文档视界 最新最全的文档下载
当前位置:文档视界 › 直流电机闭环调速课程设计

直流电机闭环调速课程设计

直流电机闭环调速课程设计
直流电机闭环调速课程设计

课程设计报告

课程名称:计算机控制系统

设计题目:直流电机闭环调速

院系:电气信息学院

班级:

姓名:

学号:

姓名:

学号:

姓名:

学号:

指导教师:

设计时间:

摘要

在电气时代的今天,电动机在工农业生产、人们日常生活中起着十分重要的作用。直流电机是最常见的一种电机,在各领域中得到广泛的应用。研究直流电机的控制和测量方法,对提高控制精度和响应速度、节约能源等都具有重要意义。电机调速问题一直是自动化领域中比较重要的问题之一。不同领域对于电机的调速性能有着不同的要求,因此,不同的调速方法有着不同的应用场合。

为了提高直流调速系统的动态、静态性能,通常采用闭环控制系统(主要包括单闭环、双闭环)。而在对调速指标要求不高的场合,采用单闭环即可。闭环系统较之开环系统能自动侦测把输出信号的一部分拉回到输入端,与输入信号相比较,其差值作为实际的输入信号;能自动调节输入量,能提高系统稳定性。在对调速系统性能有较高要求的领域常利用直流电动机,但直流电动机开环系统稳定性不能满足要求,可利用转速单闭环提高稳态精度。

本次课程设计利用软件定时方式采用Intel 8255A可编程外设接口芯片唐都TD-PITC 实验系统上模拟直流电动机闭环调速系统,A/D转换器实现模拟信号到数字信号的转换,设置电机转速的给定值,通过PWM方式可实现电机转速的调节,LED灯显示电机转速的大小状态。

关键字:闭环调速、inter 8255A、A/D转换器、PWM、LED

目录

摘要

1 控制系统总体设计方案 (3)

2 系统的组成及工作原理 (4)

2.1 8255工作原理 (4)

2.2 转速调节原理 (5)

2.3 A/D转换原理 (5)

2.4 LED灯的工作原理 (6)

2.5 实现两位十进制数的显示 (6)

3 硬件设计 (7)

3.1 接线图 (7)

4 软件设计 (8)

4.1 转速调节程序设计框图 (8)

4.2 主程序流程图 (9)

4.3 程序清单 (10)

5 调试及结果 (21)

5.1 调试步骤 (21)

5.2结果分析 (21)

5.2结论 (21)

参考文献 (22)

1 控制系统总体设计方案

本设计是利用PC微机一台、TD-PIT实验系统一套实现对直流电机转速调节的应用。

编写程序,用ADC0809完成模拟信号到数字信号的转换。输入模拟信号有A/D转换单元可调电位器提供的0~5V,将其转换后的数字信号读入累加器,做为控制电机的给定转速。用8255的B口作为直流电机的控制信号输出口,通过对电机转速反馈量的运算,调节控制信号,达到控制电机匀速转动的的作用。并将累加器中给定的转速和当前测量转速显示在屏幕上。再通过LED灯显示出转速的大小变化。

整个程序设计过程分为基本功能实现阶段,检测程序阶段,功能扩展和功能验证及程序补充四个实验阶段。

基本功能实验阶段,在“轻松编程”软件中完成,主要完成各个子程序的调试;在检测程序阶段,在“轻松编程”软件中通过编译和链接,并反复检查没有逻辑错误;调试结果正确以后在进行相应的连接,将各个子模块联系起来功能扩展及程序的补充,在实验室里完成,使用唐都硬件实验箱,用TDPIT来编程实现;功能验证阶段,在实验室里完成。

2 系统的组成及工作原理

2.1 8255工作原理:

本设计利用8255的A口作为输出口,控制8个单色LED灯,来实现电机转速的大小调节。

并行接口是以数据的字节为单位与I/O设备或被控制对象之间传递信息,CPU和接口之间的数据传递总是并行的,即可以同时进行传递8位,16位,32位等。8255可编程外围接口芯片是具有A、B、C三个并行接口,+5V单电源供电,能在以下三种方式下工作:方式0—基本输入/出方式、方式1—选通输入/出方式、方式2—双向选通工作方式。其控制字、内部结构图和引脚图见图1-1-1、图1-1-2.

图2-1-1 8255控制字

图2-1-2 8255内部结构图和引脚图

2.2 转速调节原理:

PWM的占空比决定输出到直流电机的平均电压.

PWM不是调节电流的.PWM的意思是脉宽调节,也就是调节方波高电平和低电平的时间比,一个20%占空比波形,会有20%的高电平时间和80%的低电平时间,而一个60%占空比的波形则具有60%的高电平时间和40%的低电平时间,占空比越大,高电平时间越长,则输出的脉冲幅度越高,即电压越高.如果占空比为0%,那么高电平时间为0,则没有电压输出.如果占空比为100%,那么输出全部电压. 所以通过调节占空比,可以实现调节输出电压的目的,而且输出电压可以无级连续调节.

在使用PWM控制的直流无刷电动机中,PWM控制有两种方式:

(1)使用PWM信号,控制三极管的导通时间,导通的时间越长,那么做功的时间越长,电机的转速就越高

(2)使用PWM控制信号控制三极管导通时间,改变控制电压高低来实现

直流电机单元由DC12V、1.1W的直流电机,小磁钢,霍尔元件及输出电路构成。PWM示意图如图2-2-1所示。通过调节T1的脉冲宽度,改变T1的占空比,从而改变输出,达到改变直流电机转速的目的

图2-2-1 PWM示意图

利用8255的PB0产生脉冲信号作为控制量,经驱动电路驱动电机运转。霍尔测速元件输出的脉冲信号记录电机转速构成反馈量。在参数给定的情况下,经PID运算,电机可在控制量的作用下,按PC机累加器给定的转速运转。通过PC 的0号通道,设置为输出1ms方波,作为采样时钟,PB0产生PWM脉冲计时及转速累加,系统总线上INTR中断用于测量电机转速。

2.3 A\D转换原理

图2-3-1 ADC0809外部管脚图

本设计用ADC0809完成模拟信号到数字信号的转换。输入模拟信号有A/D 转换单元可调电位器提供的0~5V,将其转换后的数字信号读入累加器,做为控制电机的给定转速。

2.4 LED灯的工作原理:

LED灯显示器有8个单色发光二极管构成,在共阳极接法中,各二极管的阳极被连在一起,使用的时候要将它与+5V项链,而把各段的阴极连到器件的相应引脚上。当某的LED灯的引脚为低电平的时候,该灯工作。

图2-4-1 LED灯管脚图

通过8255的A口信号作为输入信号,控制各灯的工作状态。

来显示出此时电机转速的大小变化。

1.5 实现两位十进制数的显示:

在计算机中,对数字的输入和输出是用二进制进行的,而在计算机内部十进制数要转换为二进制来表示,要实现两位十进制数的显示,必须将他们转换为目前最普遍使用的字符编码ASCII码。

本设计中通过作除法,即拆分法,将两位十进制AB转换为A*10+B的形式,再通过A+30H与B+30H来转换为ASCII码,若溢出,加7运算。

3 硬件设计

3.1 接线图:

图3-1-1 A\D转换接线图

ADC转换单元中,D0-D7分别与系统总线的XD0-XD7对应相连,WR、

RD、CLK分别与系统总线

的XIOW、XIOR、CLK相

连,片选引脚与系统

IOY0相连,A、B、C接

地,IN0接+5V直流电压

源,如图 3-1-1所示。

图3-1-2 直流电机闭环接线图

与系统总线的XD0-XD7相连,同时与ADC0809的D0-D7相连;B口的PB0作为直流电机控制信号输出口,经驱动电路A口,与直流电机相连驱动电机运转;片选信号线接系统的IOY1,读写信号线分别对应系统的XIO、RXIOW相连,其中,系统的中断INTR引脚用于测量电机转速与直流电机的HR引脚相连。

4 软件详细设计

4.1 转速调节程序设计框图:

(a)转速调节主程序图(b)测速中断处理程序图

(c)定时采样中断处理程序图

图4-1-1转速调节程序设计框图

4.2 主程序流程图:

