文档视界 最新最全的文档下载
当前位置:文档视界 › 141_复合材料夹芯板刚强度计算分析

141_复合材料夹芯板刚强度计算分析

141_复合材料夹芯板刚强度计算分析
141_复合材料夹芯板刚强度计算分析

2006年用户年会论文

复合材料夹芯板刚强度计算分析

[贾华敏陈以蔚李树虎王炳雷郭建芬]

[中国兵器工业集团第五三研究所,250031]

[ 摘要 ] 本文对复合材料夹芯板进行不同约束和载荷条件下的有限元分析计算,并将其计算结果与试验结果进行了对比,考核结构的刚强度,验证计算的准确性。结果表明,计算结果与试验结果符合较好,说明计算模型合理,具有一定的工程参考价值。

[ 关键词]复合材料板夹芯结构刚强度

Computational analysis of rigidity and strength of sandwich

composite plate

[Jia Huamin, Chen Yiwei, Li Shuhu, Wang Binglei, Guo Jianfen ]

[CNGC Institute 53, 250031]

[ Abstract ] This paper analyzes the sandwich composite plate with different constrains and loads.

Comparisons have been conducted between numerical results and experimental results,

which verifies the rigidity and strength of the structure and precision of the analysis. The

results indicate that the numerical results fit the experimental results well, which show that

the model of analysis is rational and the results have value for engineering application.

[ Keyword ] composite plate sandwich structure rigidity and strength

1前言

复合材料夹芯结构是一种在工程应用中常见的结构,具有强度好、重量轻等优点,是许多工程应用的首选材料。但由于其发展起步较晚,并且其力学性能的复杂性,在工程应用中有很多没有解决的问题。本文对复合材料夹芯板进行模拟计算,并将其结果与试验结果相对比,验证了有限元计算的准确性。

2结构和参数

2.1复合材料夹芯板结构

2006年用户年会论文复合材料夹芯板为2000mm×600mm的矩形板,上下面板为厚2.5mm的正交铺层玻纤复合材料,中间夹芯为厚30mm的泡沫,边框支撑处的中间夹芯采用增强泡沫。

2.2.材料模型和参数

复合材料铺层面板采用正交各向异性材料模型:

EX=20GPa

EY=20GPa

EZ=3.2GPa

PRXY=0.12

PRYZ=0.12

PRXZ=0.12

GXY=3000MPa

GYZ=3000MPa

GXZ=3000MPa

泡沫夹芯采用线弹性材料模型:

模量:32.2MPa

泊松比:0.28

增强泡沫夹芯采用线弹性材料模型:

模量:900MPa

泊松比:0.28

3有限元计算

3.1计算模型

本次计算采用壳单元,计算模型如图1。图中A、B、C、D为支撑点。

2006年用户年会论文

3.2工况条件

3.2.1施加载荷

试验中在复合材料夹芯板整个面板采用堆放沙袋的方式施加载荷,计算模型中施加均布载荷。

3.3约束条件

约束条件分两种:

1.四点约束。试验时复合材料夹芯板两侧(A、B区域)用夹具和螺栓固定,上面两个

支撑面(C、D区域)简支;计算时在复合材料夹芯板左支撑面(A区域)施加x,y,z向约束,右支撑面(B区域)施加z向约束,上面两个支撑面(C、D区域)加z向约束。

2.两点约束。试验时两侧约束面(A、B区域)用夹具和螺栓固定,其余两个面不约束;

计算时只在复合材料夹芯板左支撑面(A区域)施加x,y,z向约束,右支撑面(B区域)施加z向约束。

4计算结果及分析

实验时测量应变所贴应变片的位置如图所示:

2006年用户年会论文

图2 应变片粘贴位置及编号示意图,A-D为加强块编号

4.1四点支撑计算结果及分析

表1 不同加载下最大位移对比(四点支撑)

最大位移(mm)

加载(103Kg)

试验结果 计算结果

0 0 0

0.25 8 6.68

0.5 16 13.4

0.750 22 20.0

1.0 29 26.8

1.25 35 33.4

1.5 42 39.9

1.75 48 46.3

2.00 53 52.7

2.25 58 59.1

2.50 63 65.4

2.75 68 71.8

3.00 72 78.2

2006年用户年会论文

表2 不同加载、不同测点应变结果对比(四点支撑)

应变(με)

试验结果 计算结果

加载(103

Kg)

2点

4点2点4点 0 0 0 0 0 0.25 294 212 176150 0.5 562 395 351300 0.750 781 541 527

450 1.0 996 687 702600 1.25 1196 816 878749 1.5 1387 943 1054900 1.75 1599 1078 12351051 2.00 1775 1189 14161202 2.25 1923 1286 1596

1353 2.50 2093 1393 17771504 2.75 2226 1483

1958

1655 3.00

2342

1565

2139

1806

图3-图5分别是计算结果与试验结果相对比的曲线图,各图中的红色方点代表试验数据,黑色圆点代表计算数据。

U z (m m )

loads (1000kg)

s t r a i n (10-6

)

loads (1000kg)

2006年用户年会论文

图6-图7

s

t

a

i

n

(

1

-

6

)

loads (1000kg)

2006年用户年会论文4.2两点支撑计算结果及分析

表3 不同加载下最大位移对比(两点支撑)

最大位移(mm)

加载(103Kg)

试验结果 计算结果

0 0 0

0.5 25 20.6

0.75 38 31.0

1.0 49 41.3

1.25 59 51.6

1.5 68 6

2.5

1.75 79 7

2.3

2.00 88 82.1

表4 不同加载、不同测点应变结果对比(两点支撑)

应变(με)

加载(103Kg)

