找到与其最近的邻居并连接,从而整个网络形成一个链,同时设定一个距离Sink 最近的节点为链头节点,它与Sink进行一跳通信。数据总是在某个节点与其邻居之间传输,节点通过多跳方式轮流传输数据到Sink 处,位于链头节点和源节点之间的节点进行融合操作,最终链头节点将结果传送给汇聚节点。链式结构使每个节点发送数据距离几乎最短,比LEACH节能,但增大了数据传送的平均延时,和传输失败率。PEDAP (power efficient data gathering and aggregation protocol) [6]协议进一步发展了PEGASIS 协议,其核心思想是把WSN 的所有节点构造成一棵最小汇集树(minimum spanning tree) 。节点不管在每一轮内接收到多少个来自各子节点的数据包,都将压缩融合为单个数据包,再进行转发,以最小化每轮数据传输的 总能耗。然而,PEDAP 存在难以及时排除死亡节点(非能量耗尽) 的缺点。 2.基于树的数据融合 现有的算法有最短路径树(SPT)、贪婪增量树(GIT)、近源汇集树(CNS)和Steiner树以及他们的改进算法。Zhang [7]提出 DCTC(dynamic convey tree based collaboration) 算法。通过目标附近的节点协同构建动态生成树,协同组节点把测量数据沿确定的生成树向根节点传输,在传输过程中,汇聚节点对其子生成树节点的数 据进行数据融合。Luo [8-9]了MFST (minimum fusion steiner t ree)

加权数据融合算法

加权数据融合算法 设两个不同的传感器对一恒定量 进行测量,观测值为: 11z x v =+ 22z x v =+ 其中(1,2)i v i =为观测时存在的随机误差,且设2~(0,)i i v N σ,两传感器观测值相互独立。 假定x 的估计值 x 与观测值(1,2)i z i =成线性关系,且 x 为x 的无偏估计,有: 1122 x z z ωω=+ 12(,)ωωΩ=为各个传感器测量值的权值。 设估计误差为: x x x =- 取代价函数为 x 的均方误差,有: 221122 (){[()()]}J E x E x x z x z ωω==-+-+ 因为 x 为x 的无偏估计,所以: 1122 ()[()()]0E x E x x z x z ωω=-+-+= 由于12()()0E v E v = =, ()()E x E x =,所以有: 211ωω=- 那么代价函数可写为: 2222211121112()[(1)2(1)]J E x E v v v v ωωωω==+-+- 由于2211()E v σ=,22 22()E v σ=,12,v v 相互独立有12()0E v v =, 则: 222221112()(1)J E x ωσωσ==+- 为使得J 为最小,对Ω求导有: 0J ?=?Ω 解出最优权值为:

2*2 1 2 221σωσσ=+ 2 *12 2 2 21σωσσ=+ 最优估计量为: 22211222 2 2 2121z z x σσσσσσ=+++ 上式表明当两个传感器取值合适时,可以通过观测器已经获得的观测值融合得到最有的估计值 。推广此结论到多个传感器的情况,设多传感器组的方差分别为(1,2...)i i n σ=,各传感 器的测量值分别为(1,2...)i z i n =,彼此相互独立。真值的估计值为 x ,并且是x 的无偏估计,各传感器的加权因子分别为(1,2...)i i n ω=,根据多元函数求极值理论,可求出均方误差最小时所对应的加权因子为: *2 21 1 1 || p n p i i ωσ σ == ∑

