文档视界 最新最全的文档下载
当前位置:文档视界 › 换热器

换热器

换热器
换热器

3.3 换热器选择

3.3.1 换热器的类型

换热器种类很多,按热量交换原理和方式,可分为混合式、蓄热式和间壁式三类。其中间壁式换热器按传热面的形状和结构可分为:管壳式、板式、管式、液膜式、板壳式与热管。目前,在换热设备中,使用量最大的是管壳式换热器。

管壳式换热器又称列管式换热器,该类换热器具有可靠性高、适应性广等优点,在各工业领域中得到最广泛的应用。近年来,尽管受到了其他新型换热器的挑战,但反过来也促进其自身的发展。在换热器向高参数、大型化发展的今天,管壳式换热器仍占主导地位。

列管式换热器可根据其结构特点,分为固定管板式、浮头式、U形管式、填料函式和釜式重沸器五类。各类换热器特性如下表。

表3-1 各类换热器特性

3.3.2 换热器选型原则

换热器选型时需要考虑的因素很多,主要是流体的性质;压力、温度及允许压力降得范围;对清洗、维修的要求;材料价格;使用寿命等。本项目选用目前应用最广泛的列管式换热器。

列管式换热器中常用的是固定管板式和浮头式两种。一般要根据物流的性质、流量、腐蚀性、允许压降、操作温度与压力、结垢情况和检修清洗等要素决定选用列管换热器的型式。从经济角度看,只要工艺条件允许,应该优先选用固定管板式换热器。但遇到以下两种情况时,应选用浮头式换热器。

①壳壁与管壁的温差超过70℃;壁温相差50~70℃。而壳程流体压力大于

0.6MPa时,不宜采用有波形膨胀节的固定管板式换热器。

②壳程流体易结垢或腐蚀性强时不能采用固定管板式换热器。

综合考虑本次设计任务及制造、经济等个方面,本次设计主要采用浮头式和固定管板式换热器。

3.3.3换热管规格选择

①管子的外形:列管换热器的管子外形有光滑管和螺纹管两种。一般按光滑管设计。当壳程膜系数低,采取其他措施效果不显著时,可选用螺纹管,它能强化壳程的传热效果,减少结垢的影响。

②管子的排列方式:相同壳径时,采用正三角形排列要比正方形排列可多排布管子,使单位传热面积的金属耗量降低。一般壳程流体不易结垢或可以进行化学清洗的场合下,推荐用正三角形排列。必须进行机械清洗的场合,则采用正方形排列。

③管子直径:管径越小换热器越紧凑、越便宜。但管径越小换热器压降越大。越大,为了满足允许的压力降一般选用Ф19mm的管子。对于易结垢的物料,为方便清洗,采用外径为25mm的管子。对于有气液两相流的工艺物流,一般选用较大的管径。直径小的管子可以承受更大的压力,而管壁较薄,有利传热;相同的壳径,可以排较多的小管子,使传热面积增大,单位传热面积的金属耗量降低。所以,在管程结垢不是很严重,又允许压力降较高的情况下,采用Φ19mm×2mm 的管子是合理的。

④管长:无相变换热时,管子较长,传热系数增加。在相同传热面时,采用长管管程数较少,压力降小,而且每平方米传热面的比价也低。但是,管子过长

给制造带来困难。壳径较大的换热器采用较长的管子可降低单位传热面积的金属耗量,更为经济。因此,一般选用管长4~6m。对于大面积或无相变的换热器可以选用8~9m的管长。管心距:管心距小、设备紧凑,但将引起管板增厚、清洁不便、壳程压降增大,一般选用范围为管外径的1.25~1.5倍。

上述情况,在选用标准系列设备或设计非定型设备时,结合任务的要求,作出适当的选择。

3.4 工艺条件选择

3.4.1 流体通道

流体通道的选择可参考以下原则进行:

①不洁净和易结垢的流体宜走管程,以便于清洗管子;

②腐蚀性流体宜走管程,以免管束和壳体同时受腐蚀,而且管内也便于检修和清洗;

③高压流体宜走管程,以免壳体受压,并且可节省壳体金属的消耗量;

④饱和蒸汽宜走壳程,便于及时排出冷凝液,且蒸汽较洁净,不易污染壳程;

⑤被冷却的流体宜走壳程,可利用壳体散热,增强冷却效果;

⑥有毒流体宜走管程,以减少流体泄漏;

⑦粘度较大或流量较小的流体宜走壳程,因流体在有折流板的壳程流动时,由于流体流向和流速不断改变,在很低的雷诺数(Re<100)下即可达到湍流,可提高对流传热系数。但是有时在动力设备允许的条件下,将上述流体通入多管程中也可得到较高的对流传热系数。

在选择流体通道时,以上各点常常不能兼顾,在实际选择时应抓住主要矛盾。如首先要考虑流体的压力、腐蚀性和清洗等要求,然后再校核对流传热系数和阻力系数等,以便作出合理的选择。

3.4.2 流速

换热器中流体流速的增加,可使对流传热系数增加,有利于减少污垢在管子表面沉积的可能性,即降低污垢热阻,使总传热系数增大。然而流速的增加又使流体流动阻力增大,动力消耗增大。因此,适宜的流体流速需通过技术经济核算

来确定。充分利用系统动力设备的允许压降来提高流速是换热器设计的一个重要原则。在选择流体流速时,除了经济核算以外,还应考虑换热器结构上的要求。

表3-2给出的是工业上常用的流速范围。除此之外,还可按照液体的粘度或压力选择流速,按材料选择容许流速以及按照液体的易燃、易爆程度选择安全允许流速。

表3-2 常用流体流速取值范围

3.4.3 温度

若换热器中冷、热流体的温度都由工艺条件所规定,则不存在确定流体两端温度的问题。若已知流体的进口(出口)温度,则出口(进口)温度则可参考以下原则确定:

①冷却水的出口温度不宜高于60℃,以免结垢严重;

②高温端的温差不应小于20℃,低温端的温差不应小于5℃。当在两工艺物流之间进行换热时,低温端的温差不应小于20℃;

③在冷却或者冷凝工艺物流时,冷却剂的入口温度应高于工艺物流中易结冻

组分的冰点,一般高5℃;

④在对反应物进行冷却时,为了控制反应,应维持反应物流和冷却剂之间

⑤当冷凝带有惰性气体的工艺物料时,冷却剂的出口温度应低于工艺物料的露点,一般低5℃;

⑥换热器的设计温度应高于最大使用温度,一般高15°C;

3.4.4 压降

增强工艺物流流速,可增大传热系数,使换热器结构紧凑,但增加流速将关系到换热器的压力降,磨蚀和振动破坏加剧等。压力降增加使动力消耗增强,因此,最大允许的压力降范围一般限制如下表。

表3-3允许的压力降范围

3.4.5 管程与壳程

当流体的流量较小而所需的传热面积较大时,需要管数很多,这可能会使流速降低,对流传热系数减小。为了提高流速,可采用多管程。但是管程数过多将导致流动阻力增大,平均温差下降,同时由于隔板占据一定面积,使管板上可利用的面积减少。设计时应综合考虑。采用多管程时,一般应使各程管数大致相同。

