文档视界 最新最全的文档下载
当前位置:文档视界 › 地源热泵系统的设计及计算

地源热泵系统的设计及计算

地源热泵系统的设计及计算
地源热泵系统的设计及计算

一说到设计,人们往往想到的是工程技术人员的计算和绘图,当然这些都属于设计领域里的工作,而寻找解决问题的途径,也是设计任务之一。设计本身包括寻找解决问题的途径,所以它不限于事先构思,更不排斥实践,而应是思维活动与实践活动的统一。空调设计的任务及目的,就是把现有能效高的设备组织好、使用好、充分发挥它们的作用。

现代空调系统的不断发展使建筑物内的设施日益增多和复杂,这对改善人们的生活和工作环境有着积极作用,但同时也带来了由于系统设计、工程施工和运行管理不当而造成对自然环境和人体健康有害的因素。所以反过来力求解决这些问题就成为一种主要的推动力,促使空调技术更进一步向前发展。目前,建筑节能的重要性越来越引起人们的关注。从建筑设计方面来看,提高隔热保温性能,采用合理的朝向,增设必要的遮阳等可以减少空调负荷,降低能耗。对于确定的空调负荷,提高设备的效率和优化运行过程提供相应的硬件软件,都成为降低能耗的关健。

空调系统的设计一般采用工况设计法,是以夏季和冬季室外空气设计参数为依据的典型工况进行计算,并且是按最不利情况考虑,按照设备的额定工况选择指标。所以,设备选型较大。空调设备经常处于部分负荷状态下运行,必须要求设备在部分负荷运行时也能高效率运行。避免负荷变化了,而设备不能作相应调节,出现大马拉小车的现象;或设备也能调节负荷,但调节性能差,耗能指标落后。

因此,设计的任务就是要用先进的自控技术将空调全工况下的

性能调整到最佳程度,这就是所谓的过程设计方法。

一、中央空调设计主要参考以下的规范及标准

1、通用设计规范

1).《采暧通风及空气调节设计规范》(GB50019-2003(2003

年版));

2).《采暖通风及至气调节制图标准》(GBJ114-88)

3).《建筑设计防火规范》(GBJ116-87)

4).《高层民用建筑设计防火规范》( GBJ0045-95)

5).《民用建筑节能设计标准(采暖居住建筑部分)》(JGJ26-95)2.专用设计规范:

1).《宿舍建筑设计规范》(JGJ36-87)

2).《住宅设计规范》(GB50096-99)

3).《办公建筑设计规范》(JG67-89)

4).〈旅馆建筑设计规范〉(JGJ67-89)

5).《旅游旅馆建筑热土与空气调节节能设计标准》(GB50189-93)

6).《地源热泵系统工程技术规范》(JGJ142-2004)

7).《地面辐射供暖技术规范》(GB50366-2005)

8).其它专用设计规范

3.专用设计标准图集:

1).《暖通空调标准图集》

2).《暖通空调设计选用手册》(上、下册)

3)、其它有关标准

二、空调冷、热负荷计算

空调负荷是指为保持室内空气设计条件,单位时间内室内空气输入或排出的热量,前者称为热负荷,后者称为冷负荷。热负荷、冷负荷与湿负荷的计算以室外气象参数和室内要求保持的空气参数为

依据。

冷热负荷的计算是空调工程设计中最基础的计算工作,负荷计算的准确性直接影响到建筑的能耗,工程的投资费用和整个系统的运行费用及使用效果。

在设计时,一定坚持对建筑物作负荷分析计算,只有认真的负荷分析计算,才有热泵机组合理的选型和正确土壤换器的设计。建筑冷热负荷的分析计算依据:建筑物类型、地理位置、环境条件、外围结构、建筑物功能、人员状况、新风量等。可采用能耗分析软件进行适当地优化分析,减少不必要的负荷浪费。

设计院通常采用负荷逐时计算法,专业公司通常采用经验估算。

1、室外空气参数的确定:

室外的计算参数取值的大小,将会直接影响室内空气状态和空调运行费用。除有特殊要外,一律按规范中的规定。

2、室内空气参数的确定

室内计算参数的确定,除了考虑所提出的一定必要外,空调房间的负荷要考虑下列因素:照明和设备散热量、人体散热量和散湿量、新风的热量和湿量。还应根据室外气温、经济条件和节能要求进行综

合考虑各种建筑物室内空气计算参数按国家标准《采暖通风与空气调节设计规范》(GB50019-2003)的具体规定。

3、冷、热负荷的计算

负荷包括:围护结构传热、外窗太阳辐射、人体散热、照明散热、室内物品的散热、空气的渗入带来的热量等形成的冷负荷。

冷负荷的计算

1)、围护结构传热引起的冷负荷:

其中: F——外墙、屋顶的计算面积 m2,

K——外墙、屋顶的传热系数 W/,查表

——外墙、屋顶的冷负荷温度的逐时值℃,查表。

2)、玻璃窗的冷负荷,

a.传热引起的冷负荷:

其中:F——窗口面积 m2,

K——玻璃窗的传热系数 W/,查表

t n——室内设计温度℃,

t t ——玻璃窗的冷负荷温度的逐时值℃,查表。

b.玻璃窗日射引起的冷负荷

其中:——玻璃窗对太阳辐射直射的吸收率,

——玻璃窗对太阳辐射散射的吸收率,

——直射太阳辐射强度 W/m2,

——散射太阳辐射强度 W/m2,

——玻璃吸收太阳辐射热传向室内的比率,一般取

3)电热设备发热引起的冷负荷

4)室内湿源形成的湿负荷

a.人体散湿、热形成的冷负荷,

人体散热与性别、年龄、衣着、活动强度以及环境条件等各种因素有关,在人体散出的热量中,辐射约占40%,对流约占20%,其余40%.则为潜热。

b.工艺设备散湿:

随着工艺流程可能有各种材料表面蒸发水汽或泄漏,其散湿量确定方法视具体情况而定,可从有关资料查出。

5)冷、热负荷的估算:

在初步设计阶段,由于设计基本数据不是很完备,所以一般是采用负荷指标估算冷热负荷,目的是为了做投资预算的依据。

a、建筑面积估算法

不同地区建筑物的冷热指标估算:

b、不同用途的建筑物冷负荷概算指标

c.空调的热负荷

热负荷包括围护结构的传热,外窗的散热以及室内设施的吸热等形成的热负荷。一般建筑的热负荷量随地质不同有所差异,在我国四、五类区域,热负荷均略小于冷负荷。

d.空调湿热负荷

湿空气是由干空气和水蒸汽所组成的,在工程计算上定0℃时干空气的焓及饱和水的为0,则在温度T 时干空气的可表示为:

室内湿源包括人体散湿和工艺设备的散湿。人的散湿量大约随人的活动程度,轻微活动—中等劳动—重度劳动散湿量逐渐增加100~250~400g/h。

三、能量采集系统的设计

(一)水源热泵系统:

1、水源热泵水井的确定

如果考虑使用地下水水源热泵系统,首先应与当地政府的有关管

理部门联系,争取得到他们的支持,允许使用地下水,然后再按照以下步骤工作:

1)委托当地水文地质管理单位对水文地质进行调查,在当地勘查部门进行勘查的总结资料的基础上,对地下水源进行估测、评定,以表明所选的地点是否是安装地下水系统的理想地点。

2) 对水文地质条件复杂并且当地没有进行勘查工作的地区,就需要向当地的勘查部门提出勘查要求,由有资格的水文地质工作者对当地供水井和回灌井进行预期估测,提供满足系统峰值流量要求的方案,并建议井的设置,包括水井的数量、间距和供水井回灌井的直径、深度。

3) 当地没有做正规的勘查,但有零散的钻井档案,而且水文地质条件简单,或用水量不大的情况时,可不进行全面的勘查工作,但是在大面积建筑物水源热泵系统工程确定方案以前,必须做水文地质钻探。通过钻探可以更直接而且较准确地了解含水层的埋藏深度、厚度、岩性、分布情况、水位和水质等。利用钻井抽水试验,注水试验,从而确定含水层的富水性和水文地质参数,譬如给水度,导水系数,渗透系数,储水系数,水位传导系数,补给系数及越流系数等。对地下水储存量、补给量、容水量和水质的评估,选定满足系统峰值流量要求的最佳方案。