试验结果 计算结果

2点4点2点4点

0 0 0 0 0

0.5 797819694689

0.75 1194124110401033

1 1681162113871378

1.25 2064195417341722

1.5 2261224820432047

1.75 2668252723952395

2 2982277627462742

2006年用户年会论文

图8-图10是计算结果与试验结果相对比的曲线图,各图中的红色方点代表试验数据,图11-图12是加载200黑色圆点代表计算数据。

20

40

60

80

100

u z (m m )

loads (1000kg)

s t r a i n (10-6

)

loads (1000kg)

s t r a i n (10-6

)

loads (1000kg)

2006年用户年会论文

5结论

与以上计算结果看出,计算结果与试验结果吻合程度较好,说明采用有限元方法进行复合材料夹芯板的力学计算是可行的,为复合材料夹芯结构的强度分析提供了一种新途径,也为今后工作提供了一种更加方便快捷的分析方法。

杆件的强度计算公式资料讲解

杆件的强度、刚度和稳定性计算 1.构件的承载能力,指的是什么? 答:构件满足强度、刚度和稳定性要求的能力称为构件的承载能力。 (1)足够的强度。即要求构件应具有足够的抵抗破坏的能力,在荷载作用下不致于发生破坏。 (2)足够的刚度。即要求构件应具有足够的抵抗变形的能力,在荷载作用下不致于发生过大的变形而影响使用。 (3)足够的稳定性。即要求构件应具有保持原有平衡状态的能力,在荷载作用下不致于突然丧失稳定。 2.什么是应力、正应力、切应力?应力的单位如何表示? 答:内力在一点处的集度称为应力。 垂直于截面的应力分量称为正应力或法向应力,用σ表示;相切于截面的应力分量称切应力或切向应力,用τ表示。 应力的单位为Pa。 1 Pa=1 N/m2 工程实际中应力数值较大,常用MPa或GPa作单位 1 MPa=106Pa 1 GPa=109Pa 3.应力和内力的关系是什么? 答:内力在一点处的集度称为应力。 4.应变和变形有什么不同? 答:单位长度上的变形称为应变。单位纵向长度上的变形称纵向线应变,简称线应变,以ε表示。单位横向长度上的变形称横向线应变,以ε/表示横向应变。 5.什么是线应变?什么是横向应变?什么是泊松比? 答:(1)线应变 单位长度上的变形称纵向线应变,简称线应变,以ε表示。对于轴力为常量的等截面直杆,其纵向变形在杆内分布均匀,故线应变为 l l? = ε (4-2) 拉伸时ε为正,压缩时ε为负。线应变是无量纲(无单位)的量。 (2)横向应变 拉(压)杆产生纵向变形时,横向也产生变形。设杆件变形前的横向尺寸为a,变形后为a1,则横向变形为 a a a- = ? 1 横向应变ε/为

复合材料力学计算题网上整理

例3?1:己知HT3/5244碳纤维增强复介材料单层的T 程弹性常数为 E )= 140GPa; E 2 =8.6GPa; G }2 =5.0GPa; v 12=0.35 试求单层受到面内应力分量为硏=500MPa ,

例3?2:单层板受面内应力rr =15OMPa, q=50MPa, r =75MPa 作用, ^=45° ,试求材料主方向坐标系下的应力分量。 ■ 1 -1 解: 0.5 0.5 -0.5 0.5 0.5 0.5 6 J J 140.9 3.0 ■ 0 e= 3.0 10」 0 GPa 0 ■ 0 5.0 ■ 0.5 0.5 -1 0.5 0.5 1 0.5 -0.5 0.5 0.5 1 0.5 0.5 -1 -0.5 0.5 0

例3?4:已知碳纤维/环氟HT3/5224单层板材料主方向应变 c, =0.005; ? =-0.01; y n =0.02 — 45。,试求(1)材料主方向应力;(2)参考坐标系下的应 _ 0.5 0.5 1 _0.5 0.5 -1' T = 0.5 0.5 -1 r1 =0.5 0.5 1 -0.5 0.5 0 ■ ■0.5 -0.5 0 ■ ■ ■ ■■■「0.5 0.5 -0.5' "0.005--0.0125 =r T& :2=0.5 0.5 0.5 -0.01 =0.0075 2V712. 1 ■-1 0 0.02 0.0150 ■B 力和应变。141.9 3.06 ■ 已知:Q =3.06 8.66 0 GPa 0 0 5.0 解:■ ■Qu a o ■ ■ 所 ^2=2|> 02 0 % _ 0 0纸 ■ 712. 141.9 3.06 ■ "0.005" 「678. 9' 3.06 8.66 0 -0.01 xl03 =-71.3 MPa 0 0 50 0.02 100 ■ -1 '67X.< ■204 1 -71.3 二404 0 100 375 MPa