当列管式换热器的温差修正系数较大时,可采用多壳程,如在壳体内安装与管束平行的隔板。但由于在壳体内纵向隔板的制造、安装和检修都比较困难,故一般将壳体分为两个或多个,将所需总管数分别装在直径相等而较小的壳体中,然后将这些换热器串联使用。

3.4.6 折流板

折流板又称折流挡板,安装折流板的目的是为了提高壳程流体的对流传热系数。其常用型式有弓形折流板、圆盘形折流板以及螺旋折流板等。常用型式为弓形折流板。折流板的形状和间距对壳程流体的流动和传热具有重要影响。

通常弓形缺口的高度约为壳体直径的10~40%,一般取20~25%。两相邻折流板的间距也需选择适当,间距过大,则不能保证流体垂直流过管束,流速减小,对流传热系数降低;间距过小,则流动阻力增大,也不利于制造和检修。一般折流板的间距取为壳体内径的20~100%。

3.5 换热器(E0411)设计

3.5.1工艺模拟数据

在初步选定换热器的形式后,根据任务要求利用Aspen 进行模拟计算,模拟出来的换热器(E0411)工艺参数如图所示。

表3-4 E0411工艺参数

3.5.2类型选择

该换热器位于吸收塔塔底,为HRS热回收系统中的热量交换设备,具有专利设计。由于该换热器构造类似釜式再沸器,因此按照釜式再沸器的规格对此换热器进行设计。

3.5.3类型选择

该换热器的作用是用从吸收塔出来的高温浓硫酸来加热锅炉给水,生产低压蒸汽,以收集余热,提高热能利用率,同时使浓硫酸冷却。由于工艺物料均为液相,因此选择浓硫酸走管程,一方面能与壳程的锅炉给水换热,另一方面在管程

内也能减少空气接触而发生的热量损失。

3.5.4设计温度

该换热器壳程工作温度为170.48~176.58℃,管程工作温度为190~214.72℃,进出口温差大于10℃,符合工业实际。设计温度以工作温度为依据。这里取壳

程的设计温度为200℃,管程的设计温度为200℃。

3.5.5设计压力

这里取壳程设计压力为0.30MPa,管程的设计压力为0.90MPa。

EDR中换热器的压降设置为自动默认值,也可自己设置压降,出口绝压小

于0.1MPa(真空条件),压降不大于进口压强的40%,出口绝压大于0.1MPa,压降不大于进口压强的20%。

3.5.6尺寸

根据EDR推荐的设计方案,选择其中较为合理的一组。结合《热交换器形式与基本参数》(GB/T 28712.2-2012)第3部分:《U型管板式热交换器》规定,选择换热管内径为19mm,壁厚2mm,管心距25mm,排列方式为正三角形,壳程工程直径(内径)为325mm,壁厚10mm,换热管长度3000mm,折流板间距450mm。管程数为2,换热管数量38根。其余参数为EDR默认值。

图3-1 E0411计算结果表

由计算结果可以看出,换热管换热面积为13.4m 2,设计余量为36%,符合设计要求;流态分布均匀,无气液混合进出料,且压降均在合理范围内。总传热系数为1247.9W/(m 2·K ),进而确定换热器E0411型号为

其表示意义为(按前后顺序):

BKU —封头管箱;325—换热器公称直径(mm );0.30—管程设计压力(MPa ); 0.90—壳程设计压力(MPa );13.4—换热面积(m 2);3—换热管长(m ); 19—换热管外径(mm );2—双管程;Ⅱ—Ⅱ级管束。

3.5.7设备条件图

换热器设备结构图如下:

Ⅱ219

3

4.1390.030.0325----

BKU

图3-2 E0411设备尺寸图

图3-3 E0411列管布置图

3.5.8 设计校核说明书

设计初步完成后,使用SW6-2011强度校核软件对换热器进行强度校核。

表3-5 输入数据值

由SW6-2011计算结果如下:

表3-6计算结果表

具体计算报告如下:

表3-7设计计算条件表

筒体简图

椭圆封头简图

筒体简图

椭圆封头简图

筒体简图

MP

C

mm

MP

MP

mm

mm

表3-14换热管外压计算结果表

MPa

C

mm

MPa

MPa

mm

mm

表3-15设备法兰复核

换热器施工方案 (1)

换热器施工方案班级:安装1101班 姓名:段洪章 学号:21 1.编制依据 [1]《石油化工换热设备施工及验收规范》SH/T3532-2005 [2]《石油化工设备和管道涂料防腐蚀技术规范》SH3022-1999 [3]《管壳式换热器防腐涂层施工技术条件》70BJ013-2005 [4]《管壳式换热器》GB151-1999 [5]《石油化工施工安全技术规程》SH3505-1999 [6]《钢制卧式容器》JB/T4731-2005 2主要工程量一览表

3技术交底 施工前,技术员必须组织施工班组人员进行技术交底,未进行技术交底不准施工。技术交底必须做到交底到每个施工工人,使所有施工人员都了解施工技术和质量要求,清楚施工工艺 4施工准备 熟悉图纸,编写施工技术措施,对施工人员进行技术交底。

做好施工机具、量具、手段用料及消耗材料的准备工作。 5设备验收 1).到货设备应具备下列技术文件和资料: a.产品合格证书; b.产品技术特性表,应包括设计压力、试验压力、设计温度、工作介质、试验介质、换热面积、设备重量、设备类别及特殊要求; c.产品质量证明书,应包括下列内容: (1)主要受压元件材料的化学成分、力学性能及标准规定的复验项目的复验值;(2)无损检测及焊接质量的检查报告(包括超过两次返修的记录) (3)通球记录; (4)奥氏体不锈钢设备的晶间腐蚀试验报告(设计有要求时) (5)设备热处理报告(包括时间——温度记录曲线); (6)外观及几何尺寸检查报告; (7)压力试验和致密性试验报告。 d.设备制造竣工图。 2).设备开箱检验应按照装箱单和竣工图清点验收下列各项:

热管换热器的性能比较

热管换热器的性能比较 发布时间:2011-3-25 随着我国经济实力的增长和人民物质文化生活水平的不断提高;高层建筑的迅速发展,高气密化、高隔热化影响到人们的工作和生活环境,人们对室内空气品质的要求也越来越高,都渴望拥有一个健康、舒适的室内环境,特别是经历了SARS的袭击,人们越来越注重室内空气品质,对引进室外新风换气提出了更高的要求,但是换气必然会带来能量的损失,引入新风需要消耗更多的能量,因此需要考虑一种有效的节能方法,通过热回收装置使新风和排风进行热交换。热交换器是空气调节和余热回收的关键装置。 一、各类热交换器的性能与利用分析 目前的热交换器有显热和全热回收两种形式。不同形式的性能、效率和利用方式,设备费的高低、维护保养的难易也各不相同,它们的综合比较如下表所示: 热回收方式 效 率设 备 费 维护 保养 辅 助 设 备 占 用 空 间 交 叉 污 染 自 身 耗 能 接 管 灵 活 抗冻 能力使用 寿命 转轮换热器高高中无大有有差差中 热管换热器较 高中易无中无无中好优 板式显热换热器低低中无大有无差中良 板翅式全热换热 器较 高 中中无大有无差中中 中间热媒式低低中有中无多好中良下面介绍几种常用的热交换器。 1. 转轮式全热换热器 转轮式换热器的表面为蜂窝状,涂上一层吸附材料作干燥剂。将转轮置于风道之间,使其分成两部分。来自空调房间的排风从一侧排出,室外空气以相反的方向从另一侧进入。为加大换热面积,轮子缓慢旋转(10~12转/分)。轮子的一半从较热空气中吸收存储热量,旋转到另一侧时,释放热量,使热量发生转移。附着表面的干燥剂将来自高湿度的空气流里的湿气冷凝后,通过干燥剂吸收,旋转到另一侧时,将湿气释放到低湿度的气流里,这个过程将潜热转移。 换热器旋转体的两侧设有隔板,使新风与排风逆向流动。转轮芯片用特殊的纸或铝箔制成,其表面涂上吸湿性涂层,形成热、湿交换的载体,它以10-12r/min的速度旋转,先把排风中的冷热量收集在蓄热体(转轮芯)里,然后传递给新风,空气以2.5-3.5m/s的流速通过蓄热体,靠新风与排风的温差和蒸汽分压差来进行热湿交换。所以,既能回收显热,又能回收潜热。 1) 转轮换热器的功能与适用范围 功能适用范围

