文档视界 最新最全的文档下载
当前位置:文档视界 › 光纤光锥光学特性研究与测试

光纤光锥光学特性研究与测试

光纤光锥光学特性研究与测试
光纤光锥光学特性研究与测试

第1章绪论

1.1光纤光锥光学特性研究的背景及意义

1.1.1光纤光锥简介

光纤光锥是由成千上万根光学纤维经规则排列、加热、加压融合、扭转、拉锥等一系列工艺制成,其中每一根纤维由高折射率的芯玻璃和低折射率的包皮玻璃构成,入射光依据全反射原理从每根纤维的一端传向另一端。光纤传像元件包括光纤面板、光纤倒像器、光纤光锥。光纤光锥是光纤面板的一种特殊形式。

图1.i光纤面板图1.2光纤光锥

光纤面板如图1.1所示,由数千万根直径为5~6lJm的光导纤维规则排列后,加温、加压熔合而成。它在光学上具有零厚度,有很高的集光能力和分辨率,可无失真地传递高清晰度图像,是性能优越的光电成像和图像传输器件。主要用于微光像增强器的输入窗或输出窗和CRT象管的显示屏,对改善器件的像质起着无法替代的作用““2M“¨”。

光纤光锥如图1.2所示,是另一种形式的光纤面板,也是由直径为5~6pm的光导纤维规则排列,每根纤维均匀拉伸成锥型的图像传输器件。目前世界上最大的商用光纤光锥直径能达200ram删。

光纤光锥具有将图像放大和缩小特定倍数的作用,可以获得短的物像距。理论上,光锥的大端和小端的直径之比可以达到40:1,但由于制造过程中技术的限制,实际的光纤光锥的大端和小端直径比的范围为2:1到10:1”1。

1.1.2光纤光锥应用

目前光纤光锥的主要用途是将图像从像增强器耦合到CCD(电荷耦合器件)上或作为图像放大缩小器件。

1)光纤光锥与CCD的耦合

ICCD图像传感器已经广泛的应用于微光夜视、目标识别及探测、激光制导、机器人视觉以及高分辨率x射线医学成像等领域。利用光学中继元件,将微光管光纤面板荧光屏输出的图像耦合到CCD的光敏面上,如图1.3所示,实现微光摄像和高分辨率成像。在设计或采用光学中继元件时,必须考虑尽可能的收集从增强器输出的光子能量,并且能够以最小的像差投影到CCD的光敏面上。像增强器和CCD耦合的最常用的方法就是利用成像物镜或者是采用光锥作为中继元件吲。图1.4是一个光学中继器与CCD耦合的示意图,荧光屏发出的光分布于180。半个空间,可以看作是一个朗伯源,利用物镜作为中继元件只能传输其小部分的光子能量。如图1.4(a),透镜与CCD耦合的效率仅为5%,而高质量光锥与CCD耦合时的耦合效率能达到70%C91。

图1.3光纤光锥与CCD耦台实物图

220kV线路光纤通道测试作业指导书

贵州华电毕节热电有限公司 220kV线路专用光纤通道定检测试 作业指导书 批准: 审核: 编制: 2014年09月

一、适用范围: 本作业指导书适用于220kV线路保护光纤通道定检测试作业。 二、引用标准: 1、《电力安全动作规程》(发电厂和变电站电气部分)DL 408-1991 2、《继电保护和电网安全自动装置检验规程》GB/T 14285—2006 3、《继电保护和电网安全自动装置检验规程》DL/T 995—2006 4、《中国南方电网通信管理暂行规定》(南方电网调【2003】10号) 5、《中国南方电网安全自动装置管理规定》(南方电网调【2004】7号) 6、《南方电网电力调度数据网络管理办法》(调通【2005】2号) 7、《南方电网通信网络生产应用接口技术规范》(调通【2007】18号) 三、作业条件及作业现场要求 1、工作区间与带电设备的安全距离应符合《国家电网公司电力安全工作规程(变电部分)》(国家电网安监【2009】664号)的要求。 2、作业现场应有可靠的试验电源,且满足试验要求。 3、检验对象处于停运状态,现场安全措施完整、可靠。 4、保持现场工作环境整洁。 四、作业人员要求 1、所有作业人员必须身体健康,精神状态良好。 2、所有作业人员必须掌握《国家电网公司电力安全工作规程(变电部分)》(国家电网安监【2009】664号)的相关知识,并经考试合格。 3、所有作业人员应有触电急救及现场紧急救火的常识。 4、本项检验工作需要作业人员2—3人。其中工作负责人1人,工作班成员1—2人。 5、工作负责人应由从事继电保护现场检验工作3年以上的专业人员担任,必须具备工作负责人资格,熟练掌握本作业程序和质量标准,熟悉工作班成员的技术水平,组织并合理分配工作,并对整个检验工作的安全、技术等负责。 6、工作班成员应由从事继电保护现场检验工作半年以上的专业人员担任,必须具备必要的继电保护知识,熟悉本作业指导书,能掌握有关试验设备、仪器仪表的使用。 五、作业前准备工作: 1、开始工作前一天,准备好作业所需设备、仪器、仪表和工器具。主要仪器设备和工器具见下表。 主要仪器设备和工器具 序号名称数量规格备注 1 继电保护光纤通道测试仪1台ZY64520 有效期内 2 尾纤适量 3 数字万用表1只4位半有效期内 4 工具箱1套0.2级,0.5—2A 各种检修工具齐全 2、开始作业前一天,准备好图纸及资料,且图纸及资料应符合现场实际情况。具体图纸、资料见下表。 检验所需图纸资料 序号资料名称单位数量