4) 将方案报有关管理部门审批,取得合理开凿地下水许可证。

2、水井的设计

水井的设计将由有经验有资格的水文地质工作者完成。

1) 根据地下水总的取水量,确定单井的预期功能和容量、抽水井的取水量、抽水井的动态水位和回灌井回灌点。

2) 井的位置要选在稳定型水源地,确定井的几何尺寸、钻井数量、井间距及井的具体定位。

3) 大水量用水时,要进行井群的干扰计算,将结果与设计的总水量、控制点的降深、回灌点的要求进行比较,尽量满足要求。

4) 井套管的选材、灌浆和回填材料的确定。

5) 地下水输送系统的排气,防止水锤发生,消除氧气腐蚀,避免水井间的虹吸作用等。

6) 地下水系统是否允许供水井和回灌井在运行过程中互换。

7) 在进行定期的维护避免出现堵塞现象的条件下,回灌井的回灌量不能超出同一井供水量的2/3。

3、地下水资源的保护

1)尽量减少水源热泵机组对地下水的需求量。采用热泵机组最低允许进液温度与最高允许进液温度之间温度大的机组,充分利用地下水的能量,相应减少地下水的应用量。

2)增设地下水流程中的过滤、除砂、重力沉淀设施,使回灌水清洁,避免回灌井的堵塞,扩大回灌量。

3)抽水井和回灌井的深度必须在同一含水层,杜绝不同水质的水层相互连通,防止被污染的潜水与其他承压水混合。

4)如果水源热泵系统所确定的水源是已经被污染的水层,可用物理—化学法和生物净化法对污染的地下水进行净化,降低地下水的污

染程度。

4、举例说明

北京某办公楼,建筑面积10000平方米,坐落在北京海淀区四季青镇杏石口路,四季青镇单井取水量为80立方/小时,回水量为70立方/小时。现项目业主想采用水源热泵系统冬天供暖、夏天制冷,请为业主计算应该打多少口井?

(二) 地源热泵系统

地源热泵中央空调地热交换系统可分为垂直式与水平式两种。在选择地热交换器的形式时必须对建筑物的功能、环境和土质水文做清楚的了解,和详细的调研后,方可确定地热交换器形式。

1 水平式埋管(水平式)

水平式埋管方式的优点是在软土层造价低,但受外界气候影响。水平式埋管的方式可分为单层和双层,如图:单沟多管和双沟多管。

多选用Ф32 的PE 管。水平平铺,单沟单回路每延米管长换热量34W/M。双回路换热量25W/M。四回路换热量20W/M。六回路换热量

16W/M。不同地区有所差别。

2、垂直式埋管(立式)

垂直式埋管就是在地面向深处钻孔,将U 型管安装在井孔里,将孔填实,根据每孔实装U 型管的数量可分为单U 型、双U 型和多U 型。

①钻孔直径与孔间距离

单U 型孔径50~80mm 孔间4~5m

双U 型孔径100~150mm 孔间5~6m

多U 型孔径200~250mm 孔间6米以上

②钻孔深度

空调系统分为单状态运行和两种状态运行,单状态运行和两种状态运行时间差大的土壤换热器的钻孔深度宜为40~60m。两种状态运行时间差小的土壤换热器的钻孔深度宜100m 以下。热泵系统两种状态运行时间较为平衡的土壤换热器的钻孔深度宜为150m以下。

3、现场的调查与分析

在决定采用地源热泵系统地热交换器的形式之前,应收集有关资料并对工程施工现场实际情况进行准确的掌握,这就是现场勘测。

1)仔细阅读计划建设的建筑物设计文件,掌握建设的规划、规模、建筑物的用途,并了解在施工期间所有当地规章制度、政策性条例、地区性法规,以减少施工干扰。

2)确定建筑物业主拥有的地表使用面积大小和地形,建筑物所在的方位、结构、路边附属设备、地下公用设施、市政管道位置以及地下废弃的设施,以避免因潜在因素造成不必要的损失,影响施工。

3)查阅有关水文资料,包括地质结构,岩土的质量深度等,对

现场进行调研分析,做出现场对采用地源热泵系统的适应性评估。

4、地址勘察

选用地源热泵系统后的第一件工作就是对现场地质的勘测,包括松散土层的厚度、密度、砂型、含水量、岩床的深度、岩床的结构。

1)钻井勘测孔

虽然大部分地区是适合安装地源热泵的,有时候现场也许会因为一些特殊情况,需增大钻孔设备容量、增加钻进难度,加大了成孔成本。在工程开始前,对现场情况的勘测,避免了在施工时可能遇到的潜在复杂问题,并且使用实际测量数据比使用假设数据更可以提高设计者在设计上的可靠性和准确性,同时也为工艺设计提供所需的资料,以便选择最合适的钻孔挖掘设备和钻井钻具。

对于建筑面积小于3000m2的建筑,建议使用一个测试井。对于大型建筑物至少使用2 个测试井。

对于地耦管水平式热交换器,挖一个3~5m 的深坑就能实现,对靠近地表处土质状况是否有巨石存在也能做一定了解。而对于垂直式热交换器,就需要钻勘探孔,并按有关规定格式做好记录。

2)地下岩土热物性参数的检测

地下岩土的热物性参数是地源热泵土壤换热器设计中重要的依据。习惯的方法是根据所了解的现场地质资料,凭经验假设一些系数进行设计计算,况且地下地质结构的复杂,影响土壤导热系数的因素诸多,导致计算的地耦管的长度与实际长度有一定的偏差,有时甚至相差很大,因此现场的实际勘测是非常必要的。实际准确的热物性参

数可保证设计的可靠,是土壤换热器不会出现负荷不足或规模过大现象。

为了能更准确的为设计者提供可靠的设计依据,应在现场按预计的深度钻孔,并按确定的工艺完成一个独立的单孔换热器,再用专用岩土热物性测量仪作仔细测量,记录换热器环路中水的流量、进出水的温度、运行时间等相关数据和每延米孔深或每延米管长的换热量(W/m)。

5、勘测报告

1)、勘测数据的计算

勘测孔的钻孔,U 型管的安装,孔的回填均按设计方案,不得随意更改。如需改变方案必须经设计者签字同意后方可执行。根据勘测孔的实测数据,验证设计计算的结果。

1、勘测孔换热能力

换热量 = 流量×介质比热×(进液温度—回液温度)÷(kW)其中:流量(kg),比热(kcal/kg·℃),温度(℃)。

2、U 型管的阻力 = 进液压力—回液压力

3、确定U 型管的最小流量和最低流速

保持最佳换热量单位时间内的最小流量和最低流速,为选定水泵提供依据。

2)勘测报告内容

根据调查、勘测写出水文地质勘测与评估报告,为设计提供可靠依据,其内容如下:

1、建筑物业主拥有使用权的土地面积、范围以及规划设计方案;

2.土地表面的现有建筑的结构、用途等,是否有其它的高架设施;

3.地面的公共设施、相关设施的位置和地下设施的用途、位置、深度等;

4.收集到的地质资料和做出的评估;

5.钻探勘测孔是掌握工程现场土壤热工特性的重要手段之一,阐明钻孔设备、钻井方法、钻井工具,勘测孔的孔深、孔径,U 型管的数量、直径、长度,回填料的配制以及回填设备。

6.U 型管内的介质、流量、流速、进液温度、回液温度,写明测量结果,附有测量记录数据。

6、地源热泵土壤换热器的设计

垂直埋管技术是国际土壤源热泵组织所推荐的,特别适合于场地比较紧张的城市地区。工程上最多的是U 型管换热器。

关于垂直埋管换热器传热分析数值计算的论文很多,而且计算方法各不相同,在应用方面较少有通用性。本节主要阐述的是垂直式换热器的设计计算。但是,因为垂直埋管换热器传热问题影响因素众多,涉及空间范围大,计算时又很难查找有关可靠参考数据。所以,在当前的计算条件下用数值计算方法直接进行实际工程的设计计算还有

一定的难度。目前,在实际工程中广泛采用最大负荷估算法。设计计算是为了保证在地埋管换热器的寿命周期中,循环介质的温度变化都

在设计要求的范围之内。

1)换热器换热量的确定

查阅被选用的热泵机组的样册,统计出夏季空调运行所需要的机组制冷量之和Q冷以及冬季采暖运行所需要的机组吸热量之和Q热,查出机组制冷运行和制热运行的能效系数EER 和COP。

夏季制冷时,土壤换热器向大地排放的热量为:

冬季制热时,土壤换热器从大地吸收的热量为:

从实践中得到,在地质情况相同的条件下,热泵机组允许的最低和最高进液温度是确定热交换器地耦管长度的主要因素。如果以允许最低进液温度为确定因素,热交换器的长度由吸热负荷确定;如果以允许最高进液温度为确定因素,热交换器的长度由放热负荷确定。在实际中,温度只会达到最低或最高温度限制值中的一个。降低机组的最高温度允许值或升高机组最低温度允许值,都要增加地耦管的长度。