换热器清洗标准

气化车间煤气水分离、酚回收换热器换热效果不好时需要清 洗的标准 由于气化车间物料中含有大量的焦油、粉尘、造成换热器在使用过程中污堵,降低了换热器的换热效果,使控制指标偏离设计值,在2018年度煤气水分离、酚回收换热器换热效果急剧下降,换热器清洗维护费用过大,已影响了装置的正常运行。 针对此情况在2019年1月17日技术研发中心,组织生产计划部、机动部、气化车间召开关于煤气水分离、酚回收装置换热器清洗标准,来保障装置正常运行,经会议研究讨论决定,气化车间制定出煤气水分离和酚回收换热器需要清洗时的标准,生产计划部和技术研发中心对其进行确认,气化车间按此标准执行。 车间根据运行需求将换热器清洗标准制定如下: 一、煤气水分离工段:煤气水分离装置为保证油水分离效果,控制初焦油分离器(F623a/b04A/B/C/D)操作温度70-75℃,最终油分离器(F623a/b05A/B/C/D)操作温度40-45℃,温度过高会造成油水乳化。 控制初焦油分离器操作温度依靠换热器余热回收器(C623a/b01)、含尘煤气水换热器(C623a/b02A/B/C/D)和含尘煤气水换热器(C623a/b04A/B/C/D)换热效果决定,控制最终油分离器操作温度依靠换热器煤气水冷却器(C623a/b06A/B/C/D)换热效果决定。 1.气化车间会议讨论决定,含尘煤气水(TIA623a/b011)高

于80℃时,车间根据实际运行情况,申请对C623a/b01、C623a/b02A/B/C/D和C623a/b04A/B/C/D换热器清洗。 2.煤气水冷却器出口(TIA623a/b023)温度高于50℃时,车间根据实际运行情况,要求清理换热器C623a/b06A/B/C/D。 3.排查依据如下:因主要控制点为管程含尘煤气水出口温度,清洗标准依据管程设计温度值定。 二、酚回收装置:酚回收装置为保证高负荷处理气化炉产水,合格外送稀酚水,需要控制脱酸塔进料温度125-130℃,萃取塔进料温度40-45℃,外送稀酚水温度夏季控制35-37℃(冬季温度控制40-50℃),脱酸塔塔釜温度控制155-160℃,水塔塔釜温度控制100-105℃,酚塔塔釜温度195-205℃,水塔顶部冷却器出口温度25-30℃,酚塔顶部冷却器出口温度25-30℃,三级分凝冷却器出口温度45-50℃,粗酚换热器出口80℃,水塔进料温度70-75℃,醚系统温度控制20-30℃,温度过高或者过低都会影响酚回收装置正常运行。 控制脱酸塔进料温度依靠酚水一级换热器(C62401A/R)、酚水

浅谈换热器的常见问题及解决方法

浅谈换热器的常见问题及解决方法 【摘要】随着人们物质生活水平的不断提高,工业需求也日益加大,而换热器作为水主要设备在整个加工过程中占有重要地位。本文主要探讨了换热器的常见问题,并深入研究了其解决办法。 【关键词】换热器;常见;问题;解决;方法 换热器是化工,石油,动力,食品及其它许多工业部门的通用设备,在生产中占有重要地位.在化工生产中换热器可作为加热器、冷却器、冷凝器、蒸发器和再沸器等,应用更加广泛。换热器种类很多,但根据冷、热流体热量交换的原理和方式基本上可分三大类即:间壁式、混合式和蓄热式。下面主要讨论一下换热器的常见问题及解决方法。 在管式换热器内进行换热的两种流体,一种在管内流动,其行程称为管程;一种在管外流动,其行程称为壳程。管束的壁面即为传热面。为提高管外流体给热系数,通常在壳体内安装一定数量的横向折流档板。折流档板不仅可防止流体短路,增加流体速度,还迫使流体按规定路径多次错流通过管束,使湍动程度大为增加。常用的档板有圆缺形和圆盘形两种,前者应用更为广泛.。流体在管内每通过管束一次称为一个管程,每通过壳体一次称为一个壳程。为提高管内流体的速度,可在两端封头内设置适当隔板,将全部管子平均分隔成若干组。这样,流体可每次只通过部分管子而往返管束多次,称为多管程。同样,为提高管外流速,可在壳体内安装纵向档板使流体多次通过壳体空间,称多壳程。在管式换热器内,由于管内外流体温度不同,壳体和管束的温度也不同。 1.机械及热应力损伤原因及解决方法 1.1换热设备会在使用中机械损伤类型。 1.1.1管子震动的损害 (1)碰撞损坏 由于发生振动管子的振幅大, 使得管子与管子, 管子与壳体之间的碰撞会导致管壁损坏破裂。 (2)折流板对管子损坏 由于管子振动, 折流板对穿过折流板的管子会有切割磨损, 严重的会使管壁破裂。 (3)影响管板的连接

换热器施工方案

换热器施工方案 班级:安装1101班姓名:段洪章 学号:21

1.编制依据 [1]《石油化工换热设备施工及验收规范》 SH/T3532-2005 [2]《石油化工设备和管道涂料防腐蚀技术规范》 SH3022-1999 [3]《管壳式换热器防腐涂层施工技术条件》 70BJ013-2005 [4]《管壳式换热器》 GB151-1999 [5]《石油化工施工安全技术规程》 SH3505-1999 [6]《钢制卧式容器》 JB/T4731-2005 2主要工程量一览表

3技术交底 施工前,技术员必须组织施工班组人员进行技术交底,未进行技术交底不准施工。技术交底必须做到交底到每个施工工人,使所有施工人员都了解施工技术和质量要求,清楚施工工艺 4施工准备 熟悉图纸,编写施工技术措施,对施工人员进行技术交底。 做好施工机具、量具、手段用料及消耗材料的准备工作。 5设备验收 1).到货设备应具备下列技术文件和资料: a.产品合格证书; b.产品技术特性表,应包括设计压力、试验压力、设计温度、工作介质、试验介质、换热面积、设备重量、设备类别及特殊要求; c.产品质量证明书,应包括下列内容: (1)主要受压元件材料的化学成分、力学性能及标准规定的复验项目的复验值;(2)无损检测及焊接质量的检查报告(包括超过两次返修的记录) (3)通球记录; (4)奥氏体不锈钢设备的晶间腐蚀试验报告(设计有要求时) (5)设备热处理报告(包括时间——温度记录曲线); (6)外观及几何尺寸检查报告; (7)压力试验和致密性试验报告。 d.设备制造竣工图。

