文档视界 最新最全的文档下载
当前位置:文档视界 › 人教中考数学锐角三角函数-经典压轴题附详细答案

人教中考数学锐角三角函数-经典压轴题附详细答案

人教中考数学锐角三角函数-经典压轴题附详细答案
人教中考数学锐角三角函数-经典压轴题附详细答案

一、锐角三角函数真题与模拟题分类汇编(难题易错题)

1.图1是一种折叠式晾衣架.晾衣时,该晾衣架左右晾衣臂张开后示意图如图2所示,两支脚OC=OD=10分米,展开角∠COD=60°,晾衣臂OA=OB=10分米,晾衣臂支架HG =FE=6分米,且HO=FO=4分米.当∠AOC=90°时,点A离地面的距离AM为_______分米;当OB从水平状态旋转到OB′(在CO延长线上)时,点E绕点F随之旋转至OB′上的点E′处,则B′E′﹣BE为_________分米.

【答案】553

【解析】

【分析】

如图,作OP⊥CD于P,OQ⊥AM于Q,FK⊥OB于K,FJ⊥OC于J.解直角三角形求出MQ,AQ即可求出AM,再分别求出BE,B′E′即可.

【详解】

解:如图,作OP⊥CD于P,OQ⊥AM于Q,FK⊥OB于K,FJ⊥OC于J.

∵AM⊥CD,

∴∠QMP=∠MPO=∠OQM=90°,

∴四边形OQMP是矩形,

∴QM=OP,

∵OC=OD=10,∠COD=60°,

∴△COD是等边三角形,

∵OP⊥CD,

∠COD=30°,

∴∠COP=1

2

∴QM=OP=OC?cos30°=3

∵∠AOC=∠QOP=90°,

∴∠AOQ=∠COP=30°,

∴AQ=1

OA=5(分米),

2

∴AM=AQ+MQ=5+3

∵OB∥CD,

∴∠BOD=∠ODC=60°

在Rt△OFK中,KO=OF?cos60°=2(分米),FK=OF?sin60°=23(分米),

在Rt△PKE中,EK=22

-=26(分米),

EF FK

∴BE=10?2?26=(8?26)(分米),

在Rt△OFJ中,OJ=OF?cos60°=2(分米),FJ=23(分米),

在Rt△FJE′中,E′J=22

-(2)=26,

63

∴B′E′=10?(26?2)=12?26,

∴B′E′?BE=4.

故答案为:5+53,4.

【点睛】

本题考查解直角三角形的应用,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.

2.在△ABC中,AB=BC,点O是AC的中点,点P是AC上的一个动点(点P不与点A,O,C重合).过点A,点C作直线BP的垂线,垂足分别为点E和点F,连接OE,OF.(1)如图1,请直接写出线段OE与OF的数量关系;

(2)如图2,当∠ABC=90°时,请判断线段OE与OF之间的数量关系和位置关系,并说明理由

(3)若|CF﹣AE|=2,EF=23,当△POF为等腰三角形时,请直接写出线段OP的长.

【答案】(1)OF =OE;(2)OF⊥EK,OF=OE,理由见解析;(3)OP62

23

.

【解析】

【分析】(1)如图1中,延长EO交CF于K,证明△AOE≌△COK,从而可得OE=OK,再

根据直角三角形斜边中线等于斜边一半即可得OF=OE;

(2)如图2中,延长EO交CF于K,由已知证明△ABE≌△BCF,△AOE≌△COK,继而可证得△EFK是等腰直角三角形,由等腰直角三角形的性质即可得OF⊥EK,OF=OE;

(3)分点P在AO上与CO上两种情况分别画图进行解答即可得.

【详解】(1)如图1中,延长EO交CF于K,

∵AE⊥BE,CF⊥BE,∴AE∥CK,∴∠EAO=∠KCO,

∵OA=OC,∠AOE=∠COK,∴△AOE≌△COK,∴OE=OK,

∵△EFK是直角三角形,∴OF=1

2

EK=OE;

(2)如图2中,延长EO交CF于K,

∵∠ABC=∠AEB=∠CFB=90°,

∴∠ABE+∠BAE=90°,∠ABE+∠CBF=90°,∴∠BAE=∠CBF,

∵AB=BC,∴△ABE≌△BCF,∴BE=CF,AE=BF,

∵△AOE≌△COK,∴AE=CK,OE=OK,∴FK=EF,

∴△EFK是等腰直角三角形,∴OF⊥EK,OF=OE;

(3)如图3中,点P在线段AO上,延长EO交CF于K,作PH⊥OF于H,

∵|CF ﹣AE|=2,EF=23,AE=CK ,∴FK=2, 在Rt △EFK 中,tan ∠FEK=3

3

,∴∠FEK=30°,∠EKF=60°, ∴EK=2FK=4,OF=

1

2

EK=2, ∵△OPF 是等腰三角形,观察图形可知,只有OF=FP=2, 在Rt △PHF 中,PH=1

2

PF=1,HF=3,OH=2﹣3, ∴OP=()

2

2

123

62+-=-.

如图4中,点P 在线段OC 上,当PO=PF 时,∠POF=∠PFO=30°, ∴∠BOP=90°, ∴OP=

33OE=33

, 综上所述:OP 6223

. 【点睛】本题考查了全等三角形的判定与性质、直角三角形斜边中线等于斜边一半、等腰直角三角形的判定与性质、解直角三角形等,综合性较强,正确添加辅助线是解题的关键.

3.已知在平面直角坐标系中,点()()()3,0,3,0,3,8A B C --,以线段BC 为直径作圆,圆心为E ,直线AC 交E 于点D ,连接OD . (1)求证:直线OD 是

E 的切线;

(2)点F 为x 轴上任意一动点,连接CF 交E 于点G ,连接BG :

①当1

an 7

t ACF ∠=时,求所有F 点的坐标 (直接写出); ②求

BG

CF

的最大值. 【答案】(1)见解析;(2)①143,031F ??

???

,2(5,0)F ;② BG CF 的最大值为12.

【解析】 【分析】

(1)连接DE ,证明∠EDO=90°即可;

(2)①分“F 位于AB 上”和“F 位于BA 的延长线上”结合相似三角形进行求解即可; ②作GM BC ⊥于点M ,证明1~ANF ABC ??,得1

2

BG CF ≤,从而得解. 【详解】

(1)证明:连接DE ,则:

∵BC 为直径 ∴90BDC ∠=? ∴90BDA ∠=? ∵OA OB = ∴OD OB OA == ∴OBD ODB ∠=∠

EB ED =

∴EBD EDB ∠=∠

∴EBD OBD EDB ODB ∠+∠=∠+∠ 即:EBO EDO ∠=∠ ∵CB x ⊥轴 ∴90EBO ∠=? ∴90EDO ∠=? ∴直线OD 为

E 的切线.

(2)①如图1,当F 位于AB 上时: ∵1~ANF ABC ??

11

NF AF AN AB BC AC

== ∴设3AN x =,则114,5NF x AF x ==

∴103CN CA AN x =-=-

∴141tan 1037F N x ACF CN x ∠===-,解得:10

31x = ∴150

531AF x ==

15043

33131

OF =-=

即143,031F ??

???

如图2,当F 位于BA 的延长线上时: ∵2~AMF ABC ??

∴设3AM x =,则224,5MF x AF x == ∴103CM CA AM x =+=+ ∴241

tan 1037

F M x ACF CM x ∠===+ 解得:25

x =

∴252AF x ==

2325OF =+=

即2(5,0)F

②如图,作GM BC ⊥于点M , ∵BC 是直径

∴90CGB CBF ∠=∠=? ∴~CBF CGB ??

8BG MG MG

CF BC == ∵MG ≤半径4=

41

882BG MG CF =≤= ∴BG CF

的最大值为12.

