文档视界 最新最全的文档下载
当前位置:文档视界 › 换热器设计指南汇总

换热器设计指南汇总

换热器设计指南汇总
换热器设计指南汇总

换热器设计指南

1 总则

1.1 目的

为规范本公司工艺设计人员设计管壳式换热器及校核管壳式换热器而编制。

1.2 范围

1.2.1本规定规定了管壳式换热器的选型、设计、校核及材料选择。

1.2.2本规定适用于本公司所有的管壳式换热器。

1.3 规范性引用文件

下列文件中的条款通过本规定的引用而成为本规定的条款,凡注日期的应用文件,其随后所有的修改单或修改版均不适用本规定。凡不注日期或修改号(版次)的引用文件,其最新版本适用于本规定。

GB150-1999 钢制压力容器

GB151-1999 管壳式换热器

HTRI设计手册

Shell & tube heat exchangers——JGC

石油化工设计手册第3卷——化学工业出版社(2002)

换热器设计手册——中国石化出版社(2004)

换热器设计手册——化学工业出版社(2002)

Shell and Tube Heat Exchangers Technical Specification ——SHESLL (2004) SHELL AND TUBE HEAT EXCHANGERS——BP (1997)

Shell and Tube Exchanger Design and Selection——CHEVRON COP. (1989) HEAT EXCHANGERS——FLUOR DANIEL (1994)

Shell and Tube Heat Exchangers——TOTAL(2002)

管壳式换热器工程规定——SEI(2005)

2 设计基础

2.1 传热过程名词定义

2.1.1 无相变过程

加热:用工艺流体或其他热流体加热另一工艺流体的过程。

冷却:用工艺流体、冷却水或空气等冷剂冷却另一工艺流体的过程。

换热:用工艺流体加热或冷却另外一股工艺流体的过程。

2.1.2 沸腾过程

在传热过程中存在着相的变化—液体加热沸腾后一部分变为汽相。此时除显热传递外,还有潜热的传递。

池沸过程:用工艺流体、水蒸汽或其他热流体加热汽化大容积设备中的工艺流体过程。

流动沸腾:用工艺流体、水蒸汽或其他热流体加热汽化狭窄流道中的工艺流体过程。

2.1.3 冷凝过程

部分或全部流体被冷凝为液相, 热流体的显热和潜热被冷流体带走,这一相变过程叫冷凝过程。

纯蒸汽或混合蒸汽冷凝:用工艺流体、冷却水或空气,全部或部分冷凝另一工艺流体。

有不凝气的冷凝:用工艺流体、冷却水或空气,部分冷凝工艺流体和同时冷却不凝性气体。

2.2 换热器的术语及分类

2.2.1 术语及定义

换热器装置:为某个可能包括可替换操作条件的特定作业的一个或多个换热器;位号:设计人员对某一换热器单元的识别号;

有效表面:进行热交换的管子外表面积;

管程:介质流经换热管内的通道及与其相贯通部分;

壳程:介质流经换热管外的通道及与其相贯通部分;

管程数:介质沿换热管长度方向往、返的次数;

壳程数:介质在壳程内沿壳体轴向往、返的次数;

公称长度:以换热管的长度作为换热器的公称长度,换热管为直管时,取直管长度,换热管为U形管时取U形管直管段的长度;

计算换热面积:以换热管外径为基准,扣除伸入管板内的换热管长度后,计算得到的管束外表面积,对于U形管式换热器,一般不包括U形弯管段的面积;公称换热面积:经圆整后的计算换热面积;

2.2.2 换热器分类

根据不同的分类方法定义换热器类型如表2-1所示。

表2-1 换热器类型

2.3 换热器的选择原则

根据工艺条件,采用图2-1进行初步的换热器选型。

图2-1换热器型式初选图

注:本图及其它图中的压力均指绝压

2.4 工艺设计程序

2.4.1 设计输入

●工艺条件

管壳式换热器设计所需数据,如流量、温度、压力等,需要从如下文件获得:——PFD,包括质量、热量平衡;基本的工程设计参数;

——PID及总图;设备数据表;

——选材及管材。

●输入数据

操作参数:项目号、设备位号、流量、操作条件、物性,样表如附件1所示。●结构参数

安装形式(卧式、立式、倾斜)、设计压力、设计温度、材质、腐蚀余量、TEMA

等级、适用标准、管口等级及密封面、操作工况。

●设计要求

允许压降、允许流速(若有规定)。

2.4.2 设计输出

●物热平衡、计算假设、程序计算结果,如下参数要填入表中:

基于管外表面的管侧传热膜系数、垂直方向确定布管型式。

●列管式换热器数据表

除上述参数外,还有:物性(水除外)、混合物ρV2(采用均相密度)、管嘴尺寸、流体流向、折流板数量、折流板类型、折流板中心间距。

2.4.3 设计步骤

●准备数据并输入如2.4.1说明的数据;

●选择TEMA等级并对换热器选型;

●通过程序校核计算;

●判定计算结果,如传热系数、压降等,根据参数确定换热器设备结构;

通过调整单程管数来获得合适的压力梯度,若要增大换热面积,可增大管长、增加并联台数(只有单台换热器很大,且压降难以克服才使用)或增加管程数,但典型管程数为双管程,增大管程数会提高压降;壳侧压力梯度要调节折流板间距,要增大换热面积,需增大管长或增加串联台数。当壳侧压降较大,则将壳体形式从E型变为J或X型。当压降要求严格时可考虑采用壳侧并联/串联混合配置、管侧采用多管程形式,但此时温效降低,最低F-因子不低于0.85。

●填写数据表。

2.4.4 计算过程

下表列出设计管壳式换热器计算机程序,HTRI是常用软件、当客户和使用者要求时,才使用HTFS。

表2-2 常用计算软件

注:HTRI:HEAT TRANSFER RESEARCH INC; HTFS:HEAT TRANSFER & FLUID FLOW

SERVICE

2.5 工艺设计考虑因素

TEMA设置了三种换热器机械标准,反映了不同的严格性。对于多数炼厂,运用最严格的R级;对其他诸如化学品厂,运用C或B级;通常R级有较厚的壳体、更大更厚的封头、较厚换热管及其他更大的部件。

影响换热流股的最优搭配的因素有:夹点温度、压降、调控要求下限负荷、占地限制条件、现有设备的改进等。工艺目标值确定后,与设备人员协作可以高效地设计一个换热体系。

2.5.1 夹点温度、夹点技术及换热网络分析

夹点温度

对单个换热器而言,换热的冷、热流冷端和热端温差中较小者称接近温差。对一个换热网络而言,所有换热设备的接近温差中最小值称为最小接近温差,也称夹点温差。冷热物流的匹配取决于可达到的温差,逆流换热器的夹点温度是热物流出口温度与冷物流入口温度之差,或热物流入口温度与冷物流出口温度之差,取较小值。一般温差越小、回收能量越大、换热面积越大,从而投资越高;因此,夹点温度要通过能量回收和投资相结合来确定。

夹点技术

夹点技术是由原英国曼彻斯特大学理工学院教授 B.Linnhoff领导下的研究小组在Huang与Elshout及Umeda等分别于1976和1978年提出“夹点”和“复合线”概念基础上发展起来的。这是过程能量综合领域中一种实用方法,可以优化复杂工艺的换热过程。

一个待优化的换热网络在T-H图上可用冷、热流复合线来表示。复合线就是将多个热流或冷流的T-H线复合在一起的折线,是换热网络优化合成的“夹点技术”中的一个重要工具。将冷、热流的复合线画在一个T-H图上,热流的复合线一定要位于冷流的上方。沿横坐标H左右移动两条复合线,找到一处两条线垂直距离最短,该处即为夹点或窄点。夹点技术三个基本原则:不通过夹点传递热量、夹点以上部分不使用冷公用工程、夹点以下热源部分不使用热公用工程。

如图2-2~3所示,当夹点处的传热温差等于给定的夹点温度时,冷、热物流复合线的高温段在水平方向未重叠部分投影于横坐标上的一段即为对应于给

定夹点温差下的最小热公用工程消耗Q hu,min;而两者低温段未重叠部分则为给定夹点温差下的最小冷公用工程消耗Q cu,min,而两条复合线沿横轴方向重叠部分就是最大热回收量。

图2-2 复合线示意图图2-3 夹点与最小公用工程消耗图夹点将换热网络分解为两个区域,热端——夹点之上,它包括比夹点温度高的工艺物流及其间的热交换,只要求公用设施加热物流输入热量,可称为热阱;而冷端包括比夹点温度低的工艺物流及其间的热交换,并只要求公用设施冷却物流取出热量,可称为热源。当通过夹点的热物流为零时,公用设施加热及冷却负荷最小,即热回收最大。