2).设备开箱检验应按照装箱单和竣工图清点验收下列各项: a.清点箱数、箱号及检查包装情况; b.核对设备名称、型号及规格; c.检查接管的规格、方位及数量; d.核对设备备件、附件的规格尺寸、型号及数量; e.检查表面损伤、变形及锈蚀情况; 3) .设备开箱检验应在有关单位参加下进行,检验结果应签字认可; 6设备保管 1).设备和备件、附件及技术文件等验收后应清点登记,并妥善保管; 2).换热设备存放地点应设在地势较高、易排水、道路畅通的场所; 3).在露天存放的换热设备应用不透明的覆盖物遮盖,所有管口必须封闭; 4).不锈钢换热设备的壳体、管束及板片等不得与碳钢设备及碳钢材料接触混放; 5).采用氮封或其它惰性气体密封换热设备应保持气封的压力;脱脂后的设备应防止油脂等有机物的污染。 7设备基础中间交接 1). 设备安装前应对基础及预制构件进行中间交接,交方应提供基础标高和纵横向中心线标记; 2). 设备安装前,应对基础进行检查,并符合下列规定: a.混凝土基础的外形尺寸、坐标、位置及预埋件应符合设计图样的要求; b.混凝土基础的允许偏差应符合下表的规定: 混凝土基础的允许偏差

热管换热器的结构形式

热管换热器的结构形式 (三)热管换热器的结构形式以热管为传热单元的热管换热器是一种新型高效换热器,其结构如图片4- 50、图片4-51所示,它是由壳体、热管和隔板组成的。热管作为主要的传热元件,是一种具有高导热性能的传热装置。它是一种真空容器,其基本组成部件为壳体、吸液芯和工作液。将壳体抽真空后充入适量的工作液,密闭壳体便构成一只热管。当热源对其一端供热时,工作液自热源吸收热量而蒸发汽化,携带潜热的蒸汽在压差作用下,高速传输至壳体的另一端,向冷源放出潜热而凝结,冷凝液回至热端,再次沸腾汽化。如此反复循环,热量乃不断从热端传至冷端。 【图片4-50】 热管换热器。 【图片4-51】 热管示意图。热管按冷凝液循环方式分为吸液芯热管、重力热管和离心热管三种。吸液芯热管的冷凝液依靠毛细管的作用回到热端,这种热管可以在失重情况下工作;重力热管的冷凝液是依靠重力流回热端,它的传热具有单向性,一般为垂直放置离心热管是靠离心力使冷凝液回到热端,通常用于旋转部件的冷却。热管按工作液的工作温度分为深冷热管、低温热管、中温热管和高温热管四种。深冷热管在200K以下工作,工作液有氮、氢、

氖、氧、甲烷、乙烷等;低温热管在200~550K 范围内工作,工作液有氟里昂、氨、丙酮、乙醇、水等;中温热管在550~750K范围内工作,工作液有导热姆 A、水银、铯、水及钾─钠混合液等;高温热管在750K 以上工作,工作液有液态金属钾、钠、锂、银等。热管的传热特点是热管中的热量传递通过沸腾汽化、蒸汽流动和蒸汽冷凝三步进行,由于沸腾和冷凝的对流传热强度都很大,而蒸汽流动阻力损失又较小,因此热管两端温度差可以很小,即能在很小的温差下传递很大的热流量。因此,它特别适用于低温差传热及某些等温性要求较高的场合。热管换热器具有结构简单、使用寿命长、工作可靠、应用范围广等优点,可用于气─气、气─液和液─液之间的换热过程。

第1章 换热器设计软件介绍与入门

第1章换热器设计软件介绍与入门 孙兰义 2014-11-2

主要内容 1 ASPEN EDR软件 1.1 Aspen EDR简介 1.2 Aspen EDR图形界面 1.3 Aspen EDR功能特点 1.4 Aspen EDR主要输入页面 1.5 Aspen EDR简单示例应用 2 HTRI软件 2.1 HTRI简介 2.2 HTRI图形界面 2.3 HTRI功能特点 2.4 HTRI主要输入页面 2.5 HTRI简单示例应用

Aspen Exchanger Design and Rating(Aspen EDR)是美国AspenTech 公司推出的一款传热计算工程软件套件,包含在AspenONE产品之中。 Aspen EDR能够为用户用户提供较优的换热器设计方案,AspenTech 将工艺流程模拟软件和综合工具进行整合,最大限度地保证了数据的一致性,提高了计算结果的可信度,有效地减少了错误操作。 Aspen7.0以后的版本已经实现了Aspen Plus、Aspen HYSYS和Aspen EDR的对接,即Aspen Plus可以在流程模拟工艺计算之后直接无缝集成转入换热器的设计计算,使Aspen Plus、Aspen HYSYS流程计算与换热器详细设计一体化,不必单独地将Aspen Plus计算的数据导出再导入给换热器计算软件,用户可以很方便地进行数据传递并对换热器详细尺寸在流程中带来的影响进行分析。

Aspen EDR的主要设计程序有: ①Aspen Shell & Tube Exchanger:能够设计、校核和模拟管壳式换热器的传热过程 ②Aspen Shell & Tube Mechanical:能够为管壳式换热器和基础压力容器提供完整的机械设计和校核 ③HTFS Research Network:用于在线访问HTFS的设计报告、研究报告、用户手册和数据库 ④Aspen Air Cooled Exchanger :能够设计、校核和模拟空气冷却器 ⑤Aspen Fired Heater:能够模拟和校核包括辐射和对流的完整加热系统,排除操作故障,最大限度的提高效率或者找出潜在的炉管烧毁或过度焦化 ⑥Aspen Plate Exchanger :能够设计、校核和模拟板式换热器; ⑦Aspen Plate Fin Exchanger:能够设计、校核和模拟多股流板翅式换热器