【点睛】

本题考查了圆的综合题:熟练掌握切线的判定定理、解直角三角形;相似三角形的判定和性质和相似比计算线段的长;理解坐标与图形性质;会运用分类讨论的思想解决数学问题.

4.如图(1),在平面直角坐标系中,点A (0,﹣6),点B (6,0).Rt △CDE 中,∠CDE=90°,CD=4,DE=4

,直角边CD 在y 轴上,且点C 与点A 重合.Rt △CDE 沿y 轴

正方向平行移动,当点C 运动到点O 时停止运动.解答下列问题:

(1)如图(2),当Rt△CDE运动到点D与点O重合时,设CE交AB于点M,求∠BME 的度数.

(2)如图(3),在Rt△CDE的运动过程中,当CE经过点B时,求BC的长.

(3)在Rt△CDE的运动过程中,设AC=h,△OAB与△CDE的重叠部分的面积为S,请写出S与h之间的函数关系式,并求出面积S的最大值.

【答案】(1)∠BME=15°;

(2BC=4;

(3)h≤2时,S=﹣h2+4h+8,

当h≥2时,S=18﹣3h.

【解析】

试题分析:(1)如图2,由对顶角的定义知,∠BME=∠CMA,要求∠BME的度数,需先求出∠CMA的度数.根据三角形外角的定理进行解答即可;

(2)如图3,由已知可知∠OBC=∠DEC=30°,又OB=6,通过解直角△BOC就可求出BC的长度;

(3)需要分类讨论:①h≤2时,如图4,作MN⊥y轴交y轴于点N,作MF⊥DE交DE于点F,S=S△EDC﹣S△EFM;②当h≥2时,如图3,S=S△OBC.

试题解析:解:(1)如图2,

∵在平面直角坐标系中,点A(0,﹣6),点B(6,0).

∴OA=OB,

∴∠OAB=45°,

∵∠CDE=90°,CD=4,DE=4,

∴∠OCE=60°,

∴∠CMA=∠OCE﹣∠OAB=60°﹣45°=15°,

∴∠BME=∠CMA=15°;

如图3,

∵∠CDE=90°,CD=4,DE=4,

∴∠OBC=∠DEC=30°,

∵OB=6,

∴BC=4;

(3)①h≤2时,如图4,作MN⊥y轴交y轴于点N,作MF⊥DE交DE于点F,

∵CD=4,DE=4,AC=h,AN=NM,

∴CN=4﹣FM,AN=MN=4+h﹣FM,

∵△CMN∽△CED,

∴,

∴,

解得FM=4﹣,

∴S=S△EDC﹣S△EFM=×4×4﹣(44﹣h)×(4﹣)=﹣h2+4h+8,②如图3,当h≥2时,

S=S△OBC=OC×OB=(6﹣h)×6=18﹣3h.

考点:1、三角形的外角定理;2、相似;3、解直角三角形

5.如图,AB是⊙O的直径,弦CD⊥AB于H,过CD延长线上一点E作⊙O的切线交AB 的延长线于切点为G,连接AG交CD于K.

(1)求证:KE=GE;

(2)若KG2=KD?GE,试判断AC与EF的位置关系,并说明理由;

(3)在(2)的条件下,若sinE=,AK=,求FG的长.

【答案】(1)证明见解析;(2)AC∥EF,证明见解析;(3)FG= .

【解析】

试题分析:(1)如图1,连接OG.根据切线性质及CD⊥AB,可以推出

∠KGE=∠AKH=∠GKE,根据等角对等边得到KE=GE;

(2)AC与EF平行,理由为:如图2所示,连接GD,由∠KGE=∠GKE,及KG2=KD?GE,利用两边对应成比例且夹角相等的两三角形相似可得出△GKD与△EKG相似,又利用同弧所对的圆周角相等得到∠C=∠AGD,可推知∠E=∠C,从而得到AC∥EF;

(3)如图3所示,连接OG,OC,先求出KE=GE,再求出圆的半径,根据勾股定理与垂径定理可以求解;然后在Rt△OGF中,解直角三角形即可求得FG的长度.

试题解析:(1)如图1,连接OG.

∵EG为切线,

∴∠KGE+∠OGA=90°,

∵CD⊥AB,

∴∠AKH+∠OAG=90°,

又∵OA=OG,

∴∠OGA=∠OAG,

∴∠KGE=∠AKH=∠GKE,

∴KE=GE.

(2)AC∥EF,理由为连接GD,如图2所示.

∵KG2=KD?GE,即,

∴,

又∵∠KGE=∠GKE,

∴△GKD∽△EGK,

∴∠E=∠AGD,

又∵∠C=∠AGD,

∴∠E=∠C,

∴AC∥EF;

(3)连接OG,OC,如图3所示,

∵EG为切线,

∴∠KGE+∠OGA=90°,

∵CD⊥AB,

∴∠AKH+∠OAG=90°,

又∵OA=OG,

∴∠OGA=∠OAG,

∴∠KGE=∠AKH=∠GKE,

∴KE=GE.

∵sinE=sin∠ACH=

,设AH=3t,则AC=5t,CH=4t,∵KE=GE,AC∥EF,

∴CK=AC=5t,

∴HK=CK-CH=t.

在Rt △AHK 中,根据勾股定理得AH 2+HK 2=AK 2, 即(3t )2+t 2=(2

)2,解得t=

设⊙O 半径为r ,在Rt △OCH 中,OC=r ,OH=r-3t ,CH=4t , 由勾股定理得:OH 2+CH 2=OC 2, 即(r-3t )2+(4t )2=r 2,解得r= t=

∵EF 为切线,

∴△OGF 为直角三角形, 在Rt △OGF 中,OG=r=

,tan ∠OFG=tan ∠CAH=

∴FG=

【点睛】此题考查了切线的性质,相似三角形的判定与性质,垂径定理,勾股定理,锐角三角函数定义,圆周角定理,平行线的判定,以及等腰三角形的判定,熟练掌握定理及性质是解本题的关键.

6.如图,在平面直角坐标系中,点O 为坐标原点,直线4y kx =+交x 轴、y 轴分别于点

A 、点

B ,且ABO ?的面积为8. (1)求k 的值;

(2)如图,点P 是第一象限直线AB 上的一个动点,连接PO ,将线段OP 绕点O 顺时针旋转90°至线段OC ,设点P 的横坐标为t ,点C 的横坐标为m ,求m 与t 之间的函数关系式(不要求写出自变量t 的取值范围);

(3)在(2)的条件下,过点B 作直线BM OP ⊥,交x 轴于点M ,垂足为点N ,点K 在线段MB 的延长线上,连接PK ,且0PK KB P +=,2PMB KPB ∠=∠,连接MC ,

求四边形BOCM 的面积.

【答案】(1)1k =;(2)4m t =+;(3)32BOCM

S =.

【解析】 【分析】

(1)先求出A 的坐标,然后利用待定系数法求出k 的值;

(2) 过点P 作PD x ⊥轴,垂足为D ,过点C 作CE x ⊥轴,垂足为E ,证

POD OCE ???可得OE PD =,进一步得出m 与t 的函数关系式;

(3)过点O 作直线OT AB ⊥,交直线BM 于点Q ,垂足为点T ,连接QP ,先证出

QTB PTO ???;再证出KPB BPN ∠=∠;设KPB x ∠=?,通过计算证出PO PM =;

再过点P 作PD x ⊥轴,垂足为点D ,根据tan tan OPD BMO ∠=∠得到

OD BO

PD MO

=,列式可求得t=4;所以OM=8进一步得出四边形BOCM 是平行四边形,最后可得其面积为32. 【详解】

解:(1)把0x =代入4y kx =+,4y =, ∴4BO =, 又∵4ABO S ?=,

1

42

AO BO ?=,4AO =, ∴(4,0)A -,

把4x =-,0y =代入4y kx =+, 得044k =-+, 解得1k =. 故答案为1;

(2)解:把x t =代入4y x =+,4y t =+, ∴(,4)P t t +

如图,过点P 作PD x ⊥轴,垂足为D ,过点C 作CE x ⊥轴,垂足为E ,

∴90PDO CEO ∠=∠=?, ∴90POD OPD ∠+∠=?,

∵线段OP 绕点O 顺时针旋转90°至线段OC ,

∴90POC ∠=?,OP OC =, ∴90POD EOC ∠+∠=?, ∴OPD EOC ∠=∠, ∴POD OCE ???, ∴OE PD =,

4m t =+.

