文档视界 最新最全的文档下载
当前位置:文档视界 › 镍钛形状记忆合金尺寸效应的实验研究

镍钛形状记忆合金尺寸效应的实验研究

镍钛形状记忆合金尺寸效应的实验研究
镍钛形状记忆合金尺寸效应的实验研究

纳米尺寸效应

纳米尺寸效应 纳米是长度单位,原称毫微米,就是10^-9米(10亿分之一米)。纳米科学与技术,有时简称为纳米技术,是研究结构尺寸在1至100纳米范围内材料的性质和应用。纳米效应就是指纳米材料具有传统材料所不具备的奇异或反常的物理、化学特性,如原本导电的铜到某一纳米级界限就不导电,原来绝缘的二氧化硅、晶体等,在某一纳米级界限时开始导电。这是由于纳米材料具有颗粒尺寸小、比表面积大、表面能高、表面原子所占比例大等特点,以及其特有的三大效应:表面效应、小尺寸效应和宏观量子隧道效应。 表面效应 球形颗粒的表面积与直径的平方成正比,其体积与直径的立方成正比,故其比表面积(表面积/体积)与直径成反比。随着颗粒直径变小,比表面积将会显著增大,说明表面原子所占的百分数将会显著地增加。对直径大于0.1微米的颗粒表面效应可忽略不计,当尺寸小于0.1微米时,其表面原子百分数激剧增长,甚至1克超微颗粒表面积的总和可高达100平方米,这时的表面效应将不容忽略。 超微颗粒的表面与大块物体的表面是十分不同的,若用高倍率电子显微镜对金超微颗粒(直径为2*10^-3微米)进行电视摄像,实时观察发现这些颗粒没有固定的形态,随着时间的变化会自动形成各种形状(如立方八面体,十面体,二十面体多李晶等),它既不同于一般固体,又不同于液体,是一种准固体。在电子显微镜的电子束照射下,表面原子仿佛进入了“沸腾”状态,尺寸大于10纳米后才看不到这种颗粒结构的不稳定性,这时微颗粒具有稳定的结构状态。超微颗粒的表面具有很高的活性,在空气中金属颗粒会迅速氧化而燃烧。如要防止自燃,可采用表面包覆或有意识地控制氧化速率,使其缓慢氧化生成一层极薄而致密的氧化层,确保表面稳定化。利用表面活性,金属超微颗粒可望成为新一代的高效催化剂和贮气材料以及低熔点材料。 小尺寸效应 随着颗粒尺寸的量变,在一定条件下会引起颗粒性质的质变。由于颗粒尺寸变小所引起的宏观物理性质的变化称为小尺寸效应。对超微颗粒而言,尺寸变小,同时其比表面积亦显著增加,从而产生如下一系列新奇的性质。 (1)特殊的光学性质当黄金被细分到小于光波波长的尺寸时,即失去了原有的富贵光泽而呈黑色。事实上,所有的金属在超微颗粒状态都呈现为黑色。尺寸越小,颜色愈黑,银白色的铂(白金)变成铂黑,金属铬变成铬黑。由此可见,金属超微颗粒对光的反射率很低,通常可低于l%,大约几微米的厚度就能完全消光。利用这个特性可以作为高效率的光热、光电等转换材料,可以高效率地将太阳能转变为热能、电能。此外又有可能应用于红外敏感元件、红外隐身技术等。 (2)特殊的热学性质固态物质在其形态为大尺寸时,其熔点是固定的,超细微化后却发现其熔点将显著降低,当颗粒小于10纳米量级时尤为显著。例如,金的常规熔点为1064C℃,当颗粒尺寸减小到10纳米尺寸时,则降低27℃,2纳米尺寸时的熔点仅为327℃左右;银的常规熔点为670℃,而超微银颗粒的熔点可低于100℃。因此,超细银粉制成的导电浆料可以进行低温烧结,此时元件的基片不必采用耐高温的陶瓷材料,甚至可用塑料。采用超细银粉浆料,可使膜厚均匀,覆盖面积大,既省料又具高质量。日本川崎制铁公司采用0.1~

静电微泵致动特性及其尺寸效应分析

静电微泵致动特性及其尺寸效应分析1 刘迎伟1,刘凯1,韩光平1,2 1.西安理工大学机械与精密仪器工程学院,西安(710048) 2.郑州航空工业管理学院,郑州(450052) E-mail:kliu@https://www.docsj.com/doc/425949521.html, 摘要:分析静电吸合现象,给出吸合电压的计算公式,以圆形泵膜为例,研究吸合电压的尺寸效应及泵膜几何尺寸对吸合电压的影响,得到静电间隙与泵膜厚度对吸合电压呈现正尺寸效应,其中吸合电压对静电间隙的灵敏度较大;泵膜半径则呈现负尺寸效应。这为静电致动器的精确控制与设计提供依据。 关键词:静电微泵;静电吸合;尺寸效应;等效电路 静电致动微泵工作过程式是一个静电场和机械结构相耦合的过程,通过静电场的变化引起微泵结构的响应[1]。因此,微泵的结构特征与静电致动特性是影响微泵工作的两个最主要的因素。本文研究静电致动特性及其尺寸效应。 1.振膜式静电微泵的结构及其工作原理 静电力作为MEMS的主要驱动力,由于其响应时间短,可靠性极好,能耗很低,制作也相对简单,被广泛地用于许多微型器件上。静电致动只有做到电极间间隙足够小,且所加电压比较高时才能产生足够大的致动力,这样必须防止两电极的接触。而且致动力的非线性性质给精确控制增加了一定难度。应用较为成功的一类静电致动器就是静电致动式微泵。其基本结构主要由三部分组成:致动单元,微型单向阀单元和泵室。致动单元包括:固定电极(上电极对),绝缘层,泵膜片(下电极对)。微型单向阀单元包括上阀体和下阀体或扩散口和喷嘴。结构如图1和图2所式。 静电致动器原理很简单,由一个薄膜作为可动电极和一个固定电极组成,在两个电极间施加交变电压,利用两个电极之间的电荷吸引作用,使薄膜产生周期性变形,使腔体内的压力交替变化,从而驱动流体流动。静电产生的压力与电极施加的电压的平方成正比,与电极间的距离的平方成反比。静电驱动方式一般通过调节驱动电压大小来间接控制机构的运动。压力的提高受到致动器的位移量(行程)的限制。 图1 有阀静电微泵 1本课题得到了教育部高等学校博士学科点专项科研基金(项目编号:20060700002)的资助。

