文档视界 最新最全的文档下载
当前位置:文档视界 › 概率论重点题

概率论重点题

概率论重点题
概率论重点题

概率统计重难点题

1已知一个家庭有3个小孩,且其中一个为女孩,求至少有一个男

孩的概率(小孩为男为女是等可能的).

【解】 设A={其中一个为女孩},B={至少有一个男孩},样本点总数 为23

=8,故

或在缩减样本空间中求,此时样本点总数为 7.

P(B A) 6

2. 已知5%的男人和%的女人是色盲,现随机地挑选一人,此人恰为

色盲,问此人是男人的概率(假设男人和女人各占人数的一半) 【解】 设A={此人是男人}, B={此人是色盲},则由贝叶斯公式

P(AB)込

P(A)P(BA)

P(B) P(A)P(B|A) P(A)P(B|A)

0.5 0.05

20 0.5 0.05 0.5 0.0025

21

3. 在一个盒中装有15个乒乓球,其中有9个新球,在第一次比赛

中任意取出3个球,比赛后放回原盒中;第二次比赛同样任意取 出3个球,求第二次取出的3个球均为新球的概率.

【解】 设A i ={第一次取出的3个球中有i 个新球}, i=0,1,2,={第二次 取

出的3球均为新球} 由全概率公式,有

3

P(B) P(BA)P(A)

i 0

P(B A)

P(AB) 6/8 6 P(A) 7/8

7

3 3 3 3 3 3 3 3

C15 C15 C15 C15 C15 C15 C15 C15

0.089

4.某保险公司把被保险人分为三类:“谨慎的”,“一般的”,“冒失的”.

统计资料表明,上述三种人在一年内发生事故的概率依次为,和;

如果“谨慎的”被保险人占20%, “一般的”占50%, “冒失的”

占30%,现知某被保险人在一年内出了事故,贝S他是“谨慎的”

的概率是多少

【解】

设A={该客户是“谨慎

的”

}, B={该客户是“一般

的” },

C={该客户是“冒失

的”

}, D={该客户在一年内出了事

故}

则由贝叶斯公式得

P(A|D)

P(AD)

P(D)

P(A)P(D | A) _____________

P(A)P(D | A) P(B)P(D | B) P(C)P(D |C)

0.2 0.05

0.2 0.05 0.5 0.15 0.3 0.3

0.057 31.设随机变

X~U (0,1),试求:

(1) Y=e X的分布函数及密度函数;

(2) Z=2lnX的分布函数及密度函数. 【解】(1) P(0 X 1) 1

故P(1 Y e X e) 1

当y 1 时F Y(y) P(Y y) 0

当1

ln y

0 dx l ny

当y》e 时F Y(y) P(e X y) 1

即分布函数3 3 1 2 3 2 1 3 3 3

C6 ? C9 C9C6 ? C8 C9C6 ? C7 C9 ? C6 —云一——-

故Y 的密度函数为

(2)由 P (0

P(Z 0)

1

-)P(X e z/2)

2 e z/2

即分布函数

F Y (y)

0,

In

y, 1,

f Y (y) y, 0, 其他

当z < 0时, F z (z) P(Z z) 当z>0时, F z (z) P(Z z)

P( 2ln X z) F z (z)

0, 1-e -z/2

故Z 的密度函数为

f z (z)

1

e 2 0,

z/2

5.设随机变量X 的密度函数为

f(x)=

2x

2

,

n 0,

其他.

试求Y=sinX 的密度函数. 【解】P(0 Y 1) 1

当 y W 0 时,F Y (y) P(Y y) 0

P(ln X

“dx

P(0 X arcsin y) P( n arcsin y X n)

arcsiny2x , n2X ,

2 dx 2 dx

0n n arcsin y n

1 2 1 2 (arcsiny) 1——(n- arcsiny)

n n

2 . arcs in y

n

当y》1时,F Y(y) 1

故Y的密度函数为

6.设随机变量(X, Y)的概率密度为

求条件概率密度f Y i x (y | x) , f x i Y (x | y)

题11图

【解】f x(x)f(x, y)dy

x

1cy 2x, 0 x 1,

x

0, 其他.

1

y1dx 1 y, 1 y 0,

1

f Y(y) f(x,y)dx y1dx 1 y, 0 y 1,

0, 其他.

f (x, y)= 1, y

0,

x, 0 x 1,

其他.

统计概率经典例题(含(答案)和解析)

统计与概率经典例题(含答案及解析) 1.(本题8分)为了解学区九年级学生对数学知识的掌握情况,在一次数学检测中,从学区2000名九年级考生中随机抽取部分学生的数学成绩进行调查,并将调查结果绘制成如下图表: ⑴表中a和b所表示的数分别为:a= .,b= .; ⑵请在图中补全频数分布直方图; ⑶如果把成绩在70分以上(含70分)定为合格,那么该学区2000名九年级考生数学成绩为合格的学生约有多少名? 2.为鼓励创业,市政府制定了小型企业的优惠政策,许多小型企业应运而生,某镇统 计了该镇1﹣5月新注册小型企业的数量,并将结果绘制成如下两种不完整的统计图: (1)某镇今年1﹣5月新注册小型企业一共有家.请将折线统计图补充完整; (2)该镇今年3月新注册的小型企业中,只有2家是餐饮企业,现从3月新注册的小 型企业中随机抽取2家企业了解其经营状况,请用列表或画树状图的方法求出所抽取的 2家企业恰好都是餐饮企业的概率. 3.(12分)一个不透明的口袋装有若干个红、黄、蓝、绿四种颜色的小球,小球除颜 色外完全相同,为估计该口袋中四种颜色的小球数量,每次从口袋中随机摸出一球记下 颜色并放回,重复多次试验,汇总实验结果绘制如图不完整的条形统计图和扇形统计图.