2)换热器地耦管的选材

常用的塑料管UPVC、PB、PP-R、PEX、ABC、PVC、PE 中,地耦管换热器采用PE 管。

选用的PE 管材要具备以下要求:

a 耐腐蚀性能好:

聚乙烯PE 管,耐化学介质的腐蚀,无电化学腐蚀,保证地耦管

使用50 年以上;

b 良好的柔性、延展性:

聚乙烯PE 管是一种高柔性管材,其断裂伸长率一般超过500%;

c 流体阻力小:

聚乙烯PE 管内壁光滑,绝对粗糙度K 值不超过,是钢的20%。内壁光滑,使壁内不易结垢,流体磨擦阻力小;

d 优良的挠屈性:

聚乙烯PE 管小于ф50 的较长的管可盘卷供应,减少接头;

e 较好的耐冲击性:

聚乙烯PE 管耐冲击强度高,不易破裂;

f 导热系数高:

聚乙烯PE 管导热系数大于m·℃;(土壤源换热器专用管导热系数大于m·℃);

g 良好的施工性能:

聚乙烯PE 管材

(1) 尺寸规格

目前,国内已有口径φ25~φ400。

(2) 颜色

A、规定,燃气用聚乙烯管道的颜色为黄色或黑色加黄条;

B、GB13663 规定,给水用聚乙烯规定为蓝色或黑色加蓝条

(3) 长度

长度一般为12 米/根(标准规定为6、9、12 米/根),小口径管

可盘卷

(4) 性能指标

短期静液压强度:

在20℃、环向应力9MPa 下,韧性破坏时间应大于100 小时

在80℃、环向应力下,脆性破坏时间应大于165 小时

※热稳定性:在200℃下,应大于20 分钟

※耐应力开裂:在80℃、环向应力4MPa 下,应不小于170 小时※压缩复原在80℃、环向应力4MPa 下,应大于170 小时

※纵向回缩率:在110℃下,应不大于3%

※断裂延伸率:应大于350%

(5) 压力等级

对于水管道,是按原材料的不同等级(PElOO、PE80、PE63 等)、标准尺寸比(SDR)给出的。

MOP:最大允许工作压力

MRS:材料的最小要求强度

SDR:标准尺寸比

管件的分类

①根据管件的生产方式不同,可将管件分为注射管件及焊接管件两大类。大部分管件都可用注射成型的方法制造。但对于一些壁厚、体积、重量都较大的管件,可采用焊接的方法制造。

②根据施工方法、用途的不同,可将聚乙烯管件分为电热熔管件、热熔对接管件、承插管件、钢塑转换接头等类型。

A、电热熔管件:

电热熔管件在制作工艺过程中,将电热丝布置于管件的内表面,施工时将管子与管件配合后用专用的加热控制电源将管件中的电热

丝通电加热,使管件与管材的接触表面熔化结合,冷却后使管件与管材牢固、密封地结合在一起。由于施工快捷方便,焊接效果好,电热熔管件是目前世界上聚乙烯管材连接件中应用最为广泛的一种。此种管件的缺点是制造成本较高。

B、热熔对接管件:

热熔对接管件是指适用于热板对接焊的管件。

C、热熔承插管件:

热熔承插管件是用于承插焊连接的管件。一般口径较小,主要用于φ32以下管件。

D、钢塑转换接头:

钢塑转换是实现钢管向塑管、塑管向钢管转换的专用管件。

③按工程习惯,聚乙烯管道系统的管件又可分为:套筒、弯头、三通、鞍型、三通、变径、法兰、钢塑转换等。

管件的性能:

A.短期静液压强度:

在20℃、环向应力9MPa 下,韧性破坏时间应大于100 小时

在80℃、环向应力下。脆性破坏时间应大于165 小时

B.热稳定性:在200℃下,应大于20 分钟

C.加热伸缩:管件外径及长度变化不超过5%,管件外形不允

许有明显变化。

聚乙烯PE 球阀

PE 球阀是聚乙烯管网系统中不可缺少的控制元件。它开启、关闭的力矩小,阀门无腐蚀,不需维护和维修,使用寿命50 年,聚乙烯管网系统的完整性提高。整体式的阀体,免除了泄漏的可能,PE 球阀与PE 管道连接时,无需设置阀门井,直埋施工,阀体两端的直口可使用对接焊或电熔焊方便的连接。

聚乙烯PE 管管质轻,焊接工艺简单,管件与管材在材质上同一性,实现了管件与管材焊接的一体的化。其接口的抗拉强度和爆破强度均高于管材本身,有效抵抗内压力产生的环向应力和轴应力。

(三)能量采集水系统的承压

在一般情况下,地埋管换热器最低处是最高压力点,系统停止运行时,等于系统的静水压力的差与大气压力之和,

系统启动的瞬间,最低处压力等于静水压力的差、大气压与水泵全压之和,

系统正常运行时,最低处压力等于静水压力的差、水泵全压的一半与大气压力之和,

PE 管的压力等级

管路所需承受的最大压力等于大气压力、U 型管内外液体重力作用静压差和水泵扬程总和。选用的管材允许工作压力应大于管路的最大压力。在20℃输送水的最大允许工作压力: MPa.、 MPa、 MPa 、MPa 、 MPa、 MPa。

(四)地耦管管径的选择

在管流量部分,在工程中管径的选择既能使管道保持最小的输送功率,又能够使管道内保持紊流,提高循环液体和管道内壁之间的放热系数。选择管径时必须满足几个原则:

一是管道要大到足够保持泵最小输送功率,减少运行费用;

二是管道要小到足够使管道内保持紊流以保证循环液体和管内壁之间的传热;

三是系统环路的长度不要过长。

地耦管的管径选择要考虑到按U 型管的所需长度,成盘供应,以减少埋管接头数量,

所需管件能低价供应,降低工程成本。所以目前采用较多的地耦管直径为PE100-SDR11-Ф32 和Ф32。

地耦管换热系统管路的压力损失主要在集路管,所以集路管管径应适当大一点,多采用PE100 (或PE80)-SDR11~。

集路管的管径、流量、阻力:

从众多工程项目施工中得到:地耦管的管径在Ф25mm~Ф50mm 时,以Ф32(GB/T13663-2000)为最佳。在换热器的换热量小的工程中,在保证质量的条件下,尽量选用薄壁管,以提高换热效果。孔深60m 以内用,壁厚可选的聚乙烯管(公称压力);孔深200m 以内用,壁厚为的聚乙烯管(公称压力)。

影响地耦管长度的因素有换热器的换热量、管的材质、土壤的结构、埋管的形式以及连接方法等。

(四)地耦管管长的计算:

(五)、地耦管换热器的钻孔数量和孔的深度

钻孔数量和深度要根据建筑物周围可使用面积,建筑物对中央空调的使用要求,土地的土壤结构,PE 管的材质以及钻孔设备等来确定。在使用面积足够大的条件下钻孔数量加大,钻孔深度可在40m~80m,浅孔可降低材料成本,减少钻孔费用。它适合单一运行状态的

水源热泵设计方案

水源热泵热水机组 设 计 方 案 方案目录 方案概述................................ 第一章水源热泵中央空调介绍........................ 第二章水源热泵中央空调相关政策依据................ 第三章方案设计.................................... 第四章工程概算.................................... 第五章水源热泵系统技术特点........................ 第六章公司简介.................................... 第七章工程清单目录................................