复合材料层合板强度计算现状

复合材料层合板强度计算现状 作者:李炳田 1.简介 复合材料是指由两种或者两种以上不同性能的材料在宏观尺度上组成的多相材料。一般复合材料的性能优于其组分材料的性能,它改善了组分材料的刚度、强度、热学等性能。复合材料从应用的性质可分为功能复合材料和结构复合材料两大类。功能复合材料主要具有特殊的功能,例如:导电复合材料,它是用聚合物与各种导电物质通过分散、层压或通过表面导 电膜等方法构成的复合材料;烧灼复合材料,它由各种无机纤维增强树脂或非金属基体构成,可用于高速飞行器头部热防护;摩阻复合材料,它是用石棉等纤维和树脂制成的有较高摩擦系数的复合材料,应用于航空器、汽车等运转部件的制动。功能复合材料由于其涉及的学科比较广泛,已不是单纯的力学问题,需要借助电磁学,化学工艺、功能学等众多学科的研究方法来研究。结构复合材料一般由基体料和增强材料复合而成。基体材料主要是各种树脂或金属材料;增强材料一般采用各种纤维和颗粒等材料。其中增强材料在复合材料中起主要作用,用来提供刚度和强度,而基体材料用来支持和固定纤维材料,传递纤维间的载荷。结构复合材料在工农业及人们的日常生活中得到广泛的应用,也是复合材料力学研究的主要对象,是固体力学学科中一个新的分支。在结构复合材料中按增强材料的几何形状及结构形式又可划分为以下三类: 1.颗粒增强复合材料,它由基体材料和悬浮在基体材料中的一种或多种金属或非金属颗 粒材料组合而成。 2.纤维增强复合材料,它由纤维和基体两种组分材料组成。按照纤维的不同种类和形状 又可划分定义多种复合材料。图1.1为长纤维复合材料的主要形式。 图1.1 3.复合材料层合板,它由以上两种复合材料的形式组成的单层板,以不同的方式叠合在 一起形成层合板。层合板是目前复合材料实际应用的主要形式。本论文的主要研究对象就是长纤维增强复合材料层合板的强度问题。长纤维复合材料层合板主要形式如图1.2所示。 图1.2 一般来说,强度是指材料在承载时抵抗破坏的能力。对于各向同性材料,在各个方向上强度均相等,即强度没有方向性,常用极限应力来表示材料的强度。对于复合材料,其强度的显著的特点是具有方向性。因此复合材料单层板的基本强度指标主要有沿铺层主方向(即纤维方向)的拉伸强度Xt和压缩强度Xc;垂直于铺层主方向的拉伸强度Yt和压缩强度Yc以及平面内剪切强度S等5个强度指标。对于复合材料层合板而言,由于它是由若干个单层

复合材料力学

复合材料力学 论文题目:用氧化铝填充导热和电绝缘环氧 复合材料的无缺陷石墨烯纳米片 院系班级:工程力学1302 姓名:黄义良 学号: 201314060215

用氧化铝填充导热和电绝缘环氧复合材料的无缺陷石墨烯纳米片 孙仁辉1 ,姚华1 ,张浩斌1 ,李越1 ,米耀荣2 ,于中振3 (1.北京化工大学材料科学与工程学院,有机无机复合材料国家重点实验室北京 100029;2.高级材料技术中心(CAMT ),航空航天,机械和机电工程学院J07,悉尼大学;3.北京化工大学软件物理科学与工程北京先进创新中心,北京100029) 摘要:虽然石墨烯由于其高纵横比和优异的导热性可以显着地改善聚合物的导热性,但是其导致电绝缘的严重降低,并且因此限制了其聚合物复合材料在电子和系统的热管理中的广泛应用。为了解决这个问题,电绝缘Al 2O 3用于装饰高质量(无缺陷)石墨烯纳米片(GNP )。借助超临界二氧化碳(scCO 2),通过Al(NO 3)3 前体的快速成核和水解,然后在600℃下煅烧,在惰性GNP 表面上形成许多Al 2O 3纳米颗粒。或者,通过用缓冲溶液控制Al 2(SO 4)3 前体的成核和水解,Al 2(SO 4)3 缓慢成核并在GNP 上水解以形成氢氧化铝,然后将其转化为Al 2O 3纳米层,而不通过煅烧进行相分离。与在scCO2的帮助下的Al 2O 3@GNP 混合物相比,在缓冲溶液的帮助下制备的混合物高度有效地赋予具有优良导热性的环氧树脂,同时保持其电绝缘。具有12%质量百分比的Al 2O 3@GNP 混合物的环氧复合材料表现出1.49W /(m ·K )的高热导率,其比纯环氧树脂高677%,表明其作为导热和电绝缘填料用于基于聚合物的功能复合材料。 关键词:聚合物复合基材料(PMCs ) 功能复合材料 电气特性 热性能 Decoration of defect-free graphene nanoplatelets with alumina for thermally conductive and electrically insulating epoxy composites Renhui Sun 1,Hua Yao 1, Hao-Bin Zhang 1,Yue Li 1,Yiu-Wing Mai 2,Zhong-Zhen Yu 3 (1.State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China; 2.Centre for Advanced Materials Technology (CAMT), School of Aerospace, Mechanical and Mechatronic Engineering J07, The University of Sydney, Sydney, NSW 2006, Australia; 3.Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China) Abstract:Although graphene can significantly improve the thermal conductivity of polymers due to its high aspect ratio and excellent thermal conductance, it causes serious reduction in electrical insulation and thus limits the wide applications of its polymer composites in the thermal management of electronics and systems. To solve this problem, electrically insulating Al 2O 3is used to decorate high quality (defect-free) graphene nanoplatelets (GNPs). Aided by supercritical carbon dioxide (scCO 2), numerous Al 2O 3 nanoparticles are formed

杆件的强度计算公式

杆件的强度计算公式 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

杆件的强度、刚度和稳定性计算 1.构件的承载能力,指的是什么 答:构件满足强度、刚度和稳定性要求的能力称为构件的承载能力。 (1)足够的强度。即要求构件应具有足够的抵抗破坏的能力,在荷载作用下不致于发生破坏。 (2)足够的刚度。即要求构件应具有足够的抵抗变形的能力,在荷载作用下不致于发生过大的变形而影响使用。 (3)足够的稳定性。即要求构件应具有保持原有平衡状态的能力,在荷载作用下不致于突然丧失稳定。 2.什么是应力、正应力、切应力应力的单位如何表示 答:内力在一点处的集度称为应力。 垂直于截面的应力分量称为正应力或法向应力,用σ表示;相切于截面的应力分量称切应力或切向应力,用τ表示。 应力的单位为Pa。 1Pa=1N/m2 工程实际中应力数值较大,常用MPa或GPa作单位 1MPa=106Pa 1GPa=109Pa 3.应力和内力的关系是什么 答:内力在一点处的集度称为应力。 4.应变和变形有什么不同