常见换热器结构及优缺点

6.7 换热器 换热器是化工、石油、食品及其他许多工业部门的通用设备,在生产中占有重要地位。化工生产中,换热器可作为加热器、冷却器、冷凝器、蒸发器和再沸器等,应用甚为广泛。由于生产规模、物料的性质、传热的要求等各不相同,故换热器的类型也是多种多样。根据冷、热流体热量交换的原理和方式基本上可分为三大类:混合式、蓄热式、间壁式。 6.7.1 直接接触式(混合式) 在这类换热器中,冷热两种流体通过直接混合进行热量交换。在工艺上允许两种流体相互混合的情况下,这是比较方便和有效的,且其结构比较简单。直接接触式换热器常用于气体的冷却或水蒸汽的冷凝。 6.7.2 蓄热式 蓄热式换热器又称为蓄热器,它主要由热容量较大的蓄热室构成,室中可填耐火砖或金属带等作为填料。当冷、热两种流体交替地通过同一蓄热室时,即可通过填料将得自热流体的热量,传递给冷流体,达到换热的目的。这类换热器的结构简单,且可耐高温,常用于气体的余热及其冷量的利用。其缺点是设备体积较大,而且两种流体交替时难免有一定程度的混合。 6.7.3 间壁式 这一类换热器的特点是在冷热两种流体之间用一金属壁(或石墨等导热性好的非金属)隔开,以使两种流体在不相混合的情况下进行热量交换。由于在三类换热器中,间壁式换热器应用最多,因此下面重点讨论间壁式换热器。 (1)夹套式换热器 结构:夹套装在容器外部,在夹套和容器壁之间形成密闭空间,成为一种流体的通道。 优点:结构简单,加工方便。 缺点:传热面积A小,传热效率低。 用途:广泛用于反应器的加热和冷却。 为了提高传热效果,可在釜内加搅拌器或蛇管和外循环。 (2)沉浸式蛇管换热器 结构:蛇管一般由金属管子弯绕而制成,适应容器所需要的形状,沉浸在容器内,冷热流体在管内外进行换热。 优点:结构简单,便于防腐,能承受高压。 缺点:传热面积不大,蛇管外对流传热系数小, 为了强化传热,容器内加搅拌。 (3)喷淋式换热器 结构:冷却水从最上面的管子的喷淋装置中淋下来,沿管表面流下来,被冷却的流体从最上面的管子流入,从最下面的管子流出,与外面的冷却水进行换热。在下流过程中,冷却水可收集再进行重新分配。 优点:结构简单、造价便宜,能耐高压,便于检修、清洗,传热效果好。 缺点:冷却水喷淋不易均匀而影响传热效果,只能安装在室外。 用途:用于冷却或冷凝管内液体。 (4)套管式换热器 结构:由不同直径组成的同心套管,可根据换热要求,将几段套管用U形管连接,目的增加传热面积;冷热流体可以逆流或并流。 优点:结构简单,加工方便,能耐高压,传热系数较大,能保持完全逆流使平均对数温差最大,可增减管段数量应用方便。 缺点:结构不紧凑,金属消耗量大,接头多而易漏,占地较大。 用途:广泛用于超高压生产过程,可用于流量不大,所需传热面积不多的场合。 (5)列管式换热器(管壳式换热器) 列管式换热器又称为管壳式换热器,是最典型的间壁式换热器,历史悠久,占据主导作用。主要由壳体、管束、管板、折流挡板和封头等组成。一种流体在管内流动,其行程称为管程;另一种流体在管外流动,其行程称为壳程。管束的壁面即为传热面。

热管换热器原理介绍

热管换热器原理介绍 晨怡热管2009-3-10 23:40:06 热管做为超导热体的高效传热元件,利用全封闭真空管内部工质的连续相变来完成热量的持续转移,自身并不产生热量。具有很高的导热性及良好的等温性。冷热两侧的传热面积可任意改变。可远距离传热,可控制温度等优点,目前已广泛应用于化工、电力、冶金、石化、锅炉、建材轻纺、环保、干燥等行业中,己取得了良好的使用效果和显著的经济效益。 工作原理:热管内蒸发段工质受热后将沸腾或蒸发,吸收外部热源热量,产生汽化潜热,由液体变为蒸汽,产生的蒸汽在管内一定压差的作用下,流到冷凝段,蒸汽遇冷壁面及外部冷源,凝结成液体,同时放出汽化潜热,并通过管壁传给外部冷源,冷凝液靠重力(或吸液芯)作用下回流到蒸发段再次蒸发。如此往复,实现对外部冷热两种介质的热量传递与交换。 应用范围:适用温度为150-450oC的烟气及废气,可回收余热30%-50%,节约燃料5%-10%,可用于加热空气,水及产生蒸汽。按热管两端的冷热流体的不同,可选择气—气型热管换热器、气—液型热管换热器、气—汽型热管换热器、液—液型热管换热器. 气-气型热管换热器

气-液型热管换热器 气-液型热管元件 带翅片热管 应用领域: 化工:合成氨厂、化学反应器、燃烧炉、化工原料干燥、沸腾炉等 石化:裂解炉、加热炉、焦化、常减压、加压、制氢、干燥塔等的余热回收、催化裂化再生取热器 电力:烟气脱硫、废气热回收、锅炉空气预热、循环水冷却

冶金:高炉热风炉、冶炼炉、退火炉、窑炉 交通:柴油机余热利用、蒸汽机车/汽车排气余热利用轻工:粮食/食品烘干、热风炉 热管余热锅炉 炼铁烧结工艺热回收 电炉余热回收

板式换热器标准招标文件范本

绿城工程 板式热交换设备采购 招 标 文 件 招标单位: 招标时刻:

招标文件目录 第一部分投标邀请 第二部分投标须知前附表 第三部分投标人须知 一、讲明 二、招标文件 三、投标文件 四、开标和评标 五、授予合同 第四部分招标内容和技术规格书 第五部分合同要紧条款 第六部分投标文件格式 附件一、投标函 附件二、开标一览表 附件三、投标设备型号规格、数量、原产地、价格表 附件四、商务偏离表 附件五、技术规格偏离表及建议 附件六、法定代表人授权书 附件七、备品配件及专用工具表 附件八、资格、资质证明文件

第一部分投标邀请 各投标企业: 有限公司因工程建设需要,就板式换热设备进行招标。特邀请贵单位前来投标。 招标内容:板式换热器 招标文件价格:人民币200元 招标文件发放时刻:年月日 招标文件发放地点: 投标截止时刻:年月日时 投标地点: 开标时刻:年月日时 开标地点: 评标、询标及决标的时刻与地点:另行通知 招标单位:有限公司 地址:

项目名称: 项目地址: 联系人: 联系电话: 传真: 以上时刻如有变动,以书面通知为准。第二部分投标须知前附表

注:以上内容如有变化将另行通知,通知中未提及的部分将不作变动 第三部分投标人须知 一、讲明 1、本次招标工作是按照《中华人民共和国招标投标法》及相关法律法规要求组织和实施。 2、合格投标人 2.1凡有能力提供招标物资并能严格履行本招标文件规定的制造商或供应商接到投标邀请后均为合格的投标人。对物资采购招标,假如投标人不是制造商,必须提供制造厂家的授权书及证明材料。 2.2假如投标代表人不是法定代表人,需持有《法定代表人授权书》。 3、不管投标过程和结果如何,投标人自行承担投标活动中所发生的全部费用。 二、招标文件 4、招标文件 4.1招标文件的构成 (1)投标邀请;

换热网络与热集成

换热网络与热集成 4.1概述 本章进行了甲苯甲醇烷基化的冷热流股之间的能量匹配设计病构建换热网络。热集成旨在最大程度的利用流程内部的能量,减少公用工程的消耗,从而减 少操作费用,降低生产成本。通过对流程流股的深入分析,利用Aspen Energy Analyzer 设计换热网络,其主要步骤如下: 1)确定流程中需要换热的冷流股和热流股; 2)利用物流数据做出冷热流股的温焓图和总组合曲线图(GCC); 3)确定最小传热温差; 4)找出夹点及最小冷、热公用工程用量; 5)构建优化换热网络。 4.2冷热流股确定 表4-1 换热冷热流股一览表 流股名称T in/℃T out/℃热负荷/KW 流股说明 6-to-7 25 480.3 8.06×105反应器R0101进料 4-to-5 25 485 9.85×108 反应器R0101进料Reboiler@T0101 124.7 127.63 3.2×105T0101再沸器Reboiler@T0102 142.5 143.7 8.4×104T0102再沸器Reboiler@T0201 163.9 167.6 2×104T0201再沸器15-to-16 460 25 7.15×108反应器R0103出料Condenser@T0101 115 113 3.8×106T0101冷凝器Condenser@T0102 119.3 118.3 7.2×106T0102冷凝器Condenser@T0201 144.2 143.4 1.07×105T0201冷凝器