故答案为4m t =+.

(3)解:如图,过点O 作直线OT AB ⊥,交直线BM 于点Q ,垂足为点T ,连接QP ,

由(1)知,4AO BO ==,90BOA ∠=?, ∴ABO ?为等腰直角三角形,

∴45ABO BAO ∠=∠=?,9045BOT ABO ABO ∠=?-∠=?=∠, ∴BT TO =, ∵90BTO ∠=?, ∴90TPO TOP ∠+∠=?, ∵PO BM ⊥, ∴90BNO ∠=?, ∴BQT TPO ∠=∠, ∴QTB PTO ???, ∴QT TP =,PO BQ =, ∴PQT QPT ∠=∠, ∵PO PK KB =+,

∴QB PK KB =+,QK KP =, ∴KQP KPQ ∠=∠,

∴PQT KQP QPT KPQ ∠-∠=∠-∠,TQB TPK ∠=∠, ∴KPB BPN ∠=∠, 设KPB x ∠=?, ∴BPN x ∠=?,

∵2PMB KPB ∠=∠, ∴2PMB x ∠=?,

45POM PAO APO x ∠=∠+∠=?+?,9045NMO POM x ∠=?-∠=?-?, ∴45PMO PMB NMO x POM ∠=∠+∠=?+?=∠, ∴PO PM =,

过点P 作PD x ⊥轴,垂足为点D , ∴22OM OD t ==,

9045OPD POD x BMO ∠=?-∠=?-?=∠, tan tan OPD BMO ∠=∠, OD BO PD MO =,

4

42t t t =+, 14t =,22t =-(舍)

∴8OM =,由(2)知,48m t OM =+==, ∴CM y 轴, ∵90PNM POC ∠=∠=?, ∴BM OC ,

∴四边形BOCM 是平行四边形,

∴4832BOCM

S

BO OM =?=?=.

故答案为32. 【点睛】

本题考查了一次函数和几何的综合题,全等三角形的判定和性质,解直角三角形,添加适当的辅助线构造全等三角形是本题的关键.

7.如图(1),已知正方形ABCD 在直线MN 的上方BC 在直线MN 上,E 是BC 上一点,以AE 为边在直线MN 的上方作正方形AEFG . (1)连接GD ,求证:△ADG ≌△ABE ;

(2)连接FC ,观察并直接写出∠FCN 的度数(不要写出解答过程)

(3)如图(2),将图中正方形ABCD 改为矩形ABCD ,AB =6,BC =8,E 是线段BC 上一动点(不含端点B 、C ),以AE 为边在直线MN 的上方作矩形AEFG ,使顶点G 恰好落在射线CD 上.判断当点E 由B 向C 运动时,∠FCN 的大小是否总保持不变,若∠FCN 的大小不变,请求出tan ∠FCN 的值.若∠FCN 的大小发生改变,请举例说明.

【答案】(1)见解析;(2)∠FCN =45°,理由见解析;(3)当点E 由B 向C 运动时,

∠FCN 的大小总保持不变,tan ∠FCN

=4

3

.理由见解析. 【解析】 【分析】

(1)根据三角形判定方法进行证明即可.

(2)作FH ⊥MN 于H .先证△ABE ≌△EHF ,得到对应边相等,从而推出△CHF 是等腰直角三角形,∠FCH 的度数就可以求得了.

(3)解法同(2),结合(1)(2)得:△EFH ≌△GAD ,△EFH ∽△ABE ,得出EH=AD=BC=8,由三角函数定义即可得出结论. 【详解】

(1)证明:∵四边形ABCD 和四边形AEFG 是正方形, ∴AB =AD ,AE =AG =EF ,∠BAD =∠EAG =∠ADC =90°, ∴∠BAE +∠EAD =∠DAG +∠EAD ,∠ADG =90°=∠ABE , ∴∠BAE =∠DAG , 在△ADG 和△ABE 中,

ADG ABE DAG BAE AD AB ∠=∠??

∠=∠??=?

, ∴△ADG ≌△ABE (AAS ). (2)解:∠FCN =45°,理由如下: 作FH ⊥MN 于H ,如图1所示:

则∠EHF =90°=∠ABE , ∵∠AEF =∠ABE =90°,

∴∠BAE +∠AEB =90°,∠FEH +∠AEB =90°, ∴∠FEH =∠BAE ,在△EFH 和△ABE 中,

EHF ABE FEH BAE AE EF ∠=∠??

∠=∠??=?

, ∴△EFH ≌△ABE (AAS ), ∴FH =BE ,EH =AB =BC , ∴CH =BE =FH , ∵∠FHC =90°,

∴∠FCN=45°.

(3)当点E由B向C运动时,∠FCN的大小总保持不变,理由如下:作FH⊥MN于H,如图2所示:

由已知可得∠EAG=∠BAD=∠AEF=90°,

结合(1)(2)得:△EFH≌△GAD,△EFH∽△ABE,

∴EH=AD=BC=8,

∴CH=BE,

∴EH FH FH

AB BE CH

==;

在Rt△FEH中,tan∠FCN=

84

63 FH EH

CH AB

===,

∴当点E由B向C运动时,∠FCN的大小总保持不变,tan∠FCN=4

3

【点睛】

本题是四边形综合题目,考查了正方形,矩形的判定及全等三角形的判定方法等知识点的综合运用,其重点是通过证三角形全等或相似来得出线段的相等或成比例.

8.如图,正方形OABC的顶点O与原点重合,点A,C分别在x轴与y轴的正半轴上,点

A的坐标为(4,0),点D在边AB上,且tan∠AOD=1

2

,点E是射线OB上一动点,

EF⊥x轴于点F,交射线OD于点G,过点G作GH∥x轴交AE于点H.

(1)求B,D两点的坐标;

(2)当点E在线段OB上运动时,求∠HDA的大小;

(3)以点G为圆心,GH的长为半径画⊙G.是否存在点E使⊙G与正方形OABC的对角线所在的直线相切?若不存在,请说明理由;若存在,请求出所有符合条件的点E的坐标.

【答案】(1)B (4,4),D (4,2);(2)45°;(3)存在,符合条件的点为(8﹣

,8﹣)或(,)或1616,77??

? ???或

1616,77?-- ??

