文档视界 最新最全的文档下载
当前位置:文档视界 › 空调系统分类及原理

空调系统分类及原理

空调系统分类及原理
空调系统分类及原理

空调系统分类及原理

一幢建筑的空调系统通常包括以下设备及其附件:

冷、热源设备——提供空调用冷、热源;冷、热介质输送设备及管道——把冷、热介质输送到使用场所;空气处理设备及输送设备及管道——对空气进行处理并运送至需空气调节的房间;温、湿度等参数的控制设备及元器件。根据以上设备的情况,可对空调系统进行一系列的分类。

一、按照处理空气所采用的冷、热介质来分类

㈠央空调系统

通过冷、热源设备提供满足要求的冷、热水并由水泵输送至各个空气处理设备中与空气进行交换后,把处理后的空气送至空气调节房间。简单的说,中央空调系统就是冷热源集中处理空调调节系统。

㈡散式系统

实际上已经不是空调设计中“系统”的概念,它是把冷热源设备、空气处理及起输送设备组合一体,直接设于空气调节房间。其典型的例子就是直接蒸发式空调机组,如分体式空调机。

㈢他空调系统

既有中央空调的某些特点,又有分散式空调的某些特点,变冷媒流量空调系统和水源热泵系统等。

二、按冷、热介质的到达位置来分类

这里所提到的冷、热源介质,是指为空气处理所提供的冷、热源的种类而不包括被处理的空气本身。

㈠全空气系统

冷、热介质不进入被空调房间而只进入空调机房,被空气调节房间的冷、热量全部由经过处理的冷、热空气负担,被空气调节房间只有风道存在。典型的例子是目前所常见的确一、二次回风空调系统。

㈡气-水系统

空气与作为冷、热介质的水同时送进被空气调节房间,空气解决房间的通风换气或提供满足房间最小卫生要求的新风量,水则通过房间的小型空气处理设备而承担房间的冷、热量及湿负荷。

(三)接蒸发式系统

利用冷媒直接与空气进行一次热交换,将使得在输送同样冷(热)量至同一地点时所用的能耗更少一些。其作用围比中央空调系统小的多。

空调系统分类

一.中央空调概念

空气调节,简称空调,就是把经过一定处理后的空气,以一定的方式送入室,使室空气的温度、湿度、清洁度和流动速度等控制在适当的围以满足生活舒适和生产工艺需要的一种专门技术。中央空调系统是由一台主机(或一套制冷系统或供风系统)通过风道送风或冷热水源带动多个未端的方式来达到室空气调节的目的的空调系统。

二.空调系统分类

空调根据不同的分类标准,可以分为如下几类:

(一)按输送工作介质分类

1.全空气式空调系统

空调房间的热湿负荷全部由经过处理的空气负担的空调系统,称为全空气空调系统,又叫做风管式空调系统。全空气空调系统以空气为输送介质,它利用室外主机集中产生冷/热量,将从室引回的回风(或回风和新风的混风)进行冷却/热处理后,再送人室消除其空调冷/热负荷。

2.风管式中央空调系统

全空气空调系统的优点是配置简单,初始投资较小,可以引入新风,能够提高空气质量和人体舒适度。但它的缺点也比较明显:安装难度大,空气输配系统所占用的建筑物空间较大,一般要求住宅要有较大的层高,还应考虑风管穿越墙体问题。而且它采用统一送风的方式,在没有变风量末端的情况下,难以满足不同房间不同的空调负荷要求。

3.冷/热水机组空调系统

空调房间的热(冷)湿负荷全部由水负担的空调系统,称为冷/热水式空调系统。冷/热水式空调系统的输送介质通常为水或乙二醇溶液。它通过室外主机产生出空调冷/热水,由管路系统输送至室的各末端装置,在末端装置处冷/热水与室空气进行热量交换,产生出冷/热风,从而消除房间空调冷/热负荷。

4.冷/热水机组中央空调系统

该系统的室末端装置通常为风机盘管。目前风机盘管一般均可以调节其风机转速(或通过旁通阀调节经过盘管的水量),从而调节送人室的冷/热量,因此可以满足各个房间不同需求,其节能性也较好。此外,它的输配系统所占空间很小,因此一般不受住宅层高的限制。但此种系统一般难以引进新风,因此对于通常密闭的空调房间而言,其舒适性较差。

5.空气—水式空调系统

空调房间的热湿负荷由水和空气共同负担的空调系统,称为空气—水式空调系统。其典型的装置是风机盘管加新风系统。空气—水式空调系统是由风机盘管或诱导器对空调房间的空气进行热湿处理,而空调房间所需要的空气由集中式空调系统处理后,再由送风管送入各空调房间。空气—水式空调系统解决了冷/热水式空调系统无法通风换气的困难,又克服了全空气系统要求风道面积比较大、占用建筑空间多的缺点。

6.制冷剂式空调系统

制冷剂式中央空调系统,简称VRV(Varied Refrigerant Volume)系统,它以制冷剂为输送介质,室外主机由室外侧换热器、压缩机和其他附件组成,末端装置是由直接蒸发式换热器和风机组成的室机,冷媒直接在风机盘管蒸发吸热进行制冷。一台室外机通过管路能够向若干个室机输送制冷剂液体。通过控制压缩机的制冷剂循环量和进入室各换热器的制冷剂流量,可以适时地满足室冷/热负荷要求。

(二)根据主机类型

根据主机根据主机类型可以将空调分为压缩式和吸收式两大类。

1.压缩式

包括活塞式、螺杆式(分单螺杆和双螺杆两种)、离心式和涡旋式。

2.吸收式

(1)按用途分类

①冷水机组,供应空调用冷水或工艺用冷水。冷水出口温度分为7℃、10℃、13℃、15℃四种。

②冷热水机组,供应空调和生活用冷热水。冷水进、出口温度为12℃/7℃;用

于采暖的热水进出口温度为55℃/60℃。

③热泵机组,依靠驱动热源的能量,将低势位热量提高到高势位,供采暖或工艺过程使用。输出热的温度低于驱动热源温度,以供热为目的的热泵机组称为第一类吸收式热泵;输出热的温度高于驱动热源温度,以升温为目的的热泵机组称为第二类吸收式热泵。

(2)按驱动热源分类

①蒸汽型,以蒸汽为驱动热源。单效机组工作蒸汽压力一般为0.1MPa(表);双效机组工作蒸汽压力为0.25~0.8MPa(表)

②直燃型,以燃料的燃烧热为驱动热源。根据所用燃料种类,又分为燃油型(轻油或重油)和燃气型(液化气、天然气、城市煤气)两大类。

③热水型,以热水的显热为驱动热源。单效机组热水温度围为85~150℃;双效机组热水温度>150℃。

(3)按驱动热源的利用方式分类

①单效,驱动热源在机组被直接利用一次。

②双效,驱动热源在机组的高压发生器被直接利用,产生的高温冷剂水蒸气在低压发生器被二次间接利用。

③多效,驱动热源在机组被直接和间接地多次利用。

(三)根据使用要求分类

按使用要求一般把用于生产或科学试验过程中的空调称为“工艺性空调”,而把用于保证人体舒适度的空调称为“舒适性空调”。工艺性空调在满足特殊工艺过程特殊要求的同时,往往还要满足工作人员的舒适性要求。因此二者是密切相关的。

1.舒适性空调

舒适性空调的任务在于创造舒适的工作环境,保证人的健康,提高工作效率,广泛应用于办公楼、会议室、展览馆、影剧院、图书馆、体育场、商场、旅馆、餐厅等。

2.工艺性空调

工艺性空调主要取决于工艺要求,不同部门区别很大,总的来说主要分为降温性空调和恒温(恒湿)空调两类。

⑴纺织工业、印刷工业、钟表工业、胶片工业、食品工业、卷烟工业、粮食仓库等都不可缺少空调系统。其中某些降温性质的空调的任务是使操作工人手不出汗,不影响生产工艺、产品质量,防止产品受潮。