利用Aspen Energy Analyzer 分析计算得到换热网络,如图4-1、4-2所示: 图4-1 换热网络示意图 图4-2 换热网络夹点图 换热网络设计流股分析报告如表4-2所示: 表4-2换热网络设计股流分析报告 最小传热温差最小热公用工程kj/h 最小冷公用工程kj/h 46.09℃ 1.063×109 4.025×109 4.3构建换热网络 根据Aspen Energy Analyzer 的计算,所有参与换热的流股形成的换热网络如图4-3所示:

换热器的传热系数

1 介质不同,传热系数各不相同我们公司的经验是:1、汽水换热:过热部分为800~1000W/m2.℃饱和部分是按照公式K=2093+786V(V是管内流速)含污垢系数0.0003。水水换热为:K=767(1+V1+V2)(V1是管内流速,V2水壳程流速)含污垢系数0.0003 实际运行还少有保守。有余量约10% 冷流体热流体总传热系数K,W/(m2.℃) 水水850~1700 水气体17~280 水有机溶剂280~850 水轻油340~910 水重油60~280 有机溶剂有机溶剂115~340 水水蒸气冷凝1420~4250 气体水蒸气冷凝30~300 水低沸点烃类冷凝455~1140 水沸腾水蒸气冷凝2000~4250 轻油沸腾水蒸气冷凝455~1020 不同的流速、粘度和成垢物质会有不同的传热系数。K值通常在 2 800~2200W/m2·℃范围内。列管换热器的传热系数不宜选太高,一般在800-1000 W/m2·℃。螺旋板式换热器的总传热系数(水—水)通常在1000~2000W/m2·℃范围内。板式换热器的总传热系数(水(汽)—水)通常在3000~5000W/m2·℃范围内。1.流体流径的选择哪一种流体流经换热器的管程,哪一种流体流经壳程,下列各点可供选择时参考(以固定管板式换热器为例) (1) 不洁净和易结垢的流体宜走管内,以便于清洗管子。 (2) 腐蚀性的流体宜走管内,以免壳体和管子同时受腐蚀,而且管子也便于清洗和检修。 (3) 压强高的流体宜走管内,以免壳体受压。(4) 饱和蒸气宜走管间,以便于及时排除冷凝液,且蒸气较洁净,冷凝传热系数与流速关系不大。(5) 被冷却的流体宜走管间,可利用外壳向外的散热作用,以增强冷却效果。(6) 需要提高流速以增大其对流传热系数的流体宜走管内,因管程流通面积常小于壳程,且可采用多管程以增大流速。(7) 粘度大的液体或流量较小的流体,宜走管间,因流体在有折流挡板的壳程流动时,由于流速和流向的不断改变,在低Re(Re>100) 下即可达到湍流,以提高对流传热系数。在选择流体流径时,上述各点常不能同时兼顾,应视具体情况抓住主要矛盾,例如首先考虑流体的压强、防腐蚀及清洗等要求,然后再校核对流传热系数和压强降,以便作出较恰当的选择。 2. 流体流速的选择增加流体在换热器中的流速,将加大对流传热系数,减少污垢在管子表面上沉积的可能性,即降低了污垢热阻,使总传热系数增大,从而可减小换热器的传热面积。但是流速增加,又使流体阻力增大,动力消耗就增多。所以适宜的流速要通过经济衡算才能定出。此外,在选择流速时,还需考虑结构上的要求。例如,选择高的流速,使管子的数目减少,对一定的传热面积,不得不采用较长的管子或增加程数。管子太长不易清洗,且一般管长都有一定的标准;单程变为多程使平均温度差下降。这些也是选择流速时应予考虑的问题。 3. 流体两端温度的确定若换热器中冷、热流体的温度都由工艺条件所规定,就不存在确定流体两端温度的问题。若其中一个流体仅已知进口温度,则出口温度应由设计者来确定。例如用冷水冷却某热流体,冷水的进口温度可以根据当地的气温条件作出估计,而换热器出口的冷水温度,便需要根据经济

(完整版)换热器的分类

换热器的分类 ?按用途分类: 加热器、冷却器、冷凝器、蒸发器和再沸器 ?按冷热流体热量交换方式分类: 混合式、蓄热式和间壁式 ?主要内容: 1. 根据工艺要求,选择适当的换热器类型; 2. 通过计算选择合适的换热器规格。 间壁式换热器的类型 一、夹套换热器 ?结构:夹套式换热器主要用于反应过程的加热或冷却,是在容器外壁安装夹套制成。 ?优点:结构简单。 ?缺点:传热面受容器壁面限制,传热系数小。为提高传热系数且使釜内液体受热均匀,可在釜内安装搅拌器。也可在釜内安装蛇管。 二、沉浸式蛇管换热器 ?结构:这种换热器多以金属管子绕成,或制成各种与容器相适应的情况,并沉浸在容器内的液体中。 ?优点:结构简单,便于防腐,能承受高压。 ?缺点:由于容器体积比管子的体积大得多,因此管外流体的表面传热系数较小。

三、喷淋式换热器 ?结构:冷却水从最上面的管子的喷淋装置中淋下来,沿管表面流下来,被冷却的流体从最上面的管子流入,从最下面的管子流出,与外面的冷却水进行换热。在下流过程中,冷却水可收集再进行重新分配。 ?优点:结构简单、造价便宜,能耐高压,便于检修、清洗,传热效果好 ?缺点:冷却水喷淋不易均匀而影响传热效果,只能安装在室外。 ?用途:用于冷却或冷凝管内液体。 四、套管式换热器

?结构:由不同直径组成的同心套管,可根据换热要求,将几段套管用U形管连接,目的增加传热面积;冷热流体可以逆流或并流。 ?优点:结构简单,加工方便,能耐高压,传热系数较大,能保持完全逆流使平均对数温差最大,可增减管段数量应用方便。 ?缺点:结构不紧凑,金属消耗量大,接头多而易漏,占地较大。 ?用途:广泛用于超高压生产过程,可用于流量不大,所需传热面积不多的场合。 五、列管式换热器 列管式换热器又称为管壳式换热器,是最典型的间壁式换热器,历史悠久,占据主导作用。 ?优点:单位体积设备所能提供的传热面积大,传热效果好,结构坚固,可选用的结构材料范围宽广,操作弹性大,大型装置中普遍采用。 ?结构:壳体、管束、管板、折流挡板和封头。一种流体在管内流动,其行程称 特点:结构简单,成本低,壳程检修和清洗困难,壳程必须是清洁、不易产生垢层和腐蚀的介质。 (2)浮头式

换热器设计说明书

设计任务和设计条件 某生产过程的流程如图所示。反应器的混合气体经与进料物流℃之后,进入60换热后,用循环冷却水将其从110℃进一步冷却至为量的流 知混合气体组吸塔收其中的可溶性分。已吸收237301,压力为6.9,循环冷却水的压力为0.4,循环MPaMPa hkg水的入口温度为29℃,出口的温度为39℃,试设计一列管式换热器,完成生产任务。