第二章-材料的断裂强度

第二章 2.1固体的理论结合强度 2.2 材料的断裂强度 2.3 裂纹的起源与快速扩展 2.4 材料的断裂韧性 2.5显微结构对脆性断裂的影响 2.6无机材料强度的统计性质 2.7材料的硬度 第二章 材料的脆性断裂与强度 2.1固体的理论结合强度 无机材料的抗压强度约为抗拉强度的10倍。所以一般集中在抗拉强度上进行研究,也就是研究其最薄弱环节。 要推导材料的理论强度,应从原子间的结合力入手,只有克服了原子间的结合力,材料才能断裂。如果知道原子间结合力的细节,即知道应力-应变曲线的精确形式,就可算出理论结合强度。这在原则上是可行的,就是说固体的强度都能够根据化学组成、晶体结构与强度之间的关系来计算。但不同的材料有不同的组成、不同的结构及不同的键合方式,因此这种理论计算是十分复杂的,而且对各种材料都不一样。 为了能简单、粗略的估计各种情况都适应的理论强度,Orowan 提出了以正弦曲线来近似原子间约束力随原子间距离X 的变化曲线(见图2.1),得出 λ πσσX th 2sin ?= 2-1 式中,σ th 为理论结合强度;λ为正弦曲线的波长。 图2.1 原子间约束力与距离的关系 将材料拉断时,产生两个新表面,因此单位面积的原子平面分开所做的功应等于产生两个单位面积的新表面所需的表面能,材料才能断裂。设分开单位面积原子平面所做的功为w,则

π λπλλ πσλ πσσλ λ th th th x dx x w ===-?]2cos [2 20 22sin 2-2 设材料形成新表面的表面能为γ(这里是断裂表面能,不是自由表面能),则w=2γ,即 γπλο2=th ,λ πγ σ2= th 2-3 接近平衡位置o 的区域,曲线可以用直线代替,服从虎克定律: E a x E ==εσ 2-4 a 为原子间距。X 很小时 sin λ πλ πx x 22≈ 2-5 将(2.3),(2.4)和(2.5)式代入(2.1)式,得 a E th γ σ = 2-6 式中a 为晶格常数,随材料而异。可见理论结合强度只与弹性模量、表面能和晶格距离等材料常数有关,属于材料的本证性能。(2.6)式虽然是粗略的估计,但对所有固体均能应用而不涉及原子间的具体结合力。通常γ约为aE/100,这样,(2.6)式可写成 10 E th = σ 2-7 更精确的计算说明(2.6)式的估计稍偏高。 一般材料性能的典型数值为:E=300GPa,/1J =γm 2 ,a=3?10-10 m,代入(2.6)式算出 σ th =30GPa ≈10 E 2-8 要得到高强度的固体,就要求E 和γ大,a 小。实际材料中只有一些极细的纤维和晶须其强度接近理论强度值.例如熔融石英纤维的强度可达24.1GPa,约为E/3(E,72Gpa),碳化硅晶须强度 6.47GPa,约为E/70(E,470Gpa),氧化铝晶须强度为15.2GPa,约为E/25(E,380Gpa)。尺寸较大的材料实际强度比理论强度低的多,,约为E/100-E/1000,而且实际材料的强度总在一定范围内波动,即使是用同样的材料在相同的条件下制成的试件,强度值也有波动。一般试件尺寸大,强度偏低。为了解释这种现象,人们提出了各种假说,甚至怀疑理论强度的推导过程等,但都没有抓住断裂的本质。直到1920年,Griffith 为了解释玻璃的理论强度与实际强度的差异,提出了微裂纹理论,才解决了上述问题。后来经过不断的发展和补充,逐渐成为脆性断裂的主要理论基础。 §2.2 材料的断裂强度

纳米材料的小尺寸效应

纳米材料的小尺寸效应 吴顺康四川大学生命科学学院 2016 级生命科学拔尖班 小尺寸现象产生的原因: 纳米粒子的特性当粒子的尺寸进入纳米量级时,微粒内包含的原子数仅为 100?10000 个,其中有 50 %左右为界原子,纳米微粒的微小尺寸和高比例的表面原子数导致了它的量子尺寸效应和其他一些特殊的物理性质。 小尺寸效应导致的性质(以及部分应用) 由于纳米微粒的尺寸比可见光的波长还小,光在纳米材料中传播的周期性被破坏,其光学性质就会呈现与普通材料不同的情形。例如,金属由于光反射显现各种颜色,而金属纳米微粒都呈黑色,说明它们对光的均匀吸收性、吸收峰的位置和峰的半高宽都与粒子半径的倒数有关。⑵利用这一性质,可以通过控制颗粒尺寸制造出具有一定频宽的微波吸收纳米材 料,可用于磁波屏蔽、隐形飞机等。⑴此外,金属超微颗粒的光反射率极低,可低于1%, 大约几毫米就可以完全消光。可以利用此特性,高效持续的将太阳能转化为热能和电能。 在物质超细微化之后,纳米材料的熔点显著降低,犹在颗粒直径为 10 纳米时较为明显,例如金(Au)常规熔点在1064度;然而在颗粒尺寸减少到 2纳米时仅为327度;由此,超细银粉制成的导电浆料可以进行低温烧结,此时的基片可以仅仅使用塑胶而不是高温陶瓷。使用超细银粉,可以使膜厚均匀,覆盖面积大,省料而质量高。 纳米小尺寸效应的应用: 纳米材料作为功能材料与产业技术的结合,具有很多潜在的应用价值。小尺寸超微颗粒的磁性与大尺寸材料显著不同,在颗粒尺寸下降到 0.02 微米以下之后,其矫顽力可增加 1000 倍,若进一步