换热网络分析

换热网络的设计越发复杂,目前已有多种换热网络优化技术,包括计算机程序,如Hysim,s Pinch。一般设计步骤如下:

●做冷热物流T-H曲线,生成复合线,确定夹点;

●指定一个最小夹点温度;

●求出夹点及最小的公用工程;

●计算总投资和年操作费用;

●改变冷热物流匹配;

●重复上述步骤直到找到最小的年操作费用,确定最优网络。

2.5.2 空冷器、水冷器的选择

冷却器中冷却介质的选择需要考虑:水源、水费、电费、安装费用、维护费用、占地等。

水冷工艺出口温度

理论上水冷方式出口温度受环境湿球温度限制,实际上不低于冷却塔出口温

度(新鲜水49℃、海水43℃)。对于塔顶项目,水质等其他因素也会影响出口温度。因此冷却水费用是制约因素。

空冷工艺出口温度

理论上受环境干球温度限制,但高于湿球温度。同水冷相比,出口温度稍高。夏季,设计干球温度接近于湿球温度,两者差别由环境湿度决定。举例如下表:

空冷器空气出口温度无上限值,在其他因素合理的情况下,工艺流体出口温度可达到空气入口设计温度。LMTD的提高,导致传热面积和摩擦系数的减小,并且入口空气流量减小。因此,设备投资及电耗降低。

设备费用是空冷器年费用的主要部分,而水冷器中水冷是年费用主要部分。若两种方式工艺出口温度相同,空冷费用为水冷方式的1~1.5倍。

空冷水冷相结合的分割温度

若工艺入口温度较高,适于空冷;工艺出口温度较低,适于水冷;冷却负荷足够大,则空冷与水冷相结合是一种经济设计方法。这样用空冷以较低公用工程消耗移除较高等级热量,再用水冷达到工艺流体出口温度。基于水耗、电耗、设备费用等,空冷、水冷分割温度在54~63℃之间比较经济。除预算设计,应当从经济上用既定项目的数据确定该温度。

2.5.3 设计余量

从设计的角度,有一定余量的换热器更好运行。相对于设计值,新换热器污垢很低,面积就有富余。实际操作中通过调节流量及入口状态来消除偏差。污垢热阻是在设计条件下操作所能达到的极限情况。

随意给定设计余量会带来各种问题,在此,首先按照设计值计算清洁情况下所需换热面积,然后根据污垢或设计规模增加面积,从而确定余量。因此:面积余量大到不能通过控制手段来消除;

热流体出口温度比设定值低时,粘度增大,压降增大;

对于冷凝器,余量会造成塔与回流液难以达到平衡;

管内流速及流动特性同校核工况存在较大差别,如立式热虹吸式换热器,在上升管中存在两相流,流率的变化引起流型的改变,从而导致腾涌和振动;

发现硫磺厂低压蒸汽废热锅炉的面积余量会引起换热管内柱塞流。

业主从可操作性、进料状态的不精确性,或物性不准确性等方面考虑,换热器需要有一定的余量。

2.5.4 换热器安装形式

实际生产中,换热器有水平或竖直安装,特别从经济型和易于维护的角度,水平安装更常用。立式安装用于如下情况:大型再沸器受空间限制而采用立式安装;再沸器管材等级较高,立式安装因管束紧凑而可以节省投资。

2.6 设计参数

2.6.1设计压力

设计压力指设定的换热器管、壳程顶部的最高压力,与相应的设计温度一起作为设计载荷条件,其值不低于工作压力。对于同时受管、壳程压力作用的元件,仅在能保证管、壳程同时升、降压时,才可以按压差设计,否则应分别按管、壳程工作压力确定设计压力,并考虑可能存在的最苛刻压力组合。按压差设计时,压差的取值还应考虑在压力试验过程中可能出现的最大压差值,同时设计者应提出压力试验的步进程序。

管侧、壳侧设计压力一般设定为设备安全阀泄放压力加静压头,若没有安全阀,则按照如下情况取大值:

I 在泵的关闭压力下,若换热器能够关闭,则设计压力取上游泵的关闭压力;注:如果在项目前期没有泵的曲线,则关闭压力取正常压差的1.25倍。

II 一般上游泵的压差是泵的泄放吸入压头,当确定泵吸入压头时考虑泄放状态下的压力曲线;

III 遵循如下列表:

IV 水冷器水侧设计压力为0.89MPa或工艺介质侧操作压力的2/3,两者取大值。

真空换热器真空侧的设计压力按承受外压考虑,承受内压且连接在压缩机入口或其他抽气设备上的换热器,外压设计需要做特殊考虑。

预防性的操作指令需成册,以防没有泄放设施的换热器意外长时间堵塞。排凝液很重要,以防外部火灾引起超压。

2.6.2设计温度

设计温度指换热器在正常情况下,设定元件金属温度(沿原件金属横截面的温度平均值)。任何情况下元件金属的表面温度不得超过材料的允许使用温度,设计温度不得低于元件金属在工作状态可能达到的最高温度。对于0℃以下的金属温度,设计温度不得高于元件金属可能达到的最低温度。

正常情况下,壳侧、管侧设计温度遵循下表,特殊情况做特殊分析。对某些大型换热器,如转化设备进出口换热器,壳体的不同部分,设计温度随板材、板厚、法兰等级等有较大差异,因此当法兰等级、壳体厚度有较大影响时,设计温度需要精确分段。

有时,一台换热器必须用两种不同工况来校核,例如,换热器正常操作时,温度、压力分别为65.6℃、1.78MPa,而在催化剂再生时,温度、压力分别为343℃、大气压。如果两种工况不同时出现,则应当分别列出。此外,在高温高压下,应当选择高等级法兰及较厚的材料。

2.6.3最小设计金属温度MDMT

设计金属温度需要标示在铭牌上及制造商数据表中,相关工艺人员必须将该值体现在所有工艺数据表中。

最小设计金属温度不高于:

●开停车或正常工况下介质最低温度

考虑到开停车组分不稳定,或其它经济优势、系统安全等,一般MDMT要低于正常温度10℃

●预期的非设计工况下介质最低温度

正常操作工况的环境温度下容器达到平衡(如,压力容器),MDMT不高于最低设计温度,且与设计压力相匹配。

若提供了最小设计金属温度MDMT,则取与容器设计压力相一致的最低日平均环境温度为MDMT。

设计中不可完全遵从如上指导,也可参考操作规程。

2.6.4泄放阀

压力泄放

ASME标准要求所有压力容器安装压力泄放装置以防超压,当压力容器的压力是自外压,且安全阀与容器之间管段没有任何阀门时,保护措施可不直接安装在容器上。相应,多数换热器上没有泄放设施,但其受超压保护。一般压力源为泵或压缩机。

过热泄放

在如下情况下,ASME标准要求安装过热泄放阀:管侧或壳侧组分因另一端热量输入而超压;组分可通过阀门与关键压力安全阀隔离;组分不受PSV保护。

在安全阀泄放过程中,为使热泄放阀最小,TRV可定为设计压力的110%(基于ASME标准)。若多个串联换热器之间没有切断阀,一个热泄放阀可作为的它们保护措施。

爆破压力

所有低压侧充有液相或气液两相的换热器,应当设置管子破裂安全阀。低压侧的设计压力等于最大正常操作压力加上一根换热管完全破裂的初始腾涌压力。管子上的泄放设施防止压力传递。管板、壳体、圆筒、管箱等应按照该腾涌压力设计。主体法兰也应当符合ASME标准,但不可超过设计压力下的密封性要求。

管子破裂问题在高压气体/低压冷却水换热器中尤为突出。

2.7 材质

2.7.1 选材原则

换热器用钢的标准、冶炼方法、热处理状态、许用应力均按GB 150-1999第4章及其附录A的规定。设计温度低于或等于-20℃时,GB 150-1999附录A选择低温用钢;设计金属温度低于-60℃,由工艺工程师与设备工程师确定用材。钢板中添加镍可提高低温金属韧性:0.5%Ni承受LT60、1.5%Ni承受LT80、3.5%Ni 承受LT80/100、5%Ni承受LT120、9%Ni承受LT196。

碳钢或碳锰钢的最高设计温度为425℃,但超过400℃,这些材质就不再适用。设计温度超过425℃的容器选用1Cr1/2Mo或更高等级的合金钢。一般不用C1/2Mo钢,除非另有说明;碳钼合金钢不用于含氢系统。