材料的光学性能测试

材料科学实验讲义 (一级实验指导书)东华大学材料科学与工程中心实验室汇编 2009年7月

一、实验目的和要求 1、掌握透过率、全反射和漫反射测定的基本原理; 2、掌握透过率、全反射和漫反射测定的操作技能; 3、测定聚合物膜和无机非金属材料的薄膜的透过率和全反射率,学会测定无机材料粉末的漫反射光谱。 4、针对不同的材料形式(如薄膜,粉末等)能判断该如何选择不同的测试模式。 二、实验原理 光学性能是材料的重要也是最常用的性能之一,薄膜、陶瓷、玻璃、粉末、聚合物、人工晶体甚至胶体的性能评价都离不开光学性能的表征。本实验中所涉及到材料的光学性能主要是指透过率、反射率尤其是漫反射模式测定的反射率等光学性能的测定,涉及的材料包括聚合物、粉末和玻璃等。 在通常所用的分光光度法中,常常将待测定的物质溶解在溶剂中,通过比色来定性或定量物质的含量或浓度等。一些无机粉末或者聚合物本身并不溶于常见的溶剂中,将这些不溶解的物质分散在液体介质中得到的是消光光谱而不是吸收光谱,测定的是消光(Extinction)而不仅仅是吸收(Absorption)。另外,对薄膜材料来说,能进行原位测定是重要的,因为在溶解过程中往往改变了材料的状态,所测定的也不再是实际应用中所要知道的结果。薄膜、粉末等是实际应用中常见的材料形式,这些材料的光学性能的测定对材料提出了更高的要求。 目前中高档的紫外-可见分光光度计均可选配积分球附件来测定物质的漫反射光谱(UV-vis diffuse reflenctance spectrum,UV-vis DRS),UV-vis DRS特别适用粉末样品的测定。聚合物、聚合物与无机物的杂化材料、多种无机化合物半导体均可用UV-vis DRS进行测定。带积分球的分光光度计还可测定玻璃、有机玻璃、塑料制品的透过率和反射率等。下面就有机物、无机物和化合物的紫外-可见光谱的原理作详细的介绍: 1、有机物的紫外—可见吸收光谱: 分子的紫外—可见吸收光谱是基于物质分子吸收紫外辐射或可见光,其外层电子跃迁而成,又称分子的电子跃迁光谱。紫外—可见分光光度法是基于物质分子的紫外—可见吸收光谱而建立的一种定性、定量分析方法。有机化合物此外吸收光谱(电子光谱)是由分子外层电子或价电子跃迁所产生的。按分子轨道理论,有机化合物分子中有:成键σ轨道,反键σ*轨道;成键π轨道,反键π*轨道(不饱和烃);另外还有非键轨道(杂原子存在)。各种轨道的能级不同,如图1所示。

光纤通信技术论文

光纤通信技术 光纤即为光导纤维的简称。光纤通信是以光波作为信息载体,以光纤作为传输媒介的一种通信方式。从原理上看,构成光纤通信的基本物质要素是光纤、光源和光检测器。光纤除了按制造工艺、材料组成以及光学特性进行分类外,在应用中,光纤常按用途进行分类,可分为通信用光纤和传感用光纤。传输介质光纤又分为通用与专用两种,而功能器件光纤则指用于完成光波的放大、整形、分频、倍频、调制以及光振荡等功能的光纤,并常以某种功能器件的形式出现。 光纤通信就是利用光导纤维传输信号,以实现信息传递的一种通信方式。光导纤维通信简称光纤通信。可以把光纤通信看成是以光导纤维为传输媒介的“有线”光通信。实际上光纤通信系统使用的不是单根的光纤,而是许多光纤聚集在一起的组成的光缆。光纤通信具有以下特点:(1)通信容量大、传输距离远。 (2)信号串扰小、保密性能好; (3)抗电磁干扰、传输质量佳。 (4)光纤尺寸小、重量轻,便于敷设和运输; (5)材料来源丰富,环境保护好,有利于节约有色金属铜。 (6)无辐射,难于窃听, (7)光缆适应性强,寿命长。 (8)质地脆,机械强度差。 (9)光纤的切断和接续需要一定的工具、设备和技术。 (10)分路、耦合不灵活。 (11)光纤光缆的弯曲半径不能过小(>20cm) (12)有供电困难问题。 就光纤通信技术本身来说,应该包括以下几个主要部分:光纤光缆技术、光交换技术传输技术、光有源器件、光无源器件以及光网络技术等。 光纤光缆技术 光纤技术的进步可以从两个方面来说明: 一是通信系统所用的光纤; 二是特种光纤。早期光纤的传输窗口只有3个,即850nm(第一窗口)、1310nm(第二窗口)以及1550nm(第三窗口)。近几年相继开发出第四窗口(L波段)、第五窗口(全波光纤)以及S波段窗口。其中特别重要的是无水峰的全波窗口。这些窗口开发成功的巨大意义就在于从1280nm到1625nm的广阔的光频范围内,都能实现低损耗、低色散传输,使传输容量几百倍、几千倍甚至上万倍的增长。这一技术成果将带来巨大的经济效益。另一方面是特种光纤的开发及其产业化,这是一个相当活跃的领域。 光复用技术 复用技术是为了提高通信线路的利用率,而采用的在同一传输线路上同时传输多路不同信号而互不干扰的技术。光复用技术种类很多,其中最为重要的是波分复用(WDM)技术和光时分复用(OTDM)技术。光波分复用(WDM)技术是在一芯光纤中同时传输多波长光信号的一项技术。其基本原理是在发送端将不同波长的光信号组合起来,并耦合到光缆线路上的同一根光纤中进行传输,在接收端将组合波长的光信号分开,并作进一步处理,恢复出原信号后送入不同的终端。波分复用当前的商业水平是273个或更多的波长,研究水平是1022个波长(能传输368亿路电话),近期的潜在水平为几千个波长,理论极限约为15000个波长(包括光的偏振模色散复用,OPDM)。而光时分复用(OTDM)技术指利用高速光开关把多路光信号在时域里复用到一路上的技术。光时分复用(OTDM)的原理与电时分复用相同,只不过电时分复用是在电域中完成,而光时分复用是在光域中进行,即将高速的光支路数据流(例如10Gbit/s,甚至40Gbit/s)直接复用进光域,产生极高比特率的合成光数据流。