数据融合

1数据融合定义 数据融合的定义 数据融合是面对不同级别,不同层次的对数据的处理流程,它的功能主要表现在将来自相异数据源的信息自动地做预处理,关联,预测更新和整合等相关处理。为了正规化管理数据融合中的专属词汇,美国国家安全部专门成立了一个特别的行动组织团体进行这项工作,从而实现了对数据融合的研究目的,定义和它的相关功能的预研究目的。随后数据融合的相关定义又被华尔兹和利纳斯进行了改进和补充。简而言之,人类本身就好比是一个天然的数据融合系统,我们的鼻子,嘴巴,耳朵,四肢以及眼睛就好比是一个个传感器,它们将各自获取的“数据”先进行“预处理”,也就是靠各自单一的感官去感觉,最后反馈给大脑这个中央处理器,大脑再对这些多源的“数据”进行处理,滤波和估计。 数据融合的定义基本上体现了数据融合的三个关键功能:(1)由于每个层级表示信息处理的不同级别,因此数据融合是在若干个层级上对空间分布的信息源进行操作的;(2)数据融合的本质其实就是对锁定的目标进行观测,追踪,状态预测和整合;(3)在数据融合操作完毕后会得到的高关联正确率的状态估计以及实时的威胁判断,这些处理结果将成为用户有价值的先验知识,从而使决策者做出正确的操作。 由数据融合的定义也可以看出,数据融合的过程是依托不同的层次来逐步完成的,一般主要由四层来共同完成。第一层主要是把各个传感器上获取的观测数据进行预处理,包括时间空间校对,坐标系变换等等;第二层主要是评估低层上得到的数据信息的态势,包括对现阶段态势的判断和未来时间的态势预测;第三层是面向整体态势的一种评估,其中有对总体态势的把握以及威胁级别的估计等等一系列。第四层主要是制定相关的补充计划。 数据融合模型

卡尔曼滤波数据融合算法

/********************************************************* // 卡尔曼滤波 //********************************************************* //在程序中利用Angle+=(Gyro - Q_bias) * dt计算出陀螺仪积分出的角度,其中Q_bias是陀螺仪偏差。 //此时利用陀螺仪积分求出的Angle相当于系统的估计值,得到系统的观测方程;而加速度计检测的角度Accel相当于系统中的测量值,得到系统状态方程。 //程序中Q_angle和Q_gyro分别表示系统对加速度计及陀螺仪的信任度。根据Pdot = A*P + P*A' + Q_angle计算出先验估计协方差的微分,用于将当前估计值进行线性化处理。其中A 为雅克比矩阵。 //随后计算系统预测角度的协方差矩阵P。计算估计值Accel与预测值Angle间的误差Angle_err。 //计算卡尔曼增益K_0,K_1,K_0用于最优估计值,K_1用于计算最优估计值的偏差并更新协方差矩阵P。 //通过卡尔曼增益计算出最优估计值Angle及预测值偏差Q_bias,此时得到最优角度值Angle 及角度值。 //Kalman滤波,20MHz的处理时间约0.77ms; void Kalman_Filter(float Accel,float Gyro) { Angle+=(Gyro - Q_bias) * dt; //先验估计 Pdot[0]=Q_angle - PP[0][1] - PP[1][0]; // Pk-先验估计误差协方差的微分 Pdot[1]=- PP[1][1]; Pdot[2]=- PP[1][1]; Pdot[3]=Q_gyro; PP[0][0] += Pdot[0] * dt; // Pk-先验估计误差协方差微分的积分 PP[0][1] += Pdot[1] * dt; // =先验估计误差协方差 PP[1][0] += Pdot[2] * dt; PP[1][1] += Pdot[3] * dt; Angle_err = Accel - Angle; //zk-先验估计 PCt_0 = C_0 * PP[0][0]; PCt_1 = C_0 * PP[1][0]; E = R_angle + C_0 * PCt_0; K_0 = PCt_0 / E;