减小尺寸,其矫顽力反而可以降到0,呈现出超顺磁性。利用超顺磁性颗粒的

(赵国藩)尺寸效应

混凝土作为一种脆性工程材料表现出了明显的尺寸效应(size Effect)。准确地说,它的混凝土尺寸效应现象表现在两个方面:一是试件尺寸对确定参数的影响,二是在进行数值模拟时,数值计算得到的结果显著的依赖于有限元网格尺寸大小。例如混凝土梁的弯曲强度随梁高度的增加而降低。L’Herrnite的研究则表明,由三点弯曲梁测得的混凝土平均抗拉强度随试件体积的增加而降低。Kadlecek等指出,由三点弯曲梁和四点弯曲梁试验、计算所得的混凝土平均抗拉强度与直接拉伸试件所得混凝土抗拉强度值有显著差别。Bazant等对混凝土缺口梁的试验研究表明,名义抗拉强度和抗剪强度对试件尺寸有明显的依赖性。上述研究实质上表明:1.由弹性分析或极限分析反映的水泥基复合材料的抗拉强度是试件体积和结构内部应力场的函数。这种试件尺寸效应与结构内部原始缺陷有一定的关系。也就是说材料内部的原始缺陷数量是材料体积的函数,原始缺陷在结构中的拓朴分布必定与施加于这些微缺陷的应力场有关。文献[17]的研究指出:这种试件尺寸效应可以用初始损伤发展的概率方法来分析。2.由混凝土缺口试件测得的混凝土断裂韧度有明显的尺寸效应,试件的破坏往往是断裂过程区中微裂缝发展的结果。断裂过程区的大小往往与材料中骨料粒径大小有直接关系,对于混凝土I型断裂而言,断裂过程区的宽度是最大骨料粒径D max的3倍,而其长度约是D max的5至6倍。然而断裂过程区的体积并不随结构的尺寸变化。因而对尺寸较小的试件来说,在断裂过程区和结构的其余部分之间进行的应力和能量重分布是非常重要的。而对于大试件来说,由于断裂过程区的大小与试件尺寸相比可忽略不计,其损伤可视为集中在裂缝尖端的一个相对小的区域。这种试件尺寸效应与结构破坏前的损伤发展有关而与材料中原始缺陷无关。上述两个方面实则指出了两种类型的试件尺寸效应现象,一种与结构的原始缺陷的数量和分布有关,一种与结构在应力作用下的损伤发展有关。对于有缺口试件而言,预制切口可视为结构内部的最大原始缺陷。 对混凝土这种典型的非均质材料来说,对其力学行为的模拟往往有两种方法:一种是视混凝土为均质材料,采用连续介质力学方法。定义局部应变和应力,利用一种适当的方法来分析当材料受荷时,应力和应变的变化。另一种是不再认为混凝土为均质材料,而认为其组份是随机分布,运用概率的方法来研究混凝土的力学行为,这就是通常所说的随机方法(Stochastic Approach)。已有许多学者运用这种随机方法建立了许多混凝土分析模型。

复合材料中的尺寸效应

复合材料中的尺寸效应 复合材料本身就是一种广义的结构,这种结构的破坏问题与结构的尺寸效应有 着必然的联系,复合材料中很多都属于准脆性材料,因此尺寸效应显得尤其重要, 从尺度律和尺寸效应角度研究强度问题是个重要的观点,比如一个长细杠件它的稳定性能一定较差,这也是一种较常见的尺寸效应问题。强度随机性引起的尺寸效应,能量释放的尺寸效应和微裂纹和断裂的分形特性产生的尺寸效应都对复合材料结构的强度的影响有着重要意义。 目前,固体力学中有三种有关尺寸效应的基本理论 : (1)随机强度统计理论 ; (2)长裂纹引起的应力重新分布和断裂能量释放理论 (3)裂纹分形理论,它可分为两大类 : (a) 裂纹表面的侵入式分形特性理论(即表面粗糙度的分形属性) (b) 间隙分形特性理论(代表着微裂纹的分形分布)

这些基本理论概括表现为材料的四种尺寸效应: (l)边界层效应:它是由材料的非均匀性和泊松效应造成的.前者可以混凝土之类的材料为例,由于各种骨料不能穿透表面而使表面层具有不同的成分;而泊松效应指的是,在试样内部可能存在平面应变的状态,它们发生在与试件表面平行的平面上 ,但不是发生在试样的表面,而是发生在试件的中心部位 . (2)表面与裂纹边缘连接处存在三维应力的奇异性: 这也是由于泊松效应引起的.这就造成了断裂扩展区域靠近表面的那一部分的力学行为不同于试样内部 的力学行为 . (3)由扩散现象引起的时间相关的尺寸效应, 所谓扩散可以是多孔介质中热的输运或湿气和化学物质的输运,这一点已在收缩和干燥蠕变现象的尺寸效应中显示出来,原因是半干燥期依赖于尺寸,以及这种尺寸效应对收缩致裂的影响。 (4)材料本构关系的时间相关性 ,特别是材料应变软化的粘性特征

影响金属材料疲劳强度的八大因素

影响金属材料疲劳强度的八大因素 Via 常州精密钢管博客 影响金属材料疲劳强度的八大因素 材料的疲劳强度对各种外在因素和内在因素都极为敏感。外在因素包括零件的形状和尺寸、表面光洁度及使用条件等,内在因素包括材料本身的成分,组织状态、纯净度和残余应力等。这些因素的细微变化,均会造成材料疲劳性能的波动甚至大幅度变化。 各种因素对疲劳强度的影响是疲劳研究的重要方面,这种研究将为零件合理的结构设计、以及正确选择材料和合理制订各种冷热加工工艺提供依据,以保证零件具有高的疲劳性能。 应力集中的影响 常规所讲的疲劳强度,都是用精心加工的光滑试样测得的,然而,实际机械零件都不可避免地存在着不同形式的缺口,如台阶、键槽、螺纹和油孔等。这些缺口的存在造成应力集中,使缺口根部的最大实际应力远大于零件所承受的名义应力,零件的疲劳破坏往往从这里开始。 理论应力集中系数Kt :在理想的弹性条件下,由弹性理论求得的,缺口根部的最大实际应力与名义应力的比值。 有效应力集中系数(或疲劳应力集中系数)Kf:光滑试样的疲劳极限σ-1与缺口试样疲劳极限σ-1n的比值。 有效应力集中系数不仅受构件尺寸和形状的影响,而且受材料的物理性质、加工、热处理等多种因素的影响。 有效应力集中系数随着缺口尖锐程度的增加而增加,但通常小于理论应力集中系数。 疲劳缺口敏感度系数q:疲劳缺口敏感度系数表示材料对疲劳缺口的敏感程度,由下式计算。 q的数据范围是0-1,q值越小,表征材料对缺口越不敏感。试验表明,q并非纯粹是材料常数,它仍然和缺口尺寸有关,只有当缺口半径大于一定值后,q值才基本与缺口无关,而且对于不同材料或处理状态,此半径值也不同。 尺寸因素的影响