光纤配线架验收测试报告

光纤配线架验收测试报 告 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

光纤配线架测试报告 检验记录 检验清单 主检人: 校核人: 批准人: 日期:

光纤配线架测试 一、认可项目、检验类别及检验依据、流程图 1.认可项目及检验标准 产品名称:光纤配线架 检验标准:YD/T 778-2006 光纤配线架 2.检验类别 (1)产品认证型式检验 (2)产品认证复评型式检验 (3)产品认证监督检验 (4)产品认证监督检验+产品认证变更检验 (5)委托检验 上述(1)-(4)类别的检验依据除了对应产品的检验标准以外,还应依据泰尔发布的最新配线设备认证实施规则来执行。 3.检验流程图

二、检验项目及检验方法 1、外观与结构检查 用卡尺或卷尺检测机架外形尺寸。 用手实际操作转动、插拔、锁定部位应感觉适度,用万能角尺,检测机架门开启角;用塞规检测其间隙的上、中、下三处。 用装配工具手工检查紧固件,用裸手触摸外露和操作部位。 用R 量规检测光缆尾纤的弯曲半径。 其它用目视方法检查。 2、功能检查 测试步骤:采用视察法和操作法检查各功能装置安装的完整齐备性及其达到的功能性。 3、光电性能测试 插入损耗 测试连接框图 测试步骤 按测试连接图连接测试光纤测试,光回波损耗测试仪RM3750的光源输出口作为稳定光源,此时,图中S 2点先不接入被测尾纤,而是通过标准尾纤2按虚线连接(S 2R 1),至光回波损耗测试仪RM3750的光功率输入口,将光源和光功率计光波长设置为指定波长,开启光源开关,预热15分钟后,记录光功率计示值P 1。然后将被测尾纤和标准尾纤2按图中实线连接,测记录光功率计示值P 2。P=P 1-P 2即为S 2R 2插入损耗。同理,将被测尾纤调换方向,则可测出另一 端对应的插入损耗值。 回波损耗 测试连接框图 标准尾纤1 S 1稳定光 光功率 光纤配线架 标准尾纤 图 插入损耗测试连接框图 光回损仪 光纤配线 被测适配器

GB T 5137.2-2002汽车安全玻璃试验方法第2部分:光学性能试验

GB/T 5137.2-2002 (2002-12-20发布,2003-05-01实施) 前言 GB/T 5137《汽车安全玻璃试验方法》分为四个部分: ——第1部分:力学性能试验; ——第2部分:光学性能试验; ——第3部分:耐辐照、高温、潮湿、燃烧和耐模拟气候试验; ——第4部分:太阳能透射比测定方法。 本部分为GB/T 5137的第2部分。 GB/T 5137的本部分修改采用ISO 3537:1999《道路车辆安全玻璃材料力学性能试验方法》(英文版)。 本部分与该国际标准的主要差异如下: ——删除了国际标准中的“定义”部分; ——将“破碎后的可视性试验”中冲击点的位置及示意图,改为与GB 9656-2003相一致。 本部分代替GB/T 5137.2—1996《汽车安全玻璃力学性能试验方法》。 本部分与GB/T 5137.2—1996相比主要变化如下: ——将“4.透射比试验”改为“4.可见光透射比试验”; ——4.1可见光透射比试验目的改为:“测定安全玻璃是否具有一定的可见光透射比”; ——5.1副像偏离试验的试验目的改为:“测定主像与副像间的角偏离”; ——将“7.破碎后的能见度试验目的改为“7.破碎后的可视性试验”; ——7.4.3中冲击点的位置及示意图保持与GB 9656-2002相一致; ——将“9.反射比试验”改为“9.可见光反射比试验”; 本部分附录A为资料性附录。 本部分由原国家建筑材料工业局提出。 本部分由全国汽车标准化技术委员会安全玻璃分技术委员会归口。 本部分主要起草单位:中国建筑材料科学研究院玻璃科学与特种玻璃纤维研究所。 本部分主要起草人:王乐、韩松、陈峥科。 本部分所代替标准的历次版本发布情况为: GB 5137.2—1985、GB/T 5137.2—1996。 汽车安全玻璃试验方法 第2部分:光学性能试验 1 范围 GB/T 5137的本部分规定了汽车用安全玻璃的光学性能试验方法。 本部分适用于汽车安全玻璃(以下简称“安全玻璃”)。这种安全玻璃包括各种类型的玻璃加工成的或玻璃与其他材料组合成的玻璃制品。 2 试验条件

光纤通信技术论文

光纤通信技术论文 论光纤通信技术的特点和发展趋势 摘要:光纤通信不仅可以应用在通信的主干线路中,还可以应用在电力通信控制系统中,进行工业监测、控制,而且在军事领域的用途也越来越为广泛。光纤通信技术作为信息技术的重要支撑平台,在未来信息社会中将起到十分重要的作用。本文探讨了光纤通信技术的主要特征及发展趋势。 关键词:光纤通信技术特点发展趋势接入技术 引言 近年来随着传输技术和交换技术的不断进步,核心网已经基本实现了光纤化、数字化和宽带化。同时,随着业务的迅速增长和多媒体业务的日益丰富,使得用户住宅网的业务需求也不只局限于原来的语音业务,数据和多媒体业务的需求已经成为不可阻挡的趋势,现有的语音业务接入网越来越成为制约信息高速公路建设的瓶颈,成为发展宽带综合业务数字网的障碍。 1.光纤通信技术定义 光纤通信是利用光作为信息载体、以光纤作为传输的通信力式。在光纤通信系统中,作为载波的光波频率比电波的频率高得多,而作为传输介质的光纤又比同轴电缆或导波管的损耗低得多,所以说光纤