答:单位长度上的变形称为应变。单位纵向长度上的变形称纵向线应变,简称线应变,以ε表示。单位横向长度上的变形称横向线应变,以ε/表示横向应变。 5.什么是线应变什么是横向应变什么是泊松比 答:(1)线应变 单位长度上的变形称纵向线应变,简称线应变,以ε表示。对于轴力为常量的等截面直杆,其纵向变形在杆内分布均匀,故线应变为 l l ?=ε(4-2) 拉伸时ε为正,压缩时ε为负。线应变是无量纲(无单位)的量。 (2)横向应变 拉(压)杆产生纵向变形时,横向也产生变形。设杆件变形前的横向尺寸为a ,变形后为a 1,则横向变形为 横向应变ε/ 为 a a ?=/ε(4-3) 杆件伸长时,横向减小,ε/为负值;杆件压缩时,横向增大,ε/为正值。因此,拉(压)杆的线应变ε与横向应变ε/的符号总是相反的。 (3)横向变形系数或泊松比 试验证明,当杆件应力不超过某一限度时,横向应变ε/与线应变ε的绝对值之比为一常数。此比值称为横向变形系数或泊松比,用μ表示。 εεμ/ =(4-4) μ是无量纲的量,各种材料的μ值可由试验测定。 6.纵向应变和横向应变之间,有什么联系

复合材料力学上机编程作业(计算层合板刚度)要点

复合材料力学上机编程作业 学院:School of Civil Engineering专业:Engineering Mechanics 小组成员信息:James Wilson(2012031890015)、Tau Young(2012031890011)复合材料力学学了五个星期,这是这门课的第一次编程作业。我和杨涛结成一个小组,我用的是Fortran编制的程序,Tau Young用的是matlab编制。其中的算例以我的Fortran计算结果为准。Matlab作为可视化界面有其独到之处,在附录2中将会有所展示。 作业的内容是层合板的刚度的计算和验算,包括拉伸刚度A、弯曲刚度D以及耦合刚度B。 首先要给定层合板的各个参数,具体有:层合板的层数N;各单层的弹性常数 E1、E2、υ21、G12;各单层 对应的厚度;各单层对应的主方向夹角θ。然后就要计算每个单层板的二维刚度矩阵Q,具体公式如下: υ12=υ21E2 E1;Q11=E11-υ12υ21;Q22=E21-υ12υ21;Q12=υ12E1; 1-υ12υ21Q66=G12 得到Q矩阵后,根据课本上讲到的Q=(T-1)TQ(T-1)得到Q。 然后根据z坐标的定义求出z0到zn,接下来,最重要的一步,根据下式计算A、B、D。 n??Aij=∑(Qij)k(zk-zk-1) k=1??1n22?Bij=∑(Qij)k(zk-zk-1) 2k=1??1n33?Dij=∑(Qij)k(zk-zk-1)3k=1? 一、书上P110的几个问题可以归纳为以下几个类型。

第 1 页共 1 页 (4)6层反对称角铺设层合板(T5-10)第 2 页共 2 页

14-15第一学期复合材料力学卷B

中国矿业大学2014~2015学年第 一 学期 《 复合材料力学 》试卷(B )卷 考试时间:100分钟 考试方式:开卷 学院 力建学院 班级 姓名 学号 一、计算题(20分) 某复合材料的工程弹性常数为:1210GPa =E ,225GPa =E ,210.25ν=,1220GPa =G ,求刚度系数ij Q 。若材料主方向的应变状态为:10.2%ε=,20.1%ε=-,120.1%γ=,求应力1σ,2σ,12τ。

已知玻璃/环氧单层板受力后发生面内变形,0.3%ε=x ,0.1%ε=y ,0.2%γ=xy ,纤维与x 轴的夹角45θ=?。其工程弹性常数为:150GPa =E ,210GPa E =,210.30ν=, 128GPa G =,求该材料在主方向的应力1σ,2σ,12τ。

如图所示,复合材料单层板承受偏轴向压缩,纤维与x 轴的夹角60θ=?,80MPa y σ=-。强度参数为:t 1000MPa =X ,c 1000MPa =X ,t 50MPa Y =,c 200MPa Y =,70MPa S =。试用Hoffman 强度理论校核其是否安全。

已知玻璃/环氧单向复合材料,玻璃纤维的f 80GPa E =,f 0.25ν=,环氧树脂的 m 0.35ν=,纤维体积含量f 60%c =。该复合材料的纵向弹性模量150GPa E =,试用植村益 次公式计算2E 、21ν和12ν。

五、计算题(25分) 如图,正交铺设对称层合板()s 0/90 鞍,单层厚度1mm k t =,已知:单层的正轴刚度矩阵 []160505300GPa 0010骣÷?÷?÷?÷=?÷?÷?÷÷ ?桫Q 。求:(1)层合板的拉伸和耦合刚度矩阵;(2) 层合板受xy 面内剪切,100N/mm =xy N ,求0?铺层主方向的应力1σ,2σ,12τ

复合材料力学大作业

复合材料力学上机作业 (2013年秋季) 班级力学C102 学生姓名赵玉鹰 学号105634 成绩 河北工业大学机械学院 2013年12月30日

作业1 单向板刚度及柔度的计算 一、要 求 (1)选用FORTRAN 、VB 、MAPLE 或MATLAB 编程计算下列各题; (2)上机报告内容:源程序、题目内容及计算结果; (3)材料工程常数的数值参考教材自己选择; (4)上机学时:2学时。 二、题 目 1、已知单层板材料工程常数1E ,2E ,12G ,计算柔度矩阵[S ]和刚度矩阵[Q ]。(玻璃/环氧树脂单层板材料的MPa 1090.341?=E ,MPa 1030.142?=E ,MPa 1042.0412?=G ,25.021=μ,MPa 1001=σ,MPa 302-=σ,MPa 1012=τ) ●Maple 程序 > restart: > with(linalg): > E[1]:=3.9e10: > E[2]:=1.3e10: > G[12]:=0.42e10: > mu[21]:=0.25: > mu[12]:=E[1]*mu[21]/E[2]: > Q[11]:=E[1]/(1-mu[12]*mu[21]): > Q[12]:=mu[12]*E[2]/(1-mu[12]*mu[21]): > Q[13]:=0: > Q[21]:=Q[12]: > Q[22]:=E[2]/(1-mu[12]*mu[21]): > Q[23]:=0: > Q[31]:=Q[13]: > Q[32]:=Q[23]: > Q[33]:=G[12]: >Q:=evalf(matrix(3,3,[[Q[11],Q[12],Q[13]],[Q[21],Q[22], Q[23]],[Q[31],Q[32],Q[33]]]),4);