⑵电子工业、仪表工业、合成纤维工业及科研机构的控制室、计量室、检验室、计算机房等要求恒温恒湿的室环境。

⑶与现代工业和尖端技术密切相关联的某些工艺过程,不仅要求一定的温湿度,而且还对空气的含尘量、颗粒大小有严格要求,如精密机械工业、半导体工业的“工业洁净室”;制药车间、无菌试验室、烧伤病房、手术室等“生物洁净室”还对单位体积空气的含菌数量做了规定。

(四)按空气处理设备的情况分类

1.集中式空调系统

集中式空调系统是指在同筑对空气进行净化、冷却(或加热)、加湿(或除湿)等处理,然后进行输送和分配的空调系统。集中式空调系统的特点是空气处理设备和送、回风机等集中在空调机房,通过送回风管道与被调节空气场所相连,对空气进行集中处理和分配;集中式中央空调系统有集中的冷源和热源,称为冷

冻站和热交换站;其处理空气量大,运行安全可靠,便于维修和管理,但机房占地面积较大。

2.半集中式空调系统

半集中式空调系统又称为混合式空调系统,它是建立在集中式空调系统的基础上,除有集中空调系统的空气处理设备处理部分空气外,还有分散在被调节房间的空气处理设备,对其室空气进行就地处理,或对来自集中处理设备的空气再进行补充处理,如诱导器系统、风机盘管系统等。这种空调适用于空气调节房间较多,而且个房间空气参数要求单独调节的建筑物中。集中式空调系统和半集中式空调系统通常可以称为中央空调系统。

3.分散式系统

分散式系统又称为局部式或独立式空调系统。它的特点是将空气处理设备分散放置在各个房间。人们常见的窗式空调器、分体式空调器等都属于此类。(五)根据冷凝器冷凝方式

根据冷凝器的冷却方式可以将主机分为风冷式和水冷式,主要区别在于水冷式的有冷却循环系统,存在冷却泵和冷却塔风机。

1.普通型水冷式冷水机组

该机组在结构上的主要特点是冷凝器和蒸发器均为壳管换热器,它有冷却水系统的设备(冷却水泵、冷却塔、水处理装置、水过滤器和冷却水系统管路等),冷却效果比较好。

2.风冷式的冷水机组

该机组是以冷凝器的冷却风机取代水冷式冷水机组中的冷却水系统的设备(冷

却水泵、冷却塔、水处理装置、水过滤器和冷却水系统管路等),使庞大的冷水机组变得简

单且紧凑。风冷机组可以安装于室外空地,也可安装在屋顶,无需建造机房。

空调原理及系统组成

空调原理及系统组成传热方式与热学定律 对流、传导、辐射 对流:通过流体流动把热量带走。 传导:相互接触的物体之间或物体内部温差传。 辐射:物体通过发出红外线方式把热量散发出去。 热力学第一定律: 能量是可以转换的,可以传递的,能量的总量保持不。物质吸收了热量膨胀,对外界作功把一部份能量传给了外界,热能转化为机械能。 热力学第二定律: 指出了在自然条件下热量只能从高温物体向低温物体转移,而不能由低温物体自动向高温物体转移,也就是说在自然条件下,这个转变过程是不可逆的。要使热传递方向倒转过来,只有靠消耗功来实现。 5 天前上传 下载附件 (25.41 KB) 如:压缩机---做功,将热量从低温热源传送到高温热源,使得低温热源始终保持较低温度,类似于水泵做功实现水从低处往高处流的原理。

一般空调构成及循环 5 天前上传 下载附件 (26.51 KB) 压缩机:“心脏”,压缩和输送制冷剂蒸汽; 膨胀阀:节流降压,并调节进入蒸发器的制冷剂流量; 蒸发器:吸收热量(输出冷量)从而制冷; 冷凝器:输出热量。 5 天前上传 下载附件 (44.75 KB) 空调四大件 蒸发器工作的过程 室内的温度较高,空气流过蒸发器时冷媒蒸发带走空气中的热量,空气温度降低成为冷空气。 空气被冷却时,空气中会有凝水,通过排水器排走。 为了防止冷凝水流到机房内,需要挡板和排水管将其排到室外。 5 天前上传 下载附件 (25.14 KB)

空调的第二个部件冷凝器(这里所指是空冷式),也就是我们通常说的室外机室外机的工作原理是冷媒向空气放热,由气态转化为液态,向空气排热。所以冷凝器的散热条件对空调制冷有较大影响,有一定的环境及距离要求,后文将会详细讲解。 5 天前上传 下载附件 (29.81 KB) 空调的第三个部件压缩机,压缩机起到的作用如下: 来自蒸发器的低温低压的冷媒气体被压缩机压缩成高温高压的气体进入冷凝器。 冷媒向空气放热,由气态转化为液态,这一过程,实际需要做功,做功这一过程由压缩机来完成。 这一过程中压缩机压缩和输送制冷剂蒸汽(工作过程),通过做功后冷凝器再将热量带到室外。 5 天前上传 下载附件 (38.94 KB) 空调的第四个部件膨胀阀 膨胀阀---对制冷剂节流降压,并调节进入蒸发器的制冷剂流量,高温高压的液体变为低温低压液体膨胀阀通过感应器感应蒸发器出口温度,如果出口过热度偏高,表示蒸发器热负荷偏大,则膨胀阀阀门调节开启变大,制冷剂流量按比例增加。反之,蒸发器出口温度偏低,膨胀阀会逆向关小减少制冷剂流向蒸发器的流量,从而实现减小制冷量。通过膨胀阀的控制,实现空调制冷的动态平衡。

冷冻机的工作原理及分类

冷冻机的分类及工作原理 摘要:工业冷水机组通过液态冷冻剂在蒸发器中的汽化吸收冷冻循环水中的热量,实现制冷目的。汽化的冷冻剂通过压缩机压缩,经冷凝器冷凝成液态供下个制冷循环使用。压缩机由电动机驱动,通过电气控制系统实现整台冷水机组的工况调节。 关键字:压缩机制冷水循环电气控制

0引言 近年随着我国生产制造业进入一个新的快速发展时期,市场竞争激烈对产品质量的要求亦有较大程度的提高。在生产过程中,由于机械、模具及工业反应不断产生热量,影响产品质量的问题屡屡发生。当温度超过物料之承受程度产品质量就不稳定,以塑料产品和电镀生产为例,塑料产品生产中冷却时间占全周期80%以上,冷却时间减少之重要性由此可见,冷冻水能及时吸收热量,使模腔温度快速降低,加速产品定型,缩短开面。电镀生产中冷冻水能将电镀溶液温度降低并将温度恒定在某一范围内,使金属分子随着稳定电流快速附向镀件表面,使产品平滑和密度增加。 因此工业冷水机广泛应用于多种工业生产,如:1.化工(学)工业 2.塑料制品、塑料容器、制膜、塑钢型材、管材、电线、电缆护套、轮胎行业3.电镀及机床切削液冷却行业4.制药行业5.电子行业6.五金工业7. 食品及饮料行业8.制鞋行业9.实验室10.医疗设备11.光学仪器等。 1工业冷水机组组成 工业冷水机组系统的运作是通过制冷剂循环系统、水循环系统、电器自控系统三个相互联系的系统实现的。 制冷剂循环系统: 蒸发器中的液态制冷剂吸收水中的热量并开始蒸发,最终制冷剂与水之间形成一定的温度差,液态制冷剂亦完全蒸发变为气态,后被压缩机吸入并压缩(压力和温度增加),气态制冷剂通过冷凝器(风冷/水冷)吸收热量,凝结成液体。通过膨胀阀(或毛细管)节流后变成低温低压制冷剂进入蒸发器,完成