根据以上信息解答下列问题: (1)求实验总次数,并补全条形统计图; (2)扇形统计图中,摸到黄色小球次数所在扇形的圆心角度数为多少度? (3)已知该口袋中有10个红球,请你根据实验结果估计口袋中绿球的数量.4.(本题10分)某校为了解2014年八年级学生课外书籍借阅情况,从中随机抽取了40名学生课外书籍借阅情况,将统计结果列出如下的表格,并绘制成如图所示的扇形统计图,其中科普类册数占这40名学生借阅总册数的40%. 类别科普类教辅类文艺类其他册数(本)128 80 m 48 (1)求表格中字母m的值及扇形统计图中“教辅类”所对应的圆心角a的度数; (2)该校2014年八年级有500名学生,请你估计该年级学生共借阅教辅类书籍约多少本? 5.(10分)将如图所示的版面数字分别是1,2,3,4的四张扑克牌背面朝上,洗匀后放在桌面上(“A”看做是“1”)。 (1)从中随机抽出一张牌,牌面数字是偶数的概率是;(3分) (2)从中随机抽出两张牌,两张牌面数字的和是5的概率是;(3分)(3)先从中随机抽出一张牌,将牌面数字作为十位上的数字,然后将该牌放回并重新洗匀,再随机抽取一张,将牌面数字作为个位上的数字,请用画树形图的方法求组成的

概率论大作业讲解

现实生活中的大数定理及中心值定理的应用 电子工程学院

目录 摘要........................................... 错误!未定义书签。第一章引言...................................... 错误!未定义书签。第二章大数定律 (2) 2.1大数定律的发展历史 (2) 2.2大数定律的定义 (3) 2.3几个常用的大数定律 (3) 第三章大数定律的一些应用 (6) 3.1大数定律在数学分析中的一些应用 (6) 3.2大数定律在保险业的应用 (6) 3.3大数定律在银行经营管理中的应用 9结论 (11) 参考文献 (12)

对于随机现象而言,其统计规律性只有在基本相同的条件下进行大量的重复试验才能显现出来.本文主要是通过大数定律来讨论随机现象最根本的性质——平均结果稳定性的相关内容.大数定律,描述当试验次数很大时所呈现的概率性质的定律,是随机现象统计规律性的具体表现. 本文首先介绍了大数定律涉及的一些基础知识,以便于对文中相关知识的理解.通过比较,就不同条件下存在的大数定律做了具体的分析,介绍了几种较为常见的大数定律和强大数定律,总结了大数定律的应用,主要有大数定律在数学分析中的应用,大数定律在生产生活中的应用,大数定律在经济如:保险、银行经营管理中的应用等等,将理论具体化,将可行的结论用于具体的数学模型中,使大家对大数定律在实际生活中的应用价值有了更深的认识.

概率论与数理统计是研究随机现象的统计规律的科学,而随机现象的统计规律性只有在相同条件下进行大量重复试验或观察才呈现出来.在随机事件的大量重复出现中,往往呈现几乎必然的规律,这个规律就是大数定律.大数定律是概率论中一个非常重要的课题,而且是概率论与数理统计之间一个承前启后的重要纽带.大数定律阐明了大量随机现象平均结果具有稳定性,证明了在大样本条件下,样本平均值可以看作总体平均值,它是“算数平均值法则”的基本理论,通俗地说,这个定理就是在试验不变的条件下,重复试验多次,随机事件的频率以概率为稳定值. 在现实生活中,经常可以见到这一类型的数学模型,比如,我们向上抛一枚硬币,硬币落下后哪一面朝上本来是偶然的,但当我们向上抛硬币的次数足够多时,达到上万次甚至几十万几百万次之后,我们会发现,硬币向上的次数约占总次数的二分之一,偶然中包含着必然.又如:在分析天平上称重量为a 的物品,若以12,,x x 3,...,n x x 表示n 次重复称量的结果,经验告诉我们,当n 充分大时,它们的算术平均值1 1n i i X n =∑与a 的偏差就越小.这种思想,不仅在整个概率论中起着重要00作用,而且在其他数学领域里面也占据着相当重要的地位. 大数定律的发展与研究也经历了很长一段时间,伯努利是第一个研究这一问题的数学家,他于1713年首先提出后人称之为“大数定律”的极限定理.现在,大数定律的相关模型已经被国内外广大学者所研究,特别是应用在实际生活中,如保险业得以存在并不断发展壮大的两大基石的一个就是大数定律.许多学者也已经在此领域中研究出了许多有价值的成果,讨论了在统计,信息论,分析、数论等方面的应用.在许多数学领域中,广大学者对某些具有特定类型的数学模型,都能利用大数定律的思考方式总结其代表性的性质及结论,使得这些类型的数学模型在进行讨论的时候大大简化了繁琐的论证过程,方便了研究.大数定律作为概率论的重要内容,其理论成果相对比较完善,这方面的文章较多,结果也比较完美,但对大数定律的应用问题的推广也是一项非常有价值的研究方向,通过对这些问题的应用推广,不仅能加深对大数定律的理解,而且能使之更为有效的服务于各项知识领域中.下面文中就通过对大数定律的讨论,给出了各大数定律之间的关系,归结出一般性结论.最后列举了一些能用大数定律来解决的实例,希望能通过这些实例,来进一步阐明大数定律在各个分支学科中的重要作用,以及在实际生活中的应用价值,加深大家对大数定律的理解.