换热器用有色金属的冶炼方法、热处理状态、许用应力按相应的国家标准、行业标准或参照GB 150-1999附录D选取。有色金属的使用范围规定如下:

●铝和铝合金设计压力应不大于8MPa,设计温度为-269~200℃,当设计温度

高于65℃时,不宜选用含镁量大于3%的镁铝合金;

●铜和铜合金应在退火状态下使用。纯铜设计温度不高于150℃;铜合金应不

高于200℃;

●纯钛和钛合金材料的设计温度不高于300℃;钛复合板应不高于350℃。

2.7.2 圆筒及封头

●用于制造换热器圆筒或封头的钢板应符合GB 150的规定;

●用作换热器圆筒的碳素钢、低合金钢钢管应采用无缝钢管;

●符合GB 150-1998 A4.2的奥氏体不锈钢焊接钢管,可用作换热器圆筒。

2.7.3 换热管

●常用换热管可按下列标准选用:

GB/T 1527《铜及铜合金拉制管》

GB/T 3625《换热器及冷凝器用钛及钛合金管》

GB/T 6893《工业用铝及铝合金拉(轧)制管》

GB/T 8163《输送流体用无缝钢管》

GB/T 8890《热交换器用铜合金管》

GB 9948《石油裂化用无缝钢管》

GB 13296《锅炉、热交换器用不锈钢无缝钢管》

GB/T 14976《流体输送用不锈钢无缝钢管》

●符合GB 151-1999附录C的奥氏体不锈钢焊接钢管可用作换热管,但不得用

于极度危害介质的工况,设计参数为:

设计压力不大于6.4MPa;使用温度与相应钢号的无缝管相同。

●允许使用螺纹管(整体低翅片管)和波纹管等强化传热管。

当有成熟使用经验时,也可选用其他牌号或其他材料的换热管。

2.7.4 其他特殊选材

●苛刻环境下的材质

湿的酸性介质:碳钢或碳锰钢的抗张强度不超过585N/mm2;容器要有应力放松;钢材硬度不超过248Hv10。

有否硫化氢的含氢系统:当氢分压≥5bar(a)时定义为含氢物系;对于含氢物系,设计温度高于230℃时可用碳锰钢;根据氢分压大小,高于230℃~260℃可用Cr-Mo合金钢;强化的2 1/4Cr1Mo限制于425℃;设计温度介于425℃~454℃情况,可用2 1/4Cr1Mo或V改性的Cr Mo合金钢;设计温度介于454℃~482℃情况,可用V改性的Cr Mo合金钢;硫化氢浓度超过0.02mole%的含氢系统且设计温度高于260℃,将用奥氏体不锈钢(321或347)。

●高温硫化氢体系

含硫化氢不含氢物系可用如下材质:5 Cr 1/2 Mo;9 Cr 1 Mo;405 或410S;镀覆奥氏体不锈钢。这些材质有效防止高温腐蚀,尤其适用于设计温度高于280℃,常用5 Cr 1/2 Mo或碳钢镀覆12Cr,最终选用的材质由设计温度、硫化氢含量、成本等因素决定。

●环烷酸

对于含环烷酸的油品,设计温度高于220℃,采用至少含2.5%钼的316L合金刚。通常总酸超过0.3mgKOH/g且流速超过50m/s时,采用316L 合金钢。

3 管壳式换热器的分类和选型

3.1 无相变管壳式换热器的分类和选择

3.1.1分类

常用的有以下三类:

1)固定管板换热器(管侧可以清洗);

2)U型管换热器(壳侧可以清洗);

3)浮头式换热器(管侧、壳侧均可以清洗)。

3.1.2管壳式换热器中流体位置的选择

1)易结垢的流体在管内,便于清洗,如冷凝器的冷却水一般走管内;

2)流量小的流体在管内,可以采用多管程,以便选择理想流速;

3)腐蚀性强的流体,尽可能在管内;

4)压力高的流体在管内;

5)两流体温差大时,给热系数大的流体在管间,以减小管壁和壳体壁间的温差;

6)与外界温差大的流体在管内;

7)相变流宜走壳侧,如饱和蒸汽的冷凝在壳侧,因为冷凝过程对流速和结垢无要求,且便于冷凝液的排放;

8)粘度大的流体一般在壳侧,因为低Re数时壳侧的给热系数比管内高;

9)给热系数低的流体在壳侧,可采用低翅片管强化传热;

10)立式热虹吸式再沸器中,工艺流体走管侧,加热介质走壳侧;

11)翅片管换热器中,高压、较脏或腐蚀性流体走翅片管,因为它相对便宜,且易于清洗,并比外管有更高的强度。

3.1.3选型

表3.1.1 无相变换热器的选型⑵

注:①换热器型式见最后附图:管壳式换热器型式。

②表3.2.3中用词从优到劣的排序(表3.3.2、表3.4亦同):很好→好→尚好→尚可→小心(要用心设计)→危险(由于相对缺少实验数据)→差(即操作性能差)。

图3.1.1 无相变换热器的选择⑴3.2 再沸器的分类、特点和选型

表3.2.1 再沸器的型式及特性⑴

表3.2.2 再沸器的选型⑵

图3.3.1再沸器的选择⑴注:* —大热负荷时选用。

图3.3.2 再沸器的选择⑵图3.3.3 再沸器的选择⑸

3.3 冷凝器的型式、特点和选型

表3.3.1 冷凝器的型式和特点⑵

换热器设计说明书模板

换热器课程设计说明书 专业名称:核工程与核技术姓名:*** 班级:*** 学号:*** 指导教师:*** 哈尔滨工程大学 核科学与技术学院 2017 年 1 月 13 日

目录 1 设计题目…………………………………………………………………………… 1.1 设计题目………………………………………………………………………1.2 团队成员……………………………………………………………………… 1.3 设计题目的确定过程………………………………………………………… 2 设计过程…………………………………………………………………………… 3 热力计算…………………………………………………………………………… 4 水力计算…………………………………………………………………………… 5 分析与总结………………………………………………………………………… 5.1 可行性评价和方案优选………………………………………………………5.2 技术分析………………………………………………………………………5.3 总结与体会……………………………………………………………………参考文献………………………………………………………………………………附录计算程序………………………………………………………………………

1.1、设计题目 设计一台管壳式换热器,把 18000 kg/h 的热水由温度 t 1 ’冷却至 t 1 ”,冷却水入口温 度 t 2 ’,出口温度 t 2 ”,设热水和冷却水的运行压力均为低压。 初始参数: 热水的运行压力:0.2MPa (绝对压力) 冷却水运行压力:0.16MPa(绝对压力) 热水入口温度 t 1 ’: 80℃; 热水出口温度 t 1 ”: 50℃; 冷却水入口温度 t 2 ’: 20℃; 冷却水出口温度 t 2 ”: 45℃; 1.3设计题目的确定过程 首先,我们小组集中讨论了本次课程设计内容,即换热器设计的内容和具体细节上的要求,然后在组内达成了共识——求同存异。在题目初始参数相同的情况下对后续的计算以及编程过程发挥各自的特长,并将自己存在的疑问于组内其他成员讨论,充分发挥组内成员的自主和协作能力,努力做到一个合格并且优秀的核专业学生应有的素质。 对于管壳式换热器的设计计算,我们查阅了相关的资料(在本说明书最后一并提到),第一次尝试选择参数,如下: 热水的运行压力:0.2MPa (绝对压力) 冷却水运行压力:0.16MPa(绝对压力) 热水入口温度 t 1 ’: 82℃; 热水出口温度 t 1 ”: 46℃; 冷却水入口温度 t 2 ’: 23℃; 冷却水出口温度 t 2 ”: 43℃; 并尝试进行初步计算,不过在后面进行有效平均温差的计算时,针对我们手头有限的资料(见附录3),为了保证R可查,将参数修正为以下值。 二次选择参数: 热水的运行压力:0.2MPa (绝对压力) 冷却水运行压力:0.16MPa(绝对压力) 热水入口温度 t 1 ’: 82℃; 热水出口温度 t 1 ”: 42℃; 冷却水入口温度 t 2 ’: 23℃; 冷却水出口温度 t 2 ”: 43℃; 继续往下计算,我们通过之前的知识,发现在换热器的设计中,除非处于必须降 ψ>,至少不小于0.8。 低壁温的目的,一般按照要求使0.9