空调系统中的四大件组成及原理分析

空调系统中的四大件组成及原理 空调系统中的四大件组成及原理 2009年08月17日星期一23:39 空调系统有四大件:压缩机、冷凝器、蒸发器和节流部件。 1.压缩机 压缩机是整个空调系统的核心,也是系统动力的源泉。整个空调的动力,全部由压缩机来提供,压缩机就相当于把一个实物由低势位搬到高势位地方去,在空调中它的目的就是把低温的气体通过压缩机压缩成高温的气体,最后气体在换热器中和其他的介质进行换热。所以说压缩机的好坏会直接影响到整个空调的效果。根据蒸气的原理,压缩机可分为容积型和速度型两种基本类型。容积型压缩机通过对运动机构作功,以减少压缩室容积,提高蒸气压力来完成压缩功能。速度型压缩机则由旋转部件连续将角动量转换给蒸气,再将该动量转为压力。根据压缩方式,容积型压缩机可分为活塞式和回转式两大类。回转式又可分为滚动活塞式、滑片式、单螺杆式、双螺杆式、涡旋式。速度型压缩机有离心式。 从压缩机结构上来看,又可将压缩机分为开启式、半封闭式和全封闭式。开启式压缩机的主轴伸出机体外,通过传动装置(传动带或联轴节)与原动机相连接。在伸出部分必须有轴封装置,使主轴和机体间密封来防止制冷剂泄露。封闭式压缩机的结构是将电动机和压缩机连成整体,装在同一机体内,因而可以取消轴封装置,避免了泄漏制冷剂的可能。这样,电动机便处于四周是制冷剂的环境中,称为内装式电动机。封闭式压缩机又可分为半封闭和全封闭两种型式。半封闭式的机体用螺栓连接,因此和开启式一样可以拆开维修。全封闭式的机体则装在一个焊接起来的外壳中,无法拆开维修。 2.换热器 根据在空调上的作用不同,可分为冷凝器和蒸发器。现在就冷凝器和蒸发器的分类和区别述说一下。 (1)、冷凝器: 冷凝器的作用是将压缩机排出的高温高压的制冷剂过热蒸汽冷却成液体或气液混合物。制冷剂在冷凝器种放出的热量由冷却介质(水或空气)带走。冷凝器按

制冷系统主要部件的工作原理及特点_

制冷系统主要部件的工作原理及特点 (1)制冷压缩机 制冷压缩机是用以压缩和输送制冷剂的设备。在消耗外界补偿功的条件下,它以机械方法吸入来自蒸发器的低温低压制冷剂蒸汽,将该蒸汽压缩成高温高压的过热蒸汽,并排放到冷凝器中去,使制冷剂能在制冷系统中实现制冷循环。 ①开启式压缩机。 这种压缩机与电动机没有共同外壳。根据曲轴箱形式,又可分为开式曲轴箱压缩机和闭式曲轴箱压缩机。前者因曲轴箱与大气相通,气缸里漏出的制冷剂直接进人大气,泄漏量大,目前已很少应用。后者曲轴箱的曲轴用轴封加以密闭,使曲轴箱封闭,以减少制冷剂的泄漏量。 ②半封闭式压缩机。 这种压缩机与电动机直接连接;一起装在以螺栓连接的密封壳体内,并共用同一主轴,机壳为可拆卸式,便于维修。根据电动机的冷却形式可分为进气冷却式、进气与空气混合冷却式等形式。目前半封闭式压缩机多为高速多缸式。 ③全封闭式压缩机: 这种压缩机和电动机直接连接,并一起装在一个焊接的密封壳体内。这种压缩机结构紧凑、密封性极好。使用方便、振动小、噪音低,适用于小型制冷设备。全封式压缩机有活塞式、旋转式、涡旋式三种。 A、旋转式压缩机 是一种特殊的小型回转式压缩机,如图1-l-2所示。其转子偏心地装在定子内,排气时间长(比往复活塞式长30%左右),流过气阀的流动阻力损失小,缸径行程比大,排气容积和吸气管管径大,吸气过热小,电动机工作温度低,效率高,成本低以及寿命长。 B、活塞式压缩机 外形如图1-l-3所示 C、涡旋式压缩机 是通过涡旋定子和涡旋转子组成涡卷以及构成这个涡卷的端板所形成的空间来压缩气体的回转式压缩机。工作时,随着曲轴的回转,涡旋转子以其中心始终绕涡旋定子中心作一偏心量为半径的圆周运动。它与往复活塞式压缩机相比,其主要特点是:压缩气体几乎不泄漏、不需吸排气阀、绝热效率可提高10%、震动小、扭矩变化小、噪音可降低5dB(A)、体积减小40%、重量减轻15%。它适用于热泵式、吊顶型等空调机上。 系列柔性涡旋压缩机: 超高能效比

空调器结构和工作原理

空调器结构和工作原理

空调器结构和工作原理 空调器的结构,一般由以下四部分组成。 制冷系统:是空调器制冷降温部分,由制冷压缩机、冷凝器、毛细管、蒸发器、电磁换向阀、过滤器和制冷剂等组成一个密封的制冷循环。 风路系统:是空调器内促使房间空气加快热交换部分,由离心风机、轴流风机等设备组成。 电气系统:是空调器内促使压缩机、风机安全运行和温度控制部分,由电动机、温控器、继电器、电容器和加热器等组成。 箱体与面板:是空调器的框架、各组成部件的支承座和气流的导向部分,由箱体、面板和百叶栅等组成。 制冷系统的主要组成和工作原理 制冷系统是一个完整的密封循环系统,组成这个系统的主要部件包括压缩机、冷凝器、节流装置(膨胀阀或毛细管)和蒸发器,各个部件之间用管道连接起来,形成一个封闭的循循环系统,在系统中加入一定量的氟利昂制冷剂来实现这冷降温。 空调器制冷降温,是把一个完整的制冷系统装在空调器中,再配上风机和一些控制器来实现的。制冷

的基本原理按照制冷循环系统的组成部件及其作用,分别由四个过程来实现。 压缩过程:从压缩机开始,制冷剂气体在低温低压状态下进入压缩机,在压缩机中被压缩,提高气体的压力和温度后,排入冷凝器中。 冷凝过程:从压缩机中排出来的高温高压气体,进入冷凝器中,将热量传递给外界空气或冷却水后,凝结成液体制冷剂,流向节流装置。 节流过程:又称膨胀过程,冷凝器中流出来的制冷剂液体在高压下流向节流装置,进行节流减压。蒸发过程:从节流装置流出来的低压制冷剂液体流向蒸发器中,吸收外界(空气或水)的热量而蒸发成为气体,从而使外界(空气或水)的温度降低,蒸发后的低温低压气体又被压缩机吸回,进行再压缩、冷凝、节流、蒸发,依次不断地循环和制冷。单冷型空调器结构简单,主要由压缩机、冷凝器、干燥过滤器、毛细管以及蒸发器等组成。单冷型空调器环境温度适用范围为18℃~43℃。 冷热两用型空调器又可以分为电热型、热泵型和热泵辅助电热型三种。 (1)电热型空调器 电热型空调器在室内蒸发器与离心风扇之间安装