方案概述 本方案采用水源热泵中央空调新技术,水源热泵中央空调是二十世纪七十年代以来欧美发达国家大力推广的空调新技术。它是利用地下浅层水中低品位能源制冷和制热,空调运行成本比传统电制冷空调节约50%以上。 第一章水源热泵中央空调介绍 一、水源热泵现状及政策依据 水源热泵最早源于1912年瑞士的一项发明专利,二十世纪七十年代能源危机以后,这一节能、环保的空调技术受到西方国家的重视。水源热泵技术在美国、加拿大和北欧国家和地区已得到广泛地应用。瑞士的普及率达到50%以上,美国推广速度以每年20%的速度递增。 1995年中美签署了《中华人民共和国国家科学委员会和美利坚合众国能源部效率和再生能源技术的发展与利用领域合作协议书》,并与1997年又签署了该合作协议书的附件六——《中华人民共和国国家科学技术委员会与美利坚合众国能源部地能开发利用的合作协议》。其中,两国政府将地源热泵空调技术列为能源效率和再生能源的合作项目。建设部2000年第76号令也将地热、可再生能源以及空调节能技术列入建设部推广项目。2004年9月14日国家发改委高技术处颁发了《关于组织实施“节能和新能源关键技术”的通知》,将地热、热泵列为重点开发内容。2005年2月28日第十届全国人民代表大会常务委员会第十届会议通过了《中华人民共和国可再生能源法》鼓励大力推广应用太阳能、地热能、水能等可再生能源。 与此同时,适合推广水源热泵的北京市、山东、河南、辽宁、河北等地政府对推广水源热泵空调制定了优惠政策。这一举措极大的促进了我国地源热泵技术的发展。 北京市第一个地温空调工程——蓟门饭店(两会代表驻地)已运行七年。运行成本低于原燃煤锅炉和单冷机组,比改造前每年可节约数十万运行费用。 二、水源热泵工作原理 水源热泵技术利用地球表面浅层水源(如地下水、河流和湖泊)中低品位热能资源,通过逆卡诺循环实现低品位热能向高品位热能转移的一种技术。它以水为工作介质将地下土壤中的低品位热能提取出来,经高效的热泵机组,利用少量的高品位电能,将水中的低品位能量输送到空调场所,完成热交换的地下水又重新回灌到地下去。井水是在金属管路中闭路循环的,水不与大气接触,不消耗水,也不污染水,只提取水中的热能。地温空调

地源热泵节能技术论文

地源热泵节能技术论文 为了缓解全球能源短缺问题,建筑采暖行业开始引入地下水地源热泵技术,期望能利用该技术所具备的节能。—了地源热泵节能技术,有的亲可以来阅读一下! 地源热泵节能分析 摘要:利用土壤、地表水和地下水等地表浅层的地源热泵,是夏季制冷以及冬季供暖的空调系统,相对比传统的空调系统地源热泵供暖空调技术因全年恒定的地源温度,所以其有较高的运行效率。地源热泵的经济竞争性还是有待考究的。文章首先对地源热泵技术的概念进行了描述,分析了地源热泵供暖空调技术的现状,阐述的地源热泵技术的优点,同时分析了地源热泵技术在国内发展中存在的障碍。 关键词:地源热泵;节能;分析 :TE08: A

为了缓解全球能源短缺问题,建筑采暖行业开始引入地下水地源热泵技术,期望能利用该技术所具备的节能。环保性能有效降低能源损耗,实现建筑暖通节能,为建筑节能做出贡献,为了更深入的了解地下水地源热泵系统特性,笔者现结合地下水地源热泵技术特点,对该技术在建筑暖通工程施工中的应用作详细探讨。 一、地源热泵原理与组成 随着经济的发展和生活水平的提高,公共建筑和住宅的供热和空调己成为普遍的需求。在发达国家中,建筑能源耗费量大约占总能耗的三分之一,其中供热和空调的能耗可占到建筑能耗的65%。在全球能源形势日趋紧张的今天,空调节能变得尤其重要。而且大量燃烧矿物燃料所产生的环境问题也己成为各国政府和公众关注的焦点。因此,除了集中供热以外,急需发展其他的替代供热方式。地源热泵就是能有效节省能源、减少大气污染的供热和空调新技术。地源热泵是利用大地“土壤、地表、地下水”作为热源。地源热泵系统一般由地热能交换系统、水源热泵机房系统和建筑内末端散热系统三部分组成。其中,地热能交换系统可以说是地源热泵与其它传统中央空调系统唯一和最大的区别。 二、地源热泵技术的概念及现状 地源热泵技术是指使用地下的岩石作为稳定的蓄热体,将地下浅层热资源,通过少量的高位能源,将低品位能源向高品位能转移,以实现冬

水源热泵系统设计

水源热泵系统设计 一、水源热泵设备选型 ⒈一般情况下按空调冷负荷确定机组型号,对于热负荷高的地区要校核采暖负荷。 传统的系统——用较大的热负荷或冷负荷选择系统。以出水温度35℃的制冷量或以出水温度18℃的 制热量作为选择水源热泵机组的依据。 ⒉无锅炉系统——用冷负荷选择水源热泵机组,房间的热损耗需用足够能量的电加热型加热器加以抵 消。 ⒊水系统进水温度选定原则:一般制冷为15~35℃,制热为10~32℃,国标规定制造商参数标定按制冷进出水温度30/35℃,热泵制热进出水温度20℃。 ⒋水量及风量确定原则:一般每KW的水流量为0.19m3/h,风量为140~250m3/h。 ⒌实际制冷量及制热量会因室内设计干、湿球温度的不同而有所变化,应根据室内设计干、湿球温度进 行修正。 二、循环水系统设计 水环系统通常有冷却塔、换热器、蓄热箱、辅助加热器、泵及相应管路组成。水环水温控制范围一般为15~35℃,在此温度范围内,一般不需要开冷却塔或辅助加热器。 三、系统水流量设计 水源热泵系统夏季需冷量的计算方法与其它系统相同。根据需冷量和所需的冷却水温差,各台水源热泵装置的循环水量即可求出,在考虑到装置的同时使用系数,即可得到整个系统所要求的夏季总冷却循环水量。 一般来说,单一性质的建筑同时使用系数较高,综合性建筑则低一些。另水源热泵装置的数量越多,同时使用系数越小,反之则越大。同时使用系数可按以下原则来确定: ⒈循环水量小于36 m3/h时,同时使用系数取0.85~0.9 ⒉循环水量为36~54 m3/h时,同时使用系数取0.85~0.85 ⒊循环水量大于54 m3/h时,同时使用系数取0.75~0.8 以上原则中所提到的循环水量是指各装置所需水量的累计值,把此值乘以同时使用系数即可得到系统实际所需的总循环水量,并以此作为循环水泵、冷却塔的选型参数以及循环水总管径确定的依据。 四、系统形式 水源热泵水路系统通常采用一次泵系统,运行简单、管理也比较方便。考虑到整个系统的运行可靠,系统中必须设置备用泵。 水系统的循环泵建议多台并联。 为保证每一台水源热泵机组都得到所需水流量,其水系统一般建议采用同程式;每一个分支

第三章 地源热泵系统的设计及计算.

第三章地源热泵系统的设计及计算 一说到设计,人们往往想到的是工程技术人员的计算和绘图,当然这些都属于设计领域里的工作,而寻找解决问题的途径,也是设计任务之一。设计本身包括寻找解决问题的途径,所以它不限于事先构思,更不排斥实践,而应是思维活动与实践活动的统一。空调设计的任务及目的,就是把现有能效高的设备组织好、使用好、充分发挥它们的作用。 现代空调系统的不断发展使建筑物内的设施日益增多和复杂,这对改善人们的生活和工作环境有着积极作用,但同时也带来了由于系统设计、工程施工和运行管理不当而造成对自然环境和人体健康有害的因素。所以反过来力求解决这些问题就成为一种主要的推动力,促使空调技术更进一步向前发展。目前,建筑节能的重要性越来越引起人们的关注。从建筑设计方面来看,提高隔热保温性能,采用合理的朝向,增设必要的遮阳等可以减少空调负荷,降低能耗。对于确定的空调负荷,提高设备的效率和优化运行过程提供相应的硬件软件,都成为降低能耗的关健。 空调系统的设计一般采用工况设计法,是以夏季和冬季室外空气设计参数为依据的典型工况进行计算,并且是按最不利情况考虑,按照设备的额定工况选择指标。所以,设备选型较大。空调设备经常处于部分负荷状态下运行,必须要求设备在部分负荷运行时也能高效率运行。避免负荷变化了,而设备不能作相应调节,出现大马拉小车的现象;或设备也能调节负荷,但调节性能差,耗能指标落后。

因此,设计的任务就是要用先进的自控技术将空调全工况下的性能调整到最佳程度,这就是所谓的过程设计方法。 一、中央空调设计主要参考以下的规范及标准 1、通用设计规范 1).《采暧通风及空气调节设计规范》(GB50019-2003(2003 年版)); 2).《采暖通风及至气调节制图标准》(GBJ114-88) 3).《建筑设计防火规范》(GBJ116-87) 4).《高层民用建筑设计防火规范》( GBJ0045-95) 5).《民用建筑节能设计标准(采暖居住建筑部分)》(JGJ26-95)2.专用设计规范: 1).《宿舍建筑设计规范》(JGJ36-87) 2).《住宅设计规范》(GB50096-99) 3).《办公建筑设计规范》(JG67-89) 4).〈旅馆建筑设计规范〉(JGJ67-89) 5).《旅游旅馆建筑热土与空气调节节能设计标准》(GB50189-93) 6).《地源热泵系统工程技术规范》(JGJ142-2004) 7).《地面辐射供暖技术规范》(GB50366-2005) 8).其它专用设计规范 3.专用设计标准图集: 1).《暖通空调标准图集》 2).《暖通空调设计选用手册》(上、下册)