《概率论与数理统计》期末考试试题及解答

一、填空题(每小题3分,共15分) 1. 设事件B A ,仅发生一个的概率为0.3,且5.0)()(=+B P A P ,则B A ,至少有一个不发 生的概率为__________. 答案:0.3 解: 3.0)(=+B A B A P 即 )(25.0)()()()()()(3.0AB P AB P B P AB P A P B A P B A P -=-+-=+= 所以 1.0)(=AB P 9.0)(1)()(=-==AB P AB P B A P Y . 2. 设随机变量X 服从泊松分布,且)2(4)1(==≤X P X P ,则==)3(X P ______. 答案: 161-e 解答: λλ λ λλ---= =+==+==≤e X P e e X P X P X P 2 )2(, )1()0()1(2 由 )2(4)1(==≤X P X P 知 λλλ λλ---=+e e e 22 即 0122 =--λλ 解得 1=λ,故 16 1)3(-= =e X P 3. 设随机变量X 在区间)2,0(上服从均匀分布,则随机变量2 X Y =在区间)4,0(内的概率 密度为=)(y f Y _________. 答案: 04,()()0,. Y Y X y f y F y f <<'===? 其它 解答:设Y 的分布函数为(),Y F y X 的分布函数为()X F x ,密度为()X f x 则 2 ()()()((Y X X F y P Y y P X y P X F F =≤=≤==- 因为~(0,2)X U ,所以(0X F = ,即()Y X F y F = 故

概率论复习题及答案

概率论与数理统计复习题 一.事件及其概率 1. 设,,A B C 为三个事件,试写出下列事件的表达式: (1) ,,A B C 都不发生;(2),,A B C 不都发生;(3),,A B C 至少有一个发生;(4),,A B C 至多有一个发生。 解:(1) ABC A B C =?? (2) ABC B =?? (3) A B C ?? (4) BC AC AB ?? 2. 设B A ,为两相互独立的随机事件,4.0)(=A P ,6.0)(=B P ,求(),(),(|)P A B P A B P A B ?-。 解:()()()()()()()()0.76P A B P A P B P AB P A P B P A P B ?=+-=+-=; ()()()()0.16,(|)()0.4P A B P AB P A P B P A B P A -=====。 3. 设,A B 互斥,()0.5P A =,()0.9P A B ?=,求(),()P B P A B -。 解:()()()0.4,()()0.5P B P A B P A P A B P A =?-=-==。 4. 设()0.5,()0.6,(|)0.5P A P B P A B ===,求(),()P A B P AB ?。 解:()()(|)0.3,()()()()0.8,P AB P B P A B P A B P A P B P AB ==?=+-= ()()()()0. 2P A B P A B P A P A B = -=-=。 5. 设,,A B C 独立且()0.9,()0.8,()0.7,P A P B P C ===求()P A B C ??。 解:()1()1()1()()()0.994P A B C P A B C P ABC P A P B P C ??=-??=-=-=。 6. 袋中有4个黄球,6个白球,在袋中任取两球,求 (1) 取到两个黄球的概率; (2) 取到一个黄球、一个白球的概率。 解:(1) 24210215C P C ==;(2) 11462 108 15 C C P C ==。 7. 从0~9十个数字中任意选出三个不同的数字,求三个数字中最大数为5的概率。 解:12153 101 12 C C P C ==。

概率论与数理统计题库及答案

概率论与数理统计题库及答案 一、单选题 1. 在下列数组中,( )中的数组可以作为离散型随机变量的概率分布. (A) 51,41,31,21 (B) 81,81,41,21 (C) 2 1,21,21,21- (D) 16 1, 8 1, 4 1, 2 1 2. 下列数组中,( )中的数组可以作为离散型随机变量的概率分布. (A) 4 1414121 (B) 161814121 (C) 16 3 16 14 12 1 (D) 8 18 34 12 1- 3. 设连续型随机变量X 的密度函数 ???<<=, ,0, 10,2)(其他x x x f 则下列等式成立的是( ). (A) X P (≥1)1=- (B) 21)21(==X P (C) 2 1)21(= < X P (D) 2 1)21(= > X P 4. 若 )(x f 与)(x F 分别为连续型随机变量X 的密度函数与分布函数,则等式( )成 立. (A) X a P <(≤?∞ +∞-=x x F b d )() (B) X a P <(≤? = b a x x F b d )() (C) X a P <(≤? = b a x x f b d )() (D) X a P <(≤? ∞+∞ -= x x f b d )() 5. 设 )(x f 和)(x F 分别是随机变量X 的分布密度函数和分布函数,则对任意b a <,有 X a P <(≤=)b ( ). (A) ? b a x x F d )( (B) ? b a x x f d )( (C) ) ()(a f b f - (D) )()(b F a F - 6. 下列函数中能够作为连续型随机变量的密度函数的是( ).