通信的容量要比微波通信大几十倍。光纤是用玻璃材料构造的,它是电气绝缘体,因而不需要担心接地回路,光纤之间的中绕非常小,光波在光纤中传输,不会因为光信号泄漏而担心传输的信息被人窃听,光纤的芯很细,由多芯组成光缆的直径也很小,所以用光缆作为传输信道,使传输系统所占空间小,解决了地下管道拥挤的问题。 2.光纤通信技术的特点 2.1 频带极宽,通信容量大。 光纤的传输带宽比铜线或电缆大得多。对于单波长光纤通信系统,由于终端设备的限制往往发挥不出带宽大的优势。因此需要技术来增加传输的容量,密集波分复用技术就能解决这个问题。 2.2 损耗低,中继距离长。 目前,实用的光纤通信系统使用的光纤多为石英光纤;此类光纤损耗可低于0.20dB/km,这样的传输损耗比其它任何传输介质的损耗都低,因此,由其组成的光纤通信系统的中继距离也较其他介质构成的系统长得多。如果将来使用非石英极低损耗传输介质,理论上传输的损耗还可以降到更低的水平。这就表明通过光纤通信系统可以减少系统的施工成本,带来更好的经济效益。 2.3 抗电磁干扰能力强。

单模和多模光纤的特点

单模和多模光纤的特点和应用 一、光纤结构和类型 (一)光纤的结构 光纤是光导纤维的简称,是一种新的光波导,是光通信系统最普遍和最重要的传输媒质。它由单根玻璃纤芯、紧靠纤芯的包层、一次涂覆层以及套塑保护层组成。(光纤呈圆柱形,由纤芯、包层和涂覆层三部分组成。) 纤芯和包层由两种光学性能不同的介质构成,内部的介质对光的折射率比环绕它的介质的折射率高。 包在外围的覆盖层就像不透明的物质一样,防止了光线在穿插过程中从表面逸出。 1. 纤芯 位置: 位于光纤的中心部位, 直径:在4~50μm,单模光纤的纤芯直径为4~10μm ,多模光纤的纤芯直径为50μm。纤芯的成分:含有极少量掺杂剂的高纯度二氧化硅(如二氧化锗,五氧化二磷)作用是适当提高纤芯对光的折射率,用于传输光信号。 2. 包层 位置: 位于纤芯的周围 直径:125μm 成分:是含有极少量掺杂剂的高纯度二氧化硅。 掺杂剂(如三氧化二硼)的作用:适当降低包层对光的折射率,使之略低于纤芯的折射率,即纤芯的折射率大于包层的折射率(这是光纤结构的关键),它使得光信号封闭在纤芯中传输。 3. 光纤的最外层为涂覆层,包括一次涂覆层、缓冲层和二次涂覆层。 一次涂覆层:一般使用丙烯酸醋、有机硅或硅橡胶材料; 缓冲层:一般为性能良好的填充油膏; 二次涂覆层:一般多用聚丙烯或尼龙等高聚物。 涂覆层的作用:是保护光纤不受水汽侵蚀和机械擦伤,同时增加光纤的机械强度与可弯曲性,起着延长光纤寿命的作用。涂覆后的光纤外径约2. 5 mm 。 4. 光纤最重要的两个传输特性 损耗和色散是光纤最重要的两个传输特性,它们直接影响光传输的性能。 (l)光纤传输损耗:损耗是影响系统传输距离的重要因素之一,光纤自身的损耗主要有吸收损耗和散射损耗。 吸收损耗是因为光波在传输中有部分光能转化为热能; 散射损耗是因为材料的折射率不均匀或有缺陷、光纤表面畸变或粗糙造成的。 当然,在光纤通信系统中还存在非光纤自身原因的一些损耗,包括连接损耗、弯曲损耗和微弯损耗等。这些损耗的大小将直接影响光纤传输距离的长短和中继距离的选择。 (2)光纤传输色散:色散是光脉冲信号在光纤中传输,到达输出端时发生的时间上的展宽。产生的原因是光脉冲信号的不同频率成分、不同模式,在传输时因速度不同,到达终点所用的时间不同而引起的波形畸变。 色散结果:这种畸变使得通信质量下降,从而限制了通信容量和传输距离。 二、光纤通信的工作窗口 光纤损耗系数随着波长而变化,为获得低损耗特性,光纤通信选用波长范围在800 ~1800nm,

光纤测试方案

光纤测试方案 一.布线系统测试概述 为确保综合布线系统性能,确认布线系统的元器件性能及安装质量,工程完工后需按综合布线系统测试说明进行有关的测试。 综合布线系统测试包括: ·>水平铜缆链路测试; ·>垂直干线铜缆链测试; >垂直干线光缆链测试; >·端对端信道联合测试 系统测试完毕后,即组织有关技术及管理人员对整个系统进行验收。 千兆比水平铜缆的测试说明: 千兆比水平铜缆系统采用专用测试仪器进行测试,测试指标包括: 1.极性、连续性、短路、断路测试及长度 2.信号全程衰减测试 3.信号近、远串音衰耗测试 4.结构回转衰耗SRL 5.特性阻抗 6.传输延时 本方案中,采用下列布线测试仪表进行测试: Microtest QmniScanner FLUKE 国际标准组织(ISO)及Lucent推荐下列布线测试仪表: 1、fluke (Fluke Corporation) 2、PenaScanner (Microtest Inc) 本方案中,我公司建意采用以下铜缆测试仪器:

Microtest Lucent KS23763L1 (连接性测试) 3、FLUKE (特性指标测试) STPl 六类100-150双绞线,250 MHz FTP;阻燃特性NFC32070 2.1标准 4、用网络测试仪,测试线路是否安装完好,将测线报告整理,归档。 二.系统测试所用工具 测试所用工具主要是: FLUCK DSP FLUCK 网络测试仪操作规程: 根据测量的种类是通道还是链路,选择相对的适配器; 测量前将仪器校准; 测量时,将主机和智能远端的旋钮打开; 输入测量时间、地点、测试姓名; 在AUTOTEST项开始测试,储存结果; 将测试结果转换成电子文档; 将主机和智能远端关机; 将仪器收好,检查是否有遗漏配件。 注意事项:插接时一定要将插头和插口对齐,将线路接通;注意轻拔轻 插,一定要将头弹起按下再拔出;注意仪器和线路远离电力线和强电场。 其他工具如下表: 仪器名称数量产地说明 接地摇表 1 进口 万用表 2 国产 水平尺 6 国产 FULKE 1 美国