中国水利博物馆地源热泵系统优化设计

中国水利博物馆地源热泵系统优化设计 唐彪锋,毛霞丽,潘松法 (埃美圣龙(宁波)机械有限公司) 【摘要】地源热泵是一种环保节能的空调系统,具有土壤源、地下水源、地表淡水源、污水源及海水源等多种冷热源形式,对于单体项目可以采取各种冷热源组合的方式。设计应用时需要结合建筑物周边条件因地制宜选用,并从技术、经济方面进行严格的分析论证,达到系统最优化设计的目的,以节省初投资和运行费用。 【关键词】地源热泵;地表水源;湖水盘管;土壤源;竖直埋管;初投资;运行费用 Optimized Design for the GSHP System of Chinese Water Conservancy Museum Tang Biaofeng, Mao Xiali,Pan Songfa (IMI Shenglong (Ningbo) Machinery Co., Ltd) 【Abstract】As a environment-friendly and energy saving air-conditioning system, GSHP is used as an all-inclusive term for a variety of systems that use the ground, groundwater, surface freshwater, sewage water and seawater as its heat source and sink. Also these above items can be united for a single building. In design application, we should study the surrounding conditions of the building to decide which type of heat source/sink to use, analyze and calculate the technical and economical indexes to aim at the most optimized design, in order to save the investment and operating cost. 【Keywords】GSHP; surface water source; pond loop; ground source, vertical loop; original investment; operating cost

空气源热泵+地暖+空调系统设计

空气能热泵+地暖+空调系统设计 武汉誉德远程智能化集中热水供应系统包括本地热水供应系统、远程控制子系统,刷卡消费子系统。本地系统采用空气源热泵原理,每消耗1份电量的同时从空气中吸收4份热量,能效比最高可达5.5,为您节省一半到四分之三的电费;凭借先进技术与精密工艺,整机系统固有能耗系数与热水输出率均优于国家一级能效的规定值。在热水系统的基础上,可以加入地暖、空调等组成一套,热水、暖气、冷气一整套解决方案。下面对这套系统的设计特点做一个简单的介绍。 武汉誉德 空气源热泵和地源热泵为热源的地暖设计系统图

节能高效:热泵效率高,一份电力可产生三份的制热量;热泵高效出水温度在45-50度之间可设定,可直接用于地暖;而燃气壁挂炉高效水温在70-80度,需要通过混水才能用于地暖。 经济性:热泵既可制冷又可采暖,一机双用,节省初投资;无需增设混水装置,并且运行费用也更低。 在设计热泵地暖系统时,要注意有几点是与壁挂炉地暖系统不一样的: 热泵的供回水温差是5度,而壁挂炉是10度,所以热泵地暖系统的循环水流量较大,需要用Φ20的管道。 热泵地暖系统需要将每个回路所覆盖的面积适当减小,同壁挂炉地暖系统相比,热泵地暖的铺设特点是:小面积、多回路。空气源热泵需考虑冬季的制热能力衰减系数,以保证冬季的采暖效果,能力衰减系数通常可以从热泵厂家获得。壁挂炉一天可以反复点火几百次,而热泵使用的都是定频压缩机,由于压缩机保护不能频繁启停,热泵在冬季还需要化霜,所以设置一个缓冲水箱可以有效保护压缩机,提升系统舒适度和稳定性。相较于目前市场流行的VRF+壁挂炉的家用中央空调和地暖系统,热泵不仅可以实现同样功能,而且可以节省一大笔初投资费用。有理由相信,热泵的空调地暖系统将逐渐成为高档家装市场的主力军。 在设计这种空调和地暖二合一的水系统时,要注意以下几点:两个水系统要分别进行水力计算,若两个最不利环路值相差较大时,需设置两个压差旁通阀。越来越多的用户会在冬季同时开启地暖和风机盘管,在设计时要注意用户的使用习惯、空调和地暖之间的水力平衡措施、空调开启率、是否需增大主机容量,以保证使用效果。同时需指导用户如何正确使用该系统,避免因操作不当而引起制热效果不好的投诉。 建议在地暖的供水主管上,即球阀前安装一个电动两通开关阀,在夏季时自动关断,防止夏季冷冻水的冷量渗入地暖系统中,造成地板下结露。通常联机控制器上会有一个富余的干接点信号可以用于连接该电动两通开关阀。 地暖系统建议使用带阻氧的PEX管或者PERT管,主管道系统建议使用铝塑管道,一方面可以良好的弯曲定型,不用中间接头,另一方面,也可以100%阻氧,延长系统寿命。明装可以用卡套式,插接式,如果有可能暗埋,最好用卡压式,由于安全性高,欧标是允许该方式暗埋的。

水源热泵控制系统

水源热泵控制系统 水源热泵作为一种用地下恒温水源代替冷却塔的高效节能空调,在实际应用中,为了进一步提高节能效果,还应尽可能减少主机、冷冻水泵和冷却水泵等主要耗能设备的用能。传统的空调水系统使用定流量的运行方式,水源热泵主机本身具有能量调节机构,根据负载变化输出的能量可以在额定值的25%-100%的范围内调整。但是,冷冻水泵和冷却水泵却不随着负载变化做出相应的调节,流量保持不变,导致水系统经常在大流量、小温差的工况下运行,电能浪费很大。采用定温差变流量的水系统控制,可以避免这种浪费。 采用这种控制方式,可以把进回水的温差固定在一个较大的给定值上,在用户负荷较小时,通过减少流量来满足用户要求,这样水泵的能耗可以大大减少。随着冷机技术的进步,蒸发器的流量可以在额定流量的60%-100%范围内变化,这样就为采用交流变频调速器对水源热泵系统中的水泵进行变流量节能控制提供了技术保证。本文将利用PLC、触摸屏和变频器对水源热泵进行变频节能控制。 2 变频节能控制方案 采用变频器配合可编程控制器组成控制单元,其中冷却水泵、冷冻水泵均采用温度自动闭环调节,即用温度传感器对冷却水、冷冻水的水温进行采样,并转换成电信号(一般为4-20 mA,0-10 V等)后送至PLC,通过PLC将该信号与设定值进行比较再作PID运算后,决定变频器输出频率,以达到改变冷冻水泵、冷却水泵转速,从而达到节能目的。 2.1冷冻水系统 系统采用定温差变流量的方式运行,在保证最末端设备冷冻水流量供给的情况下,确定一个冷冻水泵变频器工作的最小工作频率作为水泵运行的下限频率并锁定;将电动机工频设定为上限频率,改变变频器频率就可以调节系统的流量。

亿力未来城地源热泵中央空调设计方案书

. 公司简介 淮安亚邦中央空调设备有限公司坐落在一个环境优美、人文荟萃的总理故乡——江苏淮安,是一个集研发、生产、销售为一体的,受当地政府扶持的新 办高新技术企业。公司是和意大利及清华大学高新技术合作的中外合资企业。 公司拥有高级工程师、工程师及一支经验丰富的技术人员队伍。 公司与北京清华大学联手开发绿色、环保、高效节能的地源热泵中央空调。 公司引进意大利的先进技术和生产工艺,拥有多套先进的数控机床和自动化生 产设备。主要产品有:地源热泵机组、螺杆式冷水机组、活塞式冷水机组、离 心式冷水机组、超薄型吊顶式空调机组、柜式空调器、风机盘管、诱导风机、 静压箱、消声器和防火阀、排烟阀、消防箱等。博采众家之长,全心打造亚欧 中央空调的品牌形象,公司通过了9001:2000质量管理体系认证证书,并取得了国家D12压力容器生产许可证,和中央空调生产许可证,以及3C和14001:2004环境管理体系认证证书。 淮安亚邦中央空调设备有限公司制造一流的产品,创造一流的服务,以诚 实、守信、勤奋、创新的企业精神,始终奉行产品质量上乘、服务周到详尽、 价格合理、诚信的经营理念,为用户提供满意的产品。 公司拥有完善的销售服务网络,靠服务打造品牌,以“真诚、快捷”的服 务理念健全完善的服务体系。公司根据用户特殊要求由电脑快捷提供空调设备 技术参数,使用户享受最理想的空调通风设备机组,以及设备安装前技术咨询 有效服务。亚邦公司在各地区都设有销售公司及服务部,真心为顾客提供优质 的服务。亚邦公司坚持以科技创新为本、质量第一、顾客至上的路线。

