文档视界 最新最全的文档下载
当前位置:文档视界 › 龙门山前陆盆地西南部变形特征及其构造物理模拟实验_李敬波

龙门山前陆盆地西南部变形特征及其构造物理模拟实验_李敬波

龙门山前陆盆地西南部变形特征及其构造物理模拟实验_李敬波
龙门山前陆盆地西南部变形特征及其构造物理模拟实验_李敬波

龙门山前陆盆地西南部变形特征及其构造物理模拟实验

李敬波1 李 勇*1 闫 亮1 颜照坤1 郑立龙1

成都理工大学油气藏地质及开发工程国家重点实验室 成都 610059

龙门山位于青藏高原东缘,是中国西部地质、地貌、气候的陡变带,也是当前国际地学界争论的焦点地区。该冲断带处于松潘-甘孜造山带与扬子准地台的结合部位,既是青藏高原的东界,又是现今龙门山前陆盆地(成都盆地)的西界。成都盆地夹于龙门山与龙泉山之间,呈“两山夹一盆”的构造格局[1-6]。龙门山位于成都盆地的西侧,由叠瓦状造山带构成,具典型的前展式逆冲推覆构造特征。活动构造研究结果表明晚新生代龙门山以北北东向的右行走滑作用为主,且伴随少量逆冲分量。龙泉山位于成都盆地的东侧,主体构造为龙泉山背斜。现代地震和大地测量均显示龙泉山是一个正在上升的隆起,是现今成都盆地的东部边界山脉。在龙门山冲断带南部,晚新生代断裂活动的同时,冲断带前锋也深入至川西盆地内部,形成了龙泉山断裂、熊坡断裂和名邛台地南北向断裂。从双石断裂向东至龙泉山构造带,发育数排平行排列或斜列的断层相关褶皱,它们均以中下三叠统富膏盐岩层位底部滑脱面。中下三叠统富膏盐岩层以下,则很好地保存了先期的垒-堑式张性构造,相关研究表明这些断裂带在晚新生代依然活动[3-5]。

2013年4月20日,在四川省雅安市芦山县境内发生了Ms7.0级地震,震中为30.3°N,103.0°E,震源深度约13km(中国地震台网中心,2013)。此次地震发生在龙门山推覆构造带南段,是继2008年龙门山地震带汶川Ms8.0级特大地震后的又一次强震。芦山地震震中所处的构造单元、余震分布规律以及震后地表变形特征等与汶川地震相比均存在很大差异,这种差异引起了地学界对芦山地震是否为2008年汶川地震余震的激烈争论。本文试图通过构造物理模拟实验,分析龙门山前陆盆地西南部变形特征及芦山地震发震构造模式,引起人们对龙门山南段及其前缘地区隐伏新断层活动特征及其发震机制的关注。

冲断构造的位移量通过滑脱层中向东传播,同时以褶皱的形式逐渐消减,在冲断带的最前锋-龙泉山,构造位移量消失殆尽。从东向西,构造变形从复杂到简单,龙门山造山带内发育高角度断裂控制的逆冲叠瓦构造,从灌县断裂到大兴场为深浅两套滑脱层控制的上、下构造变形层的叠加变形,从盐井沟到龙泉山,主要是三叠系滑脱层以上的冲断构造,滑脱层以下构造很稳定。受龙门山逆冲挤压影响,芦山地震可看作龙门山造山带向前山带前展式推进的响应。龙门山南段前缘地区的断褶构造明显比北部发育,除受力大小和受力方式外,其主要因素之一为,四川盆地中下三叠统膏盐岩在川西坳陷南、北的厚度分布具有显著差异,南部雅安-洪雅一带最厚可达 600m,而北部通常不足300m。中下三叠统膏盐岩层的厚度差异在一定程度上造成了川西拗陷垂向分层变形和南北分段格局[7],这为逆断层-滑脱作用提供了物质基础。据地震反射剖面资料可见,龙门山前缘地区逆冲断层均呈铲状向下延伸并汇交于滑脱面。因此,芦山地震就是在逆冲-滑脱作用中形成的,发震断裂为一山前隐伏断裂,该滑脱面即为震源层。龙门山南段和前缘地区可划分为龙门山冲断带和前缘扩展变形带2个构造变形带,龙门山南段前缘地区的芦山地震就是在逆冲和滑脱过程中形成的,断裂的逆冲面和向下交汇的滑脱面就是震源层,向上破裂点未到达地表。

粒子成像测速技术是20世纪70年代末发展起来的一种测速方法。该技术被广泛地应用于流体学、岩土力学和空气动力学的研究,最近十年才被应用到构造物理模拟实验中[8]。基于粒子成像测速技术(PIV),本次研究在成都理工大学构造物理模拟实验室进行了构造模拟实验。基于相似性原理,实验中用到了三种材料:干燥石英砂、微玻璃珠和硅胶。实验共设置了四组(均为单侧挤压,综合实验时间等问题将挤压速率设为0.007mm/s),分别概括为:无滑脱层挤压、单深层滑脱挤压(滑脱层为微玻璃珠),单浅层滑脱挤压(滑脱层为硅胶)、双层滑脱挤压(深层滑脱层为微玻璃珠,浅层滑脱层为硅胶)。

实验结果表明,滑脱层性质对褶皱冲断带构造演化具有较大影响。在弱滑脱层和强滑脱层上的挤压演化过程明显不同:强滑脱层(微玻璃珠)往往会使山体快速增高,形成的断层和褶皱层次分明,形成陡峻的山脉;而在弱滑脱层上的变形比在强滑脱层上的变形传递得更快更远;由于滑脱层性质的差异,

深部和浅部构造变形明显不同步。相对其他三组而言,双层滑脱更接近龙门山的滑脱体系。通过PIV 分析有助于我们理解龙门山冲断带的构造应力在龙门山前陆盆地滑脱-褶皱带中的传递特征(图1)。

双层滑脱物理模拟实验piv分析表明,浅部滑脱层控制的构造现象比较杂乱,不容易形成较大的应力积累;深部滑脱层控制的构造现象相对清晰且二者应力传导过程并不完全同步。令人深思的是,对于滑脱层之下的深部构造,在缩短量S=104.2mm时,应力积累到了一定强度,然而在其构造前锋却几乎没有检测到测速成像;在缩短量S=107.0mm时,应力突然释放,向山前传递,测速成像呈分带性向前扩展;在缩短量S=109.8mm时,受到断坡阻挡,构造应力进行高度集中,造山带推进到了构造前锋的位置;在缩短量S=123.8mm时,应力又得以突然释放,造山带继续向前扩展。然而受滑脱层控制的浅部构造,则不能聚集像深部构造那样大的能量,断层-滑脱作用将龙门山和川西前陆盆地联系起来,将应力及时释放。

龙门山山前及其前缘地区发育一系列背驮式构造体系,形成了一套活褶皱-逆断层破裂系。一般情况下,活褶皱-逆断层(破裂)系由山体向外发展。就单个逆冲席而言表现为断展褶皱构造类型。褶皱和逆断层是地壳缩短变形的基本类型,这在褶皱造山带山前普遍发育[35]。邓起东等[36]认为地震产生的部分位移沿盲断坡发生,向相邻断层扩展背斜带传递,穿过背斜核部沿主滑脱面继续向山前和盆地方向传递,当再次遇到盲断坡的阻挡,转而向上逆冲转化为第二排逆断裂-背斜带褶皱隆起(图2)。位于芦山县城附近GPS连续观测点(LS05)检测到约7.6cm的垂向同震抬升,以及NW侧远离断展背斜隆起区或块体SE向运动后方的灵关镇观测点(LS06)检测到月1.5cm的垂向下降等观测数据,印证了活褶皱-逆断裂破裂机制的合理性。芦山地震形成的地表裂缝表现为非构造成因的次生裂缝,系由褶皱隆起过程中类似层内张力所形成。

图1构造物理模拟实验及PIV分析(双层滑脱实验)