概率论期末复习试题二

概率论与数理统计试题 11级计算机大队二区队 一、选择题: 1、假设事件A与事件B互为对立,则事件AB( )。 (A) 是不可能事件(B) 是可能事件 (C) 发生的概率为1 (D) 是必然事件 答案:A。这是因为对立事件的积事件是不可能事件。 2、某人睡午觉醒来,发现表停了,他打开收音机想听电台整点报时,则他等待的时间小于10分钟的概率是()。 A、1 6 B、 1 12 C、 1 60 D、 1 72 答案:A。以分钟为单位,记上一次报时时刻为0,则下一次报时时刻为60,于是,这个人打开收音机的时间必在(0,60),记“等待时间短于分 钟”为事件A。则有S=(0,60),A=(50,60)所以P(A)=A S = 10 60 = 1 6 。 3、设连续型随机变量(X,Y)的两个分量X和Y相互独立,且服从同一分布,问P{X≤Y}=()。 A、0 B、1 2 C、 1 4 D、1 答案:B。利用对称性,因为X,Y独立同分布,所以有P{X≤Y}=P{Y≤X}, 而P{X≤Y}+ P{Y≤X}=1,所以P{X≤Y}=1 2 4、设二维随机变量(X,Y)的分布函数为F(x,y),分布律如下:

则F (2,3)=()。 A 、0 B 、14 C 、716 D 、916 答案:D 。 F (2,3)=P {X ≤2,Y ≤3} =P {X=1,Y=1}+P {X=1,Y=2}+ P {X=1,Y=3}+ P {X=2,Y=1}+ P {X=2.Y=2} + P {X=2,Y=3} =14+0+0+116+1 4+0 =9 16 5、下列命题中错误的是( )。 (A)若X p (λ),则()()λ==X D X E ; (B)若X 服从参数为λ的指数分布,则()()λ 1 ==X D X E ; (C)若X b (θ,1),则()()()θθθ-==1,X D X E ; (D)若X 服从区间[b a ,]上的均匀分布,则() 3 222 b ab a X E ++=. 答案:B 。 ()()2,λλ==X D X E 6、设()Y X ,服从二维正态分布,则下列条件中不是Y X ,相互独立的充分必要条 件是( )。 (A) Y X ,不相关 (B) ()()()Y E X E XY E = (C) ()0,cov =Y X (D) ()()0==Y E XY E

概率论习题全部

习题一 1. 用集合的形式写出下列随机试验的样本空间与随机事件A : (1)掷两枚均匀骰子,观察朝上面的点数,事件A 表示“点数之和为7”; (2)记录某电话总机一分钟内接到的呼唤次数,事件A 表示“一分钟内呼唤次数不超过3次”; (3)从一批灯泡中随机抽取一只,测试它的寿命,事件A 表示“寿命在2 000到2 500小时之间”. 2. 投掷三枚大小相同的均匀硬币,观察它们出现的面. (1)试写出该试验的样本空间; (2)试写出下列事件所包含的样本点:A ={至少出现一个正面},B ={出现一正、二反},C ={出现不多于一个正面}; (3)如记i A ={第i 枚硬币出现正面}(i =1,2,3),试用123,,A A A 表示事件A ,B ,C . 3. 袋中有10个球,分别编有号码1~10,从中任取1球,设A ={取得球的号码是偶数},B ={取得球的号码是奇数},C ={取得球的号码小于5},问下列运算表示什么事件: (1)A B U ;(2)AB ;(3)AC ;(4)AC ;(5)C A ;(6)B C U ;(7)A C -. 4. 在区间上任取一数,记112A x x ??=<≤????,1 34 2B x x ??=≤≤????,求下列事件的表 达式:(1)A B U ;(2)AB ;(3)AB ,(4)A B U . 5. 用事件A ,B ,C 的运算关系式表示下列事件: (1)A 出现,B ,C 都不出现; (2)A ,B 都出现,C 不出现; (3)所有三个事件都出现; (4)三个事件中至少有一个出现; (5)三个事件都不出现; (6)不多于一个事件出现; (7)不多于二个事件出现; (8)三个事件中至少有二个出现. 6. 一批产品中有合格品和废品,从中有放回地抽取三个产品,设表示事件“第次抽到废品”,试用的运算表示下列各个事件: (1)第一次、第二次中至少有一次抽到废品; (2)只有第一次抽到废品; (3)三次都抽到废品; (4)至少有一次抽到合格品; (5)只有两次抽到废品. 7. 接连进行三次射击,设={第i 次射击命中}(i =1,2,3),试用表示下述事件: (1)A ={前两次至少有一次击中目标}; (2)B ={三次射击恰好命中两次}; ]2,0[i A i i A i A 321,,A A A

概率统计习题及答案

1、已知P(A)=0.7, P(B)=0.8,则下列判断正确的是( D )。 A. A,B 互不相容 B. A,B 相互独立 C.A ?B D. A,B 相容 2、将一颗塞子抛掷两次,用X 表示两次点数之和,则X =3的概率为( C ) A. 1/2 B. 1/12 C. 1/18 D. 1/9 3、某人进行射击,设射击的命中率为0.2,独立射击100次,则至少击中9次的概率为( B ) A.91 9910098 .02.0C B.i i i i C -=∑100100 9 10098 .02.0 C.i i i i C -=∑100100 10 10098 .02.0 D.i i i i C -=∑- 1009 0100 98 .02.01 4、设)3,2,1(39)(=-=i i X E i ,则)( )3 12 53(32 1=+ +X X X E B A. 0 B. 25.5 C. 26.5 D. 9 5、设样本521,,,X X X 来自N (0,1),常数c 为以下何值时,统计量25 24 23 2 1X X X X X c +++? 服从t 分布。( C ) A. 0 B. 1 C. 2 6 D. -1 6、设X ~)3,14(N ,则其概率密度为( A ) A.6 )14(2 61- -x e π B. 3 2 )14(2 61- - x e π C. 6 )14(2 321- - x e π D. 2 3 )14(2 61-- x e π 7、321,,X X X 为总体),(2 σμN 的样本, 下列哪一项是μ的无偏估计( A ) A. 32 12 110 351X X X + + B. 32 1416131X X X ++ C. 32 112 5 2 13 1X X X + + D. 32 16 13 13 1X X X + + 8 、设离散型随机变量X 的分布列为 则常数C 为( C ) (A )0 (B )3/8 (C )5/8 (D )-3/8