光学高分子材料简述及性能表征

光学高分子材料简述及性能表征

光学高分子材料简述及性能表征 摘要:高分子材料在光学领域得到了广泛的应用,作为大型光学元器件的背投屏幕更是利用先进的高分子材料技术获得了各种优异的性能。简单介绍了背投屏幕的分类、材料和制造工艺,以及光学高分子材料的历史、分类和新的发展,以及主要性能表征。 前言:背投屏幕是背投显示的终端,在很大程度上影响整个光学显示系统的性能。背投屏幕分为背投软质屏幕、背投散射屏幕和背投光学屏幕。背投软质屏幕具备廉价、运输安装方便等优点,但是亮度均匀性比较差、严重的“亮斑效应”、光能利用率低、可视角度小等。分辨率低和对比度低。散射屏幕视角大、增益低、“亮斑效应” 明显。采用不同的工艺制造。有些采用在压克力板材表面进行雾化处理,增加散射。有些应用消眩光玻璃模具复制表面结构,基材内添加光扩散剂及调色剂制造。有些为降低成本直接在透明塑料板材表面粘贴背投软质屏幕制造。现在应用最广泛的就是微结构光学型背投影屏幕。光学型背投影屏幕指的是利用微细光学结构来完成光能 分布、实现屏幕功能的这一类屏幕。主要有FL

型(Fresnel lens-lenticular lenses)、FD型(Frensnel lens-Diffusion cover)、FLD型(Fresnel lens-Lenticular lenses-Diffusion cover)、BS型(Fresnel lens-Lenticular lenses-Black strips)。 微光学结构复制主要采用模压或铸造等复制技术。铸塑又称浇铸,它是参照金属浇铸方法发展而来的。该成型方法是将已准备好的浇铸原料(通常是单体,或经初步聚合或缩聚的浆状聚合物与单体的溶液等)注入一定的模具中,使其发生聚合反应而固化,从而得到与模具型腔相似的制件。这种方法也称为静态铸塑法。静态铸塑技术可用来将电铸镍模具板上的微光学图形转移到塑料表面。铸塑法得到的制件无针眼,无内力应变,无分子取向。重要的是,对于非晶态塑料来说,静态铸塑得到的制件相对于其它工艺一般具有更高的透光率,表现出优越的光学性质。背投光学屏幕属于大尺寸微光学元件,由于体积较大用模压工艺生产存在加工设备复杂、成本高、合格率低的缺点,主要用浇铸工艺来生产。 正文:高分子材料应用于光学领域最早由Arthur Kingston开始,他于1934年取得了注

光纤通信论文

浅谈光纤光缆技术的未来前景 学院电子信息学院 年级大三 专业电信 日期2017.6 姓名张辂 学号1428403044

摘要 (1) 一、有源光纤 (2) (一)色散补偿光纤(Dispersion Compesation Fiber,DCF) (2) (二)光纤光栅(Fiber Grating) (2) (三)多芯单模光纤(Multi-Coremono-Mode Fiber,MCF) (3) 二、光有源器件的进展 (3) (一)集成器件 (3) (二)垂直腔面发射激光器(VCSEL) (3) (三)窄带响应可调谐集成光子探测器 (3) (四)基于硅基的异质材料的多量子阱器件与集成(SiGe/Si MQW) (3) 三、光无源器件 (4) 四、光复用技术 (4) 五、光放大技术 (4) 参考文献 (6)

当今世界,是信息的世界。“得信息者得天下”,已经成为世界各国的共识。作为个人,在这个“互联网+”的大数据时代中,为了生计也不得不获取各种各样的信息。在这样的背景下,信息高速公路建设已成为世界性热潮。而光纤通信技术作为信息高速公路的核心和支柱,自然而然的被推到了时代的前线,成为各国大力发展的重要目标。 光纤通信是一个巨大的系统工程。它的各个组成部分互为依存、互相推动,共同向前发展。就光纤通信技术本身来说,应该包括以下几个主要部分:光纤光缆技术、传输技术、光有源器件、光无源器件以及光网络技术等。 本文将着重就光纤光缆技术极其相关的光有源器件和光无源器件做一定的介绍,共同探讨光纤光缆技术的未来前景。 关键词:光纤、通信、前景。 Abstract Today’s world is an informational world.“The one who wins the information wins the whole world”has becomes a common view worldwide. As for the individual,living in the Age of“Internet+”and Big Data, we have to gain various sorts of information in order to make a living.In this context,the information highway construction has become a worldwide craze.As the core of the information highway and the pillar of the optical fiber communication technology has become a top priority. Optical fiber communication industry is a huge systematic project. Its components are interdependent and mutually promote,together forward. On optical fiber communications technology themselves,it should include the following major components:fiber optical cable technology,transmission technology,optical active devices,optical passive devices and optical network technology. This paper will focus on the optical fiber cable technology and the related optical active devices and optical passive devices,and discuss the future of the optical fiber cable technology together. Keywords:optical fiber,communication,prospect.

继电保护光纤通道管理规定

500kV系统继电保护光纤通道管理规定 一.总则 1.为加强继电保护光纤通道管理,进一步提高继电保护光纤通道可靠性,制定本规定。 2.本规定主要依据《继电保护和安全自动装置技术规程》(GB/T 14285-2006)、《线路保护及辅助装置标准化设计规范》(Q/GDW 161-2007)、《继电保护和电网安全自动装置检验规程》(DL/T 995—2006)和《光纤通道传输继电保护信息通用技术条件》等制定。 3.本规定适用于500kV继电保护光纤通道的调度、设计、基建、运行维护等。220千伏及以下系统可参照执行。 二.专业管理职责划分 1.专用纤芯方式 1.1保护用光纤直接由龙门架接续盒引出到线路保护装置的,接续盒至保护装置的光缆由继电保护专业负责维护。通信专业协助进行光纤的测试及熔接工作。 1.2保护用光纤由通信机房光配线架(ODF)引出到线路保护装置的,通信专业与继电保护专业以光配线架为分工界面。龙门架接续盒至通信机房光配线架的光缆及光配线架由通信专业负责维护。光配线架至保护装置的光缆由继电保护专业负责维护,通信专业协助进行光纤的测试及熔接工作。 2.复用接口方式 保护装置复用通道以配线架(数字配线架或音频配线架)作为继电保护专业和通信专业的分工界面。继电保护接口设备(保护用光电转换器)至配线架间的电