形状记忆合金的微尺度力学行为

分类号密级 UDC 编号 中国科学院力学研究所 博士后研究工作报告 形状记忆合金的微尺度力学行为 博 士 后 刘 澂 合作导师 赵亚溥 研究员 (中国科学院力学研究所) 孙庆平 副教授 (香港科技大学机械工程学系) 工作完成日期2001年4月-2003年7月 报告提交日期2003年7月 中国科学院力学研究所 (北京) 2003年7月

形状记忆合金的微尺度力学行为 The Micro-scale Mechanical Behavior of Shape Memory Alloys 博 士 后 刘 澂 合作导师 赵亚溥 研究员 (中国科学院力学研究所) 孙庆平 副教授 (香港科技大学机械工程学系) 流动站(一级学科) 名称 力 学 专 业(二级学科) 名称 固体力学 研究工作起始日期 2001年4月 研究工作期满日期 2003年7月 中国科学院力学研究所 (北京) 2003年7月

摘要 与常规合金相比,形状记忆合金具有形状记忆效应(SME)和超弹性(SE)等特性。利用这些特性,形状记忆合金被广泛地应用在MEMS中,微机器人领域及医疗器械等方面。为了充分发挥材料性能和优化设计以形状记忆合金为材料制成的MEMS器件及医疗器械,十分需要深入地研究并掌握形状记忆合金微尺度下的相变过程及变形行为。 形状记忆合金的形状记忆效应和超弹性等特性都与马氏体相变有着十分密切的关系。本文对CuAlNi单晶形状记忆合金中温度变化形成的热变马氏体和应力诱发的形变马氏体进行了观察并研究了其室温下和升温过程中的微尺度力学行为。同时还研究了NiTi纳米多晶形状记忆合金体材料和NiTi形状记忆合金薄膜室温下压痕尺寸效应。研究内容包括以下几个方面: 1)自行设计出能够配合纳米硬度仪、AFM及光学显微镜使用的微型拉伸装置,实现应力诱发马氏体相变的观测及研究; 2)使用光学显微镜和AFM对热变马氏体和形变马氏体进行观察,并用摄像机记录了光学显微镜下观察到的应力诱发马氏体相变的全过程; 3)使用带有加热台的纳米压痕仪研究了室温下及高温下形状记忆合金独特的纳米压痕行为,包括室温下形状记忆合金的纳米压痕尺寸效应及微分硬度分布情况和升温后形状记忆合金在不同温度下纳米压痕的恢复情况及纳米硬度随温度的变化情况。 本研究工作得到的结果如下: 1)CuAlNi单晶形状记忆合金压痕实验中,由于压头尖端的应力水平很高,不仅会在奥氏体中产生应力诱发马氏体相变,在马氏体中产生应力诱发马氏体重取向,而且在奥氏体和马氏体中还会产生位错引起的塑性变形。位错将对压痕形状的恢复起阻碍作用,当温度高于A f点时,奥氏体和马氏体中的压痕仍不能完全恢复。 2)当所施加的压痕载荷较小(≤ 10000 μN)时,CuAlNi单晶形状记忆合金中的非弹性变形以相变引起的变形为主,并将对高温下材料的变形产生主要的影响。100°C时奥氏体中压痕在深度方向上的恢复率(δD)在0.7~0.8

(完整)量子尺寸效应

(完整)量子尺寸效应 编辑整理: 尊敬的读者朋友们: 这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)量子尺寸效应)的内容能够给您的工作和学习带来便利。同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。 本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)量子尺寸效应的全部内容。