换热器毕业设计论文.doc

第1章 浮头式换热器是管壳式换热器系列中的一种,它的特点是两端管板只有一端与外壳固定死,另一端可相对壳体滑移,称为浮头。浮头式换热器由于管束的膨胀不受壳体的约束,因此不会因管束之间的差胀而产生温差热应力,另外浮头式换热器的优点还在于拆卸方便,易清洗,在化工工业中应用非常广泛。本文对浮头式换热器进行了整体的设计,按照设计要求,在结构的选取上,即壳侧两程,管侧四程。首先,通过换热计算确定换热面积与管子的根数初步选定结构,然后按照设计的要求以及一系列国际标准进行结构设计,设计的前半部分是工艺计算部分,主要设根据设计传热系数、压强校核、壳程压降、管程压降的计算;设计的后半部分则是关于结构和强度的设计。主要是根据已经选定的换热器型式进行设备内各零部件(如壳体、折流板、管箱固定管板、分程隔板、拉杆、进出口管、浮头箱、浮头、支座、法兰、补强圈)的设计。 换热器是国民经济和工业生产领域中应用十分广泛的热量交换设备。随着现代新工艺、新技术、新材料的不断开发和能源问题的日趋严重,世界各国已普遍把石油化工深度加工和能源综合利用摆到十分重要的位置。换热器因而面临着新的挑战。换热器的性能对产品质量、能量利用率以及系统运行的经济性和可靠性起着重要的作用,有时甚至是决定性的作用。目前在发达的工业国家热回收率已达96%。换热设备在现代装置中约占设备总重30%左右,其中管壳式换热器仍然占绝对的优势,约70%。其余30%为各类高效紧凑式换热器、新型热管热泵和蓄热器等设备。其中板式、螺旋板式、板翅式以及各类高效传热元件的发展十分迅速。在继续提高设备热效率的同时,促进换热设备的结构紧凑性,产品系列化、标准化和专业化,并朝大型化的方向发展。浮头式换热器是管壳式换热器系列中的一种。换热管束包括换热管、管板、折流板、支持板、拉杆、定距管等。换热管可为普通光管,也可为带翅片的翅片管,翅片管有单金属整体轧制翅片管、双金属轧制翅片管、绕片式翅片管、叠片式翅片管等,材料有碳钢、低合金钢、不锈钢、铜材、铝材、钛材等。壳体一般为圆筒形,也可为方形。管箱有椭圆封头管箱、球形封头管箱和平盖管箱等。随着我国工业化和城镇化进程的加快,以及全球发展中国家经济的增长,国内市场和出口市场对换热器的需求量将会保持增长,客观上为我国换热器产业的快速发展提供了广阔的市场空间。从市场需求来看,在国家大力投资的刺激下,我国国民经济仍将保持较快发展。石油化工、能源电力、环境保护等行业仍然保持稳定增长,大型乙烯项目、大规模的核电站建设、大

换热器设计开题报告

毕业设计开题报告 论文题目: 抽余液塔底换热器设计 学院化工装备学院 专业:过程装备与控制工程 学生姓名:邓华 指导教师:翟英明(高级工程师) 开题时间:2015年3月16日 一、选题目的 1、通过毕业设计,练习综合运用课程和实践的基本知识,进行融会贯通的独立思考。 2、在规定的时间内完成指定的设计任务,从而得到化工换热器设计的主要程序和方法。 3、培养分析和解决工程实际问题的能力。 4、树立正确的设计思想,培养实事求是,严肃认真,高度负责的工作作风。 5、通过此次设计任务,学会换热器的结构及强度设计计算及制造、检修和维护方法。 二、选题意义 在不同温度的流体间传递热能的装置称为热交换器,简称换热器。在换热器中至少要有两种温度不同的流体,一种流体温度高,放热;另一种流体温度低,吸热。换热器是实现传热过程的基本设备。而此设备是比较典型的传热设备。 二十世纪20年代出现板式换热器,并应用于食品工业。30年代初,瑞典首次制成螺旋板换热器。接着英国用钎焊法制造出一种由铜及其合金材料制成的板翅式换热器,用于飞机发动机的散热。30年代末,瑞典又制造出第一台板壳式换热器,用于纸浆工厂。在此期间,为了解决强腐蚀性介质的换热问题,人们对新型材料制成的换热器开始注意。60年代左右,由于空间技术和尖端科学的迅速发展,迫切需要各种高效能紧凑型的换热器,再加上冲压、钎焊和密封等技术的发展,换热器制造工艺得到进一步完善,从而推动了紧凑型板面式换热器的蓬勃发展和广泛应用。此外,自60年代开始,为了适应高温和高压条件下的换热和节能的需要,典型的管壳式换热器也得到了进一步的发展。70年代中期,为了强化传热,在研究和发展热管的基础上又创制出热管式换热器。 化工、石油等行业中广泛使用各种换热器,它们是化工,石油,动力,食品及其它许多工业部门的通用设备,在工业设备价值及作用方面占有十分重要的地位。随着工业的迅速发展,能源消耗量不断增加,能源紧张已成为一个世界性问题。为缓和能源紧张的状况,世界各国竞相采取节能措施,大力发展节能技术,已成为当前工业生产和人民生活中一个重要课题。换热器在节能技术改造中具有很重要的作用,表现在两方面:一方面是在生产工艺流程中使用着大量的换热器,提高这些换热器效率,显然可以减少能源的消耗;另一方面,用换热器来回收工业余热,可以显著地提高设备的热效率。 三、国内现状 目前,我国换热器产业的市场规模大概为700亿人民币,主要集中于石油、化工、冶金、电力、船舶、集中供暖、制冷空调、机械、食品、制药等领域。其中,石油化工领域仍然是换热器产业最大的市场。基于石油、化工、电力、冶金、船舶、机械、食品、制药等行业对换热器稳定的需求增长,我国换热器产业在未来一段时期内将保持稳定增长。2010年至2020年期间,我国换热器产业将保持年均10~15%左右的速度增长。到2015年,我国换热器产

换热器如何设计

概述 本规范描述了组合式空调机组的设计参数、性能要求、设计工况及各元件设计和选型方法。组合式空调机组基本型号有24个,功能段包括混合段、初效过滤段、中效过滤段、表冷段、热盘管段、电加热段、各种加湿、风机段、消声段等二十余种功能段。 组合式空调机组的长、宽、高是按模数进行设计,标准规定:1M=158mm,基本命名方式为:MKZXXXX,前两为数字表高度上的模数,后两位表示宽度上的模数,尺寸的计算方法为:L=XX*158+50(70)(面板厚度为30mm时取50,面板厚度为50mm时取70)。 组合式空调机组的具体命名方法可参阅组合式空调机组产品分类与型号命名() 组合式空调机组的基本设计工况: 混合段、初效过滤段、中效过滤段、表冷段、热盘管段、电加热段、加湿段、风机段、消声段等进行自由组合,对空气的进行处理,满足客户对空气洁净度和舒适度、环境噪声的需求。 第一章换热器设计计算方法 换热器用来实现空气与热源载体——水进行能量交换的设备,是空调末端产品中最重要的部件之一。主要构件有进出水管、集水管、铜管、翅片、U型管、端板等,下面主要介绍表冷器大小、翅片形式、铜管大小等的选择,其结构上的知识不做介绍。 我们公司换热器的命名方法: 换热器的中文名称加三个主参数,即:换热器 M*N*L,M表示换热器厚度方向铜管排数,N表示换热器高度方向的铜管数,L表示换热器有效长度(即换热铜管长度),如:换热器 4*20* 1500,表示4排换热器,高度方向有20根管,换热器铜管的有效长度为1500。换热器的其他构件相关尺寸都是以这三个基本参数为依据换算而来。 换热器M×N×L(换热器系列部件图样代号及名称) MK.HRQ3Z 换热器8×24×2015(换热器系列部件图样代号及名称) 表示换热管规格为φ16、总水管通径为DN65(3型管)、8排(M=8)换热管、每排管数 为24(N=24)、换热器迎风面长度或换热管有效长度为2015mm(L=2015)的左式换热器。 具体名称命名方式可参阅换热器命名。 换热器的设计: 一、基本参数的设计: M 一般尽量按客户要求选择,在客户没有要求的情况下,我们根据N、L的值,加上我们的经验公式(见后)进行计算。 N、L 根据我们规划的段位尺寸,保证换热器在表冷段中便于安装,且有最大的换热面积和迎风面积,具体的段位尺寸见组合空调标准段位图。 二、翅片和铜管的选择 目前我们公司有波纹片、开窗片、平片三种翅片形式。波纹片主要是与φ16铜管配套,开窗片、平片与φ铜管配套。风机盘管主要采用φ铜管套平片,空调箱按风量区别,5000m3/h以上的采用φ16铜管套波纹片,5000m3/h以下的采用φ铜管套开窗片。 波纹片与φ16铜管换热器特点:风阻较小,换热能力较小。开窗片与φ的换热器特点:风阻较大,换热能力较大。平片与φ的换热能力最小。