图4-2-1主程序流程图

B 口转速控制程序转上页

将转换结果以16进制形式显示在屏幕上

设置8255工作方式 将AD 送的结果装入8255 初始化8255控制寄存器

将结果送到8255A 口输出,执行B 口的调速程序

是否有键按下

返回DOS

结束

启用A/D 转换

在屏幕上显示给定的转速

读取转换结果

定义寄存器

清屏 屏幕显示菜单 开 始

4.3 程序清单:

根据主程序流程图和转速调节设计框图写出相应程序,在“轻松编程”软件中完成各个子程序的调试;通过编译和链接,并反复检查没有逻辑错误;调试结果正确以后在进行相应的连接,将各个子模块联系起来,由于自己不具备硬件资源,所以调试的时候只能检查程序本身的错误,经过调试能显示各个子程序的功能,同时嵌套有延时子程序,方便程序的调用,端口地址的选择与确定,在实验室里完成,具体程序设计如下:

INTR_IVADD EQU 0038H ;INTR对应的中断矢量地址

INTR_OCW1 EQU 21H ;INTR对应PC机内部8259的OCW1地址 INTR_OCW2 EQU 20H ;INTR对应PC机内部8259的OCW2地址 INTR_IM EQU 0BFH ;INTR对应的中断屏蔽字

PCI_INTCSR EQU 0CC38H ;PCI卡中断控制寄存器地址

IOY0 EQU 0600H ;片选IOY0对应的端口始地址

IOY1 EQU 0640H ;片选IOY0对应的端口始地址

MY8255_A EQU IOY0+00H*4 ;8255的A口地址

MY8255_B EQU IOY0+01H*4 ;8255的B口地址

MY8255_C EQU IOY0+02H*4 ;8255的C口地址

MY8255_MODE EQU IOY0+03H*4 ;8255的控制寄存器地址

AD0809 EQU IOY1+00H ;AD0809的端口地址

STACK1 SEGMENT STACK

DW 64 DUP(?)

TOP LABEL WORD

STACK1 ENDS

DATA SEGMENT

TABLE1 DB 'Assumed Fan Speed:(/s)',0AH,0DH,'$' ;字符串变量 TABLE2 DB 'Current Fan Speed:(/s)',0AH,0DH,'$' ;字符串变量 ENT DB 0AH,0DH,'$' ;换行,回车

CS_BAK DW ? ;保存INTR原中断处理程序入口段地址的变量

IP_BAK DW ? ;保存INTR原中断处理程序入口偏移地址的变量

IM_BAK DB ? ;保存INTR原中断屏蔽字的变量

CS_BAK1 DW ? ;保存定时器0中断处理程序入口段地址的变量

IP_BAK1 DW ? ;保存定时器0中断处理程序入口偏移地址的变量

IM_BAK1 DB ? ;保存定时器0中断屏蔽字的变量

TS DB 14H ;采样周期

SPEC DW 55 ;转速给定值

IBAND DW 0060H ;积分分离值

KPP DW 1060H ;比例系数

KII DW 0010H ;积分系数

KDD DW 0020H ;微分系数

YK DW ?

CK DB ?

VADD DW ?

ZV DB ?

TC DB ?

FPWM DB ?

CK_1 DB ?

EK_1 DW ?

AEK_1 DW ?

BEK DW ?

AAAA DB ?

VAA DB ?

BBB DB ?

VBB DB ?

MARK DB ?

R0 DW ?

R1 DW ?

R2 DW ?

R3 DW ?

R4 DW ?

R5 DW ?

R6 DW ?

R7 DB ?

R8 DW ?

DATA ENDS

CODE SEGMENT

ASSUME CS:CODE,DS:DATA

START: MOV AX,DATA

MOV DS,AX

MOV DX,OFFSET TABLE1 ;显示字符串1

MOV AH,09H

INT 21H

MOV AX,SPEC ;显示给定值

CALL DECSHOW

MOV DX,OFFSET ENT ;回车,换行

MOV AH,09H

INT 21H

MOV DX,OFFSET TABLE2 ;显示字符串2

MOV AH,09H

INT 21H

CLI

MOV AX,0000H

MOV ES,AX

MOV DI,0020H

MOV AX,ES:[DI]

MOV IP_BAK1,AX ;保存定时器0中断处理程序入口偏移地址 MOV AX,OFFSET TIMERISR

MOV ES:[DI],AX ;设置实验定时中断处理程序入口偏移地

ADD DI,2

MOV AX,ES:[DI]

MOV CS_BAK1,AX ;保存定时器0中断处理程序入口段地址 MOV AX,SEG TIMERISR

MOV ES:[DI],AX ;设置实验定时中断处理程序入口段地址 IN AL,21H

MOV IM_BAK1,AL ;保存INTR原中断屏蔽字

AND AL,0F7H

OUT 21H,AL ;打开定时器0中断屏蔽位

MOV DX,PCI_INTCSR ;初始化PCI卡中断控制寄存器

MOV AX,1F00H ;向PCI_INTCSR中写入003F1F00H

OUT DX,AX

ADD DX,2

MOV AX,003FH

OUT DX,AX

MOV DI,INTR_IVADD

MOV AX,ES:[DI]

MOV IP_BAK,AX ;保存INTR原中断处理程序入口偏移地址

MOV AX,OFFSET MYISR

MOV ES:[DI],AX ;设置当前中断处理程序入口偏移地址 ADD DI,2

MOV AX,ES:[DI]

MOV CS_BAK,AX ;保存INTR原中断处理程序入口段地址

MOV AX,SEG MYISR

MOV ES:[DI],AX ;设置当前中断处理程序入口段地址 MOV DX,INTR_OCW1

IN AL,DX

MOV IM_BAK,AL ;保存INTR原中断屏蔽字

AND AL,INTR_IM

OUT DX,AL ;打开INTR的中断屏蔽位

MOV VADD,0000H ;变量的初始化

MOV ZV,00H

MOV ZVV,00H

MOV CK,00H

MOV YK,0000H

MOV CK_1,00H

MOV EK_1,0000H

MOV AEK_1,0000H

MOV BEK,0000H

MOV BBB,00H

MOV VBB,00H

MOV R1,0000H

MOV R2,0000H

MOV R3,0000H

MOV R4,0000H

MOV R5,0000H

MOV R6,0000H

MOV R7,00H

MOV R8,0000H

MOV MARK,00H

MOV FPWM,01H

MOV AAAA,7FH

MOV VAA,7FH

MOV TC,00H

MOV AL,80H ;初始化8255

MOV DX,MY8255_MODE

OUT DX,AL

MOV AL,00H

MOV DX,MY8255_B

OUT DX,AL

MOV DX,MY8255_A

OUT DX,AL

MOV DX,PC8254_MODE ;初始化PC机定时器0,定时1ms

MOV AL,36H

OUT DX,AL

MOV DX,PC8254_COUNT0

MOV AL,8FH

OUT DX,AL

MOV AL,04H

OUT DX,AL

STI

M1: MOV AL,TS ;判断采样周期到否?