复合材料力学讲义

复合材料力学讲义-CAL-FENGHAI.-(YICAI)-Company One1

复合材料力学讲义 第一部分简单层板宏观力学性能 1.1各向异性材料的应力—应变关系 应力—应变的广义虎克定律可以用简写符号写成为: (1—1) 其中σi为应力分量,C ij为刚度矩阵εj为应变分量.对于应力和应变张量对称的情形(即不存在体积力的情况),上述简写符号和常用的三维应力—应变张量符号的对照列于表1—1。 按表1—l,用简写符号表示的应变定义为: 表1—1 应力——应变的张量符号与简写符号的对照 注:γij(i≠j)代表工程剪应变,而εij(i≠j)代表张量剪应变 (1—2) 其中u,v,w是在x,y,z方向的位移。 在方程(1—2)中,刚度矩阵C ij有30个常数.但是当考虑应变能时可以证明弹性材料的实际独立常数是少于36个的.存在有弹性位能或应变能密度函数的弹性材料当应力σi作用于应变dεj时,单位体积的功的增量为: (1—3) 由应力—应变关系式(1—1),功的增量为:

(1—4) 沿整个应变积分,单位体积的功为: (1—5) 虎克定律关系式(1—1)可由方程(1—5)导出: (1—6) 于是 (1—7) 同样 (1—8) 因W的微分与次序无,所以: (1—9) 这样刚度矩阵是对称的且只有21个常数是独立的。 用同样的方法我们可以证明: (1—10) 其中S ij是柔度矩阵,可由反演应力—变关系式来确定应变应力关系式为 (1—11) 同理 (1—12) 即柔度矩阵是对称的,也只有21个独立常数.刚度和柔度分量可认为是弹性常数。 在线性弹性范围内,应力—应变关系的一般表达式为: (1—13)

UMAT子程序在复合材料强度分析中的应用

UMAT子程序在复合材料强度分析中 的应用 进损伤压缩强度分析,介绍UMAT用户子程序编写方法及在Abaqus/CAE 中的设置。本章使用最大应变强度理论作为复合材料单层板的失效准 则,相应的Fortran程序简单易读,便于理解UAMT 知识要点: 强度分析 UMAT用户子程序 最大应变理论 刚度折减

&.1 本章内容简介 本章通过两个实例介绍UMAT用户子程序在复合材料单层板的应力分析和强度分析中的应用。在第一个实例中,对一个简单的复合材料单层板进行应力分析,UMAT子程序主要计算应力,不进行强度分析,本例用于验证UMAT子程序的计算精度。在第二个实例中,对复合材料单层板进行渐进损伤强度分析,UMAT子程序用于应力计算、强度分析和刚度折减。 本章所用复合材料为T700/BA9916,材料属性如表&-1所示。 表&-1 T700/BA9916材料属性 参数值强度值 E1/GPa114X T/MPa2688 E2/GPa X C/MPa1458 E3/GPa Y T/MPa μ12Y C/MPa236 μ13Z T/MPa μ23Z C/MPa175 G12/GPa S XY/MPa136 G13/GPa S XZ/MPa136 G23/GPa S YZ/MPa

&.2 实例一:UMAT 用户子程序应力分析 &.问题描述 复合材料单层板几何尺寸为15mm ×10mm ×,纤维方向为45°,单层板的3D 实体模型如图&-1所示,X 轴方向为0°方向,左侧面施加X 轴向对称边界条件,下侧面施加Y 轴向对称边界条件,垂直于Z 轴且Z=0的平面施加Z 轴向对称边界条件,右侧面施加100MPa 的拉力。 图&-1 单层板边界条件及加载情况 本例中单位系统为mm 、MPa 。 &. UMAT 用户子程序 本例使用的UMAT 用户子程序的全部代码如下,字母C 及“!”之后为注释内容。 1 SUBROUTINE UMAT(STRESS,STATEV,DDSDDE,SSE,SPD,SCD, 2 1 RPL,DDSDDT,DRPLDE,DRPLDT, 3 2 STRAN,DSTRAN,TIME,DTIME,TEMP,DTEMP,PREDEF,DPRED,CMNAME, 4 3 NDI,NSHR,NTENS,NSTATV,PROPS,NPROPS,COORDS,DROT,PNEWDT, 5 4 CELENT,DFGRD0,DFGRD1,NOEL,NPT,LAYER,KSPT,JSTEP,KINC) 6 C 7 INCLUDE '' 8 C 9 CHARACTER *80 CMNAME 10 DIMENSION STRESS(NTENS),STATEV(NSTATV), 11 1 DDSDDE(NTENS,NTENS),DDSDDT(NTENS),DRPLDE(NTENS), 12 2 STRAN(NTENS),DSTRAN(NTENS),TIME(2),PREDEF(1),DPRED(1), 13 3 PROPS(NPROPS),COORDS(3),DROT(3,3),DFGRD0(3,3),DFGRD1(3,3), 14 4 JSTEP(4) 15 16 DIMENSION EG(6), XNU(3,3), STRAND(6), C(6,6), STRESS0(6) 17 C**************************** 在使用UMAT 用户子程序进行高级应用之前,应该先了解UMAT 子程序,熟悉UMAT 子程序的工作原理,了解UMAT 中的参数、变量的含义。为了便于读者快速了解和使用UMAT ,本例通过复合材料单层板的应力分析来介绍一个简单的UMAT 子程序。 读者可将本例中的单层板替换为层压板,进行对比分析。