概率论期末考试复习题及答案()

第一章 1.设P (A )=3 1,P (A ∪B )=2 1,且A 与B 互不相容,则P (B )=____6 1_______. 2. 设P (A )=3 1,P (A ∪B )=2 1,且A 与B 相互独立,则P (B )=______4 1_____. 3.设事件A 与B 互不相容,P (A )=0.2,P (B )=0.3,则P (B A ?)=___0.5_____. 4.已知P (A )=1/2,P (B )=1/3,且A ,B 相互独立,则P (A B )=________1/3________. A 与B 相互独立 5.设P (A )=0.5,P (A B )=0.4,则P (B|A )=___0.2________. 6.设A ,B 为随机事件,且P(A)=0.8,P(B)=0.4,P(B|A)=0.25,则P(A|B)=____ 0.5______. 7.一口袋装有3只红球,2只黑球,今从中任意取出2只球,则这两只恰为一红一黑的概率是________ 0.6________. 8.设袋中装有6只红球、4只白球,每次从袋中取一球观其颜色后放回,并再放入1只同 颜色的球,若连取两次,则第一次取得红球且第二次取得白球的概率等于____12/55____. 9.一袋中有7个红球和3个白球,从袋中有放回地取两次球,每次取一个,则第一次取得红球且第二次取得白球的概率p=___0.21_____. 10.设工厂甲、乙、丙三个车间生产同一种产品,产量依次占全厂产量的45%,35%,20%,且各车间的次品率分别为4%,2%,5%.求:(1)从该厂生产的产品中任取1件,它是次品的概率; 3.5% (2)该件次品是由甲车间生产的概率. 35 18 第二章 1.设随机变量X~N (2,22),则P {X ≤0}=___0.1587____.(附:Φ(1)=0.8413) 设随机变量X~N (2,22),则P{X ≤0}=(P{(X-2)/2≤-1} =Φ(-1)=1-Φ(1)=0.1587 2.设连续型随机变量X 的分布函数为???≤>-=-,0, 0;0,1)(3x x e x F x

概率统计试题库及答案

、填空题 1、设 A 、B 、C 表示三个随机事件,试用 A 、B 、C 表示下列事件:①三个事件都发生 ____________ ;__②_ A 、B 发生,C 3、 设 A 、 B 、C 为三个事件,则这三个事件都不发生为 ABC; A B C.) 4、 设 A 、B 、C 表示三个事件,则事件“A 、B 、C 三个事件至少发生一个”可表示为 ,事件“A 、B 、 C 都发生”可表 示为 , 5、 设 A 、 B 、 C 为三事件,则事件“A 发生 B 与 C 都不发生”可表示为 ________ 事__件; “A 、B 、C 不都发生”可表 示为 ____________ ;_事_ 件“A 、B 、C 都不发生”可表示为 ____ 。_(_ABC ,A B C ;A B C ) 6、 A B ___________ ;__ A B ___________ ;__A B ___________ 。_(_ B A , A B , A B ) 7、 设事件 A 、B 、C ,将下列事件用 A 、B 、C 间的运算关系表示:(1)三个事件都发生表示为: _______ ;_(_ 2)三 个 事件不都发生表示为: ________ ;_(_ 3)三个事件中至少有一个事件发生表示为: _____ 。_(_ ABC , A B C , A B C ) 8、 用 A 、B 、C 分别表示三个事件,试用 A 、B 、C 表示下列事件: A 、B 出现、C 不出现 ;至少有一 个 事 件 出 现 ; 至 少 有 两 个 事 件 出 现 。 ( ABC,A B C,ABC ABC ABC ABC ) 9、 当且仅当 A 发生、 B 不发生时,事件 ________ 发_生_ 。( A B ) 10、 以 A 表 示 事 件 “甲 种 产 品 畅 销 , 乙 种 产 品 滞 销 ”, 则 其 对 立 事 件 A 表 示 。(甲种产品滞销或乙种产品畅销) 11、 有R 1, R 2 , R 3 三个电子元件,用A 1,A 2,A 3分别表示事件“元件R i 正常工作”(i 1,2,3) ,试用 A 1,A 2,A 3表示下列事件: 12、 若事件 A 发生必然导致事件 B 发生,则称事件 B _____ 事_件 A 。(包含) 13、 若 A 为不可能事件,则 P (A )= ;其逆命题成立否 。(0,不成立) 14、 设A、B为两个事件, P (A )=0 .5, P (A -B )=0.2,则 P (A B ) 。(0.7) 15、 设P A 0.4,P A B 0.7,若 A, B 互不相容,则P B ______________ ;_若 A, B 相互独立,则P B _______ 。_(_0.3, 概率论与数理统计试题库 不发生 _________ ;__③三个事件中至少有一个发生 2、 设 A 、B 、C 为三个事件,则这三个事件都发生为 _______________ 。_(__A_BC , ABC , A B C ) ;三个事件恰有一个发生 为 ABC; ABC ABC ABC )。 ;三个事件至少有一个发生为 事件“A 、 B 、C 三事件中至少有两个发生”可表示为 。( A B C , ABC , AB BC AC ) 三个元件都正常工作 ;恰有一个元件不正常工作 至少有一个元件 正常工作 。( A 1 A 2 A 3, A 1A 2 A 3 A 1 A 2A 3 A 1A 2A 3,A 1 A 2 A 3)