大型中央空调工作原理及系统结构图

本资料由常州好彩中央空调大卖场友情提供 大型中央空调工作原理及系统结构图 来源:中国节能产业网时间:2009-8-20 10:13:54 中央空调系统主要由制冷机、冷却水循环系统、冷冻水循环系统、风机盘管系统和冷却塔组成。各部分的作用及工作原理如下: 制冷机通过压缩机将制冷剂压缩成液态后送蒸发器中与冷冻水进行热交换,将冷冻水制冷,冷冻泵将冷冻水送到各风机风口的冷却盘管中,由风机吹送达到降温的目的。经蒸发后的制冷剂在冷凝器中释放出热量成气态,冷却泵将冷却水送到冷却塔上由水塔风机对其进行喷淋冷却,与大气之间进行热交换,将热量散发到大气中去。 中央空调系统部分组成: 冷冻水循环系统 该部分由冷冻泵、室内风机及冷冻水管道等组成。从主机蒸发器流出的低温冷冻水由冷冻泵加压送入冷冻水管道(出水),进入室内进行热交换,带走房间内的热量,最后回到主机蒸发器(回水)。室内风机用于将空气吹过冷冻水管道,降低空气温度,加

速室内热交换。 冷却水循环部分 该部分由冷却泵、冷却水管道、冷却水塔及冷凝器等组成。冷冻水循环系统进行室内热交换的同时,必将带走室内大量的热能。该热能通过主机内的冷媒传递给冷却水,使冷却水温度升高。冷却泵将升温后的冷却水压入冷却水塔(出水),使之与大气进行热交换,降低温度后再送回主机冷凝器(回水)。 主机 主机部分由压缩机、蒸发器、冷凝器及冷媒(制冷剂)等组成,其工作循环过程如下: 首先低压气态冷媒被压缩机加压进入冷凝器并逐渐冷凝成高压液体。在冷凝过程中冷媒会释放出大量热能,这部分热能被冷凝器中的冷却水吸收并送到室外的冷却塔上,最终释放到大气中去。随后冷凝器中的高压液态冷媒在流经蒸发器前的节流降压装置时,因为压力的突变而气化,形成气液混合物进入蒸发器。冷媒在蒸发器中不断气化,同时会吸收冷冻水中的热量使其达到较低温度。最后,蒸发器中气化后的冷媒又变成了低压气体,重新进入了压缩机,如此循环往复

空调分类及优缺点范文

空调分类及优缺点 按照能源方式分类 1、电制冷空调 2、溴化锂制冷空调(需要用蒸汽) 3、其他能源空调如水环热泵空调系统 电制冷空调是我们用到最多的空调形式,具体谈谈电制冷空调的分类按照冷却方式分类: 1、风冷:冷凝器采用强制空气对流的方式进行换热,家用空调基本上都是这种,风冷空调又有单冷型和热泵型两种,单冷型顾名思义只可以夏天制冷,热泵型既可以夏天制冷又可以冬天制热。如: 风冷模块热泵机组、VRV系统(多联机)。 2、水冷:从冷凝器散发的热量用水流进行冷却,为达到节水的目的,冷凝器出来的冷却水被水泵输送到冷却水塔,与空气进行热交换后在回到冷凝器。如:冷却塔形式中央空调。 下面简单介绍常用中央空调系统的优缺点 一、冷却塔形式中央空调 工作形式:室外机一般称为冷水机组,室内机一般称为风机盘管,通过水管连接。(室外机压缩冷媒,冷媒再去与水换热,产生冷水,用水泵将冷水送入每个室内机,室内空气与水换热达到温度调节的目的。);水把从室内带出的热量带到室外机,室外机通过室外机与冷却塔之间的水系统把热量送到冷却塔排到外界环境。一般适用于建筑面积为≥5000m2的场所 另外需要冬天制热的话必须有锅炉或者外热网供热水。 其优缺点: 优点:使用舒适、每个房间也可以单独控制;初投资费用相对低廉 缺点: 有漏水的隐患——一旦漏水,将严重破坏装修;

换热效率低节能性一般——随着时间推移运行成本加大,并且需要专业人员开机、维护、保养,会产生一部分费用,后期费用高。占用机房面积较大。 二、风冷模块热泵机组 工作形式:室外机称为风冷热泵机组,机组可布置在房顶或地面,室内机一般称为风机盘管,通过水管连接。(室外机压缩冷媒,冷媒再去与水换热,产生冷/热水,用水泵将冷/热水送入每个室内机,室内空气与水换热达到温度调节的目的。);水把从室内带出的冷/热量带到室外机,室外机直接通过自身的风扇把冷/热量排到外界环境,少掉了冷却塔与外机间的水系统。一般适用于建筑面积为<5000m2的场所。 优点: 1.模块不占用机房,可放置于屋顶或通风良好处; 2.控制方便,独立使用,无须专业人员操作; 3.每个模块两个压缩机,可根据末端使用情况自动开启所需压缩机数量,起到很好的节能作用; 4.机房面积较小,放置屋顶不占用宝贵的机房; 5.不需要锅炉或板式热交换器。 缺点: 1.能效比低(相对而言),COP只有 2.9左右; 2.制冷、制热实际能量与外界环境温度有较大影响; 3、当外界温度在-9℃以下时,制热效率衰减的很快。(需要辅助电加热)

空调原理及系统组成

空调原理及系统组成 传热方式与热学定律 对流、传导、辐射 对流:通过流体流动把热量带走。 传导:相互接触的物体之间或物体内部温差传。 辐射:物体通过发出红外线方式把热量散发出去。 热力学第一定律: 能量是可以转换的,可以传递的,能量的总量保持不。物质吸收了热量膨胀,对外界作功把一部份能量传给了外界,热能转化为机械能。 热力学第二定律: 指出了在自然条件下热量只能从高温物体向低温物体转移,而不能由低温物体自动向高温物体转移,也就是说在自然条件下,这个转变过程是不可逆的。要使热传递方向倒转过来,只有靠消耗功来实现。 5 天前上传 下载附件(25.41 KB) 如:压缩机---做功,将热量从低温热源传送到高温热源,使得低温热源始终保持较低温度,类似于水泵做功实现水从低处往高处流的原理。 一般空调构成及循环

5 天前上传 下载附件(26.51 KB) 压缩机:“心脏”,压缩和输送制冷剂蒸汽; 膨胀阀:节流降压,并调节进入蒸发器的制冷剂流量;蒸发器:吸收热量(输出冷量)从而制冷; 冷凝器:输出热量。

5 天前上传 下载附件(44.75 KB) 空调四大件 蒸发器工作的过程 室内的温度较高,空气流过蒸发器时冷媒蒸发带走空气中的热量,空气温度降低成为冷空气。空气被冷却时,空气中会有凝水,通过排水器排走。 为了防止冷凝水流到机房内,需要挡板和排水管将其排到室外。

5 天前上传 下载附件(25.14 KB) 空调的第二个部件冷凝器(这里所指是空冷式),也就是我们通常说的室外机室外机的工作原理是冷媒向空气放热,由气态转化为液态,向空气排热。所以冷凝器的散热条件对空调制冷有较大影响,有一定的环境及距离要求,后文将会详细讲解。 5 天前上传