SUB AL,TC

JNC M1 ;没到则继续等待

MOV TC,00H ;采样周期到,将采样周期变量清0 MOV AL,ZVV

MOV AH,00H

MOV YK,AX ;得到反馈量YK

LOOP1: MOV DX,AD0809 ;启动A/D转换

OUT DX,AL

CALL DALLY

MOV DX,AD0809 ;读出转换结果

IN AL,DX

MOV DX,MY8255_A ;将结果显示于LED

MOV BL,AL

MOV BH,AL

CALL PID ;调用PID子程序,得到控制量CK

MOV AL,CK ;把控制量转化成PWM输出

SUB AL,80H

JC IS0

MOV AAAA,AL

JMP COU

IS0: MOV AL,10H ;电机的启动值不能低于10H

MOV AAAA,AL

COU: MOV AL,7FH

SUB AL,AAAA

MOV BBB,AL

MOV AX,YK ;将反馈值YK送到屏幕显示

CALL DECSHOW

MOV DL,0DH ;回车

MOV AH,02H

INT 21H

MOV AH,1 ;判断是否有按键按下

INT 16H

JZ M1 ;无按键则跳回继续等待,有则退出 EXIT: CLI

MOV AL,00H ;退出时停止电机运转

MOV DX,MY8255_B

OUT DX,AL

MOV DX,PC8254_MODE ;恢复PC机定时器0状态 MOV AL,36H

OUT DX,AL

MOV DX,PC8254_COUNT0

MOV AL,00H

OUT DX,AL

MOV AL,00H

OUT DX,AL

MOV DX,PCI_INTCSR ;恢复PCI卡中断控制寄存器

MOV AX,0000H

OUT DX,AX

MOV AX,0000H ;恢复INTR原中断矢量

MOV ES,AX

MOV DI,INTR_IVADD

MOV AX,IP_BAK ;恢复INTR原中断处理程序入口偏移地址

MOV ES:[DI],AX

ADD DI,2

MOV ES:[DI],AX

MOV DX,INTR_OCW1 ;恢复INTR原中断屏蔽寄存器的屏蔽字

MOV AL,IM_BAK

OUT DX,AL

MOV DI,0020H

MOV AX,IP_BAK1 ;恢复定时器0中断处理程序入口偏移地址

MOV ES:[DI],AX

ADD DI,2

MOV AX,CS_BAK1 ;恢复定时器0中断处理程序入口段地址

MOV ES:[DI],AX

MOV AL,IM_BAK1

OUT 21H,AL ;恢复屏蔽字

STI

MOV AX,4C00H

INT 21H

MYISR PROC NEAR ;系统总线INTR中断处理程序

PUSH AX

PUSH CX

PUSH DX

MOV AX,DATA

MOV DS,AX

MOV AL,MARK

CMP AL,01H

JZ IN1

MOV MARK,01H

JMP IN2

IN1: MOV MARK,00H ;计算转速

VV: MOV DX,0000H

MOV AX,03E8H

MOV CX,VADD

CMP CX,0000H

JZ MM1

DIV CX

MM: MOV ZV,AL

MOV VADD,0000H

MM1: MOV AL,ZV

MOV ZVV,AL

IN2: MOV DX,PCI_INTCSR ;清PCI卡控制寄存器标志位

MOV DX,PCI_INTCSR

ADD DX,2

MOV AX,003FH

OUT DX,AX

MOV DX,INTR_OCW2 ;向PC机内部8259发送中断结束命令

MOV AL,20H

OUT DX,AL

MOV AL,20H

OUT 20H,AL

POP DX

POP CX

POP AX

IRET

MYISR ENDP

TIMERISR PROC NEAR ;PC机定时器0中断处理程序

PUSH AX

PUSH CX

PUSH DX

MOV AX,DATA

MOV DS,AX

INC TC ;采样周期变量加1

CALL KJ

CLC

CMP MARK,01H

JC TT1

INC VADD

CMP VADD,0700H ;转速值溢出,赋极值

JC TT1

MOV VADD,0700H

MOV MARK,00H

TT1: MOV AL,20H ;中断结束,发EOI命令

OUT 20H,AL

POP DX

POP CX

POP AX

IRET

TIMERISR ENDP

KJ PROC NEAR ;PWM子程序

PUSH AX

CMP FPWM,01H ;PWM为1,产生PWM的高电平

JNZ TEST2

MOV FPWM,02H

MOV AL,BBB

CLC

RCR AL,01H

MOV VBB,AL

JMP TEST2

ANOT0: DEC VAA

MOV AL, 01H ;PB0=1 电机转动

MOV DX, MY8255_B

OUT DX,AL

TEST2: CMP FPWM,02H ;PWM为2,产生PWM的低电平

JNZ OUTT

CMP VBB,00H

JNZ BNOTO

MOV FPWM,01H

MOV AL,AAAA

CLC

RCR AL,01H

MOV VAA,AL

JMP OUTT

BNOT0: DEC VBB

MOV AL,00H ;PB0=0 电机停止

MOV DX,MY8255_B

OUT DX,AL

OUTT: POP AX

RET

KJ ENDP

PID: MOV AX,BX ;PID子程序

SUB AX,YK ;求偏差EK

MOV R0,AX

MOV R1,AX

SUB AX,EK_1

MOV R2,AX

SUB AX,AEK_1 ;求BEK

MOV BEK,AX

MOV R8,AX

MOV AX,R1 ;求偏差变化量AEK

MOV EK_1,AX

MOV AX,R2

MOV AEK_1,AX

TEST R1,8000H

JZ EK1 ;若偏差EK为正数,则不需要求补码 NEG R1 ;若偏差EK为负数,则求偏差EK的补

EK1: MOV AX,R1 ;判断偏差EK是否在积分分离值的范围内

SUB AX,IBAND

JC II ;在积分分离值范围内,则跳转到II,计算积分项

MOV R3,00H ;若不在积分分离值范围内,则将积分项清0

JMP DDD ;计算微分项

II: MOV AL,TS ;计算积分项,结果放在R3变量中(R3=EK*TS/KII)

MOV AH,00H ;其中TS和KII均为正数,所以R3的正负由EK决定

MOV CX,R1

MUL CX

MOV CX,KII

DIV CX

MOV R3,AX

TEST R0,8000H ;判断积分项的正负

JZ DDD ;为正数,则跳转去计算微分项

NEG R3 ;为负数,则将积分项的结果求补码

DDD: TEST BEK,8000H ;判断BEK的正负

JZ DDD1 ;为正数,则BEK不变

NEG BEK ;为负数,则求BEK的补码

DDD1: MOV AX,BEK ;计算微分项(R4=KDD*BEK/8TS)

MOV CX,KDD

MUL CX

PUSH AX

PUSH DX

MOV AL,TS

MOV AH,00H ;将微分项缩小8倍,防止溢出

MOV CX,0008H

MUL CX

MOV CX,AX

POP DX

POP AX

DIV CX

MOV R4,AX

TEST R8,8000H ;判断微分项的正负

JZ DD1 ;为正数,则结果不需要求补码

NEG R4 ;为负数,则微分项结果R4求补码

DD1: MOV AX,R3 ;积分项和微分项相加,结果放在R5变量中

ADD AX,R4

MOV R5,AX

L2: MOV AX,R5

ADD AX,R2

MOV R6,AX ;R6=R5+R2=积分项+微分项+AEK

JO L3

L5: MOV AX,R6 ;计算KPP*R6

MOV CX,KPP

IMUL CX

MOV CX,1000H

IDIV CX

MOV CX,AX

RCL AH,01H ;判断溢出,溢出赋极值

PUSHF

RCR AL,01H

POPF

JC LLL1

CMP CH,00H

JZ LLL2

MOV AL,7FH

JMP LLL2

LLL1: CMP CH,0FFH

JZ LLL2

MOV AL,80H

LLL2: MOV R7,AL ;CK=CK_1+CK

ADD AL,CK_1

JO L8

L18: MOV CK_1,AL

ADD AL,80H

MOV CK,AL

RET

L8: TEST R7,80H ;CK溢出处理程序

JNZ L17

MOV AL,7FH ;若为正溢出,则赋给正极值7FH JMP L18

L17: MOV AL,80H ;若为负溢出,则赋给赋极值80H JMP L18

L9: TEST R3,8000H

JNZ L1

MOV R5,7FFFH ;若为正溢出,则赋给正极值7FFFH JMP L2

L1: MOV R5,8000H ;若为负溢出,则赋给负极值8000H JMP L2

L3: TEST R2,8000H

JNZ L4

MOV R6,7FFFH

直流电动机调速课程设计

《电力拖动技术课程设计》报告书 直流电动机调速设计 专业:电气自动化 学生姓名: 班级: 09电气自动化大专 指导老师: 提交日期: 2012 年 3 月

前言 在电机的发展史上,直流电动机有着光辉的历史和经历,皮克西、西门子、格拉姆、爱迪生、戈登等世界上著名的科学家都为直流电机的发展和生存作出了极其巨大的贡献,这些直流电机的鼻祖中尤其是以发明擅长的发明大王爱迪生却只对直流电机感兴趣,现而今直流电机仍然成为人类生存和发展极其重要的一部分,因而有必要说明对直流电机的研究很有必要。 早期直流电动机的控制均以模拟电路为基础,采用运算放大器、非线性集成电路以及少量的数字电路组成,控制系统的硬件部分非常复杂,功能单一,而且系统非常不灵活、调试困难,阻碍了直流电动机控制技术的发展和应用范围的推广。随着单片机技术的日新月异,使得许多控制功能及算法可以采用软件技术来完成,为直流电动机的控制提供了更大的灵活性,并使系统能达到更高的性能。采用单片机构成控制系统,可以节约人力资源和降低系统成本,从而有效的提高工作效率。 直流电动机具有良好的起动、制动性能,宜于在大范围内平滑调速,在许多需要调速或快速正反向的电力拖动领域中得到了广泛的应用。从控制的角度来看,直流调速还是交流拖动系统的基础。早期直流电动机的控制均以模拟电路为基础,采用运算放大器、非线性集成电路以及少量的数字电路组成,控制系统的硬件部分非常复杂,功能单一,而且系统非常不灵活、调试困难,阻碍了直流电动机控制技术的发展和应用范围的推广。随着单片机技术的日新月异,使得许多控制功能及算法可以采用软件技术来完成,为直流电动机的控制提供了更大的灵活性,并使系统能达到更高的性能。采用单片机构成控制系统,可以节约人力资源和降低系统成本,从而有效的提高工效率。