图2活褶皱-逆断层破裂机制示意图

Fb、Fc、Fd、Fe分别表示Fz的活动随时间推移向前扩展,并且通过盲逆断坡(Fa)过渡到主滑脱面

(1)(2)(3)(4)表示序次

图3 龙门山南段地形剖面、重力均衡异常剖面与各构造带缩短率(重力均衡异常曲线据文献[40]修改)

:茂县‐汶川断裂;F2:北川‐映秀断裂;F3:彭灌断裂;F4:大邑断裂;F5:熊坡断裂;F6:龙泉山断裂;

研究表明,芦山地震的发震构造模式不同于汶川地震,是一次活断层‐褶皱地震。这些具有粘滑机制的活褶皱被称为“地震褶皱”。习惯上认为褶皱构造是均匀应力下连续变形的产物,不会产生突然失稳,因此活褶皱所产生的地震危险性往往被忽略。芦山地震的发生,必然引起我们对地震褶皱的重视。年轻、快速增长的活动褶皱构造不仅可能是发震地点和孕震构造,其本身也有可能是连续地震的产物。在龙门山冲断带南部,晚新生代断裂活动的同时,冲断带前锋也深入至川西盆地内部,形成了龙泉山断裂、熊坡断裂和名邛台地南北向断裂。从双石断裂向东至龙泉山构造带,发育数排平行排列或斜列的断层相关褶皱,它们均以中下三叠统富膏盐岩层位底部为滑脱面[9‐13]。中下三叠统富膏盐岩层以下,则很好地保存了先期的垒‐堑式张性构造。相关研究表明这些断裂带在晚新生代依然活动。冲断构造的位移量通过滑脱层向东传播,同时以褶皱的形式逐渐消减,在冲断带的最前锋‐龙泉山,构造位移量消失殆尽(图3)。从西向东,构造变形从复杂到简单,龙门山造山带内发育高角度断裂控制的逆冲叠瓦构造,从灌县断裂到大兴场为深浅两套滑脱层控制的上、下构造变形层的叠加变形,从盐井沟到龙泉山,主要是三叠系滑脱层以上的冲断构造,滑脱层以下构造很稳定[14]。在龙门山冲断带的前锋,由于单向叠瓦冲断系统的主导作用减弱,来自克拉通地块上的反作用力出现。

资金资助:本文受国家自然科学基金项目(编号:41372114, 41340005, 41172162, 40972083);国土资源部地质调查工作项目(编号:1212011121268)资助

参考文献

[1] Li Y, Ellis M, Densmore A et al. Active Tectonics in the Longmen Shan, Eastern Tibetan Plateau[J]. EOS Transactions of

American Geophysical Union, 2000.81(48): 1109

[2] Li Y, Denmore A L, Allen P A et al. Sedimentary responses to thrusting and strike-slip of Longmen Shan along eastern margin

of Tibetan, and their implication of Cimmerian continents and India/Eurasia collisia[J]. Scientia Geologica,

2001.10(4):223-243

[3] Chen Z, Burchfiel B, Liu Y et al. Global positioning system measurements from eastern Tibetan and their implications for

India/Eurasia intercontinental deformation[J]. Journal of Geophysical Research, 2001.105(B7):16215-16227.

[4] Burchfiel B C, Chen Z, Lin Y et al. Tectonic of the Longmenshan and adjacent regions, central China[J]. International

Geology Review, 1995. 37: 661-735.

[5] 李勇,周荣军,Densmore A L等.青藏高原东缘大陆动力学过程与地质响应[M].北京:地质出版社,2006:21-26.

[6] 刘树根.龙门山造山带与川西前陆盆地形成与演化[M].成都:成都科技大学出版社,1993,17-35.

[7] 李智武,刘树根,陈洪德,等.2008. 龙门山冲断带分段-分带性构造格局及其差异变形特征[J].成都理工大学学报(自

然科学版),35(4):440-454.

[8] Adam J,Urai J L,Wieneke B,Oncken O,Pfeiffer K,Kukowski N,LohrmannJ,HothS,ZeeW,SchmatzJ. Shear

localisation and strain distribution during tectonic faulting new insights from granular-flow experiments and high-resolution optical image correlation techniques.Journal of Structural Geology,2005.27: 283~301

[9] 李勇,周荣军,苏德辰,等. 汶川(Ms8.0)地震的河流地貌响应[J].第四纪研究,2013,33(4):785-801.

[10] 李祥根.中国地震构造运动[M].地震出版社,2010,120-135.

[11] 邓起东,冯先岳,张培震,等.天山活动构造[M].北京:地震出版社,2000,17-150.

[12] 方和第.成都地区的地震灾害及其防御对策[J].四川地震,1989,2:55-58.

[13] 钱洪,唐荣昌.成都平原最大可能地震能力估计[J].四川地震,1997,4:1-7.

[14] 何银武.试论成都盆地(平原)的形成[J].中国区域地质,1987,2:169-176.

【CN209928781U】可控制断层角度的正反转构造物理模拟实验装置【专利】

(19)中华人民共和国国家知识产权局 (12)实用新型专利 (10)授权公告号 (45)授权公告日 (21)申请号 201920417011.8 (22)申请日 2019.03.29 (73)专利权人 沃肯仕能源科技(北京)有限公司 地址 100191 北京市海淀区牡丹园北里甲2 号楼3层304 (72)发明人 谢寅符  (74)专利代理机构 北京三友知识产权代理有限 公司 11127 代理人 王春光 (51)Int.Cl. G09B 23/40(2006.01) (ESM)同样的发明创造已同日申请发明专利 (54)实用新型名称 可控制断层角度的正反转构造物理模拟实 验装置 (57)摘要 本实用新型提供了一种可控制断层角度的 正反转构造物理模拟实验装置,其包括透明的砂 箱和角度调节机构,其中:砂箱呈顶部和一侧敞 开的中空矩形结构,砂箱的敞开侧设有能在砂箱 内往复移动的活动板,活动板与砂箱的内壁面滑 动密封配合;角度调节机构包括设置于砂箱内的 调节装置以及调节板,调节板与活动板相对设 置,调节板与砂箱的内壁面滑动密封配合,且调 节板与砂箱的底面之间形成有夹角,调节板的上 端能转动的与调节装置相接,调节装置能驱动调 节板移动,调节板的移动能调整夹角的角度。本 实用新型提供的可控制断层角度的正反转构造 物理模拟实验装置,结构简单,能够研究断层在 不同角度情况下地层发生正反转构造变形的过 程, 且操作安全。权利要求书2页 说明书7页 附图3页CN 209928781 U 2020.01.10 C N 209928781 U