缆由保护专业维护,配线架和复用通信设备及其连接线由通信专业负责维护,继电保护接口设备由继电保护专业负责维护。 3.传输保护信号的光缆、数字电缆、音频电缆在通信侧各配线架的接线或改线方案由通信专业、继电保护专业的双方负责人签字确认,接线由通信专业人员负责。接线时,继电保护专业人员应到场配合。 三.管理规定和技术要求 1.对于配置双套光纤差动保护的线路,要求至少一套光纤差动保护使用双通道。 2.线路两套光纤纵联保护通道应使用两条完全独立的路由。 3.采用复用光纤通道的线路两侧继电保护设备,其使用的继电保护接口设备应采用同型号、同版本的产品。 4.采用2M方式传输的继电保护业务通道不得设置通道保护方式。 5.对于主干线光纤网络长度小于30km且建设有OPGW光缆的线路,宜优先采用专用纤芯作为保护通道。 6.对于传输继电保护信息的迂回光纤通道,迂回路由的站点应在500kV、220kV系统OPGW光纤通信骨干环网上。 7.传输保护的迂回光纤通道,通道传输收发延时应相同,且单向传输延时不得超过10ms,所经过的站点不宜超过6个站点,迂回所经线路长度不宜超过 1000km。 8.继电保护通道中任一设备故障,不应造成多于6条线路的一套主保护信号同时中断。

光纤通信技术特点分析论文

光纤通信技术特点分析论文 论文关键词:光纤通信技术,特点,应用 论文摘要:光纤通信不仅可以应用在通信的主干线路中,还可以应用在电力通信控制系统中,进行工业监测、控制,而且在军事领域的用途也越来越为广泛。本文探讨了光纤通信技术的主要特征及应用。 1.光纤通信技术 光纤通信是利用光作为信息载体、以光纤作为传输的通信方式。在光纤通信系统中,作为载波的光波频率比电波的频率高得多,而作为传输介质的光纤又比同轴电缆或导波管的损耗低得多,所以说光纤通信的容量要比微波通信大几十倍。光纤是用玻璃材料构造的,它是电气绝缘体,因而不需要担心接地回路,光纤之间的串绕非常小;光波在光纤中传输,不会因为光信号泄漏而担心传输的信息被人窃听;光纤的芯很细,由多芯组成光缆的直径也很小,所以用光缆作为传输信道,使传输系统所占空间小,解决了地下管道拥挤的问题。 光纤通信在技术功能构成上主要分为:(1)信号的发射;(2)信号的合波;(3)信号的传输和放大;(4)信号的分离;(5)信号的接收。 2.光纤通信技术的特点 (1)频带极宽,通信容量大。光纤比铜线或电缆有大得多的传输带宽,光纤通信系统的于光源的调制特性、调制方式和光纤的色散特性。对于单波长光纤通信系统,由于终端设备的电子瓶颈效应而不能发挥光纤带宽大的优势。通常采用各种复杂技术来增加传输的容量,特别是现在的密集波分复用技术极大地增加了光纤的传输容量。目前,单波长光纤通信系统的传输速率一般在2.5Gbps到1OGbps。 (2)损耗低,中继距离长。目前,商品石英光纤损耗可低于0~20dB/km,这样的传输损耗比其它任何传输介质的损耗都低;若将来采用非石英系统极低损耗光纤,其理论分析损耗可下降的更低。这意味着通过光纤通信系统可以跨越更大的无中继距离;对于一个长途传输线路,由于中继站数目的减少,系统成本和复杂性可大大降低。 (3)抗电磁干扰能力强。光纤原材料是由石英制成的绝缘体材料,不易被腐蚀,而且绝缘性好。与之相联系的一个重要特性是光波导对电磁干扰的免疫力,它不

多模光纤

多模光纤 多模光纤 多模光纤容许不同模式的光于一根光纤上传输,由于多模光纤的芯径较大,故可使用较为廉价的耦合器及接线器,多模光纤的纤芯直径为50μm至100μm。 目录 分类 对比 多模光纤产品选用指南 多模光纤的应用潜力 1.九十年代所占市场 2.七十年代崛起后 3.特点 4.“62.5”的兴衰和“50”的崛起 5.“62.5”优势 6.后续发展 7.802.3出台的影响 8.“新一代多模光纤” 1.新一代类型 2.新一代多模光纤光源 3.新一代多模光纤的带宽 4.光源的注入 1.介绍 2.①偏置注入 3.②中心注入 展开 分类 对比 多模光纤产品选用指南 多模光纤的应用潜力 1.九十年代所占市场

2.七十年代崛起后 3.特点 4.“62.5”的兴衰和“50”的崛起 5.“62.5”优势 6.后续发展 7.802.3出台的影响 8.“新一代多模光纤” 1.新一代类型 2.新一代多模光纤光源 3.新一代多模光纤的带宽 4.光源的注入 1.介绍 2.①偏置注入 3.②中心注入 展开 分类 基本上有两种多模光纤,一种是梯度型(graded)另一种是阶跃型(stepped),对于梯度型(graded)光纤来说,芯的折射率(refraction index)于芯的外围最小而逐渐向中心点不断增加,从而减少讯号的模式色散,而对阶跃型(Stepped Index)光缆来说,折射率基本上是平均不变,而只有在包层(cladding)表面上才会突然降低。阶跃型(stepped)光纤一般较梯度型(graded)光纤的带宽低。在网络应用上,最受欢迎的多模光纤为62.5/125,62.5/125意指光纤芯径为62.5μm而包层(cladding)直径为125μm,其他较为普通的为50/125及100/140。 对比 相对于双绞线,多模光纤能够支持较长的传输距离,在10mbps及 100mbps的以太网中,多模光纤最长可支持2000米的传输距离,而于1GpS 千兆网中,多模光纤最高可支持550米的传输距离,在10Gps万兆网中,多模光纤最高可支持100米以内的传输距离。