多传感器数据融合算法知识讲解

多传感器数据融合算 法

一、背景介绍: 多传感器数据融合是一种信号处理、辨识方法,可以与神经网络、小波变换、kalman滤波技术结合进一步得到研究需要的更纯净的有用信号。 多传感器数据融合涉及到多方面的理论和技术,如信号处理、估计理论、不确定性理论、最优化理论、模式识别、神经网络和人工智能等。多传感器数据融合比较确切的定义可概括为:充分利用不同时间与空间的多传感器数据资源,采用计算机技术对按时间序列获得的多传感器观测数据,在一定准则下进行分析、综合、支配和使用,获得对被测对象的一致性解释与描述,进而实现相应的决策和估计,使系统获得比它的各组成部分更充分的信息。 多传感器信息融合技术通过对多个传感器获得的信息进行协调、组合、互补来克服单个传感器的不确定和局限性,并提高系统的有效性能,进而得出比单一传感器测量值更为精确的结果。数据融合就是将来自多个传感器 或多源的信息在一定准则下加以自动分析、综合以完成所需的决策和估计任务而进行的信息处理过程。当系统中单个传感器不能提供足够的准确度和可靠性时就采用多传感器数据融合。数据融合技术扩展了时空覆盖范围,改善了系统的可靠性,对目标或事件的确认增加了可信度,减少了信息的模糊性,这是任何单个传感器做不到的。 实践证明:与单传感器系统相比,运用多传感器数据融合技术在解决探测、跟踪和目标识别等问题方面,能够增强系统生存能力,提高整个系统的可靠性和鲁棒性,增强数据的可信度,并提高精度,扩展整个系统的时间、空间覆盖率,增加系统的实时性和信息利用率等。 信号级融合方法最简单、最直观方法是加权平均法,该方法将一组传感器提供的冗余信息进行加权平均,结果作为融合值,该方法是一种直接对数据源进行操作的方法。卡尔曼滤波主要用于融合低层次实时动态多传感器冗余数据。该方法用测量模型的统计特性递推,决定统计意义下的最优融合和数据估计。 多传感器数据融合虽然未形成完整的理论体系和有效的融合算法,但在不少应用领域根据各自的具体应用背景,已经提出了许多成熟并且有效的融合方法。多传感器数据融合的常用方法基本上

数据融合中存在的问题与可解决的思路

数据融合中存在的问题与可解决的思路 3222011041张志成 一、数据融合技术概念由来 数据融合技术,包括对各种信息源给出的有用信息的采集、传输、综合、过滤、相关及合成,以便辅助人们进行态势/环境判定、规划、探测、验证、诊断。这对战场上及时准确地获取各种有用的信息,对战场情况和威胁及其重要程度进行适时的完整评价,实施战术、战略辅助决策与对作战部队的指挥控制,是极其重要的。 数据融合的概念虽始于70年代初期,但真正的技术进步和发展乃是80年代的事,尤其是近几年来引起了世界范围内的普遍关注,美、英、日、德、意等发达国家不但在所部署的一些重大研究项目上取得了突破性进展,而且已陆续开发出一些实用性系统投入实际应用和运行。不少数据融合技术的研究成果和实用系统已在1991年的海湾战争中得到实战验证,取得了理想的效果。 随着计算机技术、通信技术的快速发展,且日趋紧密地互相结合,加之军事应用的特殊迫切需求,作为数据处理的新兴技术——数据融合技术,在近10年中得到惊人发展并已进入诸多军事应用领域。 二、数据融合存在的问题及研究方向 1.当前数据融合研究存在的问题 数据融合是一门新兴的学科,目前尚存在以下的问题:

(1)未形成基本的理论框架和广义融合算法:目前,绝大多数的融合研究皆是针对特定的应用领域的特定问题开展的(混合结构,分布式)。即根据问题的种类,各自建立直观的融合准则,形成“最佳”融合方案,未形成完整的理论框架和融合模型,使得融合系统的设计具有一定的盲目性。 (2)关联的二义性:关联的二义性是数据融合的主要障碍,传感器测量的不精确性和干扰等都是引起关联二义性的因素。如何降低关联二义性是数据融合研究以待解决的问题。 (3)数据融合方法与融合系统实施存在的问题:目前,大多数数据融合是经一种简单的方法合成信息,并未充分有效地利用多传感器所提供的冗余信息,融合方法研究也还处于初步阶段。而且目前很多研究工作亦是基础研究,仿真性工作。因此,数据融合系统的设计实施还存在许多实际的问题:传感器动态测量误差模型的建立、传感器系统优化、复杂动态环境下系统实时性、大型知识库的建立与管理、与其它领域的很多新技术的“嫁接与融合”,如人工智能技术、计算神经网络计算、遗传算法、进化计算、虚拟现实技术性等。 2.数据融合的研究方向 (1)建立数据融合的基础理论,这包括进一步研究融合技术的数学基础,对于同类信息相融合的数值处理:主要研究其各种最优、次优分散式算法;对于不同类型信息相融合的符号处理方法,引进其它领域的一些新技术:如具备学习功能的新型 AI技术、