权 利 要 求 书1/2页CN 209928781 U 1.一种可控制断层角度的正反转构造物理模拟实验装置,其特征在于,所述可控制断层角度的正反转构造物理模拟实验装置包括: 透明的砂箱,其呈顶部和一侧敞开的中空矩形结构,所述砂箱的敞开侧设有能在所述砂箱内往复移动的活动板,所述活动板与所述砂箱的内壁面滑动密封配合; 角度调节机构,其包括设置于所述砂箱内的调节装置以及调节板,所述调节板与所述活动板相对设置,所述调节板与所述砂箱的内壁面滑动密封配合,且所述调节板与所述砂箱的底面之间形成有夹角,所述调节板的上端能转动的与所述调节装置相接,所述调节装置能驱动所述调节板移动,所述调节板的移动能调整所述夹角的角度。 2.根据权利要求1所述的可控制断层角度的正反转构造物理模拟实验装置,其特征在于,所述调节装置包括: 调节架,其包括相铰接的第一支撑杆和第二支撑杆; 固定底板,其固定连接于所述砂箱的底面,所述固定底板上设有能朝向或者背向所述调节板滑动的第一滑块,所述第一支撑杆的下部能转动的连接于所述固定底板的背向所述调节板的一侧,所述第二支撑杆的下端能转动的连接于所述第一滑块上; 升降顶板,其位于所述固定底板的上方,所述调节板的上端能转动的连接于所述升降顶板上,所述升降顶板上设有能朝向或者背向所述调节板滑动的第二滑块,所述第一支撑杆的上端能转动的连接于所述第二滑块上,所述第二支撑杆的上端能转动的连接于所述升降顶板的背向所述调节板的一侧。 3.根据权利要求2所述的可控制断层角度的正反转构造物理模拟实验装置,其特征在于, 所述角度调节机构还包括位于所述砂箱外部的驱动控制装置,所述第一支撑杆的下端伸出所述砂箱与所述驱动控制装置相接,所述驱动控制装置能驱动所述第一支撑杆相对所述固定底板转动。 4.根据权利要求3所述的可控制断层角度的正反转构造物理模拟实验装置,其特征在于, 所述驱动控制装置至少包括相啮合的主动齿轮和从动齿轮,所述第一支撑杆的下端与所述从动齿轮相接,所述主动齿轮能驱动所述从动齿轮转动,所述从动齿轮的转动带动所述第一支撑杆相对所述固定底板转动。 5.根据权利要求4所述的可控制断层角度的正反转构造物理模拟实验装置,其特征在于, 所述驱动控制装置还包括辅助支杆,所述辅助支杆的第一端与所述从动齿轮相接,所述辅助支杆的第二端与所述第一支撑杆相接。 6.根据权利要求4所述的可控制断层角度的正反转构造物理模拟实验装置,其特征在于, 所述驱动控制装置还包括外壳,所述主动齿轮和所述从动齿轮均设置于所述外壳内,所述外壳上设有与所述主动齿轮相接并能驱动所述主动齿轮转动的手柄。 7.根据权利要求1所述的可控制断层角度的正反转构造物理模拟实验装置,其特征在于, 所述可控制断层角度的正反转构造物理模拟实验装置还包括推杆机构,所述推杆机构 2

物理实验中的模拟法

物理实验中的模拟法 模拟法是在实验室里先设计出于某被研究现象或过程(即原型)相似的模型,然后通过模型,间接的研究原型规律性的实验方法。先依照原型的主要特征,创设一个相似的模型,然后通过模型来间接研究原型的一种形容方法。 模拟法应用于物理教学,可使事过境迁或稍纵即逝的自然现象或过程在实验室重现,可将现象简化或进行时空的放大、缩小,可对那些既不能打开又不能从外部直接观察其内容状态的系统进行研究。 特别是解决那些尚无简单有效的仪器可演示的实验,模拟法则成了一种重要的辅助手段。 物理实验中的模拟法,根据其主要功能,并结合教学实践,分可大致为以下三类: 一、研究对象模拟 对象模拟的设计思想主要在于下述两种情况: 1.为了突出客观实体的主要矛盾和本质特征,摒弃次要的非本质因素,使研究对象从客观实体中直接抽象出来。如质点、理想气体、弹簧振子、点电荷、纯电阻、理想变压器等理想模型,以及天体运动模型,微观结构等几何相似模型。在研究二极管的单向导电性时,在实验基础上,运用对象模拟法,用自行车气门和进水阀门来模拟单向门。如此,不但加深对“单向性”的认识,而且激发了兴趣,开阔了思路。 由电磁学理论可知,无自由电荷分布的各向同性均匀电介质中的静电场的电势、与不含电源的各向同性均匀导体中稳恒电流场的电势,两者所遵从的物理规律具有相同的数学表达式.在相同的边界条件下,这两种场的电势分布相似,因此只要选择合适的模型,在一定条件下用稳恒电流场去模拟静电场是可行的 2.为了解释某些行为和特征而建立起来的模拟。如地球因自转而产生的科里奥利力比较抽象,在地理课中亦有提及。我们不妨取一个地球仪来模拟地球自转,然后将红墨水从上往下滴落在转动的“地球”表面。此时即可明显看到水痕西边呈扩散状,从而令人信服的说明北半球南流冲刷西岸这一自然现象。 二、物理过程模拟 把具体物理过程纯粹化、理想化,并根据其本质特征而设计的一种模拟叫过程模拟。其特点是过程简化,易于控制。气体压强的分子运动论观点,通常采用雨滴打伞等面来类比。这种大量分子对器壁连续碰撞的过程,如果用豆落在平衡天平一端倒扣着的托盘底上的现象来模拟,就显得直观生动了。布朗运动的模拟,装有铁屑的试管模拟铁棒的磁化和退磁等都是过程模拟的成功例子,还有伽利略的自由落体运动,当物体不受力时将做匀速运动,但在现实中不可能不受力,于是不断减小阻力,当阻力愈来愈小时,物体无限接近于语速运动。 气体压强的分子运动论观点,通常采用雨滴打伞等面来类比。这种大量分子对器壁连续碰撞的过程,如果用豆落在平衡天平一端倒扣着的托盘底上的现象来模拟,就显得直观生动了。布朗运动的模拟,装有铁屑的试管模拟铁棒的磁化和退磁等都是过程模拟的成功例子。 电子技术中半导体的导电机理,电子运动易理解,空穴导电则抽象,课堂教学中如用“空 位置”的运动来作一现场过程模拟,无疑会使学生茅塞顿开。分析曲线运动的思想方法——运动的分解和合成是个难点,可以平抛运动为突破口,在演示有关实验后,用“慢镜头”的方法,手持粉笔头边走(模拟水平匀速直线运动)边沿自身前方,从上向下加速下移,以此模拟平抛运动,既简单明了,又便于分析。理解机械波的形成过程是本章教学的一个重点和难点,运用模拟器材,以纽扣状的物体来表示振动的质点,通过摇转,使质点绕平衡位置上下振动,而整体波形向外传递,边演示边分析,效果很好。 热学中的统计方法和光本性的几率概念,由于受课堂教学时间的限制,怎样从个别事

准噶尔盆地构造演化阶段及其特征

准噶尔盆地构造演化阶段及其特征 摘要:准噶尔盆地由于受到周缘造山带的多期次的逆冲推覆作用,其发育演化过程不同于一般意义的前陆盆地,而是具有类前陆盆地的特征。准噶尔盆地经历海西、印支、燕山和喜山四个构造旋回的演化,形成了早二叠纪时期的裂谷盆地,中晚二叠纪的前陆盆地,三叠纪至白垩纪的复合类前陆盆地和第三纪以来的类前陆盆地为特征的多期叠合型盆地。 关键词:准噶尔盆地构造演化类前陆盆地 引言 准噶尔盆地是我国西部发育的大型陆相盆地,对其盆地的类型及其演化,经历了很长一段研究探索过程,形成了对准噶尔盆地的形成过程的诸多认识和观点。20世纪90年代主要以二叠纪为裂谷和断陷为主,三叠-白垩坳陷,第三纪以后为上隆。一些学者分别提出了“陆内前陆盆地”(陈发景,1997) 、“再生前陆盆地”(卢华复等,1994) 及“类前陆盆地”(雷振宇,2001 ) 等概念。蔡忠贤等(2000)认为准噶尔盆地在早二叠世为裂谷,晚二叠世为热冷伸展坳陷,三叠纪—老第三纪为克拉通内盆地,新第三纪至今为陆内前陆盆地。陈新和卢华复等(2002)则将准噶尔盆地划分为地体形成、板块拼贴、前陆盆地、陆内坳陷和再生前陆盆地等6个阶段。陈业全(2004)划分盆地演化为晚泥盆世-早石炭世裂陷盆地、晚石炭世-二叠纪碰撞前陆盆地、三叠纪-古近纪陆内坳陷盆地和新近纪-第四纪再生(陆内俯冲型)前陆盆地4个阶段。 通过对准噶尔盆地区域二维地震剖面的解释,结合钻井及测井资料,我们将准噶尔的演化划分为早二叠纪时期的裂谷盆地,中晚二叠纪的前陆盆地,三叠纪至白垩纪的复合类前陆盆地和第三纪以来的类前陆盆地四个阶段。其中以中生代的复合类前陆盆地为最重要的一个阶段,与油气的关系最为密切。 一地质构造背景 中国西部各盆地位于几个大的造山带及板块缝合带之间,属于古亚洲与特提斯—喜马拉雅构造域,处于西伯利亚板块和印度板块相对挤压和相对扭动的压扭性构造环境下形成的构造格局.在南北对挤和南北对扭的联合和复合的应力条件下产生的大量平移断裂控制着盆地的展布. 中国西部盆地主要受控于三向动力体系:北部主要受古亚洲动力系所作用,受控于古亚洲域;西部主要受特提斯动力系所作用,受控于特提斯域;南部的动力来源于印度板块的北上扩张.三大动力体系在时间、空间上的叠加、复合, 形成了具有明显的旋回性和阶段性多期叠合盆地,并且在不同演化阶段中具有不同的板块构造背景,盆地类型和性质也不相同。 中国西部盆地的演化大致可以分为三个阶段: 古亚洲洋开合阶段,新元古代晚期Rodinia古陆解体,使华北、扬子、华南、塔里木等小陆块从其上裂解出来。晚奥陶世开始地壳俯冲消减,至泥盆纪晚期碰撞闭合,成为克拉通内(挤压)盆地,发育一套海相碎屑岩和碳酸盐岩沉积。古亚洲洋在晚二叠世之前消减殆尽,华北、准噶尔—吐哈、塔里木等小陆块拼合在西伯利亚块体的南缘,形成古亚洲大陆。在拼合后的