济南大学概率论A大作业答案

第一章 概率论的基本概念 一、填空题 1.;)3(;)2(;)1(C B A C B A C B A C B A C AB )()4(C B C A B A C B A C B A C B A C B A 或; 2. 2 1 81,; 3.6.0; 4. 733.0,; 5. 8.0,7.0; 6. 87; 7. 85; 8. 996.01211010 12或A -; 9. 2778.0185 6 446==A ;10. p -1. 二、选择题 D ;C ;B ;A ;D ; C ;D ;C ;D ;B . 三、解答题 1.解:).()()()(),((AB P B P AB P A P A B P B A P -=-∴=) 相互独立, 又)B A B A P B P A P ,,9 1 )(),((==∴ .3 2 )(,91)](1[)()()()(22=∴=-===∴A P A P A P B P A P B A P 2.解: 设事件A 表示“取得的三个数字排成一个三位偶数”,事件B 表示“此三位偶数的末 尾为0”,事件B 表示“此三位偶数的末尾不为0”,则: =)(A P )()(B P B P += .125 3 4 1 2123423=+A A A A A 3.解:设A i =“飞机被i 人击中”,i =1,2,3 , B =“飞机被击落”, 则由全概率公式: )()()()((321321B A P B A P B A P B A B A B A P B P ++== ) )()()()()()(332211A B P A P A B P A P A B P A P ++= (1) 设1H =“飞机被甲击中”,2H =“飞机被乙击中”,3H =“飞机被丙击中”, 则: =)(1A P 321(H H H P 321(H H H P 321(H H H P ) =+)(321H H H P +)(321H H H P )(321H H H P ) 由于甲、乙、丙的射击是相互独立的,

大学概率论习题五详解(1)

正文: 概率论习题五详解 1、设X 为离散型的随机变量,且期望EX 、方差DX 均存在,证明对任意0>ε,都有 ()2 εεDX EX X P ≤ ≥- 证明 设()i i p x X P == ,...2,1=i 则 ()()∑≥ -==≥-ε εEX x i i x X P EX X P ()i EX x i p EX x i ∑≥ --≤εε2 2 ()i i i p EX x ∑ -≤2 2ε=2 εDX 2、设随机变量X 和Y 的数学期望都是2,方差分别为1和4,而相关系数为0.5,请利用切比 雪夫不等式证明: ()12 16≤ ≥-Y X P 。 证 ()0=-Y X E ()1,cov ==DXDY Y X ρ ()()325,cov 2=-=-+=-Y X DY DX Y X D ()()()()()12 1 6662= -≤≥---=≥-Y X D Y X E Y X P Y X P 3、一枚均匀硬币要抛多少次才能使正面出现的频率与0.5之间的偏差不小于0.04的概率不 超过0.01? 解设n X 为 n 次抛硬币中正面出现次数,按题目要求,由切比雪夫不等式可得 01.004.05.05.004.05.02≤??≤??? ? ??≥-n n X P n 从而有 1562504.001.025 .02 =?≥n 即至少连抛15625次硬币,才能保证正面出现频率与0.5的偏差不小于0.04的概率不超过0.01。 4、每名学生的数学考试成绩X 是随机变量,已知80=EX ,25=DX ,(1)试用切比雪夫不等式估计该生成绩在70分到90分之间的概率范围;(2)多名学生参加数学考试,要使他们的平均分数在75分到85分之间的概率不低于90%,至少要有多少学生参加考试? 解 (1)由切比雪夫不等式 () 2 1ε εDX EX X P - ≥<- ()0>ε 又 ()()()101090709070≤-≤-=-≤-≤-=≤≤EX X P EX EX X EX P X P =()75.0100 25 11080=-≥≤-X P 即该生的数学考试成绩在70分到90分之间的概率不低于75% (2)设有n 个学生参加考试(独立进行),记第i 个学生的成绩为i X ()n i i ...2,=,则平均成绩

概率论与数理统计大纲各章节作业

第一章随机事件与概率 1. 将一枚均匀的硬币抛两次,事件C B A ,,分别表示“第一次出现正面”,“两次出现同一面”,“至少有一次出现正面”。试写出样本空间及事件C B A ,,中的样本点。 解:Ω={(正,正),(正,反),(反,正),(反,反)}; A={(正,反),(正,正)}; B={(正,正),(反,反)}; C={(正,反),(正,正),(反,正)}。 2.设31)(=A P ,2 1)(=B P ,试就以下三种情况分别求)(A B P : (1)AB =?,(2)B A ?,(3)81)(=AB P 解: (1)5.0)()()()()(==-=-=B P AB P B P AB B P A B P (2)6/13/15.0)()()()()()(=-=-=-=-=A P B P AB P B P AB B P A B P (3)375 .0125.05.0)()()()(=-=-=-=AB P B P AB B P A B P 3.某人忘记了电话号码的最后一个数字,因而随机的拨号,求他 拨号不超过三次而接通所需的电话的概率是多少如果已知最后一个数字是奇数,那么此概率是多少 解: 记H 表拨号不超过三次而能接通。 Ai 表第i 次拨号能接通。 注意:第一次拨号不通,第二拨号就不再拨这个号码。 10 3819810991109101) |()|()()|()()()(2131211211321211=??+?+= ++=∴ ++=A A A P A A P A P A A P A P A P H P A A A A A A H 三种情况互斥 Θ 如果已知最后一个数字是奇数(记为事件B )问题变为在B 已发生的条件下,求H 再发生的概率。