物性特征:混和气体在35℃下的有关物性数据如下(来自生产中的实测值): 密度3?mkg/?901定压 比热容 =3.297kj/kg℃c1p热导率 =0.0279w/m ?1粘度5??Pas51?.?1011 下的物性数据:34℃循环水在3/m=994.3 密度㎏?1℃ =4.174kj/kg定压比热容c1p =0.624w/m℃热导率 ?1粘度3??Pas10742?0.?1确定设计方案 1.选择换热器的类型 两流体温的变化情况:热流体进口温度110℃出口温度60℃;冷流体进口温度29℃,出口温度为39℃,该换热器用循环冷却水冷却,冬季操作时,其进口温度会降低,考虑到这一因素,估计该换热器的管壁温度和壳体温度之差较大,因此初步确定选用浮头式换热器。2.管程安排 从两物流的操作压力看,应使混合气体走管程,循环冷却水走壳程。但由于循环冷却水较易结垢,若其流速太低,将会加快污垢增长速度,使换热器的热流量下降,所以从总体考虑,应使循环水走管程,混和气体走壳程。

浮头式换热器介绍 浮头式换热器的特点是有一端管板不与外壳连为一体,可以沿轴向自由浮动。这种结构不但完全消除了热应力的影响,且由于固2 定端的管板以法兰与壳体连接,整个管束可以从壳体中抽出,因此便于清洗和检修。故浮头式换热器应用较为普遍,但它的结构比较复杂,造价较高。 确定物性数据

各种换热器的构造原理

各种换热器的构造原理、特点 ■螺旋板式换热器的构造原理、特点: 螺旋板式换热器是一种高效换热器设备,适用汽-汽、汽-液、液-液,对液传热。它适用于化学、石油、溶剂、医药、食品、轻工、纺织、冶金、轧钢、焦化等行业。按结构形式可分为不可拆式(Ⅰ型)螺旋板式及可拆式(Ⅱ型、Ⅲ型)螺旋板式换热器。 ■列管式换热器的构造原理、特点: 列管式换热器(又名列管式冷凝器),按材质分为碳钢列管式换热器,不锈钢列管式换热器和碳钢与不锈钢混合列管式换热器三种,按形式分为固定管板式、浮头式、U型管式换热器,按结构分为单管程、双管程和多管程,传热面积1~500m2,可根据用户需要定制。 ■换热设备介绍:换热设备是实现化工生产过程中热量交换和传递不可缺少的设备。在热量交换中常有一些腐蚀性、氧化性很强的物料,因此,要求制造换热设备的材料具有抗强腐蚀性能。它可以用石墨、陶瓷、玻璃等非金属材料以及不锈钢、钛、钽、锆等金属材料制成。但是用石墨、陶瓷、玻璃等材料制成的有易碎、体积大、导热差等缺点,用钛、钽、锆等稀有金属制成的换热设备价格过于昂贵,不锈钢则难耐许多腐蚀性介质,并产生晶间腐蚀。 ■管壳式换热器的构造原理、特点: 管壳式换热器是进行热交换操作的通用工艺设备。广泛应用于化工、石油、石油化工、电力、轻工、冶金、原子能、造船、航空、供热等工业部门中。特别是在石油炼制和化学加工装臵中,占有极其重要的地位。换热器的型式。 ■容积式换热器的构造原理、特点: 自动控温节能型容积式热交换器,它充分利用蒸汽能源、高效、节能,是一种新型热水器。普通热水器一般需要配臵水水热交换器来降低蒸汽凝结水温度以便回用。而节能型热交换器凝结水出水温度在45℃左右,或直接回锅炉房重复使用。这样减少了设备投资,节约热交换器机房面积,从而降低基建造价,因此节能型容积式热交换器深受广大设计、用户单位欢迎。钢衬铜热交换器比不锈钢热交换器经济,并且技术上有保证。它利用了钢的强度和铜的耐腐蚀性,即保证热交换器能承受一定工作压力,又使热交换器出水质量好。钢壳内衬铜的厚度一般为1.0mm。钢衬铜热交换器必须防止在罐内形成部分真空,因此产品出厂时均设有

GB151换热器标准考试复习题.doc

GB151复习题及答案 1、GB151适用的换热器型式及参数范围是什么? 答:GB151-1999: %1适用于固定管板式、浮头式、U形管式和填料函式。 %1本标准适用的换热器参数为: a.公称直径DNW2600mm; b.公称压力PNW35Mpa;内直径(非圆形截面指其最大尺寸)W0.15m; c.公称直径和mm公称压力MPa的乘积不大于1.75X IO、 2、管壳式换热器的管箱、浮头盖在什么情况下应在施焊后进行消除应力的热处理?设备法兰密封面应在何时加工? 答:①碳素钢和低合金钢的焊有分程隔板的管箱和浮头盖以及管箱的侧向开孔 超过1/3管箱壳体内径的管箱,应在施焊后进行消除应力的热处理; ② 设备法兰密封面应在消除应力的热处理后精加工。 3、浮头式换热器应按什么程序试压? 答:浮头式换热器试压程序: %1用试验压环和浮头专用试验工具进行换热管与管板连接接头试压; 机管程试压;

%1壳程试压。 4、在管板和平盖的选材中,何时采用锻件?何时采用板材?采用何种用途板 材?答:一?般在以下情况下采用锻件: %1管板厚度大于60mm; %1形状复杂的管板;%1带凸肩与壳体焊接的管板。 除上述情况外可■以采用板材。 板材应采用压力容器用板,并应符合GB15 ()的相应规定。 5、管板与换热管之间的连接方式主要的有哪几种?,使用范围如何? 答:①主要方式有:强度焊、强度胀及胀焊并用。 ② 强度焊适用于设计压力PNW35Mpa的换热器,但不适用于有较大振动 及有间隙腐蚀的场合; 强度胀适用于设计压力W4MPa,设计温度W300℃的换热器,操作中无 剧烈振动、无过大的温度变化及无严重的应力腐蚀的换热器; 胀焊并用结构适用于密封性能要求较高的场合、承受振动或疲劳载荷的场合及有间隙 腐蚀的场合。 6、管壳式换热器管程或壳程的介质进口处,什么情况下应设置防冲板? 答:①管程设置防冲板的条件: 当管程采用轴向入口或换热管内流体流速超过3m/s时,应设置防冲板,