热交换器的选型和设计指南(20210201114130)

热交换器的选型和设计指南内容 1 概述 2 换热器的分类及结构特点 3 换热器的类型选择 4 无相变物流换热器的选择 5 冷凝器的选择 6 蒸发器的选择 7 换热器的合理压力降 8 工艺条件中温度的选用 9 管壳式换热器接管位置的选取 10 结构参数的选取 11 管壳式换热器的设计要点 12 空冷器的设计要点 13 空冷器设计基础数据

1概述 本工作指南为工艺系统工程师提供换热器的选型原则和工艺参数的选取及计算方法2换热器的分类及结构特点。 3换热器的类型选择 换热器的类型很多,每种型式都有特定的应用范围。在某一种场合下性能很好的换热器, 如果换到另一种场合可能传热效果和性能会有很大的改变。 因此,针对具体情况正确地选择换热器的类型,是很重要的。换热器选型时需要考虑的因素是多方面的,主要有: 1)热负荷及流量大小 2)流体的性质 3)温度、压力及允许压降的范围 4)对清洗、维修的要求 5)设备结构、材料、尺寸、重量 6)价格、使用安全性和寿命

在换热器选型中,除考虑上述因素外,还应对结构强度、材料来源、加工条件、密封性、安 全性等方面加以考虑。所有这些又常常是相互制约、相互影响的,通过设计的优化加以解决。 针对不同的工艺条件及操作工况,我们有时使用特殊型式的换热器或特殊的换热管,以实现 降低成本的目的。因此,应综合考虑工艺条件和机械设计的要求,正确选择合适的换热器型 式来有效地减少工艺过程的能量消耗。对工程技术人员而言,在设计换热器时,对于型式的 合理选择、经济运行和降低成本等方面应有足够的重视,必要时,还得通过计算来进行技术 经济指标分析、投资和操作费用对比,从而使设计达到该具体条件下的最佳设计。 管壳式换热器 管壳式换热器的应用范围很广,适应性很强,其允许压力可以从高真空到 41.5MPa ,温度可 以从-100 °以下到1100°C 高温。此外,它还具有容量大、结构简单、造价低廉、清洗方便 等优点,因此它在换热器中是最主要的型式。 特殊型式的换热器 特殊型式的换热器包括有:板式换热器、空冷器、多管式换热器、折流杆式换热器、板翅式换 热器、螺旋板式换热器、蛇管式换热器和热管换热器等。它们的使用是受设计温度和设计压 力限制的。在下图中给出了特殊型式的换热器的适用范围,可供参考。 7001 -------------------------------------------- , 600- 500- 400 300- 表3- 1特殊型式换热器的使用范围 1C 0

换热器课程设计安排与要求

换热器课程设计安排与要求: 一、时间安排: 1、初稿完成时间: 检查设计图纸及说明书初稿,要求打印稿,图纸装配图初稿用A3纸打印,零件图可用A4纸。 2、最终上交设计计算说明书及图纸时间: 二、换热器课程设计说明书撰写规范、CAD图纸要求、课程设计说明书及任务书格式、内容要求见附件1、附件2、附件3。

附件1 换热器课程设计说明书撰写规范 1、说明书(论文)格式 (1) 纸型:A4纸,单面打印; (2) 页边距:上2cm,下2cm,左3cm、右2 cm; (3) 字体:正文全部宋体、小四; (4) 行距:1.5倍,段前、段后均为0,取消网格对齐选项。 2、说明书结构及要求 (1)封面 (2)目录 (3)任务书 目录要层次清晰,要给出标题及页次,目录的最后一项是无序号的“参考文献”,标题“目录”,字体:黑体,字号:小三,章、节标题和页码,字体:宋体,字号:小四。 (4)正文 正文用小四号宋体字;每章的大标题用小三号黑体,加粗,留出上下间距为:段前0.5行,段后0.5行;二级标题用小四号黑体,加粗;其余小标题用小四号黑体,不加粗。 论文正文部分包括: 引言(或前言) 论文主体 结论 引言的内容应包括该项研究的目的和范围,以及该项研究工作在国民经济中的实用价值与理论意义;本研究课题范围内国内外己有文献的综述;理论依据和实验设备条件;论文内容安排等。 正文是主体,其内容一般应包括:理论分析、计算方法、实验装置和测试方法。正文应准确、完整、清晰、通顺、实事求是、简短精练。

所有直接引用的文字、数字、事实以及转述他人的观点都应加标注说明其出处,避免论文抄袭现象的发生。 结论做为单独一章排列,结论是整篇论文的总结,应该精练准确,不得含糊其词模棱两可。结论中应认真阐述自己的创造性工作或新见解及其意义和作用。 正文中的图、表、附注、公式一律采用阿拉伯数字分章编号。 如图1.2,表2.3,附注4.5,式6.7等。 图的位置 ①图居中排列。 ②图与上文应留一行空格。 图的版式 ①“设置图片格式”的“版式”为“上下型”或“嵌入型”,不得“浮于文字之上”。 ②图的大小尽量以一页的页面为限,不要超限,一旦超限要加续图。 图名的写法 ①图名居中并位于图下,编号应分章编号,如图2.1、图2.2。 ②图及其名称要放在同一页中,不能跨接两页, 名称与下文留一空行。 ③图内文字清晰、美观。 ④中文图名设置为宋体,五号,居中。 表的格式说明 表格:三线表 三线表通常只有3条线,即顶线、底线和栏目线(注意:没有竖线)。其中顶线和底线为粗线,栏目线为细线。表要用WORD绘制,不要粘贴。 表的位置 ①表格居中排列。 ②表格与下文应留一行空格。 ③表中若有附注,一律用阿拉伯数字和右半圆括号按顺序编排,如注1),附注写在表的下方。 表的版式 ①表的大小尽量以一页的页面为限,不要超限,一旦超限要加续表。 10) 表名的写法 ①表名应当在表的上方并且居中。编号应分章编号,如表2.1、表2.2。 ②表名与上文留一空行。

换热器的选型和设计指南(全)

热交换器的选型和设计指南 1 概述 (1) 2 换热器的分类及结构特点。 (1) 3 换热器的类型选择 (2) 4 无相变物流换热器的选择 (11) 5 冷凝器的选择 (13) 6 蒸发器的选择 (14) 7 换热器的合理压力降 (17) 8 工艺条件中温度的选用 (18) 9 管壳式换热器接管位置的选取 (19) 10 结构参数的选取 (19) 11 管壳式换热器的设计要点 (23) 12 空冷器的设计要点 (32) 13 空冷器设计基础数据 (35)

1 概述 本工作指南为工艺系统工程师提供换热器的选型原则和工艺参数的选取及计算方法。 2 换热器的分类及结构特点。 表 2-1 换热器的结构分类

3 换热器的类型选择 换热器的类型很多,每种型式都有特定的应用围。在某一种场合下性能很好的换热器,如果换到另一种场合可能传热效果和性能会有很大的改变。 因此,针对具体情况正确地选择换热器的类型,是很重要的。换热器选型时需要考虑的因素是多方面的,主要有: 1) 热负荷及流量大小 2) 流体的性质 3) 温度、压力及允许压降的围 4) 对清洗、维修的要求 5) 设备结构、材料、尺寸、重量 6) 价格、使用安全性和寿命 在换热器选型中,除考虑上述因素外,还应对结构强度、材料来源、加工条件、密封性、安全性等方面加以考虑。所有这些又常常是相互制约、相互影响的,通过设计的优化加以解决。针对不同的工艺条件及操作工况,我们有时使用特殊型式的换热器或特殊的换热管,以实现降低成本的目的。因此,应综合考虑工艺条件和机械设计的要求,正确选择合适的换热器型式来有效地减少工艺过程的能量消耗。对工程技术人员而言,在设计换热器时,对于型式的合理选择、经济运行和降低成本等方面应有足够的重视,必要时,还得通过计算来进行技术经济指标分析、投资和操作费用对比,从而使设计达到该具体条件下的最佳设计。 3.1管壳式换热器 管壳式换热器的应用围很广,适应性很强,其允许压力可以从高真空到41.5MPa,温度可以从-100°C以下到 1100°C高温。此外,它还具有容量大、