长江大学盆地构造分析期末试题

一、…名词解释(每小题3分,共24分) 1.伸展盆地分类:根据伸展盆地的岩石圈或陆壳性质及演化阶段又可将伸展盆地划分为:大陆内部裂谷、陆间裂谷(原洋裂谷)、被动大陆边缘盆地、弧间和孤后边缘海盆地、大洋盆地等基本类型。 2.伸展盆地:伸展盆地是由岩石圈受拉张作用而伸展、减薄而形成的裂陷或裂陷一拗陷盆地。 3. 挤压盆地:挤压盆地与大洋岩石圈的俯冲和陆一陆碰撞或陆一孤碰撞有关,通常包括海沟盆地、残留洋盆地、孤前盆地和前陆盆地等。 4.前陆盆地:前陆盆地系指介于造山带前缘及相邻克拉通之间的狭长状盆地,盆地横剖面为一不对称楔状。前陆盆地分为孤后前陆盆地、周缘前陆盆地和破裂前陆盆地三类;(前二者属于简单型前陆盆地,后者属于复杂型前陆盆地。) 5.前渊:前渊是指紧邻前陆冲断带的覆水最深的前陆区,不能将覆水深的盆地与前陆盆地的巨厚地层混淆,因为巨厚的前陆地层是完全可以在缺乏覆水盆地的条件下堆积起来的。 6.走滑盆地及分类:因走滑断层的走滑作用而产生的盆地,总称为走滑盆地。这些盆地发生在走滑断层产生的局部拉张地区。走滑盆地分为三种基本类型,即转换拉张盆地、转换挤压盆地和拉分盆地。其中拉分盆地与油气的关系最为密切。 7.拉分盆地及分类:拉分盆地产生在两个走滑断层雁列重叠部位的拉张区,其拉伸轴基本上平行主断层,这类盆地常为菱形断陷,发育成熟的盆地长宽比为3:1。断层的长度反映水平位移量,盆地边界有走滑断层和正断层,盆地中常有张性及张剪性断层,边缘可见雁列褶皱。拉分盆地依形态分舒缓S型及Z型。拉分盆地的规模相对较小,但具有沉降速率快、沉积速率大的特点,且热流值较高,有利于油气的聚集,常构成小而肥的含油气盆地。 8. 裂谷形成的动力学模式:一类是要有热源,如地慢柱和上升热对流,由于热岩石圈变弱和变薄而产生应力或应力集中;另一类是归因于岩石圈的拉伸,引起热软流圈的被动上拱,由于板块的相互作用而在板内形成张应力,或继承老地壳和岩石圈边界和构造产生先存应力的集中,或大洋裂谷作为一种迁移破裂传播到大陆内部去等,均可以导致岩石圈的拉伸。以上两类的主要差别在于热源和拉伸的关系上具有相反的因果关系。前者称为主动裂谷,而后者则称为被动裂谷。) 9.正花状构造:是在压剪性应力场下形成的。基底走滑断层向上分叉并形成背形构造,10.负花状构造:发育于张剪性应力场下,基底走滑断层向上分叉并形成向形构造。

构造物理模拟实验研究中的关键问题-模板

构造物理模拟实验研究中的关键问题 自然界的各种地质构造均是地壳岩石受力作用的结果。砂箱物理模拟实验因与地表具备相似的流变学特征,因而长期以来被国内外众多地质学者采用。自1815年霍尔在他的实验室用叠层厚布再现褶皱的形成和演化过程以来,构造物理模拟实验已经经历了巨大的改变与创新[1-3]。无论是从实验装置、实验材料、变形记录抑或是实验结果的分析与处理,都使得人们能够更加真实准确地再现地质变形过程与演化。同时,构造物理模拟实验的理论性研究也逐渐的系统和完善,诸如机制模拟模型和比例模拟模型的分类、变形几何学和解析方程的引用等。该文在查阅国内外大量文献的基础上,结合笔者长期以来从事的构造物理模拟实验,简要阐述构造物理模拟实验中的几个关键因素以及要注意的问题,以期为研究同行提供参考与借鉴。 1 实验条件的确定 边界几何条件 根据国内外学者的研究,构造物理模拟实验可以分为比例模拟模型和机制模拟模型两大类[4-5]。所谓比例模拟模型,是指针对实际地质体的实验模拟,即采用反演的方式,通过研究某一区域的地质背景,并结合概念模型实验的结果,提出一个或多个地质模型,反复实验直到与目标地质体相似,以确定其成因机制和边界条件。而机制模拟模型并不针对具体某一区域,而是对抽象地质模型的实验模拟,即采用正演的方式,研究分析构造变形要素(构造作用方式、边界几何条件、应变速率、内部结构和材料性质等)对变形机制的控制和影响。因此,在构造物理模拟实验的前期准备中,首选要根据研究对象确定模型类型。在比例模拟模型中,最重要的是研究区域/局部构造特征,即根据区域/局部构造野外的表现形式与其形变场的关系,深入分析褶皱类型、构造格架、受力方式。例如在分析褶皱构造时,应确定褶皱的空间类型与次序关系、动力源与主应力方向等,在分析构造格架时,应确定断裂的活动方式、伴生构造、组合与相互结构关系等。而在机针对抽象构造样式的机制模拟模型实验,其边界条件的确定则相对容易,只需对构造作用方式和内部结构等要素作定性的确定即可。 实验材料 岩石类型可分为脆性、脆-塑性和塑性,在地质体中,脆性岩石较为常见。目前构造物理模拟实验中使用最广泛的脆性材料为干燥石英砂,其粒径为~

物理仿真实验

大学物理仿真实验报告固体线膨胀系数的测量 院系名称: 专业班级: 姓名: 学号:

固体线膨胀系数的测量 一、实验目的 1、测定金属棒的线胀系数 2、学习用光杠杆测量微小伸长的原理和方法 3、创新方法的研究和讨论 二、实验原理 固体的线膨胀系数和体膨胀系数是固体热学特性的重要参数,通常体膨胀系数是线膨胀系数的3倍左右,本实验主要介绍固体线膨胀系数的测量方法。 线膨胀是指材料在受热膨胀时,在一维方向上的伸长。在一定的温度范围内,固体受热后,其长度都会增加,设物体原长为L,由初温t1加热至末温t2,物体伸长了△L,则线膨胀系数满足:

则固体线膨胀系数为 三、实验仪器 尺读望远镜、米尺、固体线膨胀系数测定仪、铜棒、光杠杆、温度计 四、实验内容及步骤 1、在实验界面单击右键选择“开始实验” 2、调节平面镜至竖直状态 3、打开望远镜视野,并调节方位、聚焦、目镜使得标尺刻线清晰,且中央叉丝读数为0.0mm(抓图1) 4、单击铜棒测量长度,单击温度计显示铜棒温度,打开电源加热,记录每升高10度时标尺读数直至温度升高到90度止(抓图2)

5、单击卷尺,分别测量l、D,(抓图3) 经测得l=62.1mm 经测得D=1885.4mm 6、以t为横轴,b为纵轴作b-t关系曲线,求直线斜率k (抓图4) 7、代入公式计算线膨胀系数值 A=1.1×10^-5 五、实验数据记录与处理 D/mm 1885.4 l/mm 62.1 a 1.1×10 ^-5 六、思考题 1.对于一对大多数材料来说,线胀系数是否一定是一个常数?为什么?