双闭环直流电机调速系统的SIMULINK仿真实验

双闭环直流电机调速系统的SIMULINK仿真实验 魏小景张晓娇刘姣 (自动化0602班) 摘要:采用工程设计方法对双闭环直流调速系统进行设计,选择调节器结构,进行参数的计算和校验;给出系统动态结构图,建立起动、抗负载扰动的Matlab Simulink 仿真模型.分析系统起动的转速和电流的仿真波形 ,并进行调试 ,使双闭环直流调速系统趋于合理与完善。 关键词:双闭环调速系统;调节器;Matlab Simulink建模仿真 1.引言 双闭环直流调速系统是目前直流调速系统中的主流设备,具有调速范围宽、平稳性好、稳速精度高等优点,在理论和实践方面都是比较成熟的系统,在拖动领域中发挥着极其重要的作用。由于直流电机双闭环调速是各种电机调速系统的基础,直流电机双闭环调速系统的工程设计主要是设计两个调节器。调节器的设计一般包括两个方面:第一选择调节器的结构,以确保系统稳定,同时满足所需的稳态精度. 第二选择调节器的参数,以满足动态性能指标。本文就直流电机调速进行了较系统的研究,从直流电机的基本特性到单闭环调速系统,然后进行双闭环直流电机设计方法研究,最后用实际系统进行工程设计,并采用Matlab/Sim-ulink进行仿真。 2.基本原理和系统建模 为了实现转速和电流两种负反馈分别起作用,在系统中设置了两个调节器,分别调节转速和电流,二者之间实行串联连接. 把转速调节器ASR 的输出当作电流调节器ACR 的输入,再用电流调节器的输出去控制晶闸管整流器的触发装置GT ,TA为电流传感器,TG 为测速发电机. 从闭环结构上看,电流调节环在里面,叫做内环,转速调节环在外边叫做外环,这样就形了转速、 图1 直流电机双闭环调速系统的动态结构图

转速单闭环直流调速系统设计

郑州航空工业管理学院 电力拖动自动控制系统课程设计 07 级电气工程及其自动化专业 0706073 班级 题目转速单闭环的直流拖动系统 姓名 学号 指导教师孙标 二ОО十年月日

电力拖动自动控制系统课程设计 一、设计目的 加深对电力拖动自动控制系统理论知识的理解和对这些理论的实际应用能力,提高对实际问题的分析和解决能力,以达到理论学习的目的,并培养学生应用计算机辅助设计的能力。 二、设计任务 设计一个转速单闭环的直流拖动系统

题目:单闭环不可逆直流调速系统设计 1 技术指标 电动机参数:PN=3KW, n N=1500rpm, UN=220V,IN=17.5A,Ra=1.25 。主回路总电阻R=2.5,电磁时间常数Tl=0.017s,机电时间常数Tm=0.075s。三相桥式整流电路,Ks=40。测速反馈系数=0.07。调速指标:D=30,S=10%。 2 设计要求 (1)闭环系统稳定 (2)在给定和扰动信号作用下,稳态误差为零。 3 设计任务(1)绘制原系统的动态结构图; (2)调节器设计; (3)绘制校正后系统的动态结构图; (4)撰写、打印设计说明书。 4 设计说明书 设计说明书严格按**大学毕业设计格式书写,全部打印.另外,设计说明书应包括以下内容: (1)中文摘要 (2)英文摘要

目录 第一章中文摘要 ································································································ - 1 -第二章英文摘要 ············································································错误!未定义书签。第三章课程设计的目的和意义·············································································· - 1 -1.电力拖动简介 ··························································································· - 1 - 2.课程设计的目的和意义·················································································· - 2 -第四章课程设计内容·························································································· - 2 -第五章方案确定 ································································································ - 3 - 5.1方案比较的论证 ······················································································ - 3 - 5.1.1总体方案的论证比较········································································ - 3 - 5.1.2主电路方案的论证比较····································································· - 4 - 5.1.3控制电路方案的论证比较·································································· - 6 -第六章主电路设计····························································································· - 7 - 6.1主电路工作设备选择 ················································································ - 7 -第七章控制电路设计·························································································· - 8 -第八章结论 ·····································································································- 11 -第九章参考文献 ·······························································································- 11 -

单片机课程设计完整版《PWM直流电动机调速控制系统》

单片机原理及应用课程设计报告设计题目: 学院: 专业: 班级: 学号: 学生姓名: 指导教师: 年月日 目录

设计题目:PWM直流电机调速系统 本文设计的PWM直流电机调速系统,主要由51单片机、电源、H桥驱动电路、LED 液晶显示器、霍尔测速电路以及独立按键组成的电子产品。电源采用78系列芯片实现+5V、+15V对电机的调速采用PWM波方式,PWM是脉冲宽度调制,通过51单片机改变占空比实现。通过独立按键实现对电机的启停、调速、转向的人工控制,LED实现对测量数据(速度)的显示。电机转速利用霍尔传感器检测输出方波,通过51单片机对1秒内的方波脉冲个数进行计数,计算出电机的速度,实现了直流电机的反馈控制。 关键词:直流电机调速;定时中断;电动机;波形;LED显示器;51单片机 1 设计要求及主要技术指标: 基于MCS-51系列单片机AT89C52,设计一个单片机控制的直流电动机PWM调速控制装置。 设计要求 (1)在系统中扩展直流电动机控制驱动电路L298,驱动直流测速电动机。 (2)使用定时器产生可控的PWM波,通过按键改变PWM占空比,控制直流电动机的转速。 (3)设计一个4个按键的键盘。 K1:“启动/停止”。 K2:“正转/反转”。 K3:“加速”。 K4:“减速”。 (4)手动控制。在键盘上设置两个按键----直流电动机加速和直流电动机减速键。在

手动状态下,每按一次键,电动机的转速按照约定的速率改变。 (5)*测量并在LED显示器上显示电动机转速(rpm). (6)实现数字PID调速功能。 主要技术指标 (1)参考L298说明书,在系统中扩展直流电动机控制驱动电路。 (2)使用定时器产生可控PWM波,定时时间建议为250us。 (3)编写键盘控制程序,实现转向控制,并通过调整PWM波占空比,实现调速; (4)参考Protuse仿真效果图:图(1) 图(1) 2 设计过程 本文设计的直流PWM调速系统采用的是调压调速。系统主电路采用大功率GTR为开关器件、H桥单极式电路为功率放大电路的结构。PWM调制部分是在单片机开发平台之上,运用汇编语言编程控制。由定时器来产生宽度可调的矩形波。通过调节波形的宽度来控制H电路中的GTR通断时间,以达到调节电机速度的目的。增加了系统的灵活性和精确性,使整个PWM脉冲的产生过程得到了大大的简化。 本设计以控制驱动电路L298为核心,L298是SGS公司的产品,内部包含4通道逻辑驱动电路。是一种二相和四相电机的专用驱动器,即内含二个H桥的高电压大电流双全桥式驱动器,接收标准TTL逻辑电平信号,可驱动46V、2A以下的电机。可驱动2个电机,OUTl、OUT2和OUT3、OUT4之间分别接2个电动机。5、7、10、12脚接输入控制电平,控制电机的正反转,ENA,ENB接控制使能端,控制电机的停转。 本设计以AT89C52单片机为核心,如下图(2),AT89C52是一个低电压,高性能 8位,片内含8k bytes的可反复擦写的只读程序存储器和256 bytes的随机存取数据存储器(),器件采用的高密度、非易失性存储技术生产,兼容标准MCS-51指令系统,片内置通用8位中央处理器和Flash存储单元,AT89C52单片机在电子行业中有着广泛的应用。 图(2) 对直流电机转速的控制即可采用开环控制,也可采用闭环控制。与开环控制相比,速度控制闭环系统的机械特性有以下优越性:闭环系统的机械特性与开环系统机械特性相比,其性能大大提高;理想空载转速相同时,闭环系统的静差(额定负载时电机转速降落与理想空载转速之比)要小得多;当要求的静差率相同时, 闭环调速系统的调速范