. 第一章地源热泵()简介 一、热泵工作原理 作为自然界的现象,正如水由高处流向低处那样,热量也总是从高温流向 低温,用著名的热力学第二定律准确表述是:“热量不可能自发由低温传递到 高温”。但人们可以创造机器,如同把水从低处提升到高处而采用水泵那样, 采用热泵可以把热量从低温抽吸到高温。所以热泵实质上是一种热量提升装置, 它本身消耗一部分能量,把环境介质中贮存的能量加以挖掘,提高温位进行利 用,而整个热泵装置所消耗的功仅为供热量的三分之一或更低,这也是热泵的 节能特点。 热泵与制冷的原理和系统设备组成及功能是一样的,对蒸气压缩式热泵(制冷)系统主要由压缩机、蒸发器、冷凝器和节流阀组成: 压缩机()起着压缩和输送循环工质从低温低压处到高温高压处的作用,是热 泵(制冷)系统的心脏; 蒸发器()是输出冷量的设备,它的作用是使经节流阀流入的制冷剂液体蒸发, 以吸收被冷却物体的热量,达到制冷的目的;

地源热泵毕业设计

1.绪论 随着国民经济的增长城市建设的发展和人民生活水平的提高及房地产业的升温,我国空调业己得到空前的发展。空调己成为季节性能源消耗的大户,并成为建筑节能的关注问题。大力发展新能源与可再生能源,已成为我国21世纪发展国民经济的刻不容缓的战略目标。 热泵技术是应用低位可再生能源的重要技术措施之一。热泵系统是利用低温热源进行制热,制冷的新型能源利用方式。与使用常规能源供热方式相比,具有许多不可替代的特点。因地制宜的发展地源热泵系统,有利于优化能源结构,促进多种资源的有效利用,提高能源利用率。 目前常规使用的热泵系统多为空气源,它受环境温度影响很大。夏季不利于冷凝器的散热,冬季蒸发器得热难,犹其是冬季融霜难。地源热泵几乎不受环境气候影响,可以产生良好的节能效益,且不用除霜。主要内容包括:地源热泵的形式与基本原理,地源热泵机组,新乡本地工程应用实例,对传统地源热泵的改进设想等。

2.地源热泵简介 2.1地源热泵的发展 地源热泵是利用浅层地能进行供热制冷的新型能源利用技术,是热泵的一种热泵是利用卡诺循环和逆卡诺循环原理转移冷量和热量的设备。地源热泵通常是指能转移地下土壤中热量或者冷量到所需要的地方,通常热泵都是用来做为空调制冷或者采暖用的。地源热泵还利用了地下土壤巨大的蓄热蓄冷能力冬季地源把热量从地下土壤中转移到建筑物内夏季再把地下的冷量转移到建筑物内一个年度形成一个冷热循环。 地源热泵的起源 地源一词是从英文“ground source”翻译而来,汉语的内涵则十分广泛,应包括所有地下资源的含义。但在空调业内,目前仅指地壳表层(小于400米)范围内的低温热资源,它的热源主要来自太阳能,极少能量来自地球内部的地热能。 "地源热泵"的概念,最早于1912年由瑞士的专家提出,而该技术的提出始于英、美两国。 1946年美国在俄勒冈州的波兰特市中心区建成第一个地源热泵系统。但是这种能源的利用方式没有引起当时社会各界的广泛注意,无论是在技术、理论上都没有太大的发展。 20世纪50年代,欧洲开始了研究地源热泵的第一次高潮,但由于当时的能源价格低,这种系统并不经济,因而未得到推广。直到20世纪70

双U型地埋管地源热泵系统优化设计

双U型地埋管地源热泵系统优化设计 万溧;高理福;李浩 【期刊名称】《制冷与空调(四川)》 【年(卷),期】2015(000)005 【摘要】以西南科技大学新能源改造项目为基础,根据相关技术规范的要求,对双U型地埋管换热器进行了试验测试。建立和实际尺寸完全相同的三维数值模拟模型,通过验证后的数值模拟模型,对地埋管换热器的换热过程进行动态模拟。研究了进水温度和速度、钻井深度、回填材料对U型地埋管换热器换热性能的影响。得出进水温度设计时应综合考虑,循环流速为0.4~0.8m/s比较合适,钻井深度取60~100m较为合理,回填材料的导热系数略大于地埋管周围土壤即可。%This paper is based on the new energy reform project of Southwest University of Science and T echnology, according to the requirements of relevant technical specifications, test the heat exchanger tube of double U type buried. A 3D numerical simulation model is established and the actual size is exactly the same, after verification by numerical simulation model, dynamic simulation of buried tube heat transfer process of heat exchanger. Study on inlet water temperature and velocity, drilling depth, backfill materials affect the heat transfer performance of heat exchanger of U type buried tube. It should be considered comprehensively when designing the inlet water temperature, circulating flow rate is appropriate for 0.4~0.8m/s, drilling depth of 60~100m is more reasonable, the thermal conductivity

空气源热泵空调系统设计方案

空气源热泵空调系统设计 方案 第1章绪论 改革开放以来,随着国民经济的迅速发展和人民生活水平的大幅度提高,能源的消耗越来越大,其中建筑能源占相当大的比例。据统计,我国历年建筑能耗在总能耗的比例是19%~20%左右,平均值为19.8%。其中,暖通空调的能耗约占建筑总能耗的85%。在发达城市,夏季空调、冬季采暖与供热所消耗的能能量已占建筑物总能耗的40%~50%。特别是冬季采暖用的燃煤锅炉、燃油锅炉的大量使用,给大气环境造成了极大的污染。因此,建筑物污染控制和节能已是国民经济发展的一个重大问题。热泵空调高效节能、不污染环境,真正做到了“一机两用”(夏季降温、冬季采暖),进入20世纪90年代以来在我国得到了长足的发展,特别是空气源热泵冷热水机组平均每年以20%的速度增长,成为我国空调行业又一个引人注目的快速增长点。 所谓热泵,就是靠电能拖动,迫使热量从低位热源流向高位热源的装置。也就是说,热泵可以把不能直接利用的低品位热能(空气、土壤、井水、河水、太阳能、工业废水等)转换为可以利用的高位能,从而达到节约部分高位能(煤、石油、燃气、电能等)的目的。类似于人们把水自低水头压送至高水头的机械称为“水泵”,把气体自低压区送至高压区的机械称为“气泵”(在我国习称气体压缩机),因而把这种输送热能的机械称为“热泵”。因此,在矿物能源逐渐短缺、环境问题日益严重的当今世界,利用低位能的热泵技术已引起人们的关注和重视。空气源热泵的历史以压缩式最悠久。它可追溯到18世纪初叶,可以说1824年卡诺循环的发表即奠定了热泵研究的基础。热泵的发展受制于能源价格与技术条件,所以其历史较为曲折,有高潮有低潮,但热泵发展的前景肯定是光明的。当前热泵研究的方向是向高温高效发展,即开发高温热泵并最大限度提高COP(性能系数 Coefficient of Performance)值,同时积极发展吸收和化学热泵等。空气源热泵热水机组的制造、推广和使用在我国只是最近10年的事,但由于其相对传统制取热水设备的高效节能、环保、安全、智能化控制、不占用永久性建筑空间等优点而引起了市场日益广泛的关注。 热泵热水机组以清洁再生原料(空气+电)为能源,既不使用也不产生对人体有害的气体,同时也减少了温室效应和大气污染。目前,在我国电力资源短缺