复合材料结构力学试题

Problem Set #1 Handed out: Oct 17th , 2013 Due: Oct 24th , 2013 1. Expand the following tensor equations (Note the Kronecker delta in a and c ) a) 1[(1)]mm T E αβ αβαβαβευσδσδα=-+-? b) 1F F αβσγαβσγαβαβσσσ+= c) 1mn ms n a b δ= d) 1i i B A αα= (4 points ) 2. Based on the ‘Rigorous handling of 2D model’ in the course note, determine for a volume fraction ()a /a b +equal to 0.6: a) The stress in the broken fiber b) The stress in the unbroken fiber c) The shear stress in the matrix Try do this for the length equal to 10, 50, 100 fiber diameters. Base on your graphical results, answer the following questions: a) What is the effect of changing the overall length? b) What happens when the overall length is 10 fiber diameters? c) For the case that the fiber total length is more than 50 times of the fiber diameter, how far from the break point must one go to achieve 99% of the original applied stress in the broken fiber? (12 points ) Note: 1) 0.083= 2) When max 50ζ≥, max tan()1κζ≈, the equations can be simplified. 3) The purpose of this excise is to learn and practice how to write a small MATLAB program and draw the scientific figures. More attention should be paid to the following MATLAB commands,

复合材料力学性能实验复习题new要点

复合材料力学性能实验复习题 1.力学实验方法的内涵? 是以近代力学理论为基础,以先进的科学方法为手段,测量应变、应力等力学量,从而正确真实地评价材料、零部件、结构等的技术手段与方法; 是用来解决“物尽其用”问题的科学方法; 2.力学实验的主要任务,结合纤维增强复合材料加以阐述。 面向生产,为生产服务;面对新技术新方法的引入,研究新的测试手段;面向力学,为力学的理论建设服务。 3.对于单向层合板而言,需要几组实验来确定其弹性模量和泊松比?如何确定实验方案? 共需五组实验,拉伸0/90两组,压缩0/90两组,剪切试验一组。 4.单向拉伸实验中如何布置应变片? 5.单向压缩实验中如何布置应变片? 6.三点弯曲实验中如何布置应变片? 7.剪切实验中如何布置应变片? 8.若应变片的粘贴方向与实样应变方向不一致,该如何处理? 9.若加载方向与材料方向不一致,该如何处理?(这个老师给了) 10.纤维体积含量的测试方法? 密度法、溶解法 11.评价膜基结合强度的实验方法? 划痕法、压痕法、刮剥法、拉伸法、黏结剂法、涂层直接加载法、激光剥离法、弯曲法。 12.简述试样机械加工的规范? 试样的取位区(距板材边缘30mm以上,最小不得小于20mm) 试样的质量(气泡、分层、树脂富集、皱褶、翘曲、错误铺层) 试样的切割(保证纤维方向和铺层方向与试验要求相符) 试样的加工(采用硬质合金刀具或砂轮片加工,防止试样产生分层、刻痕和局部挤压等机械损伤) 试样的冷却(采用水冷,禁止油冷) 13.纤维增强复合材料在拉伸试验中的几种可能破坏模式及其原因? 所有纤维在同一位置破坏,材料吸收断裂能量很小,材料断裂韧性差; 纤维在基体中拔出,吸收断裂能量很大,材料韧性增加并伴随界面开裂; 介于以上两者之间。 14.加强片的要求? 材料硬度低,便于夹具的咬合;材料的强度高,保证载荷能传递到试样上,且在试样发生破坏前本身不发生破坏。

杆件强度、刚度、稳定性计算

建筑力学问题简答(五)杆件的强度、刚度 和稳定性计算 125.构件的承载能力,指的是什么? 答:构件满足强度、刚度和稳定性要求的能力称为构件的承载能力。 (1)足够的强度。即要求构件应具有足够的抵抗破坏的能力,在荷载作用下不致于发生破坏。 (2)足够的刚度。即要求构件应具有足够的抵抗变形的能力,在荷载作用下不致于发生过大的变形而影响使用。 (3)足够的稳定性。即要求构件应具有保持原有平衡状态的能力,在荷载作用下不致于突然丧失稳定。 126.什么是应力、正应力、切应力? 答:内力在一点处的集度称为应力。 垂直于截面的应力分量称为正应力或法向应力,用ζ表示;相切于截面的应力分量称切应力或切向应力,用η表示。 127.应力的单位如何表示? 答:应力的单位为Pa 。 1 Pa =1 N /m 2 工程实际中应力数值较大,常用MPa 或GPa 作单位 1 MPa =106Pa 1 GPa =109 Pa 128.应力和内力的关系是什么? 答:内力在一点处的集度称为应力。 129.应变和变形有什么不同? 答:单位长度上的变形称为应变。单位纵向长度上的变形称纵向线应变,简称线应变,以ε表示。单位横向长度上的变形称横向线应变,以ε/表示横向应变。 130.什么是线应变? 答:单位长度上的变形称纵向线应变,简称线应变,以ε表示。对于轴力为常量的等截面直杆,其纵向变形在杆内分布均匀,故线应变为 l l ?= ε 拉伸时ε为正,压缩时ε为负。线应变是无量纲(无单位)的量。 131.什么是横向应变? 答:拉(压)杆产生纵向变形时,横向也产生变形。设杆件变形前的横向尺寸为a ,变形后为a 1,则横向变形为 a a a -=?1 横向应变ε/为 a a ?= / ε 杆件伸长时,横向减小,ε/为负值;杆件压缩时,横向增大,ε/为正值。因此,拉(压)杆的线应变ε与横向应变ε/的符号总是相反的。 132.什么是泊松比?