空调系统的分类

空调系统的分类 空调系统的分类 一幢建筑的空调系统通常包括以下设备及其附件: 冷、热源设备——提供空调用冷、热源; 冷、热介质输送设备及管道——把冷、热介质输送到使用场所; 空气处理设备及输送设备及管道——对空气进行处理并运送至需空气调节的房间; 温、湿度等参数的控制设备及元器件。 根据以上设备的情况,可对空调系统进行一系列的分类。 一、按照处理空气所采用的冷、热介质来分类 ㈠中央空调系统 通过冷、热源设备提供满足要求的冷、热水并由水泵输送至各个空气处理设备中与空气进行交换后,把处理后的空气送至空气调节房间。简单的说,中央空调系统就是冷热源集中处理空调调节系统。 ㈡分散式系统 实际上已经不是空调设计中“系统”的概念,它是把冷热源设备、空气处理及起输送设备组合一体,直接设于空气调节房间内。其典型的例子就是直接蒸发式空调机组,如分体式空调机。㈢其他空调系统 既有中央空调的某些特点,又有分散式空调的某些特点,变冷媒流量空调系统和水源热泵系统等。 二、按冷、热介质的到达位置来分类 这里所提到的冷、热源介质,是指为空气处理所提供的冷、热源的种类而不包括被处理的空气本身。 ㈠全空气系统 冷、热介质不进入被空调房间而只进入空调机房,被空气调节房间的冷、热量全部由经过处理的冷、热空气负担,被空气调节房间内只有风道存在。 典型的例子是目前所常见的确一、二次回风空调系统。 ㈡气-水系统 空气与作为冷、热介质的水同时送进被空气调节房间,空气解决房间的通风换气或提供满足房间最小卫生要求的新风量,水则通过房间内的小型空气处理设备而承担房间的冷、热量及湿负荷。 ㈢直接蒸发式系统 利用冷媒直接与空气进行一次热交换,将使得在输送同样冷(热)量至同一地点时所用的能耗更少一些。其作用范围比中央空调系统小的多。 5.1 中央空调概念 空气调节,简称空调,就是把经过一定处理后的空气,以一定的方式送入室内,使室内空气的温度、湿度、清洁度和流动速度等控制在适当的范围内以满足生活舒适和生产工艺需要的一种专门技术。中央空调系统是由一台主机(或一套制冷系统或供风系统)通过风道送风或冷热水源带动多个未端的方式来达到室内空气调节的目的的空调系统。 5.2空调系统分类 空调根据不同的分类标准,可以分为如下几类: 5.2.1 按输送工作介质分类 5.2.1.1 全空气式空调系统

(完整word版)汽车空调制冷系统的分类、组成与基本原理

专业理论课电子教案模板 专业名称汽修 课程名称汽车空调检修 授课教师张建强 班级15汽车1、2班 教研组长董秀娇

教学环节及内容 教学策略 方法组织实施 一、组织教学 老师:上课 学生:起立 学生:老师好 老师:同学们好 老师:坐下 二、复习与导入 通过播放多种不同的汽车空调,导入汽车空调的分类方法。 三、新授 项目二制冷系统与基本部件的正确维护 活动1:汽车空调制冷系统的分类、组成与基本原理 一、制冷系统的类型 汽车空调为了适应各种汽车制冷的需求,有多种形式的结构。常见的类型主要有: 1.按压缩机驱动方式分类 可分为独立式和非独立式两种 独立式汽车空调,如图2-1所示,其特点是压缩机由专门的副发动机驱动。

非独立式汽车空调,要求制冷量不是太大,压缩机通常由汽车主发动机通过皮带直接驱动,如图2-2所示。 2.按空调蒸发器的布置方式分类 由于汽车的型状与空间的不同,而汽车空调为了取的较好的制冷与美观效果,产生了各种布置方式。 (1)仪表板式 蒸发器布置在仪表板下方的中间或一侧, 如图2-3所示。 (2)顶置式 顶置式又分为车内顶置与车外顶置式。 车内顶置式,蒸发器布置在车内顶棚下,如图2-4所示。 车外顶置式如图2-5所示:大客车中采用较多,

这种方式不占用汽车空间,风道阻力也损失较少,但制冷管路较长,制冷剂压力损失较多。 (3)下置式 蒸发器置于汽车中部地板下或后座地板下如图2-6所示,多用于大型客车上。 这种方式制冷管道短,制冷系统压力损失小;但送风管路从地板下经竖风道至车顶两侧横风道,管路较长,送风阻力较大。 3.按蒸发器表面温度的控制分类 汽车空调的蒸发器表面温度需要进行控制。蒸发器表面温度太高,制冷效果变差,蒸发器表面温度太低会引起结霜、结冰,也将失去制冷效果,甚至造成压缩机损坏。 一是直接控制蒸发器表面温度,称为离合嚣循环系统, 系统结构如图2-7所示,是目前经济型轿车普遍采用的系统;

空调系统的组成与方式

1 空调系统的组成与方式 1.1 中央空调系统的组成 1.2中央空调系统的分类与比较 1.2.1中央空调系统的分类 1.2.2典型空调系统的比较 1.2.3空调系统选择的原则 1.3 全空气空调系统(AAA) 1.3.1 全空气空调过程 1.3.2 回风方式的选定 1.3.3 风量平衡 1.3.4 系统的划分 1.3.5 分区处理 1.3.6 双风道系统 1.4 变风量空调系统(VAV) 1.4.1 采用变风量的原因 1.4.2 定风量与变风量的区别 1.4.3 变风量末端装置的形式 1.5风机盘管+新风空调系统 1.5.1 风机盘管的构造、类型和基本参数 1.5.2 系统的新风供给方式 1.5.3 系统中的新风终状态的处理方式 1.5.4 风机盘管的水系统与调节 1.6商用、户式中央空调、变流量系统 1.6.1 商用中央空调 1.6.2 户用中央空调 1.6.3 变流量系统(VRV) 1.1 中央空调系统的组成 中央空调系统主要由制冷制热设备或装置(压缩机、压缩冷凝机组、冷水机组、空调箱、锅炉、喷水室等)、管路(制冷剂管路、冷媒管路、载冷剂管路等)、室内末端设备(室内风管水管、散流器、风机盘管、空调室内机等)、室外设备(室外风管、冷却塔、风冷式冷凝器等)、水泵、控制装置及附属设备等组成。 中央空调系统的组成参见图1-1和图1-2,多房间的单风道全空气空调系统参见图1-3。

图1-1 中央空调系统组成示意图1 图1-2 中央空调系统组成示意图2 (多房间的单风道全空气空调系统动画演示) 中央空调系统的组成及举例参见表1-1。 组成举例 空气分布、输送系统送、回风管道、散流器等空气处理设备空调箱、风机盘管 冷媒输送系统冷冻水泵、冷冻水管路及附件 冷热源冷水机组、锅炉等 热媒输送系统热水泵、热水管路及附件 散热系统冷却风系统或冷却水系统