单闭环直流调速系统

第十七单元 晶闸管直流调速系统 第二节 单闭环直流调速系统 一、转速负反馈直流调速系统 转速负反馈直流调速系统的原理如图l7-40所示。 转速负反馈直流调速系统由转速给定、转速调节器ASR 、触发器CF 、晶闸管变流器U 、测速发电机TG 等组成。 直流测速发电机输出电压与电动机转速成正比。经分压器分压取出与转速n 成正比的转速反馈电压Ufn 。 转速给定电压Ugn 与Ufn 比较,其偏差电压ΔU=Ugn-Ufn 送转速调节器ASR 输入端。 ASR 输出电压作为触发器移相控制电压Uc ,从而控制晶闸管变流器输出电压Ud 。 本闭环调速系统只有一个转速反馈环,故称为单闭环调速系统。 1.转速负反馈调速系统工作原理及其静特性 设系统在负载T L 时,电动机以给定转速n1稳定运行,此时电枢电流为Id1,对应转速反馈电压为Ufn1,晶闸管变流器输出电压为Udl 。 n n I C R R C U C R R I U n d e d e d e d d d ?+=+-=+-=0)(φ φφ 当电动机负载T L 增加时,电枢电流Id 也增加,电枢回路压降增加,电动机转速下降,则Ufn 也相应下降, 而转速给定电压Ugn 不变,ΔU=Ugn-Ufn 增加。 转速调节器ASR 输出电压Uc 增加,使控制角α减小,晶闸管整流装置输出电压Ud 增加,于是电动机转速便相应自动回升,其调节过程可简述为: T L ↑→Id ↑→Id(R ∑+Rd)↑→n ↓→Ufn ↓→△U ↑→Uc ↑→α↓→Ud ↑→n ↑。 图17-41所示为闭环系统静特性和开环机械特性的关系。

图中①②③④曲线是不同Ud之下的开环机械特性。 假设当负载电流为Id1时,电动机运行在曲线①机械特性的A点上。 当负载电流增加为Id2时,在开环系统中由于Ugn不变,晶闸管变流器输出电压Ud 也不会变,但由于电枢电流Id增加,电枢回路压降增加,电动机转速将由A点沿着曲线①机械特性下降至B’点,转速只能相应下降。 但在闭环系统中有转速反馈装置,转速稍有降落,转速反馈电压Ufn就相应减小,使偏差电压△U增加,通过转速调节器ASR自动调节,提高晶闸管变流器的输出电压Ud0由Ud01变为Ud02,使系统工作在随线②机械特性上,使电动机转速有所回升,最后稳定在曲线②机械特性的B点上。 同理随着负载电流增加为Id3,Id4,经过转速负反馈闭环系统自动调节作用,相应工作在曲线③④机械特性上,稳定在曲线③④机械特性的C,D点上。 将A,B,C,D点连接起来的ABCD直线就是闭环系统的静特性。 由图可见,静特性的硬度比开环机械特性硬,转速降Δn要小。闭环系统静特性和开环机械特性虽然都表示电动机的转速-电流(或转矩)关系,但两者是不同的,闭环静特性是表示闭环系统电动机转速与电流(或转矩)的静态关系,它只是闭环系统调节作用的结果,是在每条机械特性上取一个相应的工作点,只能表示静态关系,不能反映动态过程。 当负载突然增加时,如图所示由Idl突增到Id2时,转速n先从A点沿着①曲线开环机械特性下降,然后随着Ud01升高为Ud02,转速n再回升到B点稳定运行,整个动态过程不是沿着静特性AB直线变化的。 2.转速负反馈有静差调速系统及其静特性分析 对调速系统来说,转速给定电压不变时,除了上面分析负载变化所引起的电动机转速变化外,还有其他许多扰动会引起电动机转速的变化,例如交流电源电压的变化、电动机励磁电流的变化等,所有这些扰动和负载变化一样都会影响到转速变化。对于转速负反馈调速系统来说,可以被转速检测装置检测出来,再通过闭环反馈控制减小它们对转速的影响。也就是说在闭环系统中,对包围在系统前向通道中的各种扰动(如负载变化、交流电压波动、电动机励磁电流的变化等)对被调量(如转速)的影响都有强烈的抑制作用。但是对于转速负反馈调速系统来说,转速给定电压Ugn的波动和测速发电机的励磁变化引起的转速反馈电压Ufn变化,闭环系统对这种给定量和检测装置的扰动将无能为力。为了使系统有较高的调速精度,必须提高转速给定电源和转速检测装置的精度。

直流电机PWM调速与控制设计报告

综合设计报告 单位:自动化学院 学生姓名: 专业:测控技术与仪器 班级:0820801 学号: 指导老师: 成绩: 设计时间:2011 年12 月 重庆邮电大学自动化学院制

一、题目 直流电机调速与控制系统设计。 二、技术要求 设计直流电机调速与控制系统,要求如下: 1、学习直流电机调速与控制的基本原理; 2、了解直流电机速度脉冲检测原理; 3、利用51单片机和合适的电机驱动芯片设计控制器及速度检测电路; 4、使用C语言编写控制程序,通过实时串口能够完成和上位机的通信; 5、选择合适控制平台,绘制系统的组建结构图,给出完整的设计流程图。 6、要求电机能实现正反转控制; 7、系统具有实时显示电机速度功能; 8、电机的设定速度由电位器输入; 9、电机的速度调节误差应在允许的误差范围内。 三、给定条件 1、《直流电机驱动原理》,《单片机原理及接口技术》等参考资料; 2、电阻、电容等各种分离元件、IC、直流电机、电源等; 3、STC12C5A60S2单片机、LM298以及PC机; 四、设计 1. 确定总体方案; 2. 画出系统结构图; 3. 选择以电机控制芯片和单片机及速度检测电路,设计硬件电路; 4. 设计串口及通信程序,完成和上位机的通信; 5. 画出程序流程图并编写调试代码,完成报告;

直流电机调速与控制 摘要:当今社会,电动机作为最主要的机电能量转换装置,其应用范围已遍及国民经济的各个领域和人们的日常生活。无论是在工农业生产,交通运输,国防,航空航天,医疗卫生,商务和办公设备中,还是在日常生活的家用电器和消费电子产品(如电冰箱,空调,DVD等)中,都大量使用着各种各样的电动机。据资料显示,在所有动力资源中,百分之九十以上来自电动机。同样,我国生产的电能中有百分之六十是用于电动机的。电动机与人的生活息息相关,密不可分。电气时代,电动机的调速控制一般采用模拟法、PID控制等,对电动机的简单控制应用比较多。简单控制是指对电动机进行启动,制动,正反转控制和顺序控制。这类控制可通过继电器,光耦、可编程控制器和开关元件来实现。还有一类控制叫复杂控制,是指对电动机的转速,转角,转矩,电压,电流,功率等物理量进行控制。 本电机控制系统基于51内核的单片机设计,采用LM298直流电机驱动器,利用PWM 脉宽调制控制电机,并通过光耦管测速,经单片机I/O口定时采样,最后通过闭环反馈控制系统实现电机转速的精确控制,其中电机的设定速度由电位器经A/D通过输入,系统的状显示与控制由上位机实现。经过设计和调试,本控制系统能实现电机转速较小误差的控制,系统具有上位机显示转速和控制电机开启、停止和正反转等功能。具有一定的实际应用意义。关键字:直流电机、反馈控制、51内核、PWM脉宽调制、LM298 一、系统原理及功能概述 1、系统设计原理 本电机控制系统采用基于51内核的单片机设计,主要用于电机的测速与转速控制,硬件方面设计有可调电源模块,串口电路模块、电机测速模块、速度脉冲信号调理电路模块、直流电机驱动模块等电路;软件方面采用基于C语言的编程语言,能实现系统与上位机的通信,并实时显示电机的转速和控制电机的运行状态,如开启、停止、正反转等。 单片机选用了51升级系列的STC12c5a60s2作为主控制器,该芯片完全兼容之前较低版本的所有51指令,同时它还自带2路PWM控制器、2个定时器、2个串行口支持独立的波特率发生器、3路可编程时钟输出、8路10位AD转换器、一个SPI接口等,