,理由见解析 【解析】 【分析】

(1)由正方形性质知AB=OA=4,∠OAB=90°,据此得B (4,4),再由tan ∠AOD= 1

2

得AD=

1

2

OA=2,据此可得点D 坐标; (2)由1tan 2GF GOF OF ∠==知GF=1

2

OF ,再由∠AOB=∠ABO=45°知OF=EF ,即GF=

1

2

EF ,根据GH ∥x 轴知H 为AE 的中点,结合D 为AB 的中点知DH 是△ABE 的中位线,即HD ∥BE ,据此可得答案;

(3)分⊙G 与对角线OB 和对角线AC 相切两种情况,设PG=x ,结合题意建立关于x 的方程求解可得. 【详解】

解:(1)∵A (4,0), ∴OA =4,

∵四边形OABC 为正方形, ∴AB =OA =4,∠OAB =90°, ∴B (4,4),

在Rt △OAD 中,∠OAD =90°, ∵tan ∠AOD =12

, ∴AD =

12OA =1

2

×4=2, ∴D (4,2);

(2)如图1,在Rt △OFG 中,∠OFG =90°

∴tan∠GOF=GF

OF =

1

2

,即GF=

1

2

OF,

∵四边形OABC为正方形,

∴∠AOB=∠ABO=45°,

∴OF=EF,

∴GF=1

2

EF,

∴G为EF的中点,

∵GH∥x轴交AE于H,

∴H为AE的中点,

∵B(4,4),D(4,2),

∴D为AB的中点,

∴DH是△ABE的中位线,

∴HD∥BE,

∴∠HDA=∠ABO=45°.

(3)①若⊙G与对角线OB相切,

如图2,当点E在线段OB上时,

过点G作GP⊥OB于点P,设PG=x,可得PE=x,EG=FG2x,OF=EF=2x,

∵OA=4,

∴AF=4﹣2,

∵G为EF的中点,H为AE的中点,

∴GH为△AFE的中位线,

∴GH=1

2AF=

1

2

×(4﹣22x)=2﹣2x,

则x=2﹣2x,

解得:x=22﹣2,

∴E(8﹣42,8﹣42),

如图3,当点E在线段OB的延长线上时,

x=2x﹣2,

解得:x=2+2,

∴E(8+42,8+42);

②若⊙G与对角线AC相切,

如图4,当点E在线段BM上时,对角线AC,OB相交于点M,

过点G作GP⊥OB于点P,设PG=x,可得PE=x,

EG=FG2,

OF=EF=2x,

∵OA=4,

∴AF=4﹣2,

∵G为EF的中点,H为AE的中点,

∴GH为△AFE的中位线,

求锐角三角函数值的经典题型+方法归纳(超级经典好用)

求锐角三角函数值的经典题型+方法归纳(超级经典好用)

求锐角三角函数值的几种常用方法 一、定义法 当已知直角三角形的两条边,可直接运用锐角三角函数的定义求锐角三角函数的值. 例1 如图1,在△ABC 中,∠C =90°,AB =13,BC =5,则sin A 的值是( ) (A )513 (B )1213 (C )512 (D )13 5 对应训练: 1.在Rt △ABC 中,∠ C =90°,若BC =1,AB 5,则tan A 的值为 ( ) A . 5 B 25 C .1 2 D .2 二、参数(方程思想)法 锐角三角函数值实质是直角三角形两边的比值,所以解题中有时需将三角函数转化为线 段比,通过设定一个参数,并用含该参数的代数式表示出直角三角形各边的长,然后结合相关条件解决问题. 例2 在△ABC 中,∠C =90°,如果tan A =5 12,那么sin B 的值是 . 对应训练: 1.在△ABC 中,∠C =90°,sin A=5 3,那么tan A 的值等于( ). A .35 B . 45 C . 34 D . 43 2.已知△ ABC 中, ο 90=∠C ,3cosB=2, AC=5 2 ,则 AB= . 3.已知Rt △ABC 中,,12,4 3 tan ,90==?=∠BC A C 求AC 、AB 和cos B .

4.已知:如图,⊙O 的半径OA =16cm ,OC ⊥AB 于C 点,?=∠4 3sin AOC 求:AB 及OC 的长. 三、等角代换法 当一个锐角的三角函数不能直接求解或锐角不在直角三角形中时,可将此角通过等 角转换到能够求出三角函数值的直角三角形中,利用“两锐角相等,则三角函数值也相等” 来解决. 例3 在Rt △ABC 中,∠BCA =90°,CD 是AB 边上的中线,BC =5,CD =4,则cos ∠ACD 的值为 . 对应训练 1.如图,O ⊙是ABC △的外接圆,AD 是O ⊙的直径, 若O ⊙的半径为32,2AC =,则sin B 的值是( )A .2 3

锐角三角函数单元测试题

锐角三角函数单元测试题 1、已知Rt △ABC 中,∠C=90°,tanA= 4 3,BC=8,则AC 等于( ) A .6 B .323 C .10 D .12 2、已知∠A 是锐角,且sinA= 3 2 ,那么∠A 等于( ) A .30°B .45° C .60° D .75° 4、化简2)130(tan - =( )。A 、3 31- B 、13- C 、133 - D 、13- 5、在Rt △ABC 中,∠C =900 ,∠A 、∠B 的对边是a 、b ,且满足02 2=--b ab a ,则tanA 等于( ) A 、1 B 、 251+ C 、251- D 、2 5 1± 6、如图1所示,△ABC 中,∠ACB=90°,CD ⊥AB 于点D ,若BD :AD=1:4,则tan ∠BCD 的值是( )A .1 4 B . 13 C .1 2 D .2 (1) (2) (3) 7、如图2所示,已知⊙O 的半径为5cm ,弦AB 的长为8cm ,P?是AB?延长线上一点,?BP=2cm ,则tan ∠OPA 等于( ) A . 32 B .23 C .2 D .1 2 8、如图3,起重机的机身高AB 为20m ,吊杆AC 的长为36m ,?吊杆与水平线的倾角可以从30°转到80°,则这台起重机工作时吊杆端点C 离地面的最大高度和离机身的最远水平距离分别是( ) A .(30+20)m 和36tan30°m B .(36sin30°+20)m 和36cos30°m C .36sin80°m 和36cos30°m D .(36sin80°+20)m 和36cos30°m 9、王英同学从A 地沿北偏西60o方向走100m 到B 地,再从B 地向正南方向 走200m 到C 地,此时王英同学离A 地 ( ) A 350m B 100 m C 150m D 3100m 一、 填空题 1、在△ABC 中,若│sinA-1│+(3 -cosB )=0,则∠C=_______

(新)中考数学--选择题压轴题(含答案)

题型一选择题压轴题 类型一选择几何压轴题 1?如图,四边形ABCD是平行四边形,ZBCD=I20o , AB = 2, BC = 4,点E是直线BC上的点,点F是直线CD上的点,连接AF, AE, EF,点M, N分别是AF, EF 的中点,连接MW则MN的最小值为() 2.如图,四边形ABCD是菱形,对角线AC与BD交于点0, AB = 4, AC = 2√TT,若直线1满足:①点A到直线1的距离为2;②直线1与一条对角线平行;③直线1与菱形ABCD的边有交点,则符合题意的直线1的条数为() 3?如图,在四边形ABCD 中,AD/7BC, AB=CD, AD = 2, BC = 6, BD = 5.若点P 在四边形ABCD的边上,则使得APBD的面积为3的点P的个数为() -√3 (第2(第3

4?如图,点M是矩形ABCD的边BC, CD上的动点,过点B作BN丄AM于点P,交

矩形ABCD 的边于点N,连接DP.若AB=4, AD = 3,则DP 的长的最小值为( ) A. √T3-2 5?如图,等腰直角三角形ABC 的一个锐角顶点A 是。()上的一个动点,ZACB= 90° ,腰AC 、斜边AB 分别交Oo 于点E, D,分别过点D, E 作OO 的切线,两线 交于点F,且点F 恰好是腰BC 上的点,连接O C, ()D, OE.若Θ0的半径为2,则 OC 的长的最大值为( ) 6.如图,在矩形ABCD 中,点E 是AB 的中点,点F 在AD 边上,点M, N 分别是 CD, BC 边上的动点?若AB=AF 二2, AD 二3,则四边形EFMN 周长的最小值是( ) 7.如图,OP 的半径为1,且点P 的坐标为(3, 2),点C 是OP 上的一个动点, 点A, B 是X 轴上的两点,且OA=OB, AC 丄BC,则AB 的最小值为( ) √TT √T3 C. √5+l +√13 √2+2√5 ÷√5 √2+1 O B (第5 (第6 (第7(第8