地源热泵空调系统设计

摘要 该别墅系一栋集文化娱乐,办公,客房等一体的多功能综合别墅。该别墅选择地源热泵为空调冷热源, 空调系统的室内部分采用风机盘管加独立新风系统,末端设备为风机盘管, 新风处理到室内等焓线,过渡季节只供新风,部分房间采用地板辐射供暖。本论文从地源热泵工作原理出发,详细地进行了地源热泵空调系统设计和特点分析,并与普通空调系统进行了经济上和技术上的比较。地源热泵地下换热器采用U 型竖埋管地下换热器;主卧式采用了低温水地板辐射供暖系统。 关键词:别墅;地源热泵;竖直埋管;地板辐射供暖 1.1 课题背景 地热是一种可再生的自然能源。尽管目前它的应用还不能像传统能源(煤、石油、天然气、水力能和核能)那样广泛,但由于地壳里蕴藏着丰富的地热能,特别是在传统能源越来越缺乏的今天,地热能利用在许多国家已得到了相当的重视。地源热泵中央空调系统是利用了地球表面浅层地热资源(通常小于400米深)作为冷热源,进行能量转换的供暖空调系统。地表浅层地热资源可以称之为地源,是指地表土壤、地下水或河流、湖泊中吸收太阳能、地热能而蕴藏的低温位热能。地表浅层是一个巨大的太阳能集热器,收集了47%的太阳能,比人类每年利用能量的500倍还多。它不受地域、资源等限制,真正是量大面广、无处不在。这种储存于地表浅层近乎无限的可再生能源,使得地源也成为清洁的可再生能源一种形式。 地源热泵中央空调系统是利用水与地源(地下水、土壤或地表水)进行冷热交换来作为水源热泵的冷热源,冬季把地源中的热量“取”出来,供给室内采暖,此时地源为“热泵”;夏季把室内热量“取”出来,释放到地下水、土壤或地表水中,此时地源为“冷源”。地源热泵中央空调系统通过输入少量的高品位能源(如电能),实现低温位热能向高温位转移。与锅炉(电、燃料)供热系统相比,锅炉供热只能将90%以上的电能或70—90%的燃料内能转化为热量供用户使用,因此地源热泵中央空调系统要比电锅炉加热节省三分之二以上的电能,比燃料锅炉节省二分之一以上的能量;由于地源热泵中央空调系统的热源温度全年较为稳定,一般为9—16℃,其制冷、制热系数可达3.5—6.3,与传统的空气源热泵相比,要高出40%左右,其运行费用为普通中央空调的50—60%。 地源热泵中央空调系统的污染物排放,与空气源热泵相比,相当于减少40%以上,与常规电供暖相比,相当于减少70%以上,如果结合其他节能措施减排会更明显。虽然也采用制冷剂,但比常规空调装置减少25%的充灌量。该装置的运行没有任何污染,可以建造在居民区内,没有燃烧,没有排烟,也没有废弃物,不需要堆放燃料废物的场地,且不用远距离输送热

地源热泵设计方案及运行费用分析实例

地源热泵设计方案及运行费用分析实例 时间:2006-2-19 9:24:58 作者:天津大学机械工程学院热能工程系朱强汪健生 浏览次数:4666 摘要:本文对津晋高速公路津港收费站地源热泵系统的设计进行了分析与计算,并对系统的实际运行费用进行了分析。与以空气作为热源的一般空调器在相同的供热、供冷负荷下运行相比,地源热泵系统具有显著的节能效果。 关键词:热泵供热制冷 引言 地源热泵作为热泵技术应用的一个新的分支,由于其节能和优越的环保性能,近年来正在得到广泛的应用。地源热泵是利用土壤的良好蓄热及蓄冷特性进行的热力学逆循环的一种工程应用;在冬季供热时,热泵系统通过预埋在地下的管道将储存在地下的热通过传热介质吸收,作为逆循环中的低温热源,由热泵完成逆循环并向热用户提供热量;在夏季供冷时,利用地下环境温度较低的特点使制冷系统中的冷凝温度降低,从而提高系统的制冷系数,与冷凝器直接与空气环境进行热交换的普通空调器制冷相比,有一定的节能效果。由于地源热泵系统在运行工作过程中除驱动热泵的动力外,无需其他热源或动力,而驱动热泵的动力主要是电能。因此,如不考虑电能的来源,地源热泵系统是城市供热及供冷的一种清洁能源,它不需要建立一般城市供热所需的锅炉房,同样也不存在由于燃料燃烧(燃煤、燃油)而带来的城市环境污染问题,可以实现冷热联供。此外,在实际使用中,对于一些受客观条件限制而无法采用其他供热、供冷方式的场所,如高速公路收费站、人员设备相对较少的科考站、边防哨所,地源热泵则更体现出其特有的优越性;基于以上特点,本文对津港高速公路收费站地源热泵系统的设计及实际运行效果进行了系统分析。 一、地源热泵系统负荷计算 1.1 热泵系统负荷计算 津晋高速公路天津段自天津起至大港,全长35公里,建有三个收费站。津港收费站包括综合楼、综合楼附属用房及7个收费亭。其中综合楼建筑面积为744m2;综合楼附属餐厅为80m2;7个收费亭合计建筑面积47m2;津港收费站合计总建筑面积为871m2。 根据天津气候条件及收费站建筑物的土建围护结构,本设计采用了ASHRAE推荐提供的CLF冷负 荷系数法计算收费站建筑负荷;地源热泵系统在制冷工况时,蒸发器温度为7~12℃,冷凝器温度为30~35℃,室内温度25℃。其中收费站综合楼和附属用房的供冷负荷为120W/m2,收费亭供冷负荷 为220W/m2。据此,津港收费站供冷最大负荷合计为113 KW,津港收费站埋地换热器放热最大负荷 合计为146 KW。 热负荷计算,本设计采用了ASHRAE推荐提供的方法计算收费站建筑热负荷,地源热泵系统在制 热工况时,冷凝器温度为45~50℃,蒸发器温度为2~6℃,室内温度为18℃。其中收费站综合楼和附属用房的供热负荷为100w/m2,收费亭供负荷为120 W/m2。由此可以计算出津港收费站最大供 热负荷为92KW。 1.2 室内末端系统设计

《地源热泵系统工程技术规范》GB50366-2005解读

国家标准《地源热泵系统工程技术规范》GB50366-2005设计要点解析 中国建筑科学研究院空气调节研究所邹瑜徐伟冯小梅 摘要:本文针对不同地源热泵系统的特点,结合《规范》条文,对地源热泵系统设计特点、方法及要点进行了深入分析,为地源热泵系统的设计提供指导。 关键词:地源热泵系统、设计要点、系统优化 1 前言 实施可持续发展能源战略已成为新时期我国能源发展的基本方针,可再生能源在建筑中的应用是建筑节能工作的重要组成部分。2006年1月1日《可再生能源法》正式实施,地源热泵系统作为可再生能源应用的主要途径之一,同时也是最利于与太阳能供热系统相结合的系统形式,近年来在国内得到了日益广泛的应用。地源热泵系统利用浅层地热能资源进行供热与空调,具有良好的节能与环境效益,但由于缺乏相应规范的约束,地源热泵系统的推广呈现出很大盲目性,许多项目在没有对当地资源状况进行充分评估的条件下就匆匆上马,造成了地源热泵系统工作不正常,为规范地源热泵系统的设计、施工及验收,确保地源热泵系统安全可靠的运行,更好的发挥其节能效益,由中国建筑科学研究院主编,会同13个单位共同编制了《地源热泵系统工程技术规范》(以下简称规范)。该规范现已颁布,并于2006年1月1日起实施。 由于地源热泵系统的特殊性,其设计方法是其关键与难点,也是业内人士普遍关注的问题,同时也是国外热点课题,在新颁布的《规范》中首次对其设计方法提出了具体要求。为了加深对规范条文的理解,本文对其部分要点内容进行解析。 2 《规范》的适用范围及地源热泵系统的定义 2.1 《规范》的适用范围 该《规范》适用于以岩土体、地下水、地表水为低温热源,以水或添加防冻剂的水溶液为传热介质,采用蒸气压缩热泵技术进行供热、空调或加热生活热水的系统工程的设计、施工及验收。它包括以下两方面的含义: (1)“以水或添加防冻剂的水溶液为传热介质”,意旨不适用于直接膨胀热泵系统,即直接将蒸发器或冷凝器埋入地下的一种热泵系统。该系统目前在北美地区别墅或小型商用建筑中应用,它优点是成孔直径小,效率高,也可避免使用防冻剂;但制冷剂泄漏危险性较大,仅适于小规模应用。 (2)“采用蒸气压缩热泵技术进行……”意旨不包括吸收式热泵。 2.2 地源热泵系统的定义 地源热泵系统根据地热能交换系统形式的不同,分为地埋管地源热泵系统(简称地埋管系统)、地下水地源热泵系统(简称地下水系统)和地表水地源热泵系统(简称地表水系统)。其中地埋管地源热泵系统,也称地耦合系统(closed-loop ground-coupled heat pump system)

某某空调风冷模块式热泵机组项目设计方案

某某空调风冷模块式热泵机组项目设计方案 1.1 项目概况 该楼主要功能为住宅和办公室,空调总面积约为 1100 m2,根据经济合理性及贵方要求考虑,采用风冷模块热泵系统。 为给该工程营造一个舒适、温馨、高质量、高品质、高品位的环境,我们给该建筑物选择一套最实用、最完善、能将空气品质处理到最佳状态,使处于其中的人有身处大自然之清新感觉的空调系统。 1.2 设计依据 《采暧通风及空气调节设计规范》(GBJI19-87) 《旅游场馆建筑热土与空气调节节能设计标准》(GB50189-93) 《通风与空调工程施工验收规范》(GB50243-2009) 《建设工程项目管理规范》 GB/T50326-2001; 《建筑给水排水及采暖工程施工质量验收规范》GB50242-2002; 《通风与空调工程施工质量验收规范》 GB50243-2002; 《工业金属管道工程施工及验收规范》 GB50235-98;