1.1.1量子尺寸效应 所谓的量子尺寸效应是指粒子尺寸下降到某一值时,金属费米能级附近的电子能级 由准连续变为离散的现象,纳米半导体粒子存在不连续的最高被占据的分子轨道和最低未 被占据的分子轨道能级,能隙变宽,由此导致纳米微粒的光、电、磁、热、催化和超导性等 特性与宏观性存在着显著的差异。如金属纳米材料的电阻随着尺寸下降而增大,电阻温度 系数下降甚至变成负值;相反,原是绝缘体的氧化物达到纳米级时,电阻反而下降;10~ 25nm的铁磁金属微粒矫顽力比同种宏观材料大1000倍,而当颗粒尺寸小于10nm时矫顽力 变为零,表现为超顺磁性。 1。1。2小尺寸效应 当超细微粒的尺寸与光波波长、德布罗意波长以及超导态的相干长度或透射深度等 物理特征尺寸相当或更小时,晶体周期性的边界条件将被破坏;非晶态纳米微粒的颗粒表面 层附近原子密度减小,导致声、光、电、滋、热、力学等特性呈现新的小尺寸效应.例如: 光吸收显著增加,吸收峰的等离子共振频移,磁有序态向磁无序态转变,超导相向正常相 的转变,声子谱发生改变等,这种现象称为小尺寸效应。 1。1.3表面与界面效应 纳米材料的另一个重要特性是表面与界面效应.由于表面原子与内部原子所处的环境 不同,当粒子直径比原子直径大时(如大于0。01时),表面原子可以忽略,但当粒子直径 逐渐接近原子直径时,表面原子的数目及作用就不能忽略,而且这时粒子的比表面积、表 面能和表面结合能都发生很大变化.人们把由此引起的种种特殊效应统称表面效应[8,9]。 随着粒径的减小,比表面迅速增大.当粒径为5nm时,表面原子数比例达到约50%以上,当 粒径为2nm时,表面原子数达到80%,原子几乎全部集中到纳米粒子的表面.庞大的表面原 子的存在导致键态严重失配,表面出现非化学平衡、非整数配位的化学键,产生许多活性中心,从而导致纳米微粒的化学活性大大增强,主要表现在:(1)熔点降低.就熔点来说,纳 米颗粒中由于每一粒子组成原子少,表面原子处于不安定状态,使其表面晶格震动的振幅 较大,所以具有较高的表面能量,造成超微粒子特有的热性质,也就是造成熔点下降,同时 纳米粉末将比传统粉末容易在较低温度烧结,而成为良好的烧结促进材料。如金的常规熔 点是1064℃当颗粒尺寸减小到10nm时,降低了270℃,当金纳米粒子尺寸为2 nm时,熔点 仅为327℃;银的常规熔点为961℃,而超微银颗粒的熔点可低于100℃等。(2)比热增大。粒径越小,比热越大.(3)化学活性增加,有利于催化反应等。 1.1。4宏观量子隧道效应 微观粒子具有贯穿势垒的能力称为隧道效应。近年来,人们发现一些宏观量,如超微 粒的磁化强度和量子相干器件中的磁通量等也具有隧道效应,称为宏观量子隧道效应,利 用它可以解释纳米镍粒子在低温下继续保持超顺磁性的现象。宏观量子隧道效应的研究对 基础研究及实用都具有重要的意义,它确立了现存微电子器件进一步微型化的极限,是未来 微电子器件的基础. 上述的小尺寸效应、表面界面效应、量子尺寸效应及量子隧道效应都是纳米微粒与 纳米固体的基本特性。它使纳米微粒和纳米固体呈现许多奇异的物理、化学性质,出现一 些“反常现象”。例如金属纳米材料的电阻随尺寸下降而增大,电阻温度系数下降甚至变 成负值;相反,原是绝缘体的氧化物达到纳米级时,电阻反而下降;10nm-25nm的铁磁金属

CGMD运算方法在纳米压痕上的应用

新技术新工艺2019年第1期 C G M D运算方法在纳米压痕上的应用" 傅仕红 (浙江师范大学先进材料成形技术研究所,浙江金华321019) 摘要:分子动力学是用来描述原子尺度行为的一种重要方法,但是如果尺度上升到巨宽尺度,分子 动力学所需要的计算量非常庞大,其运算时间也需要很长。针对上述问题,研究了将C G M D运算方法运 用到纳米压痕上,并将得到的结果与分子动力学进行比较,结果表明,C G M D与分子动力学这2种运算方 法在纳米压痕的变形机制与物理行为是很接近的,但由C G M D模拟得到的载荷-位移曲线所估算的薄膜 基板材料性质略高于分子动力学的模拟结果。 关键词:C G M D;分子动力学;纳米压痕;变形机制;变换尺度;节点势能 中图分类号:〇55 文献标志码:B Application of CGMD Operation Method in Nanindentation F U Shihong (Lab for Advanced Material Processing,Zhejiang Normal University,Jinhua321019, China) Abstract:Coarse grained molecular dynamics(C G M D)i s an important method for simulating atom scale action,but i f the scale increased to tremendous level,molecular dynamics need huge calculated amount,and the operation time was long. Aimed at that,C G M D method was taken,and applied i t into nanoindentation,the results were compared with namics.The results showed that the two operational method were similar in the aspect of i cs behavior of nanoindentation,but the properties of film placode materials estimated with C G M D load-displacement were a l i t t l e higher than those with molecular dynamics. Key words:C G M D,molecular dynamics,nanoindentation,deformation mechanism,transformation scale,node poten- t i a l energy 分子动力学(M D)是用来描述原子尺度行为的 一种重要的方法,但是如果尺度上升到巨宽尺度[1],分子动力学所需要的计算量非常庞大,其运算时间 也需要很长。在系统中,想要模拟这个尺度的行为,对使用有限元分析法来说,由于网格划分小,必须经 过一系列的修正,所以不太适合;对分子动力学来 说,系统需求庞大,在定量分析上有很大的困难。 C G M D(C o a r s e Grained Molecular D y n a m i c s)是分 子动力学的一种延伸方法,利用该方法,通过截取一 团原子群的重要特征,能够达到用减少的节点数取 代多数原子做运算的目的。如果使用C G M D运算 方法来描述原子等级的现象,将会大大提高效率,甚 至可以达到有限元分析法的定量结果。 1纳米压痕弹性模数理论的建立 通过连续体力学,可以推导应力式1直接应用 在分子动力学上,除了必须对模型内的原子计算相 关的作用力外,还应考虑到模型内原子与映像空间 中假想粒子的相对作用力。在计算作用力时,需要 找到模型与映像空间内的粒子间相对距离的最小间 距,这个距离应为截断半径[2]的2倍(见图1)。 〇s* V? 21* < '!(r>) >e s d r> (1 )式中,a是区域内应力s是作用区域;N是区域内 粒子数F,是区域内的2个方向;V Z是区域内原 子体积,V z =4$?/3,仏是区域内原子半径,仏= 2r k1/(22r k2)。 66 图1截面示意图 纳米压痕分析仪器是目前科学研究领域中少数 可以用来分析纳米尺度下,测试工件表面及微小结 构机械性质的工具。在测量过程中,可得到压痕作 用力与压痕深度的关系图(见图2)[3],通过图2可 以进一步分析极薄薄膜的硬度、弹性系数与破坏韧 性等机械性质M。 《新技术新工艺》试验与研 究