光纤测试方案

OTDR:光纤测试方案(短光纤测试)及OM4光纤介绍 首先来看一下当前数据中心的情况,10G已经不是什么新鲜事物了,而介质这块,铜缆双绞线也开始6A化,光纤也逐步升级,而数据中心里的大部分光纤链路都小于200米,这使得基于VCSEL的850nm光收发器可以被大量使用,配合OM3光纤,光纤方案的成本更为降低,也使OM3成为万兆速率数据中心的首选。 如表格1表格2所示,OM3光纤(MM50 um MBW=2000),在同样插入损耗的情况下,与OM2 和OM1光纤相比,OM3光纤的传输距离可以更远。而通道最大距离与模式带宽和通道最大插入损耗相关。例如,对于一个使用850nm OM3光纤的300米10GBase-SR链路而言,所能被允许的最大插入损耗是2.6分贝,而在1000BASE-SX网络中则为3.56分贝,可以预见随着速率不断提升,损耗这块的要求也越来越高了。而即使是在这2.6分贝的最大允许损耗中,也被分为光纤本身所固有的损耗,以及光纤连接和连接器损耗。 伴随数据中心TIA-942推行的结构化光布线系统的发展,在带来灵活易用的同时,也对光纤测试带来了新的内容,引入的结构化布线,增加了连接器件,对接头连接器的插入损耗有了更高的要求。 那么下面先来谈一下数据中心短光纤的测试面临的新的问题: 从目前光纤链路的测试来看,主要分成两个等级,第一等级为OLTS测试,第二等级为OTDR测试;从实际验收来看更多的采用的是OLTS测试,即光源和光表的测试方式,其原因除了测试设备相对价格低廉有关外,也和其使用简易程度有关,相对来说,使用第二级别的OTDR测试仪需要更专业的知识,需要读懂OTDR的曲线图,并且判定故障原因,这绝非简单培训就可以上手的工作。 另外,不论部署结构化光布线网络,还是模块化高密度MPO方案时,多模光纤都被大量运用,此时用光纤元件标准测试通过,而用应用标准测试则不一定过,两类标准门限值有所不同,测试时选标准不当,也会给后续网络运行埋下故障隐患。 不仅如此,在选用OTDR(Optical Time Domain Reflectometer,简称OTDR)测试仪时,死区的问题也是不能忽略的一大问题,OTDR的死区分为事件死区和衰减死区,事件死区代表OTDR所能检测到的光缆的最短长度。死区越短,可检测到的光缆长度就越短。如果事件死区比被测的光缆长度要短,那么就可以使用OTDR来测试这条链路。而衰减死区一般要大于事件死区,它的定义是可以测得的连续两个事件插入损耗数值的最小距离。 数据中心内网络的光缆链路通常都非常短,同时通道里还会有多个连接器和短的跳线。在进行光缆测试时,应该使用具有短事件死区和衰减死区的OTDR测试仪。

保护光纤通道测试报告.

附件2 保护光纤通道测试报告 线路名称: 电压等级: 测试地点: 测试单位:单位盖章 测试日期:

编写人: 参与测试人员: 审查: 核定: - I -

一、测试条件 阴大雾大雨 二、设备情况 1、现场运行设备 64kbps2Mbps专用光纤 注:1、继电保护光电转换装置指将接点电信号转换为光信号的装置,如FOX-41A、GXC-01、CSY-102A等,有的可设展宽时间;继电保护信号数字复用接口装置指将光纤差动保护装置等出来的光信号转换为G.703规约2M电信号的装置,如MUX-2M、GXC-64/2M、CSY-186A等。 2、保护装置使用的64kbps采用G.703同向数字接口或2Mbps透明传输接口,SDH的2Mbps 通道再定时功能不用,此项工作由通信人员负责。 2、试验仪器

三、保护通道构成 备注:以罗平变滇罗Ⅰ线为例,主一保护通道一通信通道编号为如“罗平变2M29”,通道路由为点对点,罗平——滇东。通道路由通常指:专用、点对点、迂回,当为迂回时应说明迂回通道经过的站点。 四、差动保护光纤通道测试 4.1专用光纤方式

(A)配有光纤接线盒的专用光纤通道连接图 (B)未有光纤接线盒的专用光纤通道连接图 图1 差动保护专用光纤通道连接示意图 4.1、保护装置及保护通信接口装置发光功率和接收功率测试 测试目的:测试保护装置和光纤接口的发光功率以及接收功率。 测试方法:分别用光功率计测量保护装置发信端(FX)尾纤的光功率——保护装置的发光功率和保护装置收信端(RX)尾纤的光功率——保护装置接收到的光功 率。 测试地点:保护装置光纤端口和光纤接线盒光纤端口及ODF架处。 测试分工:测试点1处由继保人员负责,测试点2处由保护人员和通信人员共同负责。注意事项:1、了解保护装置和保护通信接口装置的发光功率是否在厂家的给定范围内,同时测试尾纤及接头的损耗是否满足要求。 2、新安装试验、全检及部检时测试点1和测试点2都应进行测试,并建立