复合材料层合板强度计算现状

复合材料层合板强度计算现状 1.简介 复合材料是指由两种或者两种以上不同性能的材料在宏观尺度上组成的多相材料。一般复合材料的性能优于其组分材料的性能,它改善了组分材料的刚度、强度、热学等性能。复合材料从应用的性质可分为功能复合材料和结构复合材料两大类。功能复合材料主要具有特殊的功能,例如:导电复合材料,它是用聚合物与各种导电物质通过分散、层压或通过表面导电膜等方法构成的复合材料;烧灼复合材料,它由各种无机纤维增强树脂或非金属基体构成,可用于高速飞行器头部热防护;摩阻复合材料,它是用石棉等纤维和树脂制成的有较高摩擦系数的复合材料,应用于航空器、汽车等运转部件的制动。功能复合材料由于其涉及的学科比较广泛,已不是单纯的力学问题,需要借助电磁学,化学工艺、功能学等众多学科的研究方法来研究。结构复合材料一般由基体料和增强材料复合而成。基体材料主要是各种树脂或金属材料;增强材料一般采用各种纤维和颗粒等材料。其中增强材料在复合材料中起主要作用,用来提供刚度和强度,而基体材料用来支持和固定纤维材料,传递纤维间的载荷。结构复合材料在工农业及人们的日常生活中得到广泛的应用,也是复合材料力学研究的主要对象,是固体力学学科中一个新的分支。在结构复合材料中按增强材料的几何形状及结构形式又可划分为以下三类: 1.颗粒增强复合材料,它由基体材料和悬浮在基体材料中的一种或多种金属或非金属颗粒材料组合而成。 2.纤维增强复合材料,它由纤维和基体两种组分材料组成。按照纤维的不同种类和形状又可划分定义多种复合材料。图1.1为长纤维复合材料的主要形式。 图1.1

3.复合材料层合板,它由以上两种复合材料的形式组成的单层板,以不同的方式叠合在一起形成层合板。层合板是目前复合材料实际应用的主要形式。本论文的主要研究对象就是长纤维增强复合材料层合板的强度问题。长纤维复合材料层合板主要形式如图1.2所示。 图1.2 一般来说,强度是指材料在承载时抵抗破坏的能力。对于各向同性材料,在各个方向上强度均相等,即强度没有方向性,常用极限应力来表示材料的强度。对于复合材料,其强度的显著的特点是具有方向性。因此复合材料单层板的基本强度指标主要有沿铺层主方向(即纤维方向)的拉伸强度Xt和压缩强度Xc;垂直于铺层主方向的拉伸强度Yt和压缩强度Yc以及平面内剪切强度S等5个强度指标。对于复合材料层合板而言,由于它是由若干个单层板粘合在一起而形成的,而单向复合材料又是正交各向异性材料,层合板的各个铺层的纤维排列方式不相同,可能导致因为受力作用所产生各铺层的变形不一致,因此,其如何决定其最终强度就是一个非常复杂的问题。 复合材料层合板的强度是应用复合材料时所必须研究的关键性问题之一,如何确定其强度是进行复合材料结构设计所必需解决的一个基本问题,是安全可靠合理经济地使用复合材料的基础之一,因此对于复合材料强度的研究是复合材料领域内最早受到重视并开展研究较为广泛的一个基础性工作。但是相对于各向同性材料来说,复合材料,特别是层合板的复合材料的强度研究要困难的多。原因在于影响其强度的因素很多,而其破坏形式又很复杂,实验数据较为分散。同传统的单相材料相比,复合材料强度问题的复杂性在于: (1) 细观结构受力的复杂性。从承受和传递应力系统的角度来看,复合材料可以视为一个“结构”,即由两类“元件”纤维与基体所构成的结构。因此,复合材料的破坏与组分材料的破坏特性有关。一般地说,纤维是刚硬的、弹性和脆

《工程力学》第5次作业(杆件的应力与强度计算).

《工程力学》第5次作业(杆件的应力与强度计算) 2009-2010学年第2学期3系、5系各班 班级学号姓名成绩 一、填空题 1.杆件轴向拉压可以作出平面假设:变形前为平面的横截面,变形后,由此可知,横截面上的内力是分布的。 2.低碳钢拉伸可以分成:阶段、阶段、阶段、阶段。 3.如果安全系数取得过大,许用应力就;需用的材料就;反之,安全系数取得太小,构件的就可能不够。 4.和是衡量材料塑性性能的两个重要指标。工程上通常把的材料称为塑性材料,的材料称为脆性材料。 5.在国际单位制中,应力的单位是帕,1帕= 牛/米2,工程上常以、、 为应力的单位。 6.轴向拉伸和压缩强度条件的表达式是:,用该强度条件可解决的三类强度问题是:、、。 7.二根不同材料的等直杆,承受相同轴力,且它们的截面面积及长度都相等,则:(1)二根杆横截面上的应力;(2)二根杆的强度; (3)二根杆的绝对变形。(填相同或不相同) 8.在承受剪切的构件中,发生的截面,称为剪切面;构件在受剪切时,伴随着发生作用。 9.构件在剪切变形时的受力特点是 ;变形特点是 。剪切变形常发生在零件上,如螺栓、键、销钉等。 10.剪切面在两相邻外力作用线之间,与外力。 11.圆轴扭转时,横截面上的切应力与半径,在同一半径的圆周上各点的切应力,同一半径上各点的切应力按规律分布,轴线上的切应力为,外圆周上各点切应力。 12.圆轴扭转时的平面假设指出:扭转变形后,横截面本身的形状、大小,相邻截面间的距离,各截面在变形前后都保持为,只是绕轴线,因此推出:横截面上只存在应力,而不存在应力。 13.梁在弯曲变形时,梁内梁在弯曲变形时,梁内有一层纵向纤维,叫做中性层,它与的交线称为中性轴。 14.一般情况下,直梁平面弯曲时,对于整个梁来说的正应力为零;对于梁的任意截面来说的正应力为零。 二、选择题 1.以下关于图示AC杆的结论中,正确的是()。 A.BC段有变形,没有位移;B.BC段没有变形,有位移; C.BC段没有变形,没有位移;D.BC段有变形,有位移。 2.经过抛光的低碳钢试件,在拉伸过程中表面会出现滑移线的阶段是() A.弹性阶段;B.屈服阶段;C.强化阶段;D.颈缩阶段。 3.两个拉杆轴力相等、截面积相等但截面形状不同,杆件材料不同,则以下结论正确的是()。