换热器的设计

武汉工程大学化工机械专业毕业设计 列管式换热器设计 专业班级 学号 指导教师 成绩

列管式换热器设计 摘要 化工设备课程设计是培养学生综合运用本门课程及有关先修课程的基本知识去完成某一设备设计任务的一次训练。 本次的设计的内容是水—CO2列管式固定管板换热器的设计。这方面的知识虽然我们在大三上学期进行了理论课的学习,但是了解和掌握的东西仍然很有限。在这次的课程设计,通过热量衡算,工艺计算,结构设计和校核等一系列工作,我们基本上完成了设计任务,也让我明白了怎么应用所学的化工设备知识,结合我们所掌握的其他相关学科的知识、计算机技术、参照相关的书籍文献等去解决实际的设计问题。并且通过在设计过程中,不断的发现问题解决问题,使我们能够更加熟练的运用这些知识与技能。这些经验的积累是对课堂学习的巩固和拓展,也是一次宝贵的经验积累。 当然在整个设计过程种,也离不开老师的悉心指导和同组各位组员的同心协力。在我们的实践过程中,通过小组各位组员的分工合作和相互配合,我们才能比较顺利的完成各个时段的工作,在遇到问题时,我们能够一起参与讨论,通过查阅资料、咨询老师等来解决。虽然在这个过程中,我们有发生过计算失误而重头开始计算,有过发现画图过程中的设计缺陷而重新设计等等问题,但这不但没有让我们知难而退,反而让我们更加深刻的认识到科学设计中所应该持有的严谨务实的态度的重要性。这些宝贵经验的积累,对我们今后的学习工作也一定会有很大的帮助。 关键词:结构设计,工艺计算

目录 第一章设计条件 (3) 第二章换热器结构设计 (3) 2.1管子数计算 (3) 2.2排列方式确定 (3) 2.3壳体直径确定 (4) 2.4壳体壁厚计算 (5) 2.5管板尺寸确定 (5) 2.6封头尺寸确定 (6) 2.7容器法兰选择 (6) 2.8管子拉脱力计算 (6) 2.9折流板计算 (8) 2.10支座确定 (9) 第三章换热器主要结构尺寸和计算结果列表 (9) 参考文献 (11) 致谢 (12)

换热器主要参数及性能特点

换热器主要参数及性能特 点 The Standardization Office was revised on the afternoon of December 13, 2020

换热器主要参数及性能特点 主要控制参数 板水加热器的主要控制参数为水加热器的单板换热面积、总换热面积、热水产量、换热量、传热系数K、设计压力、工作压力、热媒参数等。 性能特点 (1)换热量高,传热系数K值在3000~8000W/(m22K)范围,高于其它换热器型式。 (2)板式换热器具有很高的传热系数,就决定了它具有结构紧凑、体积小的特点,在每立方米体积内可以布置250平方米的传热面积,大大优于其它种类的换热器。 艾瑞德板式换热器(江阴)有限公司作为专业的可拆式板式换热器生产商和制造商,专注于可拆式板式换热器的研发与生产。ARD艾瑞德专业生产可拆式板式换热器(PHE)、换热器密封垫(PHEGASKET)、换热器板片(PHEPLATE)并提供板式换热器维护服务(PHEMAINTENANCE)的专业换热器厂家。ARD艾瑞德拥有卓越的设计和生产技术以及全面的换热器专业知识,一直以来ARD致力于为全球50多个国家和地区的石油、化工、工业、食品饮料、电力、冶金、造船业、暖通空调等行业的客户提供高品质的板式换热器,良好地运行于各行业,ARD已发展成为可拆式板式换热器领域卓越的厂家。

ARD艾瑞德同时也是板式换热器配件(换热器板片和换热器密封垫)领域专业的供应商和维护商。能够提供世界知名品牌(包括:阿法拉伐/AlfaLaval、斯必克/SPX、安培威/APV、基伊埃/GEA、传特/TRANTER、舒瑞普/SWEP、桑德斯/SONDEX、艾普尔.斯密特/、风凯/FUNKE、萨莫威孚/Thermowave、维卡勃Vicarb、东和恩泰/DONGHWA、艾克森ACCESSEN、MULLER、FISCHER、REHEAT等)的所有型号将近2000种的板式换热器板片和垫片,ARD艾瑞德实现了与各品牌板式换热器配件的完全替代。全球几十个国家的板式换热器客户正在使用ARD提供的换热器配件或接受ARD的维护服务(包括定期清洗、维修及更换配件等维护服务)。 无论您身在何处,无论您有什么特殊要求,ARD都能为您提供板式换热器领域的系统解决方案。

热交换器的选型和设计指南

热交换器的选型和设计指南

目录 1 概述 (1) 2 换热器的分类及结构特点。 (1) 3 换热器的类型选择 (2) 4 无相变物流换热器的选择 (11) 5 冷凝器的选择 (13) 6 蒸发器的选择 (14) 7 换热器的合理压力降 (17) 8 工艺条件中温度的选用 (18) 9 管壳式换热器接管位置的选取 (19) 10 结构参数的选取 (19) 11 管壳式换热器的设计要点 (23) 12 空冷器的设计要点 (32) 13 空冷器设计基础数据 (35)

1 概述 本工作指南为工艺系统工程师提供换热器的选型原则和工艺参数的选取及计算方法。 2 换热器的分类及结构特点。 表 2-1 换热器的结构分类

3 换热器的类型选择 换热器的类型很多,每种型式都有特定的应用范围。在某一种场合下性能很好的换热器,如果换到另一种场合可能传热效果和性能会有很大的改变。 因此,针对具体情况正确地选择换热器的类型,是很重要的。换热器选型时需要考虑的因素是多方面的,主要有: 1) 热负荷及流量大小 2) 流体的性质 3) 温度、压力及允许压降的范围 4) 对清洗、维修的要求 5) 设备结构、材料、尺寸、重量 6) 价格、使用安全性和寿命 在换热器选型中,除考虑上述因素外,还应对结构强度、材料来源、加工条件、密封性、安全性等方面加以考虑。所有这些又常常是相互制约、相互影响的,通过设计的优化加以解决。针对不同的工艺条件及操作工况,我们有时使用特殊型式的换热器或特殊的换热管,以实现降低成本的目的。因此,应综合考虑工艺条件和机械设计的要求,正确选择合适的换热器型式来有效地减少工艺过程的能量消耗。对工程技术人员而言,在设计换热器时,对于型式的合理选择、经济运行和降低成本等方面应有足够的重视,必要时,还得通过计算来进行技术经济指标分析、投资和操作费用对比,从而使设计达到该具体条件下的最佳设计。 3.1管壳式换热器 管壳式换热器的应用范围很广,适应性很强,其允许压力可以从高真空到41.5MPa,温度可以从-100°C以下到 1100°C高温。此外,它还具有容量

换热器设计指南汇总

换热器设计指南

1 总则 1.1 目的 为规范本公司工艺设计人员设计管壳式换热器及校核管壳式换热器而编制。 1.2 范围 1.2.1本规定规定了管壳式换热器的选型、设计、校核及材料选择。 1.2.2本规定适用于本公司所有的管壳式换热器。 1.3 规范性引用文件 下列文件中的条款通过本规定的引用而成为本规定的条款,凡注日期的应用文件,其随后所有的修改单或修改版均不适用本规定。凡不注日期或修改号(版次)的引用文件,其最新版本适用于本规定。 GB150-1999 钢制压力容器 GB151-1999 管壳式换热器 HTRI设计手册 Shell & tube heat exchangers——JGC 石油化工设计手册第3卷——化学工业出版社(2002) 换热器设计手册——中国石化出版社(2004) 换热器设计手册——化学工业出版社(2002) Shell and Tube Heat Exchangers Technical Specification ——SHESLL (2004) SHELL AND TUBE HEAT EXCHANGERS——BP (1997) Shell and Tube Exchanger Design and Selection——CHEVRON COP. (1989) HEAT EXCHANGERS——FLUOR DANIEL (1994) Shell and Tube Heat Exchangers——TOTAL(2002) 管壳式换热器工程规定——SEI(2005) 2 设计基础 2.1 传热过程名词定义