材料的光学性能测试10页word

材料科学实验讲义 (一级实验指导书) 东华大学材料科学与工程中心实验室汇编 2009年7月 一、实验目的和要求 1、掌握透过率、全反射和漫反射测定的基本原理; 2、掌握透过率、全反射和漫反射测定的操作技能; 3、测定聚合物膜和无机非金属材料的薄膜的透过率和全反射率,学会测定无机材料粉末的漫反射光谱。 4、针对不同的材料形式(如薄膜,粉末等)能判断该如何选择不同的测试模式。 二、实验原理 光学性能是材料的重要也是最常用的性能之一,薄膜、陶瓷、玻璃、粉末、聚合物、人工晶体甚至胶体的性能评价都离不开光学性能的表征。本实验中所涉及到材料的光学性能主要是指透过率、反射率尤其是漫反射模式测定的反射率等光学性能的测定,涉及的材料包括聚合物、粉末和玻璃等。 在通常所用的分光光度法中,常常将待测定的物质溶解在溶剂中,通过比色来定性或定量物质的含量或浓度等。一些无机粉末或者聚合物本身并不溶于常见的溶剂中,将这些不溶解的物质分散在液体介质中得到的是消光光谱而不是吸收光谱,测定的是消光(Extinction)而不仅仅是吸收(Absorption)。另外,对薄膜材料来说,能进行原位测定是重要的,因为在溶解过程中往往改变了材料的状态,所测定的也不再是实际应用中所要知道的结果。薄膜、粉末等是实际应用中常见的材料形式,这些材料的光学性能的测定对材料提出了更高的要求。 目前中高档的紫外-可见分光光度计均可选配积分球附件来测定物质的漫反射光谱(UV-vis diffuse reflenctance spectrum,UV-vis DRS),UV-vis DRS特别适用粉末样品的测定。聚合物、聚合物与无机物的杂化材料、多种无机化合物半导体均可用UV-vis DRS进行测定。带积分球的分光光度计还可测定玻璃、有机玻璃、塑料制品的透过率和反射率等。下面就有机物、无机物和化合物的紫外-可见光谱的原理作详细的介绍: 1、有机物的紫外—可见吸收光谱: 分子的紫外—可见吸收光谱是基于物质分子吸收紫外辐射或可见光,其外层电子

光纤通信技术论文

光纤通信技术论文 光纤通信技术 光纤即为光导纤维的简称。光纤通信是以光波作为信息载体,以光纤作为传输 媒介的一种通信方式。从原理上看,构成光纤通信的基本物质要素是光纤、光源和光检测器。光纤除了按制造工艺、材料组成以及光学特性进行分类外,在应用中,光纤常按用途进行分类,可分为通信用光纤和传感用光纤。传输介质光纤又分为通用与专用两种,而功能器件光纤则指用于完成光波的放大、整形、分频、倍频、调制以及光振荡等功能的光纤,并常以某种功能器件的形式出现。 光纤通信就是利用光导纤维传输信号,以实现信息传递的一种通信方式。光导纤维通信简称光纤通信。可以把光纤通信看成是以光导纤维为传输媒介的“有线”光通信。实际上光纤通信系统使用的不是单根的光纤,而是许多光纤聚集在一起的组成的光缆。光纤通信具有以下特点: (1)通信容量大、传输距离远。 (2)信号串扰小、保密性能好; (3)抗电磁干扰、传输质量佳。 (4)光纤尺寸小、重量轻,便于敷设和运输; (5)材料来源丰富,环境保护好,有利于节约有色金属铜。 (6)无辐射,难于窃听, (7)光缆适应性强,寿命长。 (8)质地脆,机械强度差。 (9)光纤的切断和接续需要一定的工具、设备和技术。 (10)分路、耦合不灵活。 (11)光纤光缆的弯曲半径不能过小(>20cm) (12)有供电困难问题。 就光纤通信技术本身来说,应该包括以下几个主要部分:光纤光缆技术、光交 换技术传输技术、光有源器件、光无源器件以及光网络技术等。 光纤光缆技术 光纤技术的进步可以从两个方面来说明: 一是通信系统所用的光纤; 二是特种光纤。早期光纤的传输窗口只有3个,即850nm(第一窗口)、1310nm(第二窗口)以及1550nm(第三窗口)。近几年相继开发出第四窗口(L波段)、第五窗口(全波光纤)

光纤验收测试方法简介

光纤验收测试方法简介 前言 在光纤工程项目中必须执行一系列的测试以便确保其完整性,一根光缆从出厂到工程安装完毕,需要进行机械测试、几何测试、光测以及传输测试。前3个测试一般都是在工厂进行,传输测试则是光缆布线系统工程验收的必要步骤。 国家标准《GB 50312-2007综合布线工程验收规范(含条文说明)》中明确要求对综合布线工程进行验收测试:“综合布线工程电气测试包括电缆系统电气性能测试及光纤系统性能测试。电缆系统电气性能测试项目应根据布线信道或链路的设计等级和布线系统的类别要求制定。各项测试结果应有详细记录,作为竣工资料的一部分。” 布线系统测试可以从多个万面考虑,设备的连通性是最基本的要求;跳线系统是否有效可以很方便地测试出来;通信线路的指标数据测试相对比较困难,一般都借助专业工具进行。 但国标中对光纤链路测试方法的描述非常简单,未给出详细的测试方法,对于目前在工程中常用的光时域反射损耗测试(OTDR),国标中并未阐述。本文从光纤测试标准、测试参数、测试设备、测试方法等几个方面进行简单的介绍,希望能对工程验收提供帮助。 一、参照标准 在国际标准IEC 61746、TIA/EIA TSB-107等标准中对光纤测试如光功率,OTDR等做了明确的规定,布线系统测试可以参照这些标准进行: 《GB 50312-2007综合布线工程验收规范(含条文说明)》 《IEC 61350 功率计校准》 《IEC 61746 OTDR校准》 《G.650.1 单模光纤与光缆的线性、确定性属性的定义与测试方法》 《G.650.2 单模光纤与光缆的统计与非线性属性的定义与测试方法》 《IEC 60793》 《TIA/EIA TSB-107》 《TIA/EIA FOTP-169》 … 二、测试参数 光缆测试一般应执行以下几个重要参数: 端到端光纤链路损耗 每单位长度的衰减速率 熔接点、连接器与耦合器各个事件 光缆长度或者事件的距离 每单位长度光纤损耗的线性(衰减不连续性) 反射或者光回损(ORL) 色散(CD) 极化模式色散(PMD)

相关文档
相关文档 最新文档