量子尺寸效应

1.1.1量子尺寸效应 所谓的量子尺寸效应是指粒子尺寸下降到某一值时,金属费米能级附近的电子能级由准连续变为离散的现象,纳米半导体粒子存在不连续的最高被占据的分子轨道 和最低未被占据的分子轨道能级,能隙变宽,由此导致纳米微粒的光、电、磁、热、 催化和超导性等特性与宏观性存在着显著的差异。如金属纳米材料的电阻随着尺寸下 降而增大,电阻温度系数下降甚至变成负值;相反,原是绝缘体的氧化物达到纳米级时,电阻反而下降;10~25nm的铁磁金属微粒矫顽力比同种宏观材料大1000倍,而当颗粒尺寸小于10nm时矫顽力变为零,表现为超顺磁性。 1.1.2小尺寸效应 当超细微粒的尺寸与光波波长、德布罗意波长以及超导态的相干长度或透射深度等物理特征尺寸相当或更小时,晶体周期性的边界条件将被破坏;非晶态纳米微粒 的颗粒表面层附近原子密度减小,导致声、光、电、滋、热、力学等特性呈现新的小 尺寸效应。例如:光吸收显著增加,吸收峰的等离子共振频移,磁有序态向磁无序态 转变,超导相向正常相的转变,声子谱发生改变等,这种现象称为小尺寸效应。 1.1.3表面与界面效应 纳米材料的另一个重要特性是表面与界面效应。由于表面原子与内部原子所处的环境不同,当粒子直径比原子直径大时(如大于0.01时),表面原子可以忽略,但当 粒子直径逐渐接近原子直径时,表面原子的数目及作用就不能忽略,而且这时粒子的 比表面积、表面能和表面结合能都发生很大变化。人们把由此引起的种种特殊效应统 称表面效应[8,9]。随着粒径的减小,比表面迅速增大。当粒径为5nm时,表面原子数比例达到约50%以上,当粒径为2nm时,表面原子数达到80%,原子几乎全部集中 到纳米粒子的表面。庞大的表面原子的存在导致键态严重失配,表面出现非化学平衡、非整数配位的化学键,产生许多活性中心,从而导致纳米微粒的化学活性大大增强, 主要表现在:(1)熔点降低。就熔点来说,纳米颗粒中由于每一粒子组成原子少,表面原子处于不安定状态,使其表面晶格震动的振幅较大,所以具有较高的表面能量, 造成超微粒子特有的热性质,也就是造成熔点下降,同时纳米粉末将比传统粉末容易 在较低温度烧结,而成为良好的烧结促进材料。如金的常规熔点是1064℃当颗粒尺寸减小到10nm时,降低了270℃,当金纳米粒子尺寸为2 nm时,熔点仅为327℃;银的常规熔点为961℃,而超微银颗粒的熔点可低于100℃等。(2)比热增大。粒径越小,比热越大。(3)化学活性增加,有利于催化反应等。 1.1.4宏观量子隧道效应 微观粒子具有贯穿势垒的能力称为隧道效应。近年来,人们发现一些宏观量,如超微粒的磁化强度和量子相干器件中的磁通量等也具有隧道效应,称为宏观量子隧

微电子机械系统尺寸效应的泛函分析

微电子机械系统尺寸效应的泛函分析 韩光平1,2,刘凯1,褚金奎2 (1.西安理工大学,陕西西安 710048;2.郑州航空工业管理学院,河南郑州 450052) 摘要:尺寸效应涉及微电子机械系统研究领域的各个方面,在分析归纳微器件或系统中尺寸对其特性影响的基础上,提出从纯尺寸因素和非尺寸因素综合考虑尺寸效应,建立了一个尺寸效应的基本数学模型,并从尺寸泛函的绝对值、相对值和对尺寸的灵敏度三个方面对该数学模型进行泛函分析,总结出一些尺寸效应的发生规律。 关键词:微电子机械系统(M EM S);尺寸效应;泛函分析;灵敏度;微器件 中图分类号:T H112 文献标识码:A 文章编号:1001-2354(2004)02-0017-03 微电子机械系统(M EM S)技术基于微电子和微机械的有机集成,涉及微电子学、微机械学、微材料学、微摩擦学、微电磁学、微光学、微动力学、微流体力学、微热力学、自动控制、物理、化学及生物医学等多个学科的研究领域[1],集约了各学科前沿领域研究的新技术、新成果,和纳米科学技术(N ST)一起被列为21世纪关键技术之首。自20世纪60年代问世以来,M EM S逐步成为人们在微观领域认识和改造客观物质世界的一种高新技术和重要手段,将人类带入信息时代。由于其应用的广泛性和迫切性,国内外投入到该研究领域的人力、物力日益增加,考虑到实用性,人们更加关注可以即时应用的各种微器件的研究开发,特别是经过近十年的迅猛发展,国内外在硅微细加工、光刻、L IGA和准L IGA技术、高能束刻蚀技术、牺牲层技术、外延技术、准分子激光微细加工技术等各种微制造工艺方面取得了显著的成就,设计制造出多种微传感器、微执行器等微器件,如M EM S力传感器、微加速度传感器、微显示器芯片、微惯性传感器、微机械血液测试仪[2]、微阀、微泵、微齿轮及微马达等。但是,各种微器件有机结合成真正意义上的M EM S,还有相当的难度,如何建立M EM S等效机构的失效模型这一问题尚未得到有效解决[3]。究其原因,人们对微观条件下M EM S器件的运动规律、物理特性和受载之下的力学行为缺乏充分的认识,没有形成基于一定理论基础之上的M EM S设计理论方法[4],只能靠传统方法进行试探性研究。目前,M EM S基础理论研究远远不能满足人们的需要,成为整个微电子机械系统进一步发展的 瓶颈 ,因此,对M EM S设计中的基础理论进行系统性研究已刻不容缓。 1 研究尺寸效应的意义 随着纳米材料、微器件、微结构和微系统的深入发展及其应用,与微尺度效应有关的理论和技术成为当前的研究热点,推动着微尺度理论的形成和发展[5]。微电子机械系统不仅是指以微小尺寸和工作空间为特征,更重要的是,微器件中的物理量和机械量等在微观状态下呈现出大大异于传统机械的特有规律,因此,M EM S具有自身独特的理论基础。对于M EM S 的基础理论范畴,大量的专著和论文报道均有详尽的描述,其中有把M EM S涉及到的各学科作为基础理论研究范畴,这种观点使得M EM S基础理论研究内容全面,但没有突出其重点;有的研究人员挑选出应用更为广泛的部分学科,如文献[4]把微机构学、微构件材料力学和微摩擦学作为现阶段M EM S基础研究的主要内容,这种观点重点突出,没有包括应有的其它学科的理论基础。无论如何划分,M EM S理论基础的研究领域都包含有一个共同的特征 微 ,这说明尺度因素才是微电子机械系统设计中最为重要的主导因素。以尺寸效应作为M EM S 理论基础的主要研究内容,既可以突出研究重点 构件的微型化,又给出了M EM S所涉及各学科之间的联系,即微型化的构件产生的效应使其具有自身独特的性能,导致在各学科领域产生新的问题。 在微观领域中,微器件的显著特征就是呈现出尺寸效应和表面效应,而表面效应也是由于尺寸的减小引起表面作用的增强。当物体的尺寸改变时,与尺寸相关的各种物理量、机械量发生相应的变化,从而产生尺寸效应。尺寸效应及其引起的变化(如表面缺陷数、晶格层错、介质不连续及量子效应等)导致了微观领域的许多物理现象与宏观领域相比较有显著差异,甚至相悖,从而出现新的研究领域,对经典理论提出挑战。因此,研究M EM S的基础理论,必须研究尺寸效应。已有关于尺寸效应的研究仅仅局限于某一个具体量,如弹性模量、拉伸强度、失效强度及形状记忆合金的回复力[6]等,而且数据是在不同的工艺条件和测试环境下获得的,缺乏通用性和权威性。在此对具有普遍性意义的尺寸效应,建立了基本的数学模型,对纯尺寸因素进行了泛函分析,并综合考虑尺寸效应引发的非尺寸因素变化。 2 尺寸效应的基本数学模型 2.1 尺寸泛函 在尺寸效应中,特征尺寸L是基本参量,尺寸的变化首先 第21卷第2期2004年2月 机 械 设 计 JOU RNA L OF MA CHIN E DESIGN V ol.21 No.2 Feb. 2004 收稿日期:2003-04-07;修订日期:2003-08-26 基金项目:国家自然科学基金资助项目(50135040) 作者简介:韩光平(1971-),男,河南郑州人,西安理工大学博士生,郑州航空工业管理学院讲师,主要研究方向:微电子机械系统(M EM S)微尺度及系统仿真。