2.1.1 无相变过程 加热:用工艺流体或其他热流体加热另一工艺流体的过程。 冷却:用工艺流体、冷却水或空气等冷剂冷却另一工艺流体的过程。 换热:用工艺流体加热或冷却另外一股工艺流体的过程。 2.1.2 沸腾过程 在传热过程中存在着相的变化—液体加热沸腾后一部分变为汽相。此时除显热传递外,还有潜热的传递。 池沸过程:用工艺流体、水蒸汽或其他热流体加热汽化大容积设备中的工艺流体过程。 流动沸腾:用工艺流体、水蒸汽或其他热流体加热汽化狭窄流道中的工艺流体过程。 2.1.3 冷凝过程 部分或全部流体被冷凝为液相, 热流体的显热和潜热被冷流体带走,这一相变过程叫冷凝过程。 纯蒸汽或混合蒸汽冷凝:用工艺流体、冷却水或空气,全部或部分冷凝另一工艺流体。 有不凝气的冷凝:用工艺流体、冷却水或空气,部分冷凝工艺流体和同时冷却不凝性气体。 2.2 换热器的术语及分类 2.2.1 术语及定义 换热器装置:为某个可能包括可替换操作条件的特定作业的一个或多个换热器;位号:设计人员对某一换热器单元的识别号; 有效表面:进行热交换的管子外表面积; 管程:介质流经换热管内的通道及与其相贯通部分; 壳程:介质流经换热管外的通道及与其相贯通部分; 管程数:介质沿换热管长度方向往、返的次数; 壳程数:介质在壳程内沿壳体轴向往、返的次数; 公称长度:以换热管的长度作为换热器的公称长度,换热管为直管时,取直管长度,换热管为U形管时取U形管直管段的长度; 计算换热面积:以换热管外径为基准,扣除伸入管板内的换热管长度后,计算得到的管束外表面积,对于U形管式换热器,一般不包括U形弯管段的面积;公称换热面积:经圆整后的计算换热面积;

换热器设计指南汇总

换热器设计指南 1总贝!I i.i目的 为规范本公司工艺设计人员设计管壳式换热器及校核管壳式换热器而编制。 1. 2范围 1.2.1本规定规定了管壳式换热器的选型、设计、校核及材料选择。 1.2.2本规定适用于本公司所有的管壳式换热器。 1.3规范性引用文件 下列文件中的条款通过本规定的引用而成为本规定的条款,凡注日期的应用文件,其随后所有的修改单或修改版均不适用本规定。凡不注日期或修改号 (版次)的引用文件,其最新版本适用于本规定。 GB150-1999钢制压力容器 GB151-1999管壳式换热器 HTRI设计手册 Shell & tube heat exchangers ------- JGC 石油化工设计手册第3卷——化学工业出版社(2002) 换热器设计手册——中国石化出版社(2004) 换热器设计手册——化学工业出版社(2002) Shell and Tube Heat Exchangers Technical Specification ---------- SHESLL (2004) SHELL AND TUBE HEAT EXCHANGERS——BP (1997) Shell and Tube Exchanger Design and Selection -------- HEVRON COP. (1989)

HEAT EXCHANGERS——FLUOR DANIEL (1994) Shell and Tube Heat Exchangers ------- TOTAL (2002) 管壳式换热器工程规定——SEI (2005) 2设计基础 2. 1传热过程名词定义 2.1.1无相变过程 加热:用工艺流体或其他热流体加热另一工艺流体的过程。 冷却:用工艺流体、冷却水或空气等冷剂冷却另一工艺流体的过程。 换热:用工艺流体加热或冷却另外一股工艺流体的过程。 2.1.2沸腾过程 在传热过程中存在着相的变化一液体加热沸腾后一部分变为汽相。此时除显热传递外,还有潜热的传递。 池沸过程:用工艺流体、水蒸汽或其他热流体加热汽化大容积设备中的工艺流体过程。 流动沸腾:用工艺流体、水蒸汽或其他热流体加热汽化狭窄流道中的工艺流体过程。 2.1.3冷凝过程 部分或全部流体被冷凝为液相,热流体的显热和潜热被冷流体带走,这一相变过程叫冷凝过程。 纯蒸汽或混合蒸汽冷凝:用工艺流体、冷却水或空气,全部或部分冷凝另一工艺流体。 有不凝气的冷凝:用工艺流体、冷却水或空气,部分冷凝工艺流体和同时冷却不凝性气体。 2.2换热器的术语及分类 2.2.1术语及定义 换热器装置:为某个可能包括可替换操作条件的特定作业的一个或多个换热器; 位号:设计人员对某一换热器单元的识别号; 有效表面:进行热交换的管子外表面积; 管程:介质流经换热管内的通道及与其相贯通部分; 壳程:介质流经换热管外的通道及与其相贯通部分;

换热器的选型和设计指南全

热交换器的选型和设计指南 2换热器的分类及结构特点。...................... 3换热器的类型选择......................... 4无相变物流换热器的选择....................... 5冷凝器的选择............................ 6蒸发器的选择........................... 7换热器的合理压力降......................... 8工艺条件中温度的选用....................... 9管壳式换热器接管位置的选取..................... 10结构参数的选取.......................... 11管壳式换热器的设计要点...................... 12空冷器的设计要点........................ 13空冷器设计基础数据........................

1概述 本工作指南为工艺系统工程师提供换热器的选型原则和工艺参数的选取及计算方法。 2换热器的分类及结构特点。 表2-1换热器的结构分类

3换热器的类型选择 换热器的类型很多,每种型式都有特定的应用范围。在某一种场合下性能很好的换热器,如果换到另一种场合可能传热效果和性能会有很大的改变。 因此,针对具体情况正确地选择换热器的类型,是很重要的。换热器选型时需要考虑的因素是多方面的,主要有: 1)热负荷及流量大小 2)流体的性质 3)温度、压力及允许压降的范围 4)对清洗、维修的要求 5)设备结构、材料、尺寸、重量 6)价格、使用安全性和寿命 在换热器选型中,除考虑上述因素外,还应对结构强度、材料来源、加工条件、密封性、安全性等方面加以考虑。所有这些又常常是相互制约、相互影响的,通过设计的优化加以解决。针对不同的工艺条件及操作工况,我们有时使用特殊型式的换热器或特殊的换热管,以实现降低成本的目的。因此,应综合考虑工艺条件和机械设计的要求,正确选择合适的换热器型式来有效地减少工艺过程的能量消耗。对工程技术人员而言,在设计换热器时,对于型式的合理选择、经济运行和降低成本等方面应有足够的重视,必要时,还得通过计算来进行技术经济指标分析、投资和操作费用对比,从而使设计达到该具体条件下的最佳设计。 3.1 管壳式换热器 管壳式换热器的应用范围很广,适应性很强,其允许压力可以从高真空到 41.5MPa,温度可以从-100 ° C以下到1100° C高温。此外,它还具有容量大、结构简单、造价低廉、清洗方便等优点,因此它在换热器中是最主要的型式。 3.2 特殊型式的换热器 特殊型式的换热器包括有:板式换热器、空冷器、多管式换热器、折流杆式换热器、板翅式换热器、螺旋板式换热器、蛇管式换热器和热管换热器等。它们的使用

换热器的设计

1.设计概述 1.1热量传递的概念与意义 1.热量传递的概念 热量传递是指由于温度差引起的能量转移,简称传热。由热力学第二定律可知,在自然界中凡是有温差存在时,热就必然从高温处传递到低温处,因此传热是自然界和工程技术领域中极普遍的一种传递现象。 2. 化学工业与热传递的关系 化学工业与传热的关系密切。这是因为化工生产中的很多过程和单元操作,多需要进行加热和冷却,例如:化学反应通常要在一定的温度进行,为了达到并保持一定温度,就需要向反应器输入或输出热量;又如在蒸发、蒸馏、干燥等单元操作中,都要向这些设备输入或输出热量。此外,化工设备的保温,生产过程中热能的合理利用以及废热的回收利用等都涉及到传热的问题,由此可见;传热过程普遍的存在于化工生产中,且具有极其重要的作用。总之,无论是在能源,宇航,化工,动力,冶金,机械,建筑等工业部门,还是在农业,环境等部门中都涉及到许多有关传热的问题。 应予指出,热力学和传热学既有区别又有联系。热力学不研究引起传热的机理和传热的快慢,它仅研究物质的平衡状态,确定系统由一个平衡状态变成另一个平衡状态所需的总能量;而传热学研究能量的传递速率,因此可以认为传热学士热力学的扩展。 3.传热的基本方式 根据载热介质的不同,热传递有三种基本方式: (1)热传导(又称导热)物体各部分之间不发生相对位移,仅借分子、原子和自由电子等微观粒子的热运动而引起的热量传递称为热传导。热传导的条件是系统两部分之间存在温度差。 (2)热对流(简称对流)流体各部分之间发生相对位移所引起的热传递过程称为热对流。热对流仅发生在流体中,产生原因有二:一是因流体中各处温度不同而引起密度的差别,使流体质点产生相对位移的自然对流;二是因泵或搅拌等外力所致的质点强制运动的强制对流。 此外,流体流过固体表面时发生的对流和热传导联合作用的传热过程,即是热由流体传到固体表面(或反之)的过程,通常称为对流传热。 (3)热辐射因热的原因而产生的电磁波在空间的传递称为热辐射。热辐射的特点是:不仅有能量的传递,而且还有能量的转移。 1.2换热器的概念及意义 在化工生产中为了实现物料之间能量传递过程需要一种传热设备。这种设备统称为换热器。在化工生产中,为了工艺流程的需要,往往进行着各种不同的换热过程:如加热、冷却、蒸发和冷凝。换热器就是用来进行这些热传递过程的设备,通过这种设备,以便使热量从温度较高的流体传递到温度较低的流体,以满足工艺上的需