中央空调系统构成及原理

.中央空调水系统构成及原理 中央空调循环水系统构成如图2一1所示: 空调水系统主要是由制冷机组、冷冻水泵、冷却水泵、冷却塔等组成的一个系统。该系统的工作原理是制冷剂在制冷机组的蒸发器中汽化吸收冷冻水的热量,从而使载冷剂一冷冻水的温度降低,然后,在蒸发器内被汽化的制冷剂经制冷机组的压缩机时被压缩成高压高温的气体,当高温高压的制冷剂流经冷凝器时被来自冷却塔的冷却水冷却变成低温高压的气体,低温高压的制冷剂通过膨胀阀后重新变成了低温低压的液体,而后再在蒸发器内气化,完成一次循环。通过不断的循环,载冷剂不断地输送冷量到空气处理单元,同时,制冷机组产生的热量不断的被冷却水所带走,在流经冷却塔时散发到空气中,冷却塔上装有风机,对流经冷却塔的水进行降温。中央空调制热时,冷却水系统停止运行,空调机组直接对冷冻水进行加热,目前主要有电加热和燃气燃烧加热。经过加热后的水通过管道流至各个房间,风机把进风口吸进的凉空气通过热管加热在通过出风口排出,此时一吹出的便是热风,达到了制热的目的。同时变冷的水流进机组,再一次被加热,然后采暖泵迫使热水再一次流入房间管道,如此形成循环。 实际中央空调应用中,由于其冷冻水和热水用一套水循环管道,所以在设计水泵时,有些设计只有两种水循环系统,即冷却水循环和冷冻水循环,此时水泵也就只有冷冻水泵和冷却水泵,夏季两种水泵均工作,而到了冬季,关闭冷却水泵,只有冷冻水泵工作。但是由于夏季的制冷量很大,所以冷冻水的流量同时也很大,因此冷冻水泵的功率设计比较大,是按最大制冷量加余量而设计。冬季时,制热量相对较小,不需要很大的制热量,自然需要的热水循环量也就较小,如果还用冷冻水泵就会造成很大的浪费。因此有些中央空调设计时,会单独设计一个热水循环系统,它通过节流阀连接到冷冻水管道上,夏季时,关闭节流阀,使冷冻水使用循环管道,冬季时,关闭冷冻水的节流阀,打开热水节流阀,使热水使用循环管道。这样的话,热水的水泵功率就可以根据制热量加余量来设计,不会造成很大的浪费。考虑到第二种现象在目前的中央空调应用中比较常见,因此本水系统控制系统针对第二种情况设计。对于冷冻/热水系统,其出水温度取决于蒸发器的设定值,回水温度取决于大厦的热负荷。现采用蒸发器的出水管和回水管路上装有检测其温度的变送器,通过冷冻水的温差控制,即可使冷冻水泵的转速相应于热负载的变化而变化。参考目前中央空调机组设计和运行的实际情况,冷冻温差为5一7℃时最为合理。冬季的时候,由于进水温度低,出水温度高,所以温差为负值。对于冷却水系统,由于低温冷却水(冷凝器进水)温度取决于环境温度与冷却塔的工况,只需控制高温冷却水(冷凝器出水)的温度,即可控制温差。’采用在冷 却水出水管安装温度变送器,通过控制冷凝器出水温度,便可使冷却水泵的转速相应于热负载的变化而变化,参考目前中央空调机组设计和运行的实际情况,冷却水出水温度为37℃左右时最为合理。中央空调机组在设计时,对于冷冻和冷却水的流量有一个最小值,即机组在运行时,流量不能小于这个值,这是因为如果流量过小,可能会发生机组冻管,损坏中央空调机组。因此,我们在根据温度和温差对水泵转速进行调节时,必须要保证空调机组正常运行所需要的最小流量。如果我们要检测冷冻水和冷却水的流量,应该安装流量传感器,但是流量传感器一般采用法兰安装,串接在水管上,安装复杂并且价格昂贵。考虑到水的流量和其压力有一定的线性关系,在实

制冷系统原理

制冷技术 编辑人:江海能 一、制冷系统组成 A、制冷主系统由:压缩机、冷凝器、蒸发器、膨胀阀 制冷辅系统由:储液器、干燥过滤器、截止阀、视液镜、电磁阀 电器控制部分:略 B、制冷系统各部分作用 (1)压缩机:消耗一定的外界功率后,把蒸发器中气态制冷剂吸入,并压缩到冷凝压力后排入冷凝中。由液态变为气态;它起着压缩和输送制冷剂蒸汽作用;它 是低压升高压(气体) (2)蒸发器:制冷剂在其中沸腾(蒸发)吸收被冷却介质的热量后,由液态变为气态;它是低温低压的(对外供冷)。 (3)膨胀阀(节流阀):将冷凝后的高压液态制冷剂通过节流作用,降低到蒸发器所需的压力后,送入蒸发器中. (4)冷凝器:气态制冷剂在冷凝中将热量传递给冷却介质(常温水或空气)后,冷凝成液体。 以上四大部分工作原理: 用管道依次将这些设备连接,形成一个封闭式系统。系统工作时,压缩机将蒸发器所产生的低温低压制冷剂蒸气吸入汽缸内,经压缩机压缩,压力升高(温度也升高)到稍大于冷凝器内的压力时,将其汽缸内的高压制冷制蒸气排到冷凝器中。(所以压缩机起着压缩与输送制冷剂作用)在冷凝内高温高压的制冷剂蒸气与温度较低的空气(或常温水)进行热交换而冷凝为液态制冷剂,这时液态制冷剂经过膨胀阀降温(降压)后入蒸发器,在蒸发器内吸收被冷却物体的热量后在汽化。这样被冷却物体便得到冷却而制冷剂蒸气又被压缩机吸走,因此在制冷系统中经过压缩、冷凝、膨胀、蒸发四个过程完成一个循环。 (5)储液器(桶):它是储存制冷剂液体的压力容器。 一是:安装在制冷系统中以储存制冷循环中制冷剂液体。 二是:作备用的储液器,供制冷系统添补制冷剂用。 总之:它可以根据负荷变化来调节蒸发器内供液量的变化。 (6)干燥过滤器或过滤器 作用:防止焊接时管内有一部分焊渣和氧化皮粘接在接口周围;压缩机本身运行后产生金属粉未;制冷剂本身也有一定的杂质,随着制冷剂在制冷系统内循环工作,它们进入膨胀阀就会堵死,进入压缩机就会拉毛或刮伤汽缸,因此制冷系统装有清除杂质设备,这就是过滤器。 干燥过滤器:同过滤器一样,但它可在制冷系统中所产生的水分或潮湿,通过干燥过滤器吸附系统中的水分。 (7)截止阀:安装在制冷系统的管道中,以手动控制阀芯的启、闭来控制制冷的通与止。

空调系统分类及原理

空调系统分类及原理 一幢建筑的空调系统通常包括以下设备及其附件: 冷、热源设备——提供空调用冷、热源;冷、热介质输送设备及管道——把冷、热介质输送到使用场所;空气处理设备及输送设备及管道——对空气进行处理并运送至需空气调节的房间;温、湿度等参数的控制设备及元器件。根据以上设备的情况,可对空调系统进行一系列的分类。 一、按照处理空气所采用的冷、热介质来分类 ㈠央空调系统 通过冷、热源设备提供满足要求的冷、热水并由水泵输送至各个空气处理设备中与空气进行交换后,把处理后的空气送至空气调节房间。简单的说,中央空调系统就是冷热源集中处理空调调节系统。 ㈡散式系统 实际上已经不是空调设计中“系统”的概念,它是把冷热源设备、空气处理及起输送设备组合一体,直接设于空气调节房间内。其典型的例子就是直接蒸发式空调机组,如分体式空调机。 ㈢他空调系统 既有中央空调的某些特点,又有分散式空调的某些特点,变冷媒流量空调系统和水源热泵系统等。 二、按冷、热介质的到达位置来分类 这里所提到的冷、热源介质,是指为空气处理所提供的冷、热源的种类而不包括被处理的空气本身。 ㈠全空气系统 冷、热介质不进入被空调房间而只进入空调机房,被空气调节房间的冷、热量全部由经过处理的冷、热空气负担,被空气调节房间内只有风道存在。典型的例子是目前所常见的确一、二次回风空调系统。 ㈡气-水系统 空气与作为冷、热介质的水同时送进被空气调节房间,空气解决房间的通风换气或提供满足房间最小卫生要求的新风量,水则通过房间内的小型空气处理设备而承担房间的冷、热量及湿负荷。