纳米压痕技术及其实验研究

图5 相关度量与旋转因子增量的关系 平移因子增量、旋转因子增量、外轮廓相关度量的计算结果见表2,相关度量与平移因子增量、旋转因子增量的关系见图4、图5。从图4、图5和表2可以看出,在确定平移和旋转因子初值之后再进行搜索,搜索数量不大,速度很快;沿X和Y方向分别只平移了012个像素和1个像素,并旋转了0106度,此时相关度量最大。根据多次试验的经验,我们把平移因子的步长设定在012像素。 5 结论 本文设计了基于图像处理的汽车密封条测量系统的硬件系统,利用牛顿插值函数实现了亚像素细分,建 立了仿射变换模型。测试试验证明:利用边界直径和公差要求确定图像平移和旋转初值、然后进行最大相关搜索的方法是行之有效的。经过大量的试验结果统计,整个系统的长度不确定度在0102mm以内。 参考文献 1 L Angrisani,P Daponte,A Pietrosanto,C Liguori.An image based measurement system for the characterization of autom otive gaskets.Measurement25(1999):169~181 2 李庆利,张少军,李忠富等.一种基于多项式插值改进地亚像素细分算法.北京科技大学学报,2003,25(3):280~283 3 钟家强,王润生.基于边缘的图像配准改进算法.计算机工程与科学,2001,23(6):25~29 4 曾文峰,李树山.图像配准参数的自适应求取方法.海军工程大学学报,2001,13(1):45~48 5 William C,Hasenplaugh,Mark A Neifeld.Image binarization techniques for correlation based pattern recognition.Opt Eng. 1999,38(11):1907~1917 第一作者:马 强,哈尔滨工业大学自动测试与控制系, 150001哈尔滨市 收稿日期:2004年3月纳米压痕技术及其试验研究朱 瑛 姚英学 周 亮 哈尔滨工业大学 摘 要:介绍纳米压痕技术的基本原理和计算方法,从定义、适用范围和压痕面积的获得方法等三个方面指出纳米硬度与常规硬度之间的重要区别,对硬度的概念做了进一步讨论。通过试验得出了单晶铝材料的纳米硬度值,并与传统计算方法获得的硬度值进行了比较。 关键词:纳米压痕, 原子力显微镜, 纳米硬度 N ano2indentation T echnology and Its Experimental R esearch Zhu Y ing Y ao Y ingxue Zhou Liang Abstract:An introduction is made to the fundamental principles and calculating method of nano2indentation.I t is pointed out the im portant difference between nano2hardness and conventional hardness from the definition,application ranges and the method of getting indentation area.The concept of hardness als o has been discussed.In the end,the nano2hardness value of single crystal a2 luminum has been determined through experiments and com pared with conventional hardness value. K eyw ords:nano2indentation, AF M, nano2hardness 1 引言 随着精密、超精密加工技术的发展,材料在纳米尺度下的力学特性引起了人们的极大关注。事实上,对微电子、微机械加工等方面的研究表明,材料在该尺度下往往表现出与宏观条件下完全不同的特性。然而,目前材料微纳米表层性能的检测技术还很不完善,甚至阻碍了精密、超精密加工技术的进一步发展。因此,对纳米力学进行深入研究具有重要