换热器设计计算步骤

换热器设计计算步骤 1. 管外自然对流换热 2. 管外强制对流换热 3. 管外凝结换热 已知:管程油水混合物流量 G ( m 3/d),管程管道长度 L (m),管子外径do (m), 管子内径di (m),热水温度 t ℃, 油水混合物进口温度 t 1’, 油水混合物出口温度 t 2” ℃。 1. 管外自然对流换热 1.1 壁面温度设定 首先设定壁面温度,一般取热水温度和油水混合物出口温度的平均值,t w ℃, 热水温度为t ℃,油水混合进口温度为'1t ℃,油水混合物出口温度为"1t ℃。 "w 11 t ()2 t t =+ 1.2 定性温度和物性参数计算 管程外为水,其定性温度为1()K -℃ 21 ()2 w t t t =+ 管程外为油水混合物,定性温度为'2t ℃ ''"2111 ()2t t t =+ 根据表1油水物性参数表,可以查得对应温度下的油水物性参数值 一般需要查出的为密度ρ (3/kg m ),导热系数λ(/())W m K ?,运动粘度2(/)m s ,体积膨胀系数a 1()K -,普朗特数Pr 。

表1 油水物性参数表 水 t ρ λ v a Pr 10 999.7 0.574 0.000001306 0.000087 9.52 20 998.2 0.599 0.000001006 0.000209 7.02 30 995.6 0.618 0.000000805 0.000305 5.42 40 992.2 0.635 0.000000659 0.000386 4.31 50 998 0.648 0.000000556 0.000457 3.54 60 983.2 0.659 0.000000478 0.000522 2.99 70 997.7 0.668 0.000000415 0.000583 2.55 80 971.8 0.674 0.000000365 0.00064 2.21 90 965.3 0.68 0.000000326 0.000696 1.95 100 958.4 0.683 0.000000295 0.00075 1.75 油 t ρ λ v a Pr 10 898.8 0.1441 0.000564 6591 20 892.7 0.1432 0.00028 0.00069 3335 30 886.6 0.1423 0.000153 1859 40 880.6 0.1414 9.07E-05 1121 50 874.6 0.1405 5.74E-05 723 60 868.8 0.1396 3.84E-05 493 70 863.1 0.1387 0.000027 354 80 857.4 0.1379 1.97E-05 263 90 851.8 0.137 1.49E-05 203 100 846.2 0.1361 1.15E-05 160 1.3 设计总传热量和实际换热量计算 0m v Q Cq t Cq t ρ=?=?v v C q t C q t αρβρ=?+?油油水水 C 为比热容/()j kg K ?,v q 为总体积流量3 /m s ,αβ分别为在油水混合物中 油和水所占的百分比,t ?油水混合物温差,m q 为总的质量流量/kg s 。 实际换热量Q 0Q Q *1.1/0.9= 0.9为换热器效率,1.1为换热余量。 1.4 逆流平均温差计算

热交换器的选型和设计指南(20210201124748)

热交换器的选型和设计指南 1概述 (2) 2换热器的分类及结构特点。 (2) 3换热器的类型选择 (3) 4无相变物流换热器的选择 (12) 5冷凝器的选择 (14) 6蒸发器的选择 (15) 7换热器的合理压力降 (18) 8工艺条件中温度的选用 (19) 9管壳式换热器接管位置的选取 (19) 10结构参数的选取 (20) 11管壳式换热器的设计要点 (23) 12空冷器的设计要点 (31) 13空冷器设计基础数据 (34)

1概述 本工作指南为工艺系统工程师提供换热器的选型原则和工艺参数的选取及计算方法2换热器的分类及结构特点。 表2- 1换热器的结构分类

3换热器的类型选择 换热器的类型很多,每种型式都有特定的应用范围。在某一种场合下性能很好的换热器,如果换到另一种场合可能传热效果和性能会有很大的改变。 因此,针对具体情况正确地选择换热器的类型,是很重要的。换热器选型时需要考虑的 因素是多方面的,主要有: 1)热负荷及流量大小 2)流体的性质 3)温度、压力及允许压降的范围 4)对清洗、维修的要求 5)设备结构、材料、尺寸、重量 6)价格、使用安全性和寿命 在换热器选型中,除考虑上述因素外,还应对结构强度、材料来源、加工条件、密封性、 安全性等方面加以考虑。所有这些又常常是相互制约、相互影响的,通过设计的优化加以解决。针对不同的工艺条件及操作工况,我们有时使用特殊型式的换热器或特殊的换热管,以实现降低成本的目的。因此,应综合考虑工艺条件和机械设计的要求,正确选择合适的换热器型式来有效地减少工艺过程的能量消耗。对工程技术人员而言,在设计换热器时,对于型式的合理选择、经济运行和降低成本等方面应有足够的重视,必要时,还得通过计算来进行技术经济指标分析、投资和操作费用对比,从而使设计达到该具体条件下的最佳设计。 3.1管壳式换热器 管壳式换热器的应用范围很广,适应性很强,其允许压力可以从高真空到41.5MPa,温度可以从-100 °C以下到1100 °C高温。此外,它还具有容量大、结构简单、造价低廉、清洗方

换热器设计软件介绍与入门

第1章换热器设计软件介绍与入门 孙兰义 2014-11-2

主要内容 1 ASPEN EDR软件 1.1 Aspen EDR简介 1.2 Aspen EDR图形界面 1.3 Aspen EDR功能特点 1.4 Aspen EDR主要输入页面 1.5 Aspen EDR简单示例应用 2 HTRI软件 2.1 HTRI简介 2.2 HTRI图形界面 2.3 HTRI功能特点 2.4 HTRI主要输入页面 2.5 HTRI简单示例应用

Aspen Exchanger Design and Rating(Aspen EDR)是美国AspenTech 公司推出的一款传热计算工程软件套件,包含在AspenONE产品之中。 Aspen EDR能够为用户用户提供较优的换热器设计方案,AspenTech 将工艺流程模拟软件和综合工具进行整合,最大限度地保证了数据的一致性,提高了计算结果的可信度,有效地减少了错误操作。 Aspen7.0以后的版本已经实现了Aspen Plus、Aspen HYSYS和Aspen EDR的对接,即Aspen Plus可以在流程模拟工艺计算之后直接无缝集成转入换热器的设计计算,使Aspen Plus、Aspen HYSYS流程计算与换热器详细设计一体化,不必单独地将Aspen Plus计算的数据导出再导入给换热器计算软件,用户可以很方便地进行数据传递并对换热器详细尺寸在流程中带来的影响进行分析。

Aspen EDR的主要设计程序有: ①Aspen Shell & Tube Exchanger:能够设计、校核和模拟管壳式换热器的传热过程 ②Aspen Shell & Tube Mechanical:能够为管壳式换热器和基础压力容器提供完整的机械设计和校核 ③HTFS Research Network:用于在线访问HTFS的设计报告、研究报告、用户手册和数据库 ④Aspen Air Cooled Exchanger :能够设计、校核和模拟空气冷却器 ⑤Aspen Fired Heater:能够模拟和校核包括辐射和对流的完整加热系统,排除操作故障,最大限度的提高效率或者找出潜在的炉管烧毁或过度焦化 ⑥Aspen Plate Exchanger :能够设计、校核和模拟板式换热器; ⑦Aspen Plate Fin Exchanger:能够设计、校核和模拟多股流板翅式换热器

相关文档