锐角三角函数经典总结

锐角三角函数与特殊角专题训练 【基础知识精讲】 一、 正弦与余弦: 1、 在ABC ?中,C ∠为直角,我们把锐角A 的对边与斜边的比叫做A ∠的正弦,记 作A sin , 锐角A 的邻边与斜边的比叫做A ∠的余弦,记作A cos . 斜边 的邻边 斜边 的对边 A A A A ∠= ? ∠= cos sin . 若把A ∠的对边BC 记作a ,邻边AC 记作b ,斜边AB 记作c , 则c a A = sin ,c b A =cos 。 2、当A ∠为锐角时, 1sin 0<

(完整版)锐角三角函数练习题及答案

锐角三角函数 1.把Rt △ABC 各边的长度都扩大3倍得Rt △A ′B ′C ′,那么锐角A ,A ′的余弦值的关系为( ) A .cosA=cosA ′ B .cosA=3cosA ′ C .3cosA=cosA ′ D .不能确定 2.如图1,已知P 是射线OB 上的任意一点,PM ⊥OA 于M ,且PM :OM=3:4,则cos α的值等于( ) A .34 B .43 C .45 D .35 图1 图2 图3 图4 图5 3.在△ABC 中,∠C=90°,∠A ,∠B ,∠C 的对边分别是a ,b ,c ,则下列各项中正确的是( ) A .a=c ·sin B B .a=c ·cosB C .a=c ·tanB D .以上均不正确 4.在Rt △ABC 中,∠C=90°,cosA=23 ,则tanB 等于( ) A .35 B .53 C .255 D .52 5.在Rt △ABC 中,∠C=90°,AC=5,AB=13,则sinA=______,cosA=______,?tanA=_______. 6.如图2,在△ABC 中,∠C=90°,BC :AC=1:2,则sinA=_______,cosA=______,tanB=______. 7.如图3,在Rt △ABC 中,∠C=90°,b=20,c=202,则∠B 的度数为_______. 8.如图4,在△CDE 中,∠E=90°,DE=6,CD=10,求∠D 的三个三角函数值. 9.已知:α是锐角,tan α=724 ,则sin α=_____,cos α=_______. 10.在Rt △ABC 中,两边的长分别为3和4,求最小角的正弦值为 10.如图5,角α的顶点在直角坐标系的原点,一边在x 轴上,?另一边经过点P (2,23),求角α的三个三角函数值. 12.如图,在△ABC 中,∠ABC=90°,BD ⊥AC 于D ,∠CBD=α,AB=3,?BC=4,?求sin α,cos α,tan α的值. 解直角三角形 一、填空题 1. 已知cosA=2 3,且∠B=900-∠A ,则sinB=__________.

初三锐角三角函数知识点与典型例题

锐角三角函数: 知识点一:锐角三角函数的定义: 一、 锐角三角函数定义: 在Rt △ABC 中,∠C=900, ∠A 、∠B 、∠C 的对边分别为a 、b 、c , 则∠A 的正弦可表示为:sinA= , ∠A 的余弦可表示为cosA= ∠A 的正切:tanA= ,它们弦称为∠A 的锐角三角函数 【特别提醒:1、sinA 、∠cosA 、tanA 表示的是一个整体,是两条线段的比,没有,这些比值只与 有关,与直角三角形的 无关 2、取值范围 】 例1.如图所示,在Rt △ABC 中,∠C =90°. 第1题图 ①斜边)(sin = A =______, 斜边)(sin = B =______; ②斜边 ) (cos =A =______, 斜边 ) (cos =B =______; ③的邻边A A ∠= ) (tan =______, ) (tan 的对边 B B ∠= =______. 例2. 锐角三角函数求值: 在Rt △ABC 中,∠C =90°,若a =9,b =12,则c =______, sin A =______,cos A =______,tan A =______, sin B =______,cos B =______,tan B =______. 例3.已知:如图,Rt △TNM 中,∠TMN =90°,MR ⊥TN 于R 点,TN =4,MN =3. 求:sin ∠TMR 、cos ∠TMR 、tan ∠TMR . 典型例题: 类型一:直角三角形求值

1.已知Rt △ABC 中,,12,43 tan ,90==?=∠BC A C 求AC 、AB 和cos B . 2.已知:如图,⊙O 的半径OA =16cm ,OC ⊥AB 于C 点,?= ∠4 3sin AOC 求:AB 及OC 的长. 3.已知:⊙O 中,OC ⊥AB 于C 点,AB =16cm ,?=∠5 3 sin AOC (1)求⊙O 的半径OA 的长及弦心距OC ; (2)求cos ∠AOC 及tan ∠AOC . 4. 已知A ∠是锐角,17 8 sin =A ,求A cos ,A tan 的值 对应训练: (西城北)3.在Rt △ABC 中,∠ C =90°,若BC =1,AB =5,则tan A 的值为 A . 55 B .255 C .12 D .2 (房山)5.在△ABC 中,∠C =90°,sin A=5 3 ,那么tan A 的值等于( ). A .35 B . 45 C . 34 D . 43 类型二. 利用角度转化求值: 1.已知:如图,Rt △ABC 中,∠C =90°.D 是AC 边上一点,DE ⊥AB 于E 点. DE ∶AE =1∶2. 求:sin B 、cos B 、tan B .

中考数学压轴题(选择填空)

中考数学压轴题解题技巧 数学综压轴题是为考察考生综合运用知识的能力而设计的,集中体现知识的综合性和方法的综合性,多数为函数型综合题和几何型综合题。 函数型综合题:是给定直角坐标系和几何图形,先求函数的解析式,再进行图形的研究,求点的坐标或研究图形的某些性质。求已知函数的解析式主要方法是待定系数法,关键是求点的坐标,而求点的坐标基本方法是几何法(图形法)和代数法(解析法)。 几何型综合题:是先给定几何图形,根据已知条件进行计算,然后有动点(或动线段)运动,对应产生线段、面积等的变化,求对应的(未知)函数的解析式,求函数的自变量的取值范围,最后根据所求的函数关系进行探索研究。一般有:在什么条件下图形是等腰三角形、直角三角形,四边形是平行四边形、菱形、梯形等,或探索两个三角形满足什么条件相似等,或探究线段之间的数量、位置关系等,或探索面积之间满足一定关系时求x的值等,或直线(圆)与圆的相切时求自变量的值等。求未知函数解析式的关键是列出包含自变量和因变量之间的等量关系(即列出含有x、y的方程),变形写成y=f(x)的形式。找等量关系的途径在初中主要有利用勾股定理、平行线截得比例线段、三角形相似、面积相等方法。求函数的自变量的取值范围主要是寻找图形的特殊位置(极端位置)和根据解析式求解。而最后的探索问题千变万化,但少不了对图形的分析和研究,用几何和代数的方法求出x的值。 解中考压轴题技能:中考压轴题大多是以坐标系为桥梁,运用数形结合思想,通过建立点与数即坐标之间的对应关系,一方面可用代数方法研究几何图形的性质,另一方面又可借助几何直观,得到某些代数问题的解答。关键是掌握几种常用的数学思想方法。 一是运用函数与方程思想。以直线或抛物线知识为载体,列(解)方程或方程组求其解析式、研究其性质。 二是运用分类讨论的思想。对问题的条件或结论的多变性进行考察和探究。 三是运用转化的数学的思想。由已知向未知,由复杂向简单的转换。中考压轴题它是对考生综合能力的一个全面考察,所涉及的知识面广,所使用的数学思想方法也较全面。因此,可把压轴题分离为相对独立而又单一的知识或方法组块去思考和探究。 解中考压轴题技能技巧: 一是对自身数学学习状况做一个完整的全面的认识。根据自己的情况考试的时候重心定位准确,防止“捡芝麻丢西瓜”。所以,在心中一定要给压轴题或几个“难点”一个时间上的限制,如果超过你设置的上限,必须要停止,回头认真检查前面的题,尽量要保证选择、填空万无一失,前面的解答题尽可能的检查一遍。