管壳式换热器日常检查及故障处理

管壳式换热器的日常维护与故障处理 日常维护 1、装置系统蒸汽吹扫时,应尽可能避免对有涂层的冷换设备进行吹扫,工艺上确实避免不了,应严格控制吹扫温度(进冷换设备)不大于200℃。以免造成涂层破坏。 2、装置开停工过程中,换热器应缓慢升温和降温,避免造成压差过大和热冲击,同时应遵循停工时“先热后冷”,即先退热介质,再退冷介质;开工时“先冷后热”,即先进冷介质,后进热介质。 3、认真检查设备运行参数,严禁超温、超压。对按压差设计的换热器,在运行过程中不得超过规定的压差。 4、操作人员应严格遵守安全操作规程,定时对换热设备进行巡回检 查,检查基础支座稳固及设备泄漏等。 5、经常对管、壳程介质的温度及压降进行检查,分析换热器的泄漏 和结垢情况。在压降增大和传热系数降低超过一定数值时,应根 据介质和换热器的结构,选择有效的方法进行清洗。 i. 应常检查换热器的振动情况。 ii. 有防腐涂层的冷换设备在操作运行时,应严格控制温度,避免涂层损坏。 iii. 接管法兰、前管箱、后头盖法兰无泄漏。 iv. 保持保温层完好。 v. 静电接地完好。

vi. 地角螺栓齐全。 vii. 基础无变形或下沉。 viii. 有压力表、温度计的安装齐全,指示准确。 常见故障与处理 序 号 故障现象故障原因处理方法 1两种介质互 串(内漏)1.换热管腐蚀穿孔、开 裂。 2.换热管与管板胀口 (焊口)裂开。 3.浮头式换热器浮头法 兰密封漏。 更换或堵死漏管。 重胀(补焊)或堵 死。 紧固螺栓或更换密封 垫片。 2法兰处密封 泄漏1.垫圈承压不足、腐 蚀、变质。 2.螺栓强度不足,松动 或腐蚀。 3.法兰刚性不足与密封 面缺陷 4.法兰不平行或错位。 5.垫片质量不好。 紧固螺栓。更换垫片 螺栓材质升级、紧固 螺栓或更换螺栓。 更换法兰,或处理缺 陷。 重新组对或更换法 兰。 更换垫片。 3传热效果差 1.换热管结垢 2.水质不好、油污与微 生物多 3.隔板短路化学清洗或射流清洗垢物 加强过滤、净化介质,加强水质管理。更换管箱垫片或更换隔板

GBT151-2014年热交换器讲解

热交换器 戴季煌

热交换器2015.01 第一部分GB151-2014 1. 修改了标准名称,扩大了标准适用范围: 1.1提出了热交换器的通用要求,也就是适用于其他结构型式热交换器。并对安装、使用等提出要求。 1.2规定了其他结构型式的热交换器所依据的标准。 2. 范围: GB151-201X《热交换器》规定公称直径范围(DN≤4000mm,原为2600mm)、公称压力(PN≤35MPa)及压力和直径乘积范围(PN×DN≤2.7×104,原为1.75×104)。并且管板计算公式推导过程的许多简化假定不符合。也给制造带来困难。TEMA控制壳体壁厚3〞(76mm)、双头螺柱最大直径为4〞(102mm)。 3.术语和定义 3.1公称直径DN 3.1.1卷制、锻制、圆筒 以圆筒内直径(mm)作为换热器的公称直径。 3.1.2钢管制圆筒 以钢管外径(mm)作为换热器的公称直径。 3.2公称长度LN 以换热管的长度(m)作为换热器的公称长度,换热管为直管时,取直管长度;换热管为U形管时,取U 形管的直管段长度。 3.3换热面积A 3.3.1计算换热面积 换热面积是以换热管外径为基准,以二管板内侧的换热管长度来计算换热面积,计算得到的管束外表面积(m2);对于U形管换热器,一般不包括U形管弯管段的面积。当需要把U形弯管部分计入换热面积时,则应使U形端的壳体进(出)口安装在U形管末端以外,以消除U形管末端流体停滞的换热损失。 3.3.2公称换热面积 公称换热面积是将计算面积经圆整后的换热面积(m2),一般取整数。 4.工艺计算(新增加) 4.1设计条件(用户或设计委托方应以正式书面形式向设计单位提出工艺设计条件),内容包含 4.1.1操作数据:包括流量、气相分率、温度、压力、热负荷等; 4.1.2物性数据:包括介质密度、比热、粘度、导热系数或介质组成等; 4.1.3允许阻力降; 4.1.4其他:包括操作弹性、工况、安装要求(几何参数、管口方位)等。 4.2选型应考虑的因素 4.2.1合理选择热交换器型式及基本参数,满足传热、安全可靠性及能效要求; 4.2.2考虑经济性,合理选材; 4.2.3满足热交换器安装、操作、维修等要求。 4.3计算 热交换器工艺计算时应进行优化,提高换热效率,满足工艺设计条件要求。需要时管壳式热交换器还应考虑流体诱发振动。 5.设计参数 5.1压力 5.1.1压差设计 同时受管、壳程压力作用的元件,当能保证制造、开停工、及维修时都能达到按规定压差进行管、壳程同时升、降压和装有安全装置时,方可按元件承受的压差设计。 5.1.2真空设计 真空侧的设计压力,应按GB150的规定,当元件一侧受真空作用,另一侧受非真空作用时,其设计压力应为两侧设计压力之和,即为最苛刻的压力组合。

换热器标准精选

换热器标准精选(最新) G151《GB/T151-2014热交换器》 G3625《GB/T3625-2007换热器及冷凝器用钛及钛合金管》 G8000《GB/T8000-2001热交换器用黄铜管残余应力检验方法:氨熏试验法》 G8890《GB/T8890-2007热交换器用铜合金无缝管》 G9082.1《GB/T9082.1-2011无管芯热管》 G9082.2《GB/T9082.2-2011有管芯热管》 G13754《GB/T13754-2008采暖散热器散热量测定方法》 G14811《GB/T14811-2008热管术语》 G14812《GB/T14812-2008热管传热性能试验方法》 G14813《GB/T14813-2008热管寿命试验方法》 G14845《GB/T14845-2007板式换热器用钛板》 G16409《GB16409-1996板式换热器》 G19447《GB/T19447-2013热交换器用铜及铜合金无缝翅片管》 G19700《GB/T19700-2005船用热交换器热工性能试验方法》 G19913《GB19913-2005铸铁采暖散热器》 G24590《GB/T24590-2009高效换热器用特型管》 G27670《GB/T27670-2011车辆热交换器用复合铝合金焊管》 G27698.1《GB/T27698.1-2011热交换器及传热元件性能测试方法第1部分:通用要求》 G27698.2《GB/T27698.2-2011热交换器及传热元件性能测试方法第2部分:管壳式热交换器》 G27698.3《GB/T27698.3-2011热交换器及传热元件性能测试方法第3部分:板式热交换器》 G27698.4《GB/T27698.4-2011热交换器及传热元件性能测试方法第4部分:螺旋板式热交换器》 G27698.5《GB/T27698.5-2011热交换器及传热元件性能测试方法第5部分:管壳式热交换器用换热管》 G27698.6《GB/T27698.6-2011热交换器及传热元件性能测试方法第6部分:空冷器用翅片管》 G27698.7《GB/T27698.7-2011热交换器及传热元件性能测试方法第7部分:空冷器噪声测定》 G27698.8《GB/T27698.8-2011热交换器及传热元件性能测试方法第8部分:热交换器工业标定》 G28185《GB/T28185-2011城镇供热用换热机组》 G28712.1《GB/T28712.1-2012热交换器型式与基本参数第1部分:浮头式热交换器》 G28712.2《GB/T28712.2-2012热交换器型式与基本参数第2部分:固定管板式热交换器》 G28712.3《GB/T28712.3-2012热交换器型式与基本参数第3部分:U形管式热交换器》 G28712.4《GB/T28712.4-2012热交换器型式与基本参数第4部分:立式热虹吸式重沸器》 G28712.5《GB/T28712.5-2012热交换器型式与基本参数第5部分:螺旋板式热

相关文档