纳米材料小尺寸效应的应用

纳米材料小尺寸效应的应用 引言:提起“纳米”这个词,可能很多人都听说过,但什么是纳米,什么是纳米材料,可能很多人并不一定清楚,本文主要对纳米及纳米材料的研究现状和发展前景做了简介,相信随着科学技术的发展,会有越来越多的纳米材料走进人们的生活,为人类造福。纳米技术具有极大的理论和应用价值,纳米材料被誉为“21世纪最有前途的材料”。 关键词:纳米材料小尺寸效应性质分类发展前景 一、纳米材料及其性质 纳米材料是指在三维空间中至少有一维处于纳米尺度范围(1-100nm)或由它们作为基本单元构成的材料,这大约相当于10~100个原子紧密排列在一起的尺度。从尺寸大小来说,通常产生物理化学性质显著变化的细小微粒的尺寸在0.1微米以下,即100纳米以下。因此,颗粒尺寸在1~100纳米的微粒称为超微粒材料,也是一种纳米材料。粒度分布均匀、纯度高、极好分散,其比表面高,具有耐高温的惰性,高活性,属活性氧化铝;多孔性;硬度高、尺寸稳定性好,具有较强的表面酸性和一定的表面碱性,被广泛应用作催化剂和催化剂载体等新的绿色化学材料。可广泛应用于各种塑料、橡胶、陶瓷、耐火材料等产品的补强增韧,特别是提高陶瓷的致密性、光洁度、冷热疲劳性、断裂韧性、抗蠕变性能和高分子材料产品的耐磨性能尤为显著。以上这些性能决定了纳米材料在表面效应、小尺寸、量子尺寸效应、量子隧道效应、电子信息领域、航天航空、环保能源等各方面均有应用,尤其是在小尺寸方面的应用。 二、纳米科技的发展现状 著名科学家钱学森指出:“纳米科技是21世纪科技发展的重点,会是一次技术革命,而且还会是一次产业革命”。随着世界发达国家对纳米研究的深入,我国对纳米材料和技术也非常重视,为推动我国纳米技术成果产业化.国家通过财政投资并带动社会投资.希望通过5—10年的努力.造就一批具有市场竞争力的纳米高科技骨干企业。已先后安排了许多纳米科技的研究项目,并取得显著成绩,纳米技术在许多方面已达到国际领先水平。

拉强度及其尺寸效应的细观数值研究

万方数据

第12期屈彦玲,等:碾压混凝土劈裂抗拉强度及其尺寸效应的细观数值研究81在碾压混凝土细观数值试验方面的研究工作刚刚开 始,国内则还很少见…。采用混凝土随机骨料生成技术及有限元数值模拟技术研究碾压混凝土的细观损伤断裂机理、强度特性及其尺寸效应与宏观力学性能的关系,可以为碾压混凝土力学性能的数值模拟开辟新途径。 采用混凝土随机骨料模拟技术[2’3]及有限元数值分析技术,在细观层次上重点研究了碾压混凝土的劈裂抗拉强度及其破坏机理,并对其尺寸效应进行了研究。 1计算模型 1.1随机骨料模型 把混凝土视为由粗骨料、水泥砂浆及两者界面粘结带组成的复合材料。骨料分成细骨料和粗骨料,骨料的大小可用颗粒分配曲线表示。假定其颗粒为球状,可借助于富勒(Fuller)抛物线确定骨料颗粒的三维级配曲线,由该级配浇注的混凝土可产生优化的结构密度和强度。 采用试件截面为16.7cnl×16.7cm的三级配混凝土,将小于5mln的细骨料计人砂浆匀质体,计算得出的各级骨料颗粒数:6cm粒径的骨料2粒,3cm粒径的骨料6粒,1.2(3111粒径的骨料50粒。按各种粗骨料在截面上不相萤叠的条件,借助蒙特卡罗方法【4J,在试件截面上随机确定骨料的位置、形状和尺寸,产生出随机骨料模型。在试件中部设置一层1cnl厚的水泥砂浆层以模拟碾压混凝土层面连接,据此生成碾压混凝土随机骨料模型。考虑到骨料随机分布的影响,本文对14种不同骨料分布的试件进行了模拟计算,取劈裂抗拉强度的统计平均值作为计算值。这样计算出的结果就更具有代表性,更能接近实验室的实际情况。该尺寸试件的一种随机分布骨料模型如图l所示。 1.2有限元模型 利用自编的有限元分析程序,对碾压混凝土层面劈裂抗拉试件作仿真模拟分析。根据Delaunay【5叫三角剖分的原理,通过引进程序来实现对随机骨料颗粒分布区域的全自动剖分,对不同单元分配不同的材料特性。以上材料类型的判断通过编程由计算机实现。图1中碾压混凝土层面劈裂抗拉试件的有限元计算网格如图2所示。 1.3材料参数 综合文献[8~10]及有关试验资料[111后,随机骨料模型材料性能的取值见表1。 羹鬻小/,O 图1随机颗粒分布图 №.1Distributionofrandom aggregates 图2有限元网格剖分图 rig.2Finiteelement咖d8 表1随机骨料模型材料性能 Tab.1Materialpropertiesofrandomaggregatemodel 2劈裂抗拉数值模拟 2.1劈裂抗拉强度数值模拟计算 劈裂抗拉强度按式(1)计算: p Rpl=0.637},(1) .rio 式中,尺d为试样的劈裂抗拉强度;P为破坏荷载;A。为劈裂面积。 对河北省桃林口水库碾压混凝土试件进行了劈裂抗拉强度试验[1¨。劈裂抗拉强度试样36个,最大值3.84MPa,最小值1.26MPa,平均值为2.71MPa。模拟计算结果与试验结果的对比列于表2。计算结果与试验结果基本吻合。 表2计算劈裂抗拉强度与试验强度的对比 Tab.2Contrastofsplit-temile曲陀ngI}lBof computationandexperiment 2.2劈裂抗拉破坏机理 模拟试件劈拉破坏时的裂纹分布图如图3所示。 从破坏裂纹分布图3可以看出,带层面碾压混凝土试件受劈裂抗拉时,因粘结带的强度比硬化水泥砂浆的强度低,所以靠近层面的粘结带单元先破坏,随后裂缝沿碾压混凝土的层面扩展开来,直到破坏。同时可以看出裂纹起源于荷载作用点处,然后沿着荷载作用面传播;破坏先是在粘结带进行,在其大部破 坏以后,破坏区转移到层面,最后直到粘结带和层面   万方数据

相关文档