信息融合的分类方法

一、信息融合技术分类: 多源信息融合技术分为假设检验型信息融合技术、滤波跟踪型信息融合技术、 聚类分析型信息融合技术、模式识别型信息融合技术、人工智能型信息融合技术等。 1、假设检验型信息融合技术 假设检验型信息融合技术是以统计假设检验原理为基础,信息融合中心选择某 种最优化假设检验判决准则执行多传感器数据假设检验处理,获取综合相关结论。 2、滤波跟踪型信息融合技术 滤波跟踪型信息融合技术是将卡尔曼滤波(或其他滤波)航迹相关技术由单一传 感器扩展到多个传感器组成的探测网,用联合卡尔曼滤波相关算法执行多传感器滤波跟踪相关处理。 3、聚类分析型信息融合技术 聚类分析型信息融合技术是以统计聚类分析或模糊聚类分析原理为基础,在多 目标、多传感器大量观测数据样本的情况下,使来自同一目标的数据样本自然聚集、来自不同目标的数据样本自然隔离,从而实现多目标信息融合。 4、模式识别型信息融合技术 模式识别型信息融合技术是以统计模式识别或模糊模式识别原理为基础,在通 常的单一传感器模式识别准则基础上建立最小风险多目标多传感器模式识别判决 准则,通过信息融合处理自然实现目标分类和识别。 5、人工智能信息融合技术 人工智能信息融合技术将人工智能技术应用于多传感器信息融合,对于解决信 息融合中的不精确、不确定信息有着很大优势,因此成为信息融合的发展方向。智能融合方法可分为:基于专家系统的融合方法;基于神经网络的融合方法;基于生物基础的融合方法;基于模糊逻辑的融合方法等。

二、按融合判决方式分类: 多源信息融合的融合判决方式分为硬判决方式和软判决方式。所谓硬判决或软判决指的是数据处理活动中用于信号检测、目标识别的判决方式。每个传感器内部或信息融合中心都既可选用硬判决方式,也可选用软判决方式。 1、硬判决方式 硬判决方式设置有确定的预置判决门限。只有当数据样本特征量达到或超过预置门限时,系统才做出判决断言;只有当系统做出了确定的断言时,系统才向更高层次系统传送”确定无疑”的判决结论。这种判决方式以经典的数理逻辑为基础,是确定性的。 2、软判决方式 软判决方式不设置确定不变的判决门限。无论系统何时收到观测数据都要执行相应分析,都要做出适当评价,也都向更高层次系统传送评判结论意见及其有关信息,包括评判结果的置信度。这些评判不一定是确定无疑的,但它可以更充分地发挥所有有用信息的效用,使信息融合结论更可靠更合理。 三、按信息融合处理层次分类: 按信息融合处理层次分类,多源信息融合可分为数据层信息融合、特征层信息融合、决策层信息融合等。 1、数据层信息融合 数据层信息融合联合来自每一个传感器的原始数据,其优点是信息丰富,结果精确,但是通讯和运算量大,数据需要预处理,传感器之间往往要求同质或者同等精度。主要的数学方法是:加权平均法、卡尔曼滤波[147,148]、贝叶斯估计、参数估计法等,与信号处理有一定的相似性。 2、特征层信息融合 特征层融合联合从观测量中提取的特征向量,既保持足够数量的重要信息,又实现信息压缩,有利于实时性;但是不可避免地会有某些信息损失,精确性有所下降,因而需对传感器预处理提出较严格的要求。主要的数学方法是:分离

相关文档