对大多数材料来说,线胀系数并不是一个常数。即在不同温度区间,材料的线胀系数有或大或小的差别,也就是材料受热胀缩与温度常常不是线性关系 2.你还能想出一种测微小长度的方法,从而测出线胀系数吗? 可以用激光位移传感器,可以测到几微米的位移变化。 3.引起测量误差的主要因素是什么? 温度计的热惯性,升温时实际温度高于读数温度,降温时实际温度低于读数温度,采取了升温,降温同一温度对应的标尺读数n取平均的办法,可消除这种误差。 (2)铜棒温度不均匀,中下部温度高,上部温度偏低,温度计所在部位不同,可使测量结果有所不同,由于温度计在中上部,可是测得的线胀系数偏小。 (3)光杠杆原理公式具有近似性。只有当dn很小时才近似成立。

鄂尔多斯盆地地质特征

鄂尔多斯盆地地质特征鄂尔多斯盆地,北起、大青山,南抵,西至贺兰山、六盘山,东达、太行山,总面积37万平方公里,是我国第二大。 鄂尔多斯盆地是上的名称,也称陕甘宁盆地,横跨陕、甘、宁、蒙、晋五省(区)。“”意为“宫殿部落群”和“水草肥美的地方”。权威的解释,“鄂尔多斯”是“官帐”的意思。由蒙语翰尔朵(官帐的意思)的复数演变而来。但也有人把成吉思汗死后,其使用过的物品被安放在八个白室中供奉,专门的护陵人繁衍并逐渐形成了一个新的蒙古部落鄂尔多斯部落。其后几百年间,鄂尔多斯部落的按时祭奠,一直没有离开此地。这样久而久之,这一地区就叫做鄂尔多斯了。历史上的鄂尔多斯地区包括今日伊克昭盟全境,还包括的河套及宁夏和的一部分地区。鄂尔多斯地区西、北、东三面环水,南与相接,形成一个巨大的套子,因此也被称为“河套”。从所跨地域 鄂尔多斯盆地,其地域跨蒙汉广大地域,而且绝大部分地域是汉族居住区,为什么把该“盆地”叫蒙语“鄂尔多斯”盆地,而不叫汉语名称。据传说1905年前后,英国人到此地域勘探,最早进入现在的,就是最先踏入的立足地,另外在西方人眼里,亚洲人都是属于序列。所以,自然而然地就把该盆地称之为鄂尔多斯盆地,但也无法考证。 “陕甘宁”盆地在长庆油田会战初期叫得比较响,但随着市场经济的缘故,人们都喜欢“新奇”,“陕甘宁”盆地叫的人越来越少了,加上赶时髦,伊克昭盟改为“鄂尔多斯”市,叫“陕甘宁”盆地的人就更少了。

“陕甘宁”也不确切,因为“盆地”跨陕、甘、宁、蒙、晋五省(区)地域。总之,这也不是个什么大问题,在和谐的今天,叫什么都无所谓。 从地质特性看,鄂尔多斯盆地是一个整体升降、坳陷迁移、构造简单的大型多旋回克拉通盆地,基底为太古界及下变质岩系,沉积盖层有长城系、蓟县系、震旦系、寒武系、、石炭系、、三叠系、、白垩系、第三系、第四系等,总厚5000—10000m。主要油气产层是三叠系、侏罗系和奥陶系上古升界和下。 从盆地构造特征看 鄂尔多斯盆地石油开发示意图 从盆地构造特征看,西降,东高西低,非常平缓,每公里坡降不足1°。从盆地油气聚集特征讲是半盆油,满盆气,北气、上油下气。具体讲,面积大、分布广、复合连片、多层系。纵向说含油层系有“四层楼”之说,因此,这个盆地有之誉。 鄂尔多斯盆地地形模型 鄂尔多斯盆地位于中国中西部地区,为中国第二大,其、、三种资源探明储量均居全国首位,石油资源居全国第四位。此外,还含有、、、水泥灰岩、、、、等其他矿产资源。 盆地具有地域面积大、广、能源矿种齐全、资源潜力大、储量规模大等特点。盆地内石油总约为86亿吨,主要分布于盆地南部10万平方公里的范围内,其中占总储量78.7%,占总储量19.2%,宁夏占总储量2.1%。天然气总资源量约11万亿立方米,储量超过千亿立方米的天然气大气田就有5个。埋深2000米以内的煤炭总资源量约为4万亿吨;埋深1500米

河北省唐山市中考物理模拟预测试卷

河北省唐山市中考物理模拟预测试卷 姓名:________ 班级:________ 成绩:________ 一、单选题 (共10题;共20分) 1. (2分) (2019八上·重庆期末) 根据你的生活经验,下列数据最接近实际情况的是() A . 教室里黑板的高度约为6m B . 市内公交车的行驶速度约为100m/s C . 沪科版八年级物理教材的重约3N D . 人行道斑马线处的绿色信号灯持续时间约为20min 2. (2分) (2017八上·睢宁月考) 下列关于声现象说法正确的是() A . 图a是街道上显示噪声等级的装置,它能控制噪声的产生 B . 图b是摩托车的消音器,它能阻断噪声的传播 C . 图c是利用声呐探测海深,是利用声音传递能量 D . 图d是利用B超检查身体,是利用声音传递信息 3. (2分)(2019·中山模拟) 下列关于光的现象,说法正确的是() A . 太阳光通过三棱镜形成彩色光带是光的反射现象 B . 小明靠近平面镜的过程中,他在镜中所成的像逐渐变大 C . 人在岸边看到水中的“鱼”比实际位置浅 D . 太阳通过树中小孔所成的像是倒立、缩小的虚像 4. (2分) (2019八上·临渭期末) 有一天,雾、露、霜、雪四姐妹在一起争论自己的出生由来,谁也不认同谁,下列关于她们的说法中,你认为正确的是() A . 雪说:我是水升华而来 B . 露说:我是水蒸气液化而来

C . 霜说:我是水凝固而来 D . 雾说:我是水汽化而来 5. (2分)(2019·宜宾) “珍爱生命,注意安全”是中学生应具备的基本安全意识。下列关于安全用电的说法正确的是() A . 控制用电器的开关要连接在零线和用电器之间 B . 家庭电路起火时,应先用水扑灭,然后再断开电路 C . 使用试电笔辨別火线时,用笔尖接触被测的导线,手指要碰到笔尖 D . 不弄湿用电器,不损坏绝缘层 6. (2分)(2018·长春模拟) 如图所示的实例中,目的是为了减小摩擦的是() A . 轮胎上制有花纹 B . 给自行车轴加润滑油 C . 用起瓶器夹紧瓶盖 D . 防滑垫表面做得凹凸不平 7. (2分)以下各组器材中,不能测出长方体金属块密度的是() A . 刻度尺、水、细线、烧杯 B . 天平和砝码、量筒、水、细线 C . 弹簧测力计、刻度尺、细线 D . 刻度尺、天平和砝码 8. (2分)(2019·北部湾模拟) 刷卡机广泛应用于生活。如图7所示,将带有磁条的信用卡在刷卡机上刷一