锐角三角函数》单元测试题

第四章《锐角三角函数》单元测试题 一.选择题(共10小题) 1.利用计算器求sin30°时,依次按键,则计算器上显示的结果是 () A.0.5 B.0.707 C.0.866 D.1 2.Rt△ABC中,∠C=90°,已知cosA=,那么tanA等于() A.B.C.D. 3.已知sinα?cosα=,45°<α<90°,则cosα﹣sinα=() A.B.﹣C.D.± 4.在Rt△ABC中,∠C=90°,sinA=,则tanB的值为() A.B.C.D. 5.在Rt△ABC中,∠C=90°,sinA=,则cosB等于() A.B.C.D. 6.△ABC中,a、b、c分别是∠A、∠B、∠C的对边,如果a2+b2=c2,那么下列结论正确的是() A.bcosB=c B.csinA=a C.atanA=b D. 7.在Rt△ABC中,∠C=90°,∠A、∠B、∠C所对的边分别为a、b、c,下列等式中不一定成立的是() A.b=atanB B.a=ccosB C.D.a=bcosA 8.如果∠A为锐角,且sinA=0.6,那么() A.0°<A≤30°B.30°<A<45°C.45°<A<60°D.60°<A≤90° 9.若锐角α满足cosα<且tanα<,则α的范围是() A.30°<α<45°B.45°<α<60°C.60°<α<90°D.30°<α<60°

10.下面四个数中,最大的是( ) A . B .sin88° C .tan46° D . 二.填空题(共8小题) 11.用“>”或“<”号填空: 0. 12.已知∠A 为锐角,且,那么∠A 的范围是 . 13.在Rt △ABC 中,∠C=90°,sinA=,则tanA= . 14.如上图,∠AOB 是放置在正方形网格中的一个角,则cos ∠AOB 的值 是 . 15.如图,当小杰沿坡度i=1:5的坡面由B 到A 行走了26米时,小杰实际上升高度 AC= 米.(可以用根号表示) 16.如图,在菱形ABCD 中,AE ⊥BC ,E 为垂足,若cosB=,EC=2,P 是AB 边上的一个动点,则线段PE 的长度的最小值 是 . 17.如图1是小志同学书桌上的一个电子相框,将其侧面抽象为如图2所示的几何图形,已知BC=BD=15cm ,∠CBD=40°,则点B 到CD 的距离为 cm (参考数据 sin20°≈0.342,cos20°≈0.940,sin40°≈0.643,cos40°≈0.766,结果精确到0.1cm ,可用科学计算器). 18.如图,为了测量楼的高度,自楼的顶部A 看地面上的一点B ,俯角 为30°,已知地面上的这点与楼的水平距离BC 为30m ,那么楼的高度AC 为 m (结果保留根号). 三.解答题(共8小题) 19.在△ABC 中,∠B 、∠C 均为锐角,其对边分别为b 、c , 求证:=. 第16题 第17题

人教中考数学锐角三角函数-经典压轴题附详细答案

一、锐角三角函数真题与模拟题分类汇编(难题易错题) 1.图1是一种折叠式晾衣架.晾衣时,该晾衣架左右晾衣臂张开后示意图如图2所示,两支脚OC=OD=10分米,展开角∠COD=60°,晾衣臂OA=OB=10分米,晾衣臂支架HG =FE=6分米,且HO=FO=4分米.当∠AOC=90°时,点A离地面的距离AM为_______分米;当OB从水平状态旋转到OB′(在CO延长线上)时,点E绕点F随之旋转至OB′上的点E′处,则B′E′﹣BE为_________分米. 【答案】553 【解析】 【分析】 如图,作OP⊥CD于P,OQ⊥AM于Q,FK⊥OB于K,FJ⊥OC于J.解直角三角形求出MQ,AQ即可求出AM,再分别求出BE,B′E′即可. 【详解】 解:如图,作OP⊥CD于P,OQ⊥AM于Q,FK⊥OB于K,FJ⊥OC于J. ∵AM⊥CD, ∴∠QMP=∠MPO=∠OQM=90°, ∴四边形OQMP是矩形, ∴QM=OP, ∵OC=OD=10,∠COD=60°, ∴△COD是等边三角形, ∵OP⊥CD, ∠COD=30°, ∴∠COP=1 2 ∴QM=OP=OC?cos30°=3 ∵∠AOC=∠QOP=90°, ∴∠AOQ=∠COP=30°, ∴AQ=1 OA=5(分米), 2 ∴AM=AQ+MQ=5+3 ∵OB∥CD, ∴∠BOD=∠ODC=60°

在Rt△OFK中,KO=OF?cos60°=2(分米),FK=OF?sin60°=23(分米), 在Rt△PKE中,EK=22 -=26(分米), EF FK ∴BE=10?2?26=(8?26)(分米), 在Rt△OFJ中,OJ=OF?cos60°=2(分米),FJ=23(分米), 在Rt△FJE′中,E′J=22 -(2)=26, 63 ∴B′E′=10?(26?2)=12?26, ∴B′E′?BE=4. 故答案为:5+53,4. 【点睛】 本题考查解直角三角形的应用,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型. 2.在△ABC中,AB=BC,点O是AC的中点,点P是AC上的一个动点(点P不与点A,O,C重合).过点A,点C作直线BP的垂线,垂足分别为点E和点F,连接OE,OF.(1)如图1,请直接写出线段OE与OF的数量关系; (2)如图2,当∠ABC=90°时,请判断线段OE与OF之间的数量关系和位置关系,并说明理由 (3)若|CF﹣AE|=2,EF=23,当△POF为等腰三角形时,请直接写出线段OP的长. 【答案】(1)OF =OE;(2)OF⊥EK,OF=OE,理由见解析;(3)OP62 23 . 【解析】 【分析】(1)如图1中,延长EO交CF于K,证明△AOE≌△COK,从而可得OE=OK,再

中考数学选择题压轴题汇编

资料收集于网络,如有侵权请联系网站删除 2017年中考数学选择题压轴题汇编(1) 2a的解为正数,且使关于的分式方程y的不等(2017重庆)若数a使关于x1.4?? x?11?xy?2y???1?23的解集为y,则符合条件的所有整数a的和为()式组 2???????0y?2a? A.10 B.12 C.14 D.16 【答案】A 【解析】①解关于x的分式方程,由它的解为正数,求得a的取值范围. 2a 4??x?11?x去分母,得2-a=4(x-1) 去括号,移项,得4x=6-a 6?a 1,得x=系数化为46?a6?a≠1,解得a且a≠2;6?,且,∴x≠1∵x且00?? 44②通过求解于y的不等式组,判断出a的取值范围. y?2y???1?32 ?????0y?2a?解不等式①,得y;2???a;解不等式②,得y ∵不等式组的解集为y,∴a;2??2??③由a且a≠2和a,可推断出a的取值范围,且a≠2,符合条件的所有整数6?a6??2?2??a为-2、-1、0、1、3、4、5,这些整数的和为10,故选A.2.(2017内蒙古赤峰)正整数x、y满足(2x-5)(2y-5)=25,则x+y等于()A.18或10 B.18 C.10 D.26 【答案】A, 【解析】本题考查了分解质因数,有理数的乘法法则和多项式的乘法,能列出满足条件的等式是解题的关键. 由两数积为正,则这两数同号.∵25=5×5=(-5)×(-5)=1×25=(-1)×(-25)只供学习与交流. 资料收集于网络,如有侵权请联系网站删除 又∵正整数x、y满足(2x-5)(2y-5)=25, ∴2x-5=5,2y-5=5或2x-5=1,2y-5=25 解各x=5,y=5或x=3,y=15. ∴x+y=10或x+y=18. 故选A. x?a?0?3.(2017广西百色)关于x的不等式组的解集中至少有5个整数解,则正数a?2x?3a?0?的最小值是() 2 D..1 B.2 CA. 3 3B. 【答案】3a3a<x≤a,因为该解集中至少5个整数解,所以a比至少【解析】不等式组的解集为??223a+5,解得a≥2 a≥.大5,即?2111122=n-m-2,则-的值等于(4.(2017四川眉山)已知m+n )44mn1D.- 1 C.B0 .-A.1 4C 【答案】11112222,m+1)n+(-1)m=0,从而=-2即1)1)由题意,【解析】得(m+m++(n-n +=0,(24421111 =-1.=n2,所以-=-2nm2-端午节前夕,在东昌湖举行的第七届全民健身运动会龙舟比赛中,甲、乙.(2017聊城)5之前的函数关系式如图所示,下列两队与时间500米的赛道上,所划行的路程(min)my()x 说法错误的是()到达终点.乙队比甲队提前A0.25min 时,此时落后甲队.当乙队划行B110m15m