《机械设备安装工程施工及验收规范》 GB50271-98; 《建设工程质量验收统一规范》 GB50300-2001; 《建设工程资料管理规程》 DBJ01-51-2003 《工业设备及管道绝热工程施工及验收规范》 GBJ126-89; 《现场设备、工业管道焊接工程施工及验收规范》 GB50276-98; 1.3 方案设计 我们主要依据国家规范、行业标准、品牌品质、舒适环保、经济实用、高效可靠、豪华美观、操作简便、维护便利的原则,本着严谨、认真、诚恳的专业态度,根据该建筑物的使用功能及建筑物特点,综合考虑业主的需要,依据国家暖通空调设计规范结合济宁地区气候特点,我们进行了如下环保性、舒适性、实用性空调系统设计:模块式风冷热泵机组加卧式暗装风机盘管及吊顶式新风机组方案。 在送风形式和气流组织选取方面,我们根据建筑物使用的实际情况,人体散热和照明设备考虑冷空气的密度比热空气的密度大。经空调处理后的冷空气会很快下降到工作区,而热空气则上升到上方,被回风口吸回空调,处理后再送到生活区。所以本方案采用上送上回式和侧送上回。送风口形式:采用双层百叶与散流器送风口,回风口采用带过滤网的单层百叶回风口。这样每个空调场所的送回风系统形成一个空气循环,气流组织好,室内温度分布均匀;利用高质量开关,房间温度控制精确,可以满足该综合办公楼不同场所的各种空调使用要求。且系统室内风机盘管机组暗装于吊顶内,免去了擦洗及维护的麻烦,有效的回风过滤系统延长了空调的寿命,也减少了后期的维护维修费用。 1.4设备选择 本工程根据贵方提供建筑图纸结合公司产品进行设备选型,末端形式采用卧式暗装风机

地源热泵空调系统使用手册

地源热泵空调系统使用手册 及 日常维护 湖南省第三建筑工程有限公司

目录 第一部分日常注意事项及维护步骤 (3) 一、技术分析 (3) (一)、地源热泵机组使用注意事项及日常维护 (4) 1、日常检查及保养周期 (4) 2、主机系统保养时常见故障和排除方法 (6) 3、地源热泵主机使用说明 (8) (二)、风机盘管的日常维护 (9) (三)、组合式空调机组的日常维护 (12) (四)、循环水泵的日常维护 (15) (五)、加湿器的日常维护 (16) 第二部分、空调运行记录表 (17) 1、地源热泵机组运行记录表 (17) 2、循环水泵运行记录表 (18) 3、系统运行启停时间记录表 (19) 4、风机盘管系统运行记录表 ......................... 错误!未定义书签。 5、新风机运行记录表 (20)

第一部分日常注意事项及维护步骤 一、技术分析 中央空调系统日常运行时、外部系统影响及使用质量等方面工作因素,其系统内部循环系统、传热系统、控制系统、运转部件、气密性元件等可能或多或少会发生一些偏差或改变。此时,使用时日常保养工作显得尤为重要,如系统不能得到及时的调整、清洗和处理,轻者可能造成设备或部件无法最佳工作,严重的将导致系统运行可靠性与使用寿命受到影响,并引起设备故障率与系统运行能耗的增加。 主要表现在以下几个方面: (一):地源热泵机组使用注意事项及日常维护 (二):风机盘管的日常维护 (三):组合式空调机组的日常维护 (四):循环水泵的日常维护 (五):加湿器的日常维护

(一)、地源热泵机组使用注意事项及日常维护1、日常检查及保养周期 1.1、日常检查项目表

住宅小区地源热泵空调系统设计方案书

住宅小区 【地源热泵空调系统设计方案书】

目录 01、某公司及主要产品简介....................03-05 02、工程概况......................................06-06 03、设计依据及原则................................06-06 04、设计方案......................................07-08 05、室外换热孔设计................................09-11 06、项目初投资费用分析............................12-16 07、运行费用分析..................................16-18 08、地源热泵与其它空调初投资与运行费用分析... .. 18-19 09、地源热泵简介........................... ..... 20-26 10、地源热泵系统简介...................... .... . 26-32 11、产品出厂检验..................................33-34 12、技术及售后服务承诺............................34-35 13、部分用户名录..................................36-39

一公司及主要产品简介 1、公司简介 某新能源有限公司,是集科研、生产、销售、服务于一体的专业制作中央空调、净化空调的高科技技术企业。先后与全国著名高等学府、合肥通用机械研究院等单位进行技术合作,科研攻关,通过把高科技成果产品化,坚持技术创新,发展具有自主知识产权的专利技术,生产研发出了高效能的中央空调系列产品。 公司定位于节能减排的可再生能源和新能源产业领域。公司主导产品地源热泵、污水源热泵、工业废热余热型热泵、海水源热泵、水冷冷水机组、水冷离心机组、空气源热泵机组等热泵系列产品及中央空调、净化空调末端系列产品,是利用浅层地热能、污水热能、工业废热余热、海洋热能、空气能等低品位的可再生能源和新能源的重要技术装备产品。公司生产制造的热泵系列产品已为超过4000万平方米的建筑提供可再生能源供热热源和供冷冷源,年运行节能量超过40万吨标准煤。 十二五期间,某新能源有限公司将为社会提供10000台热泵机组,以年节约100万吨标准煤为目标,有效降低温室气体和有害气体的排放,为祖国节能减排事业贡献力量! 我们珍惜每一个客户的选择和认可,敬重每一个客户的批评和建议,感谢关心和支持某的每一个朋友和合作伙伴。我们将继续以优良的售后服务,巩固并拓展销售市场,真诚地希望与您携手共创辉煌。 2、产品简介

《地源热泵系统工程技术规范》设计要点解析.doc

《地源热泵系统工程技术规范》设计要点解析 摘要:本文针对不同地源热泵系统的特点,结合《规范》条文,对地源热泵系统设计特点、方法及要点进行了深入分析,为地源热泵系统的设计提供指导。 关键词:地源热泵系统、设计要点、系统优化 1 前言 实施可持续发展能源战略已成为新时期我国能源发展的基本方针,可再生能源在建筑中的应用是建筑节能工作的重要组成部分。2006年1月1日《可再生能源法》正式实施,地源热泵系统作为可再生能源应用的主要途径之一,同时也是最利于与太阳能供热系统相结合的系统形式,近年来在国内得到了日益广泛的应用。地源热泵系统利用浅层地热能资源进行供热与空调,具有良好的节能与环境效益,但由于缺乏相应规范的约束,地源热泵系统的推广呈现出很大盲目性,许多项目在没有对当地资源状况进行充分评估的条件下就匆匆上马,造成了地源热泵系统工作不正常,为规范地源热泵系统的设计、施工及验收,确保地源热泵系统安全可靠的运行,更好的发挥其节能效益,由中国建筑科学研究院主编,会同13个单位共同编制了《地源热泵系统工程技术规范》(以下简称规范)。该规范现已颁布,并于2006年1月1日起实施。 由于地源热泵系统的特殊性,其设计方法是其关键与难点,也是业内人士普遍关注的问题,同时也是国外热点课题,在新颁布的《规范》中首次对其设计方法提出了具体要求。为了加深对规范条文的理解,本文对其部分要点内容进行解析。 2 《规范》的适用范围及地源热泵系统的定义 2.1 《规范》的适用范围 该《规范》适用于以岩土体、地下水、地表水为低温热源,以水或添加防冻剂的水溶液为传热介质,采用蒸气压缩热泵技术进行供热、空调或加热生活热水的系统工程的设计、施工及验收。它包括以下两方面的含义: (1)“以水或添加防冻剂的水溶液为传热介质”,意旨不适用于直接膨胀热泵系统,即直接将蒸发器或冷凝器埋入地下的一种热泵系统。该系统目前在北美地区别墅或小型商用建筑中应用,它优点是成孔直径小,效率高,也可避免使用防冻剂;但制冷剂泄漏危险性较大,仅适于小规模应用。 (2)“采用蒸气压缩热泵技术进行……”意旨不包括吸收式热泵。 2.2 地源热泵系统的定义 地源热泵系统根据地热能交换系统形式的不同,分为地埋管地源热泵系统(简称地埋管系

相关文档
相关文档 最新文档