直流电机地PWM电流速度双闭环调速系统课程设计

电力拖动课程设计 题目:直流电机的PWM电流速度双闭环调速系统 姓名:强 学号:U201311856 班级:电气1303 指导老师:徐伟 课程评分:

日期:2016-07-10 目录 一、设计目标与技术参数 二、设计基本原理 (一)调速系统的总体设计 (二)桥式可逆PWM变换器的工作原理(三)双闭环调速系统的静特性分析(四)双闭环调速系统的稳态框图 (五)双闭环调速系统的硬件电路 (六)泵升电压限制 (七)主电路参数计算和元件选择 (八)调节器参数计算

三、仿真 (一)仿真原理(含建模及参数) (二)重要仿真结果(目的为验证设计参数的正确性) 四、结论 参考文献 附录1:调速系统总图 附录2:调速系统仿真图 一、设计目标与技术参数 直流电机的PWM电流速度双闭环调速系统的设计目标如下: 额定电压:U N=220V;额定电流:I N=136A;额定转速:n N:=1460r/min; 电枢回路总电阻:R=0.45Ω;电磁时间常数:T l=0.076s;机电时间常数:T m=0.161s; 电动势系数:C e=0.132V*min/r;转速过滤时间常数:T on=0.01s;转速反馈系数α=0.01 V*min/r; 允许电流过载倍数:λ=1.5;电流反馈系数:β=0.07V/A;

电流超调量:σi≤5%;转速超调量:σi≤10%;运算放大器:R0=4KΩ; 晶体管PWM功率放大器:工作频率:2KHz;工作方式:H型双极性。 PWM变换器的放大系数:K S=20。 二、设计基本原理 (一)调速系统的总体设计 在电力拖动控制系统的理论课学习中已经知道,采用PI调节的单个转速闭环直流调速系统可以保证系统稳定的前提下实现转速无静差。但是,如果对系统的动态性能要求较高,例如要求快速起制动,突加负载动态速降小等等,单闭环调速系统就难以满足需要。这主要是因为在单闭环调速系统中不能随心所欲的控制电流和转矩的动态过程。如图2-1所示。 图2-1 直流调速系统启动过程的电流和转速波形 用双闭环转速电流调节方法,虽然相对成本较高,但保证了系统的可靠性能,保证了对生产工艺的要求的满足,既保证了稳态后速度的稳定,同时也兼顾了启动时启动电流的动态过程。在启动过程的主要阶段,只有电流负反馈,没有转速负反馈,不让电流负反馈发挥主要作用,既能控制转速,实现转速无静差调节,又能控制电流使系统在充分利用电机过载能力的条件下获得最佳过渡过程,很好的满足了生产需求。 直流双闭环调速系统的结构图如图2-2所示,转速调节器与电流调节器串极联结,转速调节器的输出作为电流调节器的输入,再用电流调节器的输出去控制PWM装置。其中脉宽调制变换器的作用是:用脉冲宽度调制的方法,把恒定的直流电源电压调制成频率一定、宽度可变的脉冲电压序列,从而可以改变平均输出电压的大小,以调节电机转速,达到设计要求。 直流PWM控制系统是直流脉宽调制式调速控制系统的简称,与晶闸管直流调速系统的区

直流电机双闭环调速大作业

题目(中)直流电机双闭环控制调速 姓名与学号 指导教师 年级与专业

所在学院

目录: 一、电机控制实验目的和要求 (4) 二、双闭环调速控制内容 (4) 三、主要仪器设备和仿真平台 (5) 四、仿真建模步骤及分析 (5) 1.直流电机双闭环调速各模块功能分析 (5) 2.仿真结果分析(转速、转矩改变) (18) 3.转速PI调节器参数对电机运行性能的影响 (24) 4.电流调节器改用PI调节器后的仿真 (27) 5.加入位置闭环后的仿真 (28) 6.速度无超调仿真 (30) 七、实验心得 (32)

一、电机控制实验目的和要求 1、加深对直流电机双闭环PWM调速模型的理解。 2、学会利用MATLAB中的SIMULINK工具进行建模仿真。 3、掌握PI调节器的使用,分析其参数对电机运行性能的影响。 二、双闭环调速控制内容 必做: 1、描述Chopper-Fed DC Motor Drive中每个模块的功能。 2、仿真结果分析:包括转速改变、转矩改变下电机运行性能,并解释相应现象。 3、转速PI调节器参数对电机运行性能的影响。 4、电流调节器改用PI调节器后,对电机运行调速结果的影响。 选做: 5、加入位置闭环 6、速度无超调

三、主要仪器设备和仿真平台 1、MATLAB R2014b 2、Microsoft Officials Word 2016 四、仿真建模步骤及分析 1.直流电机双闭环调速各模块功能分析 参考Matlab自带的直流电机双闭环调速的SIMULINK仿真模型: demo/simulink/simpowersystem/Power Electronics Models/Chopper-Fed DC Motor Drive

直流电动机闭环调速试验

. University of South China 电气传动技术 实验报告1 实验名称直流电动机闭环调速实验 学院名称电气工程学院 指导教师 班级电力 学号 学生姓名 文档Word . 一预习报告

目的:1了解并掌握典型环节模拟电路构成方法。 2 熟悉各典型线性环节阶跃响应曲线。 3 了解参数变化对典型环节动态性能影响。内容: 1比例积分控制的无静差直流调速系统的仿真模型 2电流环调速系统的仿真模型 3转速环调速系统的仿真模型

文档Word . 二实验报告 直流电动机:额定电压U=220N,额定电流I=55A,额定转速 dNN n=1000r/min,电动机电动势系数C=0.192V·min/r。假定晶闸管整流eN装置输出电流可逆,装置的放大系数Ks=44,滞后的时间常数 T=0.00167s。电枢回路总电阻R=1.0Ω,电枢回路电磁时间常数 s T=0.00167s,电力拖动系统机电时间常数T=0.075s。转速反馈系数ml*U。对应额定转速时的给定电压·α=0.01Vmin/r=10V。双闭环调速系统中Ks=40,T=0.0017s,T=0.18s,T=0.03s,T=0.002s,T=0.01s,R=0onlmsoi Ω,C=0.132V·min/r,α=0.00666V·min/r,β=0.05V·min/r。e一比例积分控制的无静差直流调速系统中PI调节器的值为: K=0.56,1/τ=11.34 P 文档Word .

无静差调速系统输出(Scope图像1) 输出波形比例部分(Scope1图像2) 对比图1和图2可以发现,只应用比例控制的话,系统响应速度快,但是静差率大,而添加积分环节后,系统既保留了比例环节的快速响应性,又具有了积分环节的无静差调速特性,使调速系统稳定性相对更高,动态响应速度也快。 文档Word .