新初中数学锐角三角函数的经典测试题及答案

新初中数学锐角三角函数的经典测试题及答案 一、选择题 1.如图,在Rt ABC V 中,90ACB ∠=?,3 tan 4 B =,CD 为AB 边上的中线,CE 平分ACB ∠,则 AE AD 的值( ) A . 35 B . 34 C . 45 D . 67 【答案】D 【解析】 【分析】 根据角平分线定理可得AE :BE =AC :BC =3:4,进而求得AE = 3 7 AB ,再由点D 为AB 中点得AD = 12AB ,进而可求得AE AD 的值. 【详解】 解:∵CE 平分ACB ∠, ∴点E 到ACB ∠的两边距离相等, 设点E 到ACB ∠的两边距离位h , 则S △ACE = 12AC·h ,S △BCE =12 BC·h , ∴S △ACE :S △BCE = 12AC·h :1 2 BC·h =AC :BC , 又∵S △ACE :S △BCE =AE :BE , ∴AE :BE =AC :BC , ∵在Rt ABC V 中,90ACB ∠=?,3tan 4 B =, ∴A C :BC =3:4, ∴AE :BE =3:4 ∴AE = 3 7 AB , ∵CD 为AB 边上的中线, ∴AD = 1 2 AB ,

∴ 3 6 717 2 AB AE AD AB ==, 故选:D . 【点睛】 本题主要考查了角平分线定理的应用及三角函数的应用,通过面积比证得AE :BE =AC :BC 是解决本题的关键. 2.如图,某地修建高速公路,要从A 地向B 地修一条隧道(点A ,B 在同一水平面上).为了测量A ,B 两地之间的距离,一架直升飞机从A 地起飞,垂直上升1000米到达C 处,在C 处观察B 地的俯角为α,则AB 两地之间的距离约为( ) A .1000sin α米 B .1000tan α米 C . 1000 tan α 米 D . 1000 sin α 米 【答案】C 【解析】 【分析】 在Rt △ABC 中,∠CAB=90°,∠B=α,AC=1000米,根据tan AC AB α=,即可解决问题. 【详解】 解:在Rt ABC ?中,∵90CAB ∠=o ,B α∠=,1000AC =米, ∴tan AC AB α=, ∴1000 tan tan AC AB αα = =米. 故选:C . 【点睛】 本题考查解直角三角形的应用-仰角俯角问题,解题的关键是熟练掌握基本知识,属于中考常考题型. 3.如图,对折矩形纸片ABCD ,使AD 与BC 重合,得到折痕EF ,把纸片展平,再一次折叠纸片,使点A 落在EF 上的点A′处,并使折痕经过点B ,得到折痕BM ,若矩形纸片的宽AB=4,则折痕BM 的长为( )

求锐角三角函数值的经典题型+方法归纳(超级经典好用)

求锐角三角函数值的几种常用方法 一、定义法 当已知直角三角形的两条边,可直接运用锐角三角函数的定义求锐角三角函数的值. 例1 如图1,在△ABC 中,∠C =90°,AB =13,BC =5,则sin A 的值是( ) (A ) 513 (B )1213 (C )512 (D )13 5 对应训练: 1.在Rt △ABC 中,∠ C =90°,若BC =1,AB tan A 的值为( ) A B C .1 2 D .2 二、参数(方程思想)法 锐角三角函数值实质是直角三角形两边的比值,所以解题中有时需将三角函数转化为线 段比,通过设定一个参数,并用含该参数的代数式表示出直角三角形各边的长,然后结合相关条件解决问题. 例2 在△ABC 中,∠C =90°,如果tan A = 5 12 ,那么sin B 的值是 . 对应训练: 1.在△ABC 中,∠C =90°,sin A= 5 3 ,那么tan A 的值等于( ). A .35 B . 45 C . 34 D . 43 2.已知△ABC 中, 90=∠C ,3cosB=2, AC=52 ,则AB= . 3.已知Rt △ABC 中,,12,4 3tan ,90==?=∠BC A C 求AC 、AB 和cos B . 4.已知:如图,⊙O 的半径OA =16cm ,OC ⊥AB 于C 点,?=∠4 3sin AOC 求:AB 及OC 的长.

第8题图 A D E C B F 三、等角代换法 当一个锐角的三角函数不能直接求解或锐角不在直角三角形中时,可将此角通过等 角转换到能够求出三角函数值的直角三角形中,利用“两锐角相等,则三角函数值也相等” 来解决. 例3 在Rt △ABC 中,∠BCA =90°,CD 是AB 边上的中线,BC =5,CD =4,则c o s ∠ACD 的值为 . 对应训练 1.如图,O ⊙是ABC △的外接圆,AD 是O ⊙的直径,若O ⊙的半径为 3 2 ,2AC =,则s in B 的值是( )A .23 B .32 C .34 D .4 3 2. 如图4,沿AE 折叠矩形纸片ABCD ,使点D 落在BC 边的点F 处.已知8AB =,10BC =, AB=8,则tan EFC ∠的值为 ( )A.34 B.43 C.35 D.45 3. 如图6,在等腰直角三角形ABC ?中,90C ∠=?,6AC =,D 为AC 上一点,若 1tan 5 DBA ∠ = ,则AD 的长为( ) A .2 C .1 D .4. 如图,直径为10的⊙A 经过点(05)C ,和点(00)O ,,与x 轴的正半轴交于点D ,B 是y 轴右侧 圆弧上一点,则cos ∠OBC 的值为( )A . 12 B .2 C .35 D .45 5.如图,角α的顶点为O ,它的一边在x 轴的正半轴上,另一边OA 上有一点P (3,4),则 sin α= . 6.(庆阳中考)如图,菱形ABCD 的边长为10cm ,DE ⊥AB ,3sin 5 A =,则这个菱形的面积= cm 2 . 7. 如图6,在Rt △ABC 中,∠C =90°,AC =8,∠A AD = 3 3 16求 ∠B 的度数及边BC 、AB 的长. D A B C