复合材料力学作业

复合材料力学课程设计 一、 层合板失效载荷计算 1、 问题描述: 已知:九层层合板,正交铺设,铺设比为0.2m =。受载荷x N N =,其余载荷均为零。每个单层厚度为0.2t mm =。玻璃/环氧单层板性能:41 5.4010E Mpa =?, 42 1.8010E Mpa =?,120.25ν=,3128.8010G Mpa =?,31.0510t c X X Mpa ==?, 2.810t Y Mpa =?,14.010c Y Mpa =?, 4.210S Mpa =?。 求解:1、计算各铺层应力? 2、最先一层失效的载荷? 2、 使用mat lab 编程求解: 将输入文件“input.txt ”经由程序“strain.m ”运行,得到输出文件“output.txt ”。求解程序见附录一。 3、计算结果:(其中R 是强度比) 求单层刚度 Q1: 18382.97872 4595.74468 0.00000 4595.74468 55148.93617 0.00000 0.00000 0.00000 8800.00000 Q2: 55148.93617 4595.74468 0.00000 4595.74468 18382.97872 0.00000 0.00000 0.00000 8800.00000 Q3: 18382.97872 4595.74468 0.00000 4595.74468 55148.93617 0.00000

0.00000 0.00000 8800.00000 Q4: 55148.93617 4595.74468 0.00000 4595.74468 18382.97872 0.00000 0.00000 0.00000 8800.00000 Q5: 18382.97872 4595.74468 0.00000 4595.74468 55148.93617 0.00000 0.00000 0.00000 8800.00000 Q6: 55148.93617 4595.74468 0.00000 4595.74468 18382.97872 0.00000 0.00000 0.00000 8800.00000 Q7: 18382.97872 4595.74468 0.00000 4595.74468 55148.93617 0.00000 0.00000 0.00000 8800.00000 Q8: 55148.93617 4595.74468 0.00000 4595.74468 18382.97872 0.00000 0.00000 0.00000 8800.00000 Q9: 18382.97872 4595.74468 0.00000 4595.74468 55148.93617 0.00000 0.00000 0.00000 8800.00000 求中面应变 Ez: 0.0306235*R -0.00290497*R

复合材料力学上机作业

《复合材料力学》课程上机指导书 (力学121-2) 河北工业大学机械学院力学系 2015年9月

目录 作业1 单向板刚度及柔度的计算 (1) 作业2 单向板的应力、应变计算 (2) 作业3 绘制表观工程常数随 的变化规律 (3) 作业4 绘制强度准则的理论曲线(包络线) (4) 作业5 层合板的刚度计算 (5) 作业6 层合板的强度计算 (6) 附录作业提交说明……………………………………………. . 7

作业1 单向板刚度及柔度的计算 一、要 求 (1)选用FORTRAN 、VB 、MAPLE 或MATLAB 编程计算下列各题; (2)上机报告内容:源程序、题目内容及计算结果; (3)材料工程常数的数值参考教材自己选择; (4)上机学时:2学时。 二、题 目 1、已知单层板材料工程常数1E ,2E ,12G ,计算柔度矩阵[S ]和刚度矩阵[Q ]。(玻璃/环氧树脂单层板材料的MPa 1090.341?=E ,MPa 1030.142?=E ,MPa 1042.0412?=G ,25.021=μ) 2、已知单层板材料工程常数1E ,2E ,12G ,21μ及θ,计算柔度矩阵][S 和刚度矩阵][Q 。(M P a 1090.341?=E ,MPa 1030.142?=E ,MPa 1042.0412?=G ,25.021=μ,?=30θ)

作业2 单向板的应力、应变计算 一、要 求 1、选用FORTRAN 、VB 、MAPLE 或MATLAB 编程计算下列各题; 2、上机报告内容:源程序、题目内容及计算结果; 3、材料工程常数的数值请参考教材, 自己选择; 4、上机学时:2学时。 二、题 目 1、已知单层板的应力x σ、y σ、xy τ,工程常数1E ,2E ,12G ,21μ及θ,求x ε、 y ε、xy γ;1σ、2σ、12τ;1ε、2ε、12γ。 (知?=30θ,应力MPa 160=x σ,MPa 60=y σ,MPa 20=xy τ,工程常数MPa 1090.341?=E ,MPa 1030.142?=E ,MPa 1042.0412?=G ,25.021=μ,?=30θ) 2、已知1σ、2σ、12τ,工程常数1E ,2E ,12G ,21μ及θ,求1ε、2ε、12γ;x ε、y ε、 xy γ;x σ、y σ、xy τ。 (知MPa 1001=σ,MPa 302-=σ,MPa 1012=τ,MPa 1090.341?=E ,MPa 1030.142?=E ,MPa 1042.0412?=G ,25.021=μ,?=30θ)

相关文档
相关文档 最新文档