基于单片机的直流电机调速系统的课程设计

一、总体设计概述 本设计基于8051单片机为主控芯片,霍尔元件为测速元件, L298N为直流伺服电机的驱动芯片,利用 PWM调速方式控制直流电机转动的速度,同时可通过矩 阵键盘控制电机的启动、加速、减速、反转、制动等操作,并由LCD显示速度的变化值。 二、直流电机调速原理 根据直流电动机根据励磁方式不同,分为自励和它励两种类型,其机械特性曲线有所不同。但是对于直流电动机的转速,总满足下式: 式中U——电压; Ra——励磁绕组本身的内阻; ——每极磁通(wb ); Ce——电势常数; Ct——转矩常数。 由上式可知,直流电机的速度控制既可以采用电枢控制法也可以采用磁场控制法。磁场控制法控制磁通,其控制功率虽然较小,但是低速时受到磁场和磁极饱和的限制,高速时受到换向火花和换向器结构强度的限制,而且由于励磁线圈电感较大,动态响应较差,所以在工业生产过程中常用的方法是电枢控制法。 电枢控制法在励磁电压不变的情况下,把控制电压信号加到电机的电枢上来控制电机的转速。传统的改变电压方法是在电枢回路中串连一个电阻,通过调节电阻改变电枢电压,达到调速的目的,这种方法效率低,平滑度差,由于串联电阻上要消耗电功率,因而经济效益低,而且转速越慢,能耗越大。随着电力电子的发展,出现了许多新的电枢电压控制法。如:由交流电源供电,使用晶闸管整流器进行相控调压;脉宽调制(PWM)调压等。调压调速法具有平滑度高、能耗低、精度高等优点,在工业生产中广泛使用,其中PWM应用更广泛。脉宽调速利用一个固定的频率来控制电源的接通或断开,并通过改变一个周期内“接通”和“断开”时间的长短,即改变直流电机电枢上的电压的“占空比”来改变平均电. 压的大小,从而控制电动机的转速,因此,PWM又被称为“开关驱动装置”。如 果电机始终接通电源是,电机转速最大为Vmax,占空比为D=t1/t,则电机的平均转速:Vd=Vmax*D,可见只要改变占空比D,就可以调整电机的速度。平均转 速Vd与占空比的函数曲线近似为直线。 三、系统硬件设计

直流电机双闭环调速系统设计.

┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊ 目录 1 绪论 (1) 1.1课题研究背景 (1) 1.2研究双闭环直流调速系统的目的和意义 (1) 2 直流电机双闭环调速系统 (3) 2.1直流电动机的起动与调速 (3) 2.2直流调速系统的性能指标 (3) 2.2.1静态性能指标 (3) 2.2.2动态的性能指标 (4) 2.3双闭环直流调速系统的组成 (6) 3 双闭环直流调速系统的设计 (8) 3.1电流调节器的设计 (8) 3.2转速调节器的设计 (10) 3.3闭环动态结构框图设计 (12) 3.4设计实例 (12) 3.4.1设计电流调节器 (13) 3.4.2设计转速调节器 (15) 4.Matlab仿真 (17) 4.1仿真结果分析 (19) 5 结论 (20) 参考文献 (21)

┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊1 绪论 1.1课题研究背景 直流调速是现代电力拖动自动控制系统中发展较早的技术。就目前而言,直流调速系统仍然是自动调速系统的主要形式,电机自动控制系统广泛应用于机械,钢铁,矿山,冶金,化工,石油,纺织,军工等行业。这些行业中绝大部分生产机械都采用电动机作原动机。有效地控制电机,提高其运行性能,对国民经济具有十分重要的现实意义。 以上等等需要高性能调速的场合得到广泛的应用。然而传统双闭环直流电动机调速系统多数采用结构比较简单、性能相对稳定的常规PID控制技术,在实际的拖动控制系统中,由于电机本身及拖动负载的参数(如转动惯量)并不像模型那样保持不变,而是在某些具体场合会随工况发生改变;与此同时,电机作为被控对象是非线性的,很多拖动负载含有间隙或弹性等非线性的因素。因此被控制对象的参数发生改变或非线性特性,使得线性的常参数的PID控制器往往顾此失彼,不能使得系统在各种工况下都保持与设计时一致的性能指标,常常使控制系统的鲁棒性较差,尤其对模型参数变化范围大且具的非线性环节较强的系统,常规PID调节器就很难满足精度高、响应快的控制指标,往往不能有效克服模型参数变化范围大及非线性因素的影响。 1.2研究双闭环直流调速系统的目的和意义 双闭环直流调速系统是性能很好,应用最广的直流调速系统。采用该系统可获得优良的静、动态调速特性。此系统的控制规律,性能特点和设计方法是各种交、直流电力拖动自动控制系统的重要基础。 20世纪90年代前的大约50年的时间里,直流电动机几乎是唯一的一种能实现高性能拖动控制的电动机,直流电动机的定子磁场和转子磁场相互独立并且正交,为控制提供了便捷的方式,使得电动机具有优良的起动,制动和调速性能。尽管近年来直流电动机不断受到交流电动机及其它电动机的挑战,但至今直流电动机仍然是大多数变速运动控制和闭环位置伺服控制首选。因为它具有良好的线性特性,优异的控制性能,高效率等优点。直流调速仍然是目前最可靠,精度最高的调速方法。 通过对转速、电流双闭环直流调速系统的了解,使我们能够更好的掌握调速系统的基本理论及相关内容,在对其各种性能加深了解的同时,能够发现其缺陷之处,通过对该系统不足之处的完善,可提高该系统的性能,使其能够适用于各种工作场合,提高其使用效率。并以此为基础,再对交流调速系统进行研究,最终掌握各种交、直流调速系统的原理,使之能够应用于国民经济各个

双闭环直流电机调速系统设计参考案例

《运动控制系统》课程设计指导书 一、课程设计的主要任务 (一)系统各环节选型 1、主回路方案确定。 2、控制回路选择:给定器、调节放大器、触发器、稳压电源、电流截止环节,调节器锁零电路、电流、电压检测环节、同步变压器接线方式(须对以上环节画出线路图,说明其原理)。 (二)主要电气设备的计算和选择 1、整流变压器计算:变压器原副方电压、电流、容量以及联接组别选择。 2、晶闸管整流元件:电压定额、电流定额计算及定额选择。 3、系统各主要保护环节的设计:快速熔断器计算选择、阻容保护计算选择计算。 4、平波电抗器选择计算。 (三)系统参数计算 1、电流调节器ACR 中i i R C 、 计算。

2、转速调节器ASR 中n n R C 、 计算。 3、动态性能指标计算。 (四)画出双闭环调速系统电气原理图。 使用A1或A2图纸,并画出动态框图和波德图(在设计说明书中)。 二、基本要求 1、使学生进一步熟悉和掌握单、双闭环直流调速系统工作原理,了解工程设计的基本方法和步骤。 2、熟练掌握主电路结构选择方法,主电路元器件的选型计算方法。 3、熟练掌握过电压、过电流保护方式的配置及其整定计算。 4、掌握触发电路的选型、设计方法。 5、掌握同步电压相位的选择方法。 6、掌握速度调节器、电流调节器的典型设计方法。 7、掌握电气系统线路图绘制方法。 8、掌握撰写课程设计报告的方法。 三、 课程设计原始数据

有以下四个设计课题可供选用: A 组: 直流他励电动机:功率P e =1.1KW ,额定电流I e =6.7A ,磁极对数P=1, n e =1500r/min,励磁电压220V,电枢绕组电阻R a =2.34Ω,主电路总电阻R =7Ω,L ∑=246.25Mh(电枢电感、平波电感和变压器电感之和),K s =58.4,机电时间常数 T m =116.2ms ,滤波时间常数T on =T oi =0.00235s ,过载倍数λ=1.5,电流给定最大值 10V U im =*,速度给定最大值 10V U n =* B 组: 直流他励电动机:功率P e =22KW ,额定电压U e =220V ,额定电流I e =116A,磁极对 数P=2,n e =1500r/min,励磁电压220V,电枢绕组电阻R a =0.112Ω,主电路总电阻R = 0.32Ω,L ∑=37.22mH(电枢电感、平波电感和变压器电感之和),电磁系数 C e =0.138 Vmin /r ,K s =22,电磁时间常数T L =0.116ms ,机电时间常数T m =0.157ms , 滤波时间常数T on =T oi =0.00235s ,过载倍数λ=1.5,电流给定最大值 10V U im =*,速度给定最大值 10V U n =* C 组: 直流他励电动机:功率Pe =145KW ,额定电压Ue=220V ,额定电流Ie=733A,磁极对数P=2,ne=430r/min,励磁电压220V,电枢绕组电阻Ra=0.0015Ω,主电路总电阻R =0.036Ω,Ks=41.5,电磁时间常数TL=0.0734ms ,机电时间常数