不同类型盆地的构造样式

不同类型盆地的构造样式、层序地层格架 断陷盆地的构造样式 根据正断层的几何形态和构造运动学特征,作者建议将正断层划分为四种基本类型,即非旋转平面式正断层、旋转平面式正断层、铲式正断层和坡坪式正断层。 根据盆地或凹陷的边界正断层的几何形态和运动学特征购差异,可以将伸展型断陷盆地的剖面构造样式分为四种类型:①由非旋转平面式正断层控制的“地堑与地垒”; ②由旋转平面式正断层控制的“多米诺式半地堑系”;③由铲式正断层控制的“半地堑”或“滚动式半地堑”;④由坡坪式正断层控制的“复式半地堑”(断陷半地堑十断坡凹陷)。 裂陷盆地中控制各个断陷地堑或半地堑的主干正断层在平面上的展布有多种型式,致使断陷盆地也呈现不同的平面形态,如线型、平行式、侧列式、雁列式、锯齿状、狗腿式、或分叉式等。 压陷盆地的构造样式 逆冲褶皱带的构造样式1前陆盆地边缘逆冲带的构造样式是以前陆方向逆冲的叠瓦状逆断层组为特点。靠近造山带部分的逆冲断层的倾斜相对较陡,向前陆方向逆冲断层的倾斜逐渐变缓,这些逆冲断层向深部产状变得更缓,收敛于基底拆离断层之上,构成叠瓦扇结构。2前陆盆地内部的逆冲构造样式包括:①铲式逆冲断层与蛇头构造、叠瓦扇结构:逆冲断层面表现为上陡下缓的铲式形态。上盘向上逆冲并发生褶曲变形,形状貌似蛇头。②坡坪式逆冲断层与断弯褶皱:在挤压作用下形成的逆冲断层产状随岩层能干性的变化而发生折射,断层在能干岩层中的切割角度较大为断坡。在非能干岩层中的切割角度较小为断坪,这种产状的逆冲断层称为坡坪式逆冲断层。坡坪式逆冲断层的上盘断坡逆冲到下盘断坪上后,上盘为了适应断层的几何形态会发生褶皱变形,成为断弯褶皱③盲冲断层、断展褶皱与断滑褶皱:逆冲断层在逆冲过程中其位移逐渐减小以致在地层中尖灭,称为盲冲断层。伴随着盲冲断层的位移减小断层上盘及上覆地层会发生褶皱变形,称为断展褶皱。顺层的逆冲断层在层间尖灭并引起上覆地层发生褶皱,称为断滑褶皱④双重构造和楔状双重构造:双重构造是由一条顶板断层和一条底板断层夹持中间的逆冲断片组成,夹持的中间逆冲断片可以被若干分支断层切割。⑤冲起构造和逆冲三角带构造:两条或两组逆冲断层相向倾斜,使中间的公共上盘断块向上逆冲称为冲起构造。对冲的逆冲断层有一条深层的拆离断层联系在一起构成逆冲三角带构造。⑥撕裂断层与逆冲调节带: 盆地的沉降史分析: 伸展型盆地沉降史分析:伸展型盆地的沉降曲线整体呈上凸型、两段式。早期,曲线陡、直,延伸短,斜率大,沉降速率快;晚期,曲线平缓,延伸长,斜率小,沉降速率呈指数衰减。一个完整的裂陷旋回在构造沉降曲线上表现为斜率不同的两段式:较陡的一段,代表由于深部地幔物质上隆,形成异常上地幔。这种由裂陷伸展减薄作用引起的地壳快速下沉,称为裂陷阶段沉降(裂谷阶段沉降)或初始沉降,而较缓的一段,代表裂陷伸展后异常上地幔上隆的热冷却松弛引起的地壳缓慢下沉,称为后裂陷阶段沉降(后裂谷阶段沉降)或热沉降。这种“开始迅速下沉。而后热指数衰减”反映了由地壳裂开—岩石圈减薄—热流值增加—热冷却的过程。 前陆盆地沉降史分析:前陆盆地的构造沉降曲线整体是以斜率较大和相对较小的两段式交替出现,体现了成盆过程中冲断层席加载作用和相对宁静的往复,盆地早期沉降缓慢标志着前陆盆地的初始起动,构造反差较小,构造载荷距离造山带较远,发育以细粒沉积物组成的复理石建造。后期的加速沉降反映造山作用的加剧,构造载荷的逐渐逼近和盆地迁移使其位置逐渐变为沉降中心,即造山带的构造加载量使构造载荷向克拉通方向迁移,直接加剧沉降速率,发育以碎片沉积物组成的磨拉石建造。如中国塔北、准葛尔盆地南缘和吐鲁番盆地中新生代地层。 克拉通盆地沉降史分析:克拉通坳陷如果是叠加在裂陷盆地之上,则克拉通坳陷的沉降主要是受岩石圈热收缩作用的影响,其沉降曲线是裂陷盆地的热沉降部分或热沉降的延续部分。如果是壳内岩浆侵入和变质作用、相变等引起的沉降,其沉降速率也是逐渐减小的。多数情况下克拉通盆地的沉降速率相对较小,且稳定衰减。也可以出现随着时间的推移沉降速率加大的趋势,总体上的沉降速率比前陆盆地和裂陷盆地要小一些。 盆地的热史分析:盆地的热历史主要取决于两个方面:1盆地基底热流密度的变化2盆地内部沉积物的性质及埋藏历史。次要因素包括盆地内发生的吸热放热过程、地下水的运动及岩浆活动。分析方法有:一镜质体反射率反演法包括:1古热流模型,该模型多为经验模型,一般是将盆地的古热流与现今大地热流通过某种关系联系起来。主要有线性的、三角函数型的和分段线性的。三角函数型主要使用于勘探程度较高、资料较丰富的盆地。2古地温模型,3镜质体反射率理论模型。二裂变径迹分析法:所以矿物中的裂变径迹都具有岁温度增加而径迹密度减少和径迹长度缩短直至完全消失的特性称为退火。矿物经历的温度越高,时间越长,退火作用就越强。利用磷灰石裂变径迹的长度分布研究盆地的热历史。短的径迹形成较早,经历的热历史较长。长的径迹形成较晚,经历的热历史较短。三流体包裹体测温。四矿物学方法。

鄂尔多斯盆地地质特征图文稿

鄂尔多斯盆地地质特征文件管理序列号:[K8UY-K9IO69-O6M243-OL889-F88688]

鄂尔多斯盆地地质特征鄂尔多斯盆地,北起、大青山,南抵,西至贺兰山、六盘山,东达、太行山,总面积37万平方公里,是我国第二大。 鄂尔多斯盆地是上的名称,也称陕甘宁盆地,横跨陕、甘、宁、蒙、晋五省(区)。“”意为“宫殿部落群”和“水草肥美的地方”。权威的解释,“鄂尔多斯”是“官帐”的意思。由蒙语翰尔朵(官帐的意思)的复数演变而来。但也有人把成吉思汗死后,其使用过的物品被安放在八个白室中供奉,专门的护陵人繁衍并逐渐形成了一个新的蒙古部落鄂尔多斯部落。其后几百年间,鄂尔多斯部落的按时祭奠,一直没有离开此地。这样久而久之,这一地区就叫做鄂尔多斯了。历史上的鄂尔多斯地区包括今日伊克昭盟全境,还包括的河套及宁夏和的一部分地区。鄂尔多斯地区西、北、东三面环水,南与相接,形成一个巨大的套子,因此也被称为“河套”。 从所跨地域 鄂尔多斯盆地,其地域跨蒙汉广大地域,而且绝大部分地域是汉族居住区,为什么把该“盆地”叫蒙语“鄂尔多斯”盆地,而不叫汉语名称。据传说1905年前后,英国人到此地域勘探,最早进入现在的,就是最先踏入的立足地,另外在西方人眼里,亚洲人都是属于序列。所以,自然而然地就把该盆地称之为鄂尔多斯盆地,但也无法考证。 “陕甘宁”盆地在长庆油田会战初期叫得比较响,但随着市场经济的缘故,人们都喜欢“新奇”,“陕甘宁”盆地叫的人越来越少了,加上赶时髦,伊克昭盟改为“鄂尔多斯”市,叫“陕甘宁”盆地的人就更少了。“陕甘宁”也不确切,因为“盆地”跨陕、甘、宁、蒙、晋五省(区)地域。总之,这也不是个什么大问题,在和谐的今天,叫什么都无所谓。