概率论与数理统计期末应用题专项训练

概率论与数理统计期末应用题专项训练

应用题专项训练 1. 一工厂生产化学制品的日产量(以吨计)近似服从正态分布,当设备正常时一天产800吨, 现测得最近 5 天的产量分别 为:785,805,790,790,802,问是否可以认为日产量显著不为800吨。(取05.0=α),此题中 7764 .2)4(025.0=t 。 2. 设温度计制造厂商的温度计读数近似服从正态分布 未知 u u N ,),,(22σσ,现他声称他的温度计读数 的标准差为不超过0.5, 现检验了一组16只温度计,得标准0。7度,试检验制造商的言是否正确(取05.0=α),此题中996.24)15(2 05.0=χ。 3. 某人钥匙丢了,他估计钥匙掉在宿舍里、教室里以及路上的概率分别为0.4、0.35和0.25,而钥匙在上述三个地方被找到的概率分别为0.5、0.65和0.45.如果钥匙最终被找到,求钥匙是在路上被找到的概率. 4. 某加油站每周补给一次汽油,如果该加油站每周汽油的销售量X (单位:千升)是一随机变量,其密度函数为 ()?? ???<

6.

7. (1)抽到次品的概率为: ; (2)若发现该件是次品,则该次品为甲厂生产的概率为: . 8. 某体育彩票设有两个等级的奖励,一等奖为4元,二等奖2元,假设中一、二等奖的概率分别为0.3和0.5, 且每张彩票卖2元。如果你是顾客,你对于是否购买此彩票的明智选择为: (买,不买或无所谓)。 9. 甲、乙、丙三个工厂生产同一种零件,设甲厂、乙厂、丙厂的次品率分别为0.2,0.1,0.3.现从由甲厂、乙厂、丙厂的产品分别占15%,80%,5%的一批产品中随机抽取一件,发现是次品, 求该次品为甲厂生产的概率. 10. 某人寿保险公司每年有10000人投保,每人每 年付12元的保费,如果该年内投保人死亡,保险公司应付1000元的赔偿费,已知一个人一年内死亡的概率为0.0064。用中心极限定理近似计算该保险公司一年内的利润不少于48000元的概率。已知8413.0)1(=φ,9772.0)2(=φ。 11. 某地区参加外语统考的学生成绩近似服从正 态分布未知22 ,),,(σσu u N ,该校校长声称学生 平均成绩为70分,现抽取16名学生的成绩,得平均分为68分,标准差为3分,请在显著水平05.0=α下,检验该校长的断言是否正确。(此题中1315.2)15(025 .0=t ) 12. 某工厂要求供货商提供的元件一级品率为90% 以上,现有一供应商有一大批元件,经随机抽取100件,经检验发现有84件为一级品,试以

概率统计练习题答案

概率统计练习题答案 TTA standardization office【TTA 5AB- TTAK 08- TTA 2C】

《概率论与数理统计》练习题 2答案 考试时间:120分钟 题目部分,(卷面共有22题,100分,各大题标有题量和总分) 一、选择题(10小题,共30分) 1、A 、B 任意二事件,则A B -=( )。 A 、B A - B 、AB C 、B A - D 、A B 答案:D 2、设袋中有6个球,其中有2个红球,4个白球,随机地等可能地作无放回抽样,连 续抽两次,则使P A ()=1 3成立的事件A 是( )。 A 、 两次都取得红球 B 、 第二次取得红球 C 、 两次抽样中至少有一次抽到红球 D 、 第一次抽得白球,第二次抽得红球, 答案:B 3、函数()0 0sin 01 x F x x x x ππ

A 、ξη= B 、2ξηξ+= C 、2ξηξ= D 、~(2,)B p ξη+ 答案:D 5、设随机变量12,,,n ξξξ???相互独立,且i E ξ及i D ξ都存在(1,2, ,)i n =,又 12,,, ,n c k k k ,为1n +个任意常数,则下面的等式中错误的是( )。 A 、11n n i i i i i i E k c k E c ξξ==??+=+ ???∑∑ B 、11n n i i i i i i E k k E ξξ==??= ???∏∏ C 、11n n i i i i i i D k c k D ξξ==??+= ???∑∑ D 、()111n n i i i i i D D ξξ==??-= ???∑∑ 答案:C 6、具有下面分布密度的随机变量中方差不存在的是( )。 A 、()150050x x x e x ?-≤?=?>? B 、( )2 6 2x x ?-= C 、()312 x x e ?-= D 、()() 42 1 1x x ?π= + 答案:D 7、设随机变量的数学期望和方差均是1m +(m 为自然数),那么 (){}041P m ξ<<+≥( )。 A 、 11m + B 、1m m + C 、0 D 、1m 答案:B 8、设1, , n X X 是来自总体2(, )N μσ的样本, 2 211 11, (),1n n i n i i i X X S X X n n --==--∑∑则以下结论中错误的是( )。 A 、X 与2n S 独立 B 、 ~(0, 1)X N μ σ -