4kw以下直流电动机的不可逆调速系统课程设计要点

设计任务书 一.题目: 4kw 以下直流电动机不可逆调速系统设计 二.基本参数: 三.设计性能要求: 调速范围D=10静差率s < 10%制动迅速平稳 四.设计任务: 五.参考资料: 1. 设计合适的控制方案。 2. 画出电路原理图,最好用计算机画图(号图纸) 3. 计算各主要元件的参数,并正确选择元器件。 4. 写出设计说明书,要求字迹工整,原理叙述正确。 5. 列出元件明细表附在说明书的后面。 直流电动机:额定功率 Pn=1.1kW 额定电压 Un=110V 额定电流 In=13A 转速 Nn=1500r/min 电枢电阻 Ra=1Q 极数 2p=2 励磁电压 Uex=110V 电流 Iex=0.8A

电动机作为一种有利工具,在日常生活中得到了广泛的应用。而直流电动机具有很好的启动,制动性能,所以在一些可控电力拖动场所大部分都米用直流电动机。 而在直流电动机中,带电压截止负反馈直流调速系统应用也最为广泛, 其广泛应用于轧钢机、冶金、印刷、金属切割机床等很多领域的自动控制。 他通常采用三相全桥整流电路对电机进行供电,从而控制电动机的转速, 传统的控制系统采用模拟元件,比如:晶闸管、各种线性运算电路的等。 虽在一定程度上满足了生产要求,但是元件容易老化和在使用中易受外界干扰影响,并且线路复杂,通用性差,控制效果受到器件性能、温度等因素的影响,从而致使系统的运行特征也随着变化,所以系统的可靠性及准确性得不到保证,甚至出现事故。直流调速系统是由功率晶闸管、移相控制电路、转速电路、双闭环调速系统电路、积分电路、电流反馈电路、以及缺相和过流保护电路。通常指人为的或自动的改变电动机的转速,以满足工作机械的要求。机械特性上通过改变电动机的参数或外加电压等方法来改变电动机的机械特性,从而改变电动机的机械特性和工作特性的机械特性的交点,使电动机的稳定运转速度发生变化 由于本人和能力有限,错误或不当之处再所难免,期望批评和指正

单闭环直流电机速度控制系统研究报告

一.实验原理 直流电机在应用中有多种控制方式,在直流电机的调速控制系统中,主要采用电枢电压控制电机的转速与方向。 功率放大器是电机调速系统中的重要部件,它的性能及价格对系统都有重要的影响。过去的功率放大器是采用磁放大器、交磁放大机或可控硅<晶闸管)。现在基本上采用晶体管功率放大器。PWM功率放大器与线性功率放大器相比,有功耗低、效率高,有利于克服直流电机的静摩擦等优点。 PWM调制与晶体管功率放大器的工作原理: 1.PWM的工作原理 图1-1PWM的控制电路 上图所示为SG3525为核心的控制电路,SG3525是美国Silicon General公司生产的专用。 PWM控制集成芯片,其内部电路结构及各引脚如图1-2所示,它采用恒频脉宽调制控制方案,其内部包含有精密基准源、锯齿波振荡器、误差放大器、比较器、分频器和保护电路等。调节Ur的大小,在A、B两端可输出两个幅度相等、频率相等、相位相互错开180度、占空比可调的矩形波<即PWM信号)。它适用于各开关电源、斩波器的控制。 2.功放电路 直流电机PWM输出的信号一般比较小,不能直接去驱动直流电机,它必须经过功放后再接到直流电机的两端。该实验装置中采用直流15V的直流电压功放电路驱动。 3.反馈接口 在直流电机控制系统中,在直流电机的轴上贴有一块小磁钢,电机转动带动磁钢转动。磁钢的下面中有一个霍尔元件,当磁钢转到时霍尔元件感应输出。

4.直流电机控制系统如图1-3所示,由霍耳传感器将电机的速度转换成电信号,经数据采集卡变换成数字量后送到计算机与给定值比较,所得的差值按照一定的规律<通常为PID)运算,然后经数据采集卡输出控制量,供执行器来控制电机的转速和方向。 图1-2 SG3525内部结构 图1-3 直流电机控制系统 5.PID原理 过程控制的基本概念 过程控制――对生产过程的某一或某些物理参数进行的自动控制。 1.模拟控制系统 图1-4 基本模拟反馈控制回路 被控量的值由传感器或变送器来检测,这个值与给定值进行比较,得到偏差,模拟调节器依一定控制规律使操作变量变化,以使偏差趋近于零,其输出通过执行器作用于过程。 控制规律用对应的模拟硬件来实现,控制规律的修改需要更换模拟硬件。 2.微机过程控制系统

温度控制直流电动机转速的课程设计

目录 1 1引言 (1) 2设计任务及要求 (2) 2.1设计目的 (2) 2.2设计要求 (2) 3 本课程设计的意义 (2) 4使用软件介绍 (3) 4.1Proteus仿软真件的介绍 (3) 4.2 Keil软件 (3) 5电路使用元件的介绍 (4) 5.1关于AT89C51单片机的简介 (4) 5.2关于DS18B20温度传感器的简介 (4) 5.3关于L298电机驱动芯片的简介 (4) 5.4关于LM016液晶模块的简介 (5) 6部分硬件的工作原理 (5) 6.1直流电动机的工作原理 (5) 6.2转速的测量原理 (6) 6.3直流电动机的转速控制系统的工作原理 (6) 7直流电动机的转速控制系统软件设计 (7) 7.1编程思路 (7) 7.2系统流程图 (7) 8仿真程序(C语言) (10) 9结束语 (16) 1 1引言 在电气时代的今天,电动机一直在现代化的生产和生活中起着十分重要的作用。据资料统计,现在有的90%以上的动力源自于电动机,电动机和人们的生活

息息相关,密不可分。随着现代化步伐的迈进,人们对自动化的需求越来越高,使电动机控制向更复杂的控制发展。 近年来由于微型机的快速发展,国外交直流系统数字化已经达到实用阶段由于以微处理器为核心的数字控制系统硬件电路的标准化程度高,制作成本低,且不受器件温度漂移的影响,且单片机具有功能强、体积小、可靠性好和价格便宜等优点,现已逐渐成为工厂自动化和各控制领域的支柱之一。其控制软件能够进行逻辑判断和复杂运算,可以实现不同于一般线性调节的最优化、自适应、非线性、智能化等控制规律。所以微机数字控制系统在各个方而的性能都远远优于模拟控制系统且使用越来越广泛。 现在市场上通用的电机控制器大多采用单片机和DSP。但是以前单片机的处理能力有限,对采用复杂的反馈控制的系统,由于需要处理的数据量大,实时性和精度要求高,往往不能满足设计要求。近年来出现了各种单片机,其性能得到了很大提高,价格却比DSP低很多。其相关的软件和开发工具越来越多,功能也越来越强,但价格却在不断降低。现在,越来越多的厂家开始采用单片机来提高产品性价比。 2设计任务及要求 2.1设计目的 设计一个基于温度的电动机转速控制电路,在相应的软件控制下可以完成要求的功能,即外部温度大于45C时,直流电动机在L298驱动下加速正转,温度大于75C全速正转,当外部温度小于10C时电动机加速反转,温度小于0C时电动机全速反转。温度回到10C-45C时电动机停止转动。在液晶显示屏1602LCD上显示当前的温度值。 2.2设计要求 一、设计一个基于温度的电动机转速控制电路,在相应的软件控制下可以完成要求的功能,即外部温度大于45C时,直流电动机在L298驱动下加速正转,温度大于75C全速正转,当外部温度小于10C时电动机加速反转,温度小于0C 时电动机全速反转。温度回到10C-45C时电动机停止转动。在液晶显示屏1602LCD 上显示当前的温度值。 二、画出基于温度的电动机转速控制电路的电路图; 三、所设计的电路需要在仿真软件Protues v7.5上能够运行,课程设计报告的最后必须附有在仿真软件Protues v7.5下设计的电路图和控制程序清单。 3 本课程设计的意义 直流电动机作为一种高效率速度控制电动机引人注目、但市场的知名度还小

相关文档
相关文档 最新文档