龙门山前陆盆地西南部变形特征及其构造物理模拟实验_李敬波

龙门山前陆盆地西南部变形特征及其构造物理模拟实验 李敬波1 李 勇*1 闫 亮1 颜照坤1 郑立龙1 成都理工大学油气藏地质及开发工程国家重点实验室 成都 610059 龙门山位于青藏高原东缘,是中国西部地质、地貌、气候的陡变带,也是当前国际地学界争论的焦点地区。该冲断带处于松潘-甘孜造山带与扬子准地台的结合部位,既是青藏高原的东界,又是现今龙门山前陆盆地(成都盆地)的西界。成都盆地夹于龙门山与龙泉山之间,呈“两山夹一盆”的构造格局[1-6]。龙门山位于成都盆地的西侧,由叠瓦状造山带构成,具典型的前展式逆冲推覆构造特征。活动构造研究结果表明晚新生代龙门山以北北东向的右行走滑作用为主,且伴随少量逆冲分量。龙泉山位于成都盆地的东侧,主体构造为龙泉山背斜。现代地震和大地测量均显示龙泉山是一个正在上升的隆起,是现今成都盆地的东部边界山脉。在龙门山冲断带南部,晚新生代断裂活动的同时,冲断带前锋也深入至川西盆地内部,形成了龙泉山断裂、熊坡断裂和名邛台地南北向断裂。从双石断裂向东至龙泉山构造带,发育数排平行排列或斜列的断层相关褶皱,它们均以中下三叠统富膏盐岩层位底部滑脱面。中下三叠统富膏盐岩层以下,则很好地保存了先期的垒-堑式张性构造,相关研究表明这些断裂带在晚新生代依然活动[3-5]。 2013年4月20日,在四川省雅安市芦山县境内发生了Ms7.0级地震,震中为30.3°N,103.0°E,震源深度约13km(中国地震台网中心,2013)。此次地震发生在龙门山推覆构造带南段,是继2008年龙门山地震带汶川Ms8.0级特大地震后的又一次强震。芦山地震震中所处的构造单元、余震分布规律以及震后地表变形特征等与汶川地震相比均存在很大差异,这种差异引起了地学界对芦山地震是否为2008年汶川地震余震的激烈争论。本文试图通过构造物理模拟实验,分析龙门山前陆盆地西南部变形特征及芦山地震发震构造模式,引起人们对龙门山南段及其前缘地区隐伏新断层活动特征及其发震机制的关注。 冲断构造的位移量通过滑脱层中向东传播,同时以褶皱的形式逐渐消减,在冲断带的最前锋-龙泉山,构造位移量消失殆尽。从东向西,构造变形从复杂到简单,龙门山造山带内发育高角度断裂控制的逆冲叠瓦构造,从灌县断裂到大兴场为深浅两套滑脱层控制的上、下构造变形层的叠加变形,从盐井沟到龙泉山,主要是三叠系滑脱层以上的冲断构造,滑脱层以下构造很稳定。受龙门山逆冲挤压影响,芦山地震可看作龙门山造山带向前山带前展式推进的响应。龙门山南段前缘地区的断褶构造明显比北部发育,除受力大小和受力方式外,其主要因素之一为,四川盆地中下三叠统膏盐岩在川西坳陷南、北的厚度分布具有显著差异,南部雅安-洪雅一带最厚可达 600m,而北部通常不足300m。中下三叠统膏盐岩层的厚度差异在一定程度上造成了川西拗陷垂向分层变形和南北分段格局[7],这为逆断层-滑脱作用提供了物质基础。据地震反射剖面资料可见,龙门山前缘地区逆冲断层均呈铲状向下延伸并汇交于滑脱面。因此,芦山地震就是在逆冲-滑脱作用中形成的,发震断裂为一山前隐伏断裂,该滑脱面即为震源层。龙门山南段和前缘地区可划分为龙门山冲断带和前缘扩展变形带2个构造变形带,龙门山南段前缘地区的芦山地震就是在逆冲和滑脱过程中形成的,断裂的逆冲面和向下交汇的滑脱面就是震源层,向上破裂点未到达地表。 粒子成像测速技术是20世纪70年代末发展起来的一种测速方法。该技术被广泛地应用于流体学、岩土力学和空气动力学的研究,最近十年才被应用到构造物理模拟实验中[8]。基于粒子成像测速技术(PIV),本次研究在成都理工大学构造物理模拟实验室进行了构造模拟实验。基于相似性原理,实验中用到了三种材料:干燥石英砂、微玻璃珠和硅胶。实验共设置了四组(均为单侧挤压,综合实验时间等问题将挤压速率设为0.007mm/s),分别概括为:无滑脱层挤压、单深层滑脱挤压(滑脱层为微玻璃珠),单浅层滑脱挤压(滑脱层为硅胶)、双层滑脱挤压(深层滑脱层为微玻璃珠,浅层滑脱层为硅胶)。 实验结果表明,滑脱层性质对褶皱冲断带构造演化具有较大影响。在弱滑脱层和强滑脱层上的挤压演化过程明显不同:强滑脱层(微玻璃珠)往往会使山体快速增高,形成的断层和褶皱层次分明,形成陡峻的山脉;而在弱滑脱层上的变形比在强滑脱层上的变形传递得更快更远;由于滑脱层性质的差异,

中国石油构造样式

中国石油 构造样式 绪论 石油构造是在一种主导构造应力作用下形成各种变形的整体。 地壳运动可概括为无个字“升、降、开、合、扭”。 地槽转化为地台的过程实质上是由洋壳转化为陆壳的过程。 地台转化为地槽实质上就是陆壳裂解转化为洋壳的过程。 在沉积盆地中,最常见的是由开裂环境转化为收缩环境。 正反转构造:负向构造转化为正向构造。 负反转构造:正向构造转化为负向构造。 石油构造类型表 第一章沉积盆地构造分析 一、沉积盆地按地球动力学分类 (一)开裂环境

随着大陆的解体,沉积盆地的形成往往与岩石圈的引张应力有关。 1、大陆裂谷盆地(有些裂谷与造山带以高角度相交,称之为碰撞裂谷) 2、大陆边缘拉裂盆地 3、边缘海盆地 (二)收缩环境 板块或块体的聚合形成造山带,在造山带一侧或造山带内形成一系列压陷盆地。在这些地区以挤压应力作用为主,地壳缩短加厚,形成各种收缩构造。 1、山前压陷盆地(前陆盆地属此类) 2、山间压陷盆地 (三)剪切环境 1、拉分盆地 2、断层边缘盆地 3、断层楔盆地 4、断层角盆地 5、走滑横向盆地等 (四)重力环境 1、克拉通盆地 2、撞击盆地(陨石坑等) 二、中国中、新生代沉积盆地形成的地质背景

从全球观点来看,造山带的形成与深海槽的消亡、大陆的解体、漂移是密切相关的。即裂解作用与造山作用是相对应的。裂陷使地壳伸展,形成各种类型的伸展构造;造山使地壳缩短,形成收缩类型的构造。 (一)印支期 中国西部,印支旋回既有“开”又有“合”,裂陷作用与聚合造山作用并行不悖,彼此紧密相关。在“开”与“合”两大地质事件中,中国西部由于岩石圈的不均一性,古老陆块与软弱带接触区发生裂陷,形成断陷盆地。 (二)燕山期 燕山运动自下而上可分为三次激化期。 早燕山期:早、中侏罗世与晚侏罗世之间 中燕山期:晚侏罗世与早白垩世之间 晚燕山期:晚白垩世与早第三世之间 中国西部地区,由于藏南海槽强烈扩张,岗底斯地体与古亚洲大陆拼帖,这一演化过程中,近南北向的开裂与聚合交替发生。西部地区除老的坳陷盆地继承发育外,还产生许多山间或山前断陷。在挤压应力作用下,西部地壳明显收缩,为了达到均衡,远端发生北东向断陷,河西、阿拉善等地区的上侏罗-下白垩统半地堑的形成就是远端效应的结果。 (三)喜玛拉雅期 喜玛拉雅旋回以晚白垩世(或古新世)与始新世、始新世与