概率论课程期末论文大作业

《概率论与数理统计》论文题目:正态分布及其应用 学院:航天学院 专业:空间科学与技术 姓名:黄海京 学号:1131850108

正态分布及其应用 摘要:正态分布(normal distribution),是一个在数学、物理及工程等领域都非常重要的概率分布,在统计学的许多方面有着重大的影响力。正态分布有极其广泛的实际背景, 例如测量误差, 人的生理特征尺寸如身高、体重等 ,正常情况下生产的产品尺寸:直径、长度、重量高度,炮弹的弹落点的分布等, 都服从或近似服从正态分布,以及确定医学参考值范围,药品规格,用量等。可以说,正态分布是自然界和社会现象中最为常见的一种分布, 一个变量如果受到大量微小的、独立的随机因素的影响, 那么这个变量一般是一个正态随机变量。 关键词:正态分布, 一、正态分布的由来 正态分布(normal distribution)又名高斯分布(Gaussian distribution)。正态分布概念是由德国的数学家和天文学家Moivre于1733年受次提出的,但由于德国数学家Gauss率先将其应用于天文学家研究,故正态分布又叫高斯分布,高斯这项工作对后世的影响极大,他使正态分布同时有了“高斯分布”的名称,后世之所以多将最小二乘法的发明权归之于他,也是出于这一工作。 正态分布是一个在数学、物理及工程等领域都非常重要的概率分布,在统计学的许多方面有着重大的影响力。若随机变量X服从一个数学期望为μ、标准方差为σ2的高斯分布,记为:则其概率密度函数为正态分布的期望值μ决定了其位置,其标准差σ决定了分布的幅度。因其曲线呈钟形,因此人们又经常称之为钟形曲线。我们通常所说的标准正态分布是μ= 0,σ= 1的正态分布。 二、正态分布的特性 1. 正太分布的曲线特征 正态曲线呈钟型,两头低,中间高,左右对称,曲线与横轴间的面积总等于1。 (1)集中性:正态曲线的高峰位于正中央,即均数所在的位置。 (2)对称性:正态曲线以均数为中心,左右对称,曲线两端永远不与横轴相交。 (3)均匀变动性:正态曲线由均数所在处开始,分别向左右两侧逐渐均匀下降。

概率论期末复习题.doc

概率论期末复习题 选择题 1.以A表示甲种产品畅销,乙种产品滞销,则焱为(1)) A 甲种产品滞销,乙种产品畅销 B 甲、乙产品均畅销 C 甲种产品滞销1)甲种产品滞销或乙种产品畅销 2.设4与6为网事件,且则下列式子正确的是(A ) A P(AUfi) = P(A) B P(AB) = P(A) c P(B) = P(A) D P(S-A)= P(fi)-P(A) 3.事件与事件B互斥,0<尸(A)<1,则下列结论中一定成立的是(B ) A A\J B = S B AUB = S c A = B l)AB = 0 4.设事件A与事件B互斥,P(A)>0, P(B)>0,则下列结论屮一定成立的是(C ) A A、S为对立事件 B 2与g互斥 c A与B不独立i) A与B相互独立 5.对于任意事件A与5,存在(B ) A 若Afi关0,则A与B必独立 B 若A5关0,则必与B有可能独立 C 若AB = 0,则A与B必独立 D 若九8 = 0,则A与B必不独立 6.将两枚硬币独立地各掷一次,引入事件,、-{笫一枚fli现正诎|,A2-{笫二枚出现正面},A3H 出 现--正而■?反而},A4H均出现正而I,则事件(C ) A 相互独立 B 4,A3,A4相互独立 C A,A2,A3两两独立 D A, A3 M4两两独立 7.设三个事件欠、fi、C两W独立,则A、fi、C相互独立的充要条件是(A ) A A与SC独立 B Afi与AUC独立 c Afi与AC独立l) AU 5与 欠U C独立 B.关于独立性,下列说法错误的是(1)) A若4,A2,…,相且独立,则其十的任意多个事件A、,…,' (々<")仍然相互独立B 若12,,? ?,相互独立,则其中的任意多个事件换成其对立事件后仍然相互独立 C 若A,5, C相互独立,则A u 5与c相互独立 D 若A与6独立,B与C独立,A与C独立,则A,fl,C相互独立

概率论习题解答(第4章)

概率论习题解答(第4章)

第4章习题答案 三、解答题 1. 设随机变量X 的分布律为 求)(X E ,)(2 X E ,)53(+X E . 解:E (X ) = ∑∞ =1 i i xp = ()2-4.0?+03.0?+23.0?= -0.2 E (X 2 ) = ∑∞ =1 2 i i p x = 44.0?+ 03.0?+ 43.0?= 2.8 E (3 X +5) =3 E (X ) +5 =3()2.0-?+5 = 4.4 2. 同时掷八颗骰子,求八颗骰子所掷出的点数和的数学期望. 解:记掷1颗骰子所掷出的点数为X i ,则X i 的分布律为 6 ,,2,1,6/1}{Λ===i i X P 记掷8颗骰子所掷出的点数为X ,同时掷8颗骰子,相当于作了8次独立重复的试验, E (X i ) =1/6×(1+2+3+4+5+6)=21/6 E (X ) =8×21/3=28 3. 某图书馆的读者借阅甲种图书的概率为p 1,借阅乙种图书的概率为p 2,设每人借阅甲乙

{}k X == λ λ-e k k ! ,k = 1,2,... 又P {}5=X =P {}6=X , 所以 λ λ λλ--= e e ! 6!56 5 解得 6=λ,所以 E (X ) = 6. 6. 设随机变量 X 的分布律为 ,,4,3,2,1,6 }{2 2Λ--== =k k k X P π问X 的数学期望是否存在? 解:因为级数∑∑∑∞ =+∞ =+∞ =+-=-=?-1 1 2 1 211 221 1 )1(6)6)1(()6) 1((k k k k k k k k k k πππ, 而 ∑∞ =11k k 发散,所以X 的数学期望不存在. 7. 某城市一天的用电量X (十万度计)是一个随机变量,其概率密度为 ?????>=-.0 ,0,9 1)(3 /其它x xe x f x 求一天的平均耗电量. 解:E (X ) =??? ∞ -∞ -∞∞ -==0 3/20 3/9191)(dx e x dx xe x dx x f x x x =6. 8. 设某种家电的寿命X (以年计)是一个随机变量,其分布函数为 ?????>-=.0 , 5,25 1)(2 其它x x x F 求这种家电的平均寿命E (X ).

相关文档
相关文档 最新文档