(三)接蒸发式系统 利用冷媒直接与空气进行一次热交换,将使得在输送同样冷(热)量至同一地点时所用的能耗更少一些。其作用范围比中央空调系统小的多。 空调系统分类 一.中央空调概念 空气调节,简称空调,就是把经过一定处理后的空气,以一定的方式送入室内,使室内空气的温度、湿度、清洁度和流动速度等控制在适当的范围内以满足生活舒适和生产工艺需要的一种专门技术。中央空调系统是由一台主机(或一套制冷系统或供风系统)通过风道送风或冷热水源带动多个未端的方式来达到室内空气调节的目的的空调系统。 二.空调系统分类 空调根据不同的分类标准,可以分为如下几类: (一)按输送工作介质分类 1.全空气式空调系统 空调房间内的热湿负荷全部由经过处理的空气负担的空调系统,称为全空气空调系统,又叫做风管式空调系统。全空气空调系统以空气为输送介质,它利用室外主机集中产生冷/热量,将从室内引回的回风(或回风和新风的混风)进行冷却/热处理后,再送人室内消除其空调冷/热负荷。 2.风管式中央空调系统 全空气空调系统的优点是配置简单,初始投资较小,可以引入新风,能够提高空气质量和人体舒适度。但它的缺点也比较明显:安装难度大,空气输配系统所占用的建筑物空间较大,一般要求住宅要有较大的层高,还应考虑风管穿越墙体问题。而且它采用统一送风的方式,在没有变风量末端的情况下,难以满足不同房间不同的空调负荷要求。 3.冷/热水机组空调系统 空调房间内的热(冷)湿负荷全部由水负担的空调系统,称为冷/热水式空调系统。冷/热水式空调系统的输送介质通常为水或乙二醇溶液。它通过室外主机产生出空调冷/热水,由管路系统输送至室内的各末端装置,在末端装置处冷/

空调系统分类基础知识

空调系统分类基础知识 (一)空调系统的分类 1、按空气处理设备的设置情况分类 (l)集中式系统。 (2)分散式系统。也称局部式系统。 (3)半集中式系统。也称混合式系统。 2、按处理空调负荷的输送介质分类 (1)全空气系统。属于全空气系统的有定风量或变风量的单风道或双风道集中式系统、全空气诱导系统等。 (2)空气-水系统。属于空气-水系统的有再热系统(另设有室温调节加热器的系统)、带盘管的诱导系统、风机盘管机组和风道 并用的系统等。 (3)全水系统。房间负荷全部由集中供应的冷、热水负担。如风机盘管系统、辐射板系统等。 (4)直接蒸发机组系统。室内冷、热负荷由制冷和空调机组组合在一起的小型设备负担。直接蒸发机组按冷凝器冷却方式不同可分为风冷式、水冷式等,按安装组合情况可分为窗式(安装在窗或墙洞内)、立柜式(制冷和空调设备组装在同一立柜式箱体内)和组合式(制冷和空调设备分别组装、联合使用)等。 3、按送风管道风速分类 (1)低速系统。一般指主风道风速低于15m/s的系统。对于民用和公共建筑,主风道风速不超过10m/s。 (2)高速系统。一般指主风道风速高于15m/S的系统。对民用和公共建筑,主风道风速大于12m/S的也称高速系统。

(二)集中式空调系统 1、单风道集中式系统 单风道集中式系统是指全空气式空调系统。它的优点是,设备简单,初投资较省,设备集中,易于管理。其缺点是,当一个集中式系统供给多个房间,而各房间负荷变化不一致时,无法进行精确调节;风道断面尺寸较大,占用空间大。 单风道集中式系统适用于空调房间较大,各房间负荷变化情况相类似的场合,如办公大楼、剧场、大会堂等。该系统主要由集中式空气处理设备、风道、送风口、回风口等组成。 2、双风道空调系统 它的优点是,每个房间(或每个区)可以分别控制;当各房间负荷不同时,可在同一系统内实现需要的加热或冷却;冷、热水管集中设置,不穿过空调房间,维护管理方便。其缺点是,初投资和运行费用高;风道断面大占空间多;湿度难于控制。 双风道系统适用于每个房间都需要分别控制室温,而每个房间冷、热负荷变化情况又不同的多层、多房间建筑。 (三)局部式空调系统 该系统由空气处理设备、风机、冷冻机和自动控制设备等组成。 1、空气调节器 (1)窗式空调器。适用于一般生活场所,如招待所、小型会议室、商店、住宅、医院手术室以及对温湿度有一定要求的小型车间、实验室、计量室等,窗式空调器可装在窗口上或墙壁开洞处,安装高度离该层地面l-1.5m。 (2)立柜式空调机组。有冷风机组、热泵式机组及恒温恒湿式机组等。目前国产的空调机组多为直接蒸发式,即用冷冻机的蒸发器直接冷却空气,称为冷风机组。 2、局部式空调系统的特点

空调原理及系统组成精编WORD版

空调原理及系统组成精 编W O R D版 IBM system office room 【A0816H-A0912AAAHH-GX8Q8-GNTHHJ8】

空调原理及系统组成传热方式与热学定律 对流、传导、辐射 对流:通过流体流动把热量带走。 传导:相互接触的物体之间或物体内部温差传。 辐射:物体通过发出红外线方式把热量散发出去。 热力学第一定律: 能量是可以转换的,可以传递的,能量的总量保持不。物质吸收了热量膨胀,对外界作功把一部份能量传给了外界,热能转化为机械能。 热力学第二定律: 指出了在自然条件下热量只能从高温物体向低温物体转移,而不能由低温物体自动向高温物体转移,也就是说在自然条件下,这个转变过程是不可逆的。要使热传递方向倒转过来,只有靠消耗功来实现。 5?天前上传 下载附件 (25.41 KB)

如:压缩机---做功,将热量从低温热源传送到高温热源,使得低温热源始终保持较低温度,类似于水泵做功实现水从低处往高处流的原理。 一般空调构成及循环 5?天前上传 下载附件 (26.51 KB) 压缩机:“心脏”,压缩和输送制冷剂蒸汽; 膨胀阀:节流降压,并调节进入蒸发器的制冷剂流量; 蒸发器:吸收热量(输出冷量)从而制冷; 冷凝器:输出热量。 5?天前上传 下载附件 (44.75 KB)

空调四大件 蒸发器工作的过程 室内的温度较高,空气流过蒸发器时冷媒蒸发带走空气中的热量,空气温度降低成为冷空气。 空气被冷却时,空气中会有凝水,通过排水器排走。 为了防止冷凝水流到机房内,需要挡板和排水管将其排到室外。 5?天前上传 下载附件 (25.14 KB) 空调的第二个部件冷凝器(这里所指是空冷式),也就是我们通常说的室外机室外机的工作原理是冷媒向空气放热,由气态转化为液态,向空气排热。所以冷凝器的散热条件对空调制冷有较大影响,有一定的环境及距离要求,后文将会详细讲解。 5?天前上传 下载附件 (29.81 KB) 空调的第三个部件压缩机,压缩机起到的作用如下: 来自蒸发器的低温低压的冷媒气体被压缩机压缩成高温高压的气体进入冷凝器。 冷媒向空气放热,由气态转化为液态,这一过程,实际需要做功,做功这一过程由压缩机来完成。