物理仿真实验

实验简介: 液体表层指液体与气体、液体与固体以及不相混合的液体之间的界面。液体表层分子有从液面挤入液体内部的倾向,这使得液体的表面自然收缩,就整个液面来说,如同拉紧的弹性薄膜,这种沿着表面,使液面收缩的力称为表面张力。表面张力在船舶制造、水利学、化学化工、凝聚态物理中都能找到它的应用。 测量液体(例如水)的表面张力系数有多种方法,如最大泡压法、平板法(亦称拉普拉斯法)、毛细管法、焦利氏秤法、扭力天平法等。这里只介绍焦利氏秤法。本实验首先利用逐差法测量焦利氏秤弹簧的倔强系数,然后利用拉脱法测量液体的表面张力系数。 实验原理 1、液体分子受力情况 液体表面层中分子的受力情况与液体内部不同。在液体内部,分子在各个方向上受力均匀,合力为零。而在表面层中,由于液面上方气体分子数较少,使得表面层中的分子受到向上的引力小于向下的引力,合力不为零,这个合力垂直于液体表面并指向液体内部,如图1所示。所以,表面层的分子有从液面挤入液体内部的倾向,从而使得液体的表面自然收缩,直到达到动态平衡(即表面层中分 图1 液体分子受力示意图 子挤入液体内部的速率与液体内部分子热运动而达到液面的速率相等)。这时,就整个液面来说,如同拉紧的弹性薄膜。这种沿着表面,使液面收缩的力称为表面张力。 想象在液面上划一条线,表面张力就表现为直线两侧的液体以一定的拉力相互作用。这种张力垂直于该直线且与线的长度成正比,比例系数称为表面张力系数。 2、矩形金属框架测量原理 将一表面清洁的矩形金属薄片竖直浸入水中,使其底面水平并轻轻提起。当金属片底面与水面相平,或略高于水面时,由于液体表面张力的作用,金属片的四周将带起一部分水,使水面弯曲,呈图2所示的形状。这时,金属片在竖直方向上受到(1)金属片的重力mg;(2)向上的拉力F;(3)水表面对金属片的作用力——表面张力。 图2 金属框受力示意图 其中为水面与金属片侧面的夹角,称为接触角。如果金属片静止,则竖直方向上合力为零,有

超声地震物理模拟技术

超声地震物理模拟技术:实验室中的“沙盘演兵” (时间:2006-10-9 共有 人次浏览)[信息来源:石油经济网] 随着我国石油勘探领域向西部和南方复杂地区的推进,复杂地 质条件下的特殊波场特征不断出现,对勘探技术提出了更高要求。因而,处于技术前沿的超声地震物理模拟技术,越来越为地球物理学家所重视。 近日,记者就此采访了中国石化石油勘探开发研究院南京所应用地球物理实验中心主任赵群。 记者:什么是超声地震物理模拟技术? 赵群:采用“人工地震法”获得地层构造信息的方法是,在地面用炸药作为震源放炮,激发产生的地震波,传到几千米以下的地层构造上,再反射回到地面,最终以数据形式被接收仪器捕捉,并形成地震波图像,通过对该图像上的数据分布形态(这里称作“震相”)进行处理分析,推知地下的地层构造。这种由震相反求地层构造形态的过程,在石油物探上称之为“反演”。 “反演”就是反向演绎,是对事物表现出的外在形态特征,借助某些方法技术,演绎推断出其内部结构机理。这之间的关系用谜底与谜面来比喻就是,在地面接收到的震相是地球给出的“谜面”,对震相的处理解释过程则是对“谜面”的分析推敲,最终得到“谜底”——对地层结构的认识。 但问题是,我们通过反演所揭示的“谜底”,与真实复杂的地层结构之间究竟有多大距离? 由于人们只能通过有限的钻井资料,了解到零星的地层结构的实际情况,不能看到整个地层构造,地球物理学家也只能是“望地兴叹”,必须找到一个基础作为依托,于是人们想到了“物理模型”。 我们可以用一个缩小的简化物理模型,来模拟相关的地层构造,并等比匹配采用波长相对尺度较小、与地震波具有相同波动传播机理的超声波作为激发源,在实验室内进行野外勘探模拟演示,详细观察研究“谜面”现象与“谜底”本质间的因果关系,从而达到验证理论、检验方法、锤炼技术的目的。这样一种类似“沙盘演兵”式的模拟方法,被称为超声地震物理模拟技术。 与反演方法相对应,在已知地质物理模型的条件下,获取该模型的地震观测数据,进而检验勘探方法技术的过程,在石油物探上称之为“正演”。相应的物理模型称之为“正演模型”。 记者:超声地震物理模拟技术在地震勘探上有哪些应用?

大学物理仿真实验凯特摆测量重力加速度

福建工程学院 实验报告 专业:通信工程 班级:1002 座号:3100205219 姓名:郑智勇 日期:2011-10-20

凯特摆测量重力加速度 实验目的: 1. 学习凯特摆的实验设计思想和技巧。 2. 掌握一种比较精确的测量重力加速度的方法。 3. 利用凯特摆测量重力加速度的方法 实验内容: 一.实验原理 图一是复摆的示意图,设一质量为m 的刚体,其重心G 到转轴O的距离为h ,绕O 轴的转动惯量为I ,当摆幅很小时,刚体绕O 轴摆动的周期T 为 mgh I T π2= (1) 式中g 为当地的重力加速度。 设复摆绕通过重心G 的轴的转动惯量为I G ,当G 轴与O 轴平行时,有 2 mh I I G += (2) 代入式(1)得 mgh mh I T G 2 2+=π (3) 对比单摆周期的公式g l T π2=,可得 mh mh I l G 2 += (4) l 称为复摆的等效摆长。因此只要测出周期和等效摆长便可求得重力加速度。 复摆的周期我们能测得非常精确,但利用mh mh I l G 2 +=来确定l 是很困难的。因为重心G 的位置不易测定,因而重心G 到悬点O 的距离h 也是难以精确测定的。同时由于复摆不可能做成理想的、规则的形状,其密度也难绝对均匀,想精确计算I G 也是不可能的。我们利用复摆上两点的共轭性可以精确求得l 。在复摆重心G 的两旁,总可找到两点

O和O’,使得该摆以O悬点的摆动周期T1与以O’为悬点的摆动周期T2相同,那么可以证明' OO就是我们要求的等效摆长l。 图一复摆示意图图二凯特摆摆杆示意图图二是凯特摆摆杆的示意图,对凯特摆而言,两刀口间的距离就是该摆的等效摆长l。在实验中当两刀口位置确定后,通过调节A、B、C、D四摆锤的位置可使正、倒悬挂时的摆动周期T1和T2基本相等,即T1≈T2。由公式(3)可得 1 2 1 1 2 m gh m h I T G + =π (5) 2 2 2 2 2 m gh m h I T G + =π (6)其中T1和h1为摆绕O轴的摆动周期和O轴倒重心G的距离。当T1≈T2时,h1+h2=l即为等效摆长。由式(5)和(6)消去I G,可得 ()b a l h T T l T T g + = - - + + = 1 2 2 2 1 2 2 2 1 2 2 2 2 4π (7)式中,l、T1、T2都是可以精确测定的量,而h1则不易测准。由此可知,a项可以精确求得,而b项不易精确求得。但当T1=T2以及l h- 1 2的值较大时,b项的值相对a项是非常小的,这样b项的不精确对测量结果产生的影响就微乎其微了。 二.实验内容 1.实验仪器 本实验装置包括凯特摆、光电探头和多用数字测试仪。 实验中将光电探头放在摆杆下方,调整它的位置和高度,让摆针在摆动时经过光电探测器。电信号由B插口输入到数字测试仪中,数字测试仪的功能选择旋钮放在“振动计数”档,时标旋钮放在“0.1ms”档,计停开关置于“停止”,然后接通电源。

相关文档