空调系统设计方案分类

空调系统分类 空调根据不同的分类标准,可以分为如下几类: 5.2.1 按输送工作介质分类 5.2.1.1 全空气式空调系统 空调房间内的热湿负荷全部由经过处理的空气负担的空调系统,称为全空气空调系统,又叫做风管式空调系统。全空气空调系统以空气为输送介质,它利用室外主机集中产生冷/热量,将从室内引回的回风(或回风和新风的混风)进行冷却/热处理后,再送人室内消除其空调冷/热负荷。 全空气空调系统的优点是配置简单,初始投资较小,可以引入新风,能够提高空气质量和人体舒适度。但它的缺点也比较明显:安装难度大,空气输配系统所占用的建筑物空间较大,一般要求住宅要有较大的层高,还应考虑风管穿越墙体问题。而且它采用统一送风的方式,在没有变风量末端的情况下,难以满足不同房间不同的空调负荷要求。 5.2.1.2 冷/热水机组空调系统 空调房间内的热(冷)湿负荷全部由水负担的空调系统,称为冷/热水式空调系统。冷/热水式空调系统的输送介质通常为水或乙二醇溶液。它通过室外主机产生出空调冷/热水,由管路系统输送至室内的各末端装置,在末端装置处冷/热水与室内空气进行热量交换,产生出冷/热风,从而消除房间空调冷/热负荷。 该系统的室内末端装置通常为风机盘管。目前风机盘管一般均可以调节其风机转速(或通过旁通阀调节经过盘管的水量),从而调节送人室内的冷/热量,因此可以满足各个房间不同需求,其节能性也较好。此外,它的输配系统所占空间很小,因此一般不受住宅层高的限制。但此种系统一般难以引进新风,因此对于通常密闭的空调房间而言,其舒适性较差。 5.2.1.3 空气—水式空调系统 空调房间内的热湿负荷由水和空气共同负担的空调系统,称为空气—水式空调系统。其典型的装置是风机盘管加新风系统。空气—水式空调系统是由风机盘管或诱导器对空调房间内的空气进行热湿处理,而空调房间所需要的空气由集中式空调系统处理后,再由送风管送入各空调房间内。 空气—水式空调系统解决了冷/热水式空调系统无法通风换气的困难,又克服了全空气系统要求风道面积比较大、占用建筑空间多的缺点。 5.2.1.4 制冷剂式空调系统 制冷剂式中央空调系统,简称VRV(Varied Refrigerant Volume)系统,它以制冷剂为输送介质,室外主机由室外侧换热器、压缩机和其他附件组成,末端装置是由直接蒸发式换热器和风机组成的室内机,冷媒直接在风机盘管蒸发吸热进行制冷。一台室外机通过管路能够向若干个室内机输送制冷剂液体。通过控制压缩机的制冷剂循环量和进入室内各换热器的制冷剂流量,可以适时地满足室内冷/热负荷要求。 制冷剂式空调系统具有节能、舒适、运转平稳等诸多优点,而且各房间可独立调节,能满足不同房间不同空调负荷的需求。但该系统控制复杂,对管道材质、制造工艺、现场焊接等方面要求非常高,且其初投资比较高。 5.2.2 根据主机

精密空调的组成和工作原理

精密空调的组成和工作原理 一、蒸气压缩式制冷原理 蒸气制冷是利用某些低沸点的液态制冷剂在不同压力下汽化时吸热的性质来实现人工制冷的。 在制冷技术中,蒸发是指液态制冷剂达到沸腾时变成气态的过程。液态变成气态必须从外界吸收热能才能实现,因此是吸热过程,液态制冷剂蒸发汽化时的温度叫做蒸发温度,凝结是指蒸汽冷却到等于或低于饱和温度,使蒸汽转化为液态。 在日常生活中,我们能够观察到许多蒸发吸热的现象。比如,我们在身上擦一些酒精,酒精很快蒸发,这时我们感到擦酒精部分反应很凉。又如常用的制冷剂氟利昂R-22液体喷洒在物体上时,我们会看到物体表面很快结上一层白霜,这是因为R-22的液体喷到物体表面立即吸热,使物体表面温度迅速下降(当然这是不实用的制冷方法,因为制冷剂R-22不能回收和循环使用)。 蒸气压缩式制冷是利用液态制冷剂汽化时吸热,蒸汽凝结时放热的原理进行制冷的。 二、制冷循环 压缩机是保证制冷的动力,利用压缩机增加系统内制冷剂的压力,使制冷剂在制冷系统内循环,达到制冷目的。开始压缩机吸入蒸发制冷后的低温低压制冷剂气体,然后压缩成高温高压

气体送冷凝器;高压高温气体经冷凝器冷却后使气体冷凝变为常温高压液体;当常温高压液体流入热力膨胀阀,经节流成低温低压的湿蒸气,流入蒸发器,从周围物体吸热,经过风道系统使空调房间温度冷却下来,蒸发后的制冷剂回到压缩机中,又重复下一个制冷循环,从而实现制冷目的。 三、制冷剂在制冷系统中状态 从压缩机出口经冷凝器到膨胀阀前这一段称为制冷系统高压侧;这一段的压力等于冷凝温度下制冷剂的饱和压力。高压侧的特点是:制冷剂向周围环境放热被冷凝为液体,制冷剂流出冷凝器时,温度降低变为过冷液体。 从膨胀阀出口到进入压缩机的回气这一段称为制冷系统的低压侧,其压力等蒸发器内蒸发温度的饱和压力。制冷剂的低压侧段先呈湿蒸气状态,在蒸发器内吸热后制冷剂由湿蒸气逐渐变为汽态制冷剂。到了蒸发器的出口,制冷剂的温度回升为过热气体状态。过冷液态制冷剂通过膨胀阀时,由于节流作用,由高压降低到低压(但不消耗功、外界没有热交换);同时有少部分液态制冷剂汽化,温度随之降低,这种低压低温制冷剂进入蒸发器后蒸发(汽化)吸热。低温低压的气态制冷剂被吸入压缩机,并通过压缩机进入下一个制冷循环。 四、制冷量

空调系统分类

空调系统的分类: 按空气处理设备的集中程度分类 A,集中式空调系统,空气处理设备和风机等集中设在空调机房内,通过送回风管道与被调节的各房间相连,对空气进行集中处理和集中分配。这类系统的空气处理设备能实现对空气的各种处理过程,可以满足各种调节范围和空调精度及洁净度的要求,也便于集中管理和维护,是工业建筑中工艺性空调与民用建筑中舒适性空调所采用的最基本的空调方式。 B,B,半集中式空调系统,通常把一次空气处理设备和风机、冷水机组等设在集中的空调机房内,而把二次空气处理设备设在空气调节区内。这类系统与集中式空调系统相比较,省去了回风管道,送风管道断面积也大为减小,节省建筑空间,是目前各类建筑尤其是高层建筑中应用最广且发展较快的一种空调系统。 C,分散式空调系统,也局部式或冷剂式空调系统。它是由分散设于各空气调节区的空气调节器就地处理空气,就地使用。空气调节器是将空气处理设备、风机和冷热源设备等组装在一起的机组。每一台机组即为一个局部式空调系统。这类系统一般不需要单独的机房,使用灵活,移动方便,可满足不同的空气调节区不同的送风要求,是家用空调及车辆空调的主工形式。 按负担室内热湿负荷所用的介质分类 A,全空气式空调系统,空气调节区的室内负荷全部由经过加热或冷却处理的空气来负担的空调系统。单风管系统、双风管系统、全空气

诱导系统及变风量系统属于这类系统。 B,B,空气---水式空调系统,空气调节区的室内负荷由经过处理的空气和水共同负担的空调系统。独立新风加风机盘管系统、置换通风加冷辐射板系统及再热系统加诱导器系统属于这类系统。 C,C,全水式空调系统,空气调节区的室内负荷全部由经过加热或冷却处理的水负担的空调系统。无新风的风机盘管系统和冷辐射板系统属于这类系统。 D,D,冷剂式空调系统,以制冷剂的“直接膨胀”作为吸收空气调节区室内负荷的介质的空调系统。商用单元式空调器和家用房间空调器属于这类系统。 按系统风量调节方式分类 A,定风量空调系统,通常的集中式空调系统,风机的送风量保持一定,通过改变送风温度来适应空气调节区的负荷变化,以调节室内的温湿度。这种系统称为定风量空调系统。 B,B,变风量空调系统,通过改变送风量而保持一定的送风温度,适应空气调节区负荷变化,达到调节所需要的室内温湿度。这类系统称为变风量系统。 按系统风管内风速分类; A,低速空调系统,主风管 A,风速民用建筑高于12m/s,工业建筑高于15m/s。通常采用20—35m/s。这样可减小管道断面积,少占空间,但耗能大,噪声大,需降低噪声。高速系统往往与诱导式系统一同采用。按热量传递(移动)的原理分类

相关文档