锐角三角函数专项复习经典例题

1、平面内,如图17,在□ABCD 中,10AB =,15AD =,4tan 3A =.点P 为AD 边上任意一点,连接PB ,将PB 绕点P 逆时针旋转90?得到线段PQ . (1)当10DPQ ∠=?时,求APB ∠的大小; (2)当tan :tan 3:2ABP A ∠=时,求点Q 与点B 间的距离(结果保留根号); (3)若点Q 恰好落在□ABCD 的边所在的直线上,直接写出PB 旋转到PQ 所扫过的面积(结果保留π). 2、如图所示,我国两艘海监船A ,B 在南海海域巡航,某一时刻,两船同时收到指令,立即前往救援遇险抛锚的渔船C ,此时,B 船在A 船的正南方向5海里处,A 船测得渔船C 在其南偏东45°方向,B 船测得渔船C 在其南偏东53°方向,已知A 船的航速为30海里/小时,B 船的航速为25海里/小时,问C 船至少要等待多长时间才能得到救援?(参考数据:sin53°≈,cos53°≈,tan53°≈,≈1.41) 3、如图,港口B 位于港口A 的南偏东37°方向,灯塔C 恰好在AB 的中点处,一艘海轮位于港口A 的正南方向,港口B 的正西方向的D 处,它沿正北方向航行5km 到达E 处,测得灯塔C 在北偏东45°方向上,这时,E 处距离港口A 有多远?(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75) B A P C D Q 备用图17 A B C D P Q

4、如图,两座建筑物的水平距离BC=30m,从A点测得D点的俯角α为30°,测得C点的俯角β为60°,求这两座建筑物的高度. 5、一数学兴趣小组来到某公园,准备测量一座塔的高度.如图,在A处测得塔顶的仰角为α,在B处测得塔顶的仰角为β,又测量出A、B两点的距离为s米,则塔高为米. 6、如图,某小区①号楼与?号楼隔河相望,李明家住在①号楼,他很想知道?号楼的高度,于是他做了一些测量,他先在B点测得C点的仰角为60°,然后到42米高的楼顶A处,测得C点的仰角为30°,请你帮助李明计算?号楼的高度CD. 7、某学校教学楼(甲楼)的顶部E和大门A之间挂了一些彩旗.小颖测得大门A距甲楼的距离AB是31cm,在A处测得甲楼顶部E处的仰角是31°. (1)求甲楼的高度及彩旗的长度;(精确到0.01m) (2)若小颖在甲楼楼底C处测得学校后面医院楼(乙楼)楼顶G处的仰角为40°,爬到甲楼楼顶F处测得乙楼楼顶G处的仰角为19°,求乙楼的高度及甲乙两楼之间的距离.(精确到0.01m) (cos31°≈0.86,tan31°≈0.60,cos19°≈0.95,tan19°≈0.34,cos40°≈0.77,tan40°≈0.84)

锐角三角函数的题型及解题技巧

锐角三角函数的题型及解题技巧 锐角三角函数是三角函数的基础,它应用广泛,解题技巧性强,下面归纳出锐角三角函数的常见题型,并结合例题介绍一些解题技巧。 一、 化简或求值 例1 (1)已知tan 2cot 1αα-=,且α是锐角,的值。 (2)化简()()22 sin cos cos sin a b a b αααα++-。 分析 (1)由已知可以求出tan α1tan cot αα=?;(2)先把平方展开,再利用22sin cos 1αα+=化简。 解 (1)由tan 2cot 1αα-=得2tan 2tan αα-=,解关于tan α的方程得 tan 2α=或tan 1α=-。又α是锐角,∴tan 2α== tan cot αα-。由tan 2α=, 得1cot 2α==tan cot αα-=13222 -=。 (2)()()22sin cos cos sin a b a b αααα++-= 2222sin 2sin cos cos a ab b αααα+??++2222cos 2cos sin sin a ab b αααα-??+=()()222222sin cos sin cos a b αααα+++=22a b +。 说明 在化简或求值问题中,经常用到“1”的代换,即22sin cos 1αα+=,tan cot 1αα?=等。 二、已知三角函数值,求角 例2 在△ABC 中,若2 cos sin 02A B ?-+= ??(),A B ∠∠均为锐角,求C ∠的度数。 分析 几个非负数的和为0,则这几个数均为0。由此可得cos A 和sin B 的值,进而求出,A B ∠∠的值,然后就可求出C ∠的值。

中考数学选择题压轴题汇编

年中考数学选择题压轴题汇编

————————————————————————————————作者:————————————————————————————————日期: 2

3 2017年中考数学选择题压轴题汇编(1) 1.(2017重庆)若数a 使关于x 的分式方程2411a x x +=--的解为正数,且使关于y 的不等式组()213220y y y a +?->???-≤? 的解集为y 2<-,则符合条件的所有整数a 的和为( ) A .10 B .12 C . 14 D .16 【答案】A 【解析】①解关于x 的分式方程,由它的解为正数,求得a 的取值范围. 2411a x x +=-- 去分母,得2-a =4(x -1) 去括号,移项,得 4x =6-a 系数化为1,得x = 64a - ∵x 0>且x≠1,∴64a -0>,且64 a -≠1,解得a 6<且a≠2; ②通过求解于y 的不等式组,判断出a 的取值范围. ()213220y y y a +?->???-≤? 解不等式①,得y 2<-; 解不等式②,得y ≤a ; ∵不等式组的解集为y 2<-,∴a 2≥-; ③由a 6<且a≠2和a 2≥-,可推断出a 的取值范围26a -≤<,且a≠2,符合条件的所有整数a 为-2、-1、0、1、3、4、5,这些整数的和为10,故选A . 2.(2017内蒙古赤峰)正整数x 、y 满足(2x -5)(2y -5)=25,则x +y 等于( ) A .18或10 B .18 C .10 D .26 【答案】A , 【解析】本题考查了分解质因数,有理数的乘法法则和多项式的乘法,能列出满足条件的等式是解题的关键. 由两数积为正,则这两数同号.∵25=5×5=(-5)×(-5)=1×25=(-1)×(-25)

(完整版)新人教版九年级下数学锐角三角函数测试题

人教版九年级数学下册《锐角三角函数》测试题 (满分120分,时间120分钟) 一、选择题:(每小题3分,共30分) 1、等腰三角形底边长为10cm ,周长为36cm ,则底角的正弦值为( )。 A 、 185 B 、165 C 、1513 D 、13 12 2、在直角三角形中,各边的长度都扩大3倍,则锐角A 的三角函数值( ) A 也扩大3倍 B 缩小为原来的 3 1 C 都不变 D 有的扩大,有的缩小 3、以直角坐标系的原点O 为圆心,以1为半径作圆。若点P 是该圆上第一象限内的一点,且OP 与x 轴正方向组成的角为α,则点P 的坐标为 ( ) A (cosα,1) B (1,sinα) C (sinα,cosα) D (cosα,sinα) 4、如图,在△ABC 中,∠C=90°,AC=8cm ,AB 的垂直平分线MN 交AC 于D ,连结BD ,若cos ∠BDC=5 3,则BC 的长是 ( ) A 、4cm B 、6cm C 、8cm D 、10cm 5、已知a 为锐角,sina=cos500则a 等于( ) A 20° B 30° C 40° D 50° 6、若tan(a+10°)=3,则锐角a 的度数是( ) A 、20° B 、30° C 、35° D 、50° 7、在△ABC 中,∠C=90°,则下列关系成立的是( ) A. AC=ABsinA B. BC=ACsinB C. AC=ABsinB D. AC=BCtanA 8、小阳发现电线杆AB 的影子落在土坡的坡面CD 和地面BC 上,量得CD=8米,BC=20米,CD 与地面成30o角,且此时测得1米杆的影长为2米,则电线杆的高度为( ) A .9米 B .28米 C .()37+米 D.() 3214+米 9、已知sin α= 2 3,且α为锐角,则α=( )。 A 、75° B 、60° C 、45° D 、30° 10、如果∠A 是等边三角形的一个内角,那么cosA 的值等于( )。 A 、2 1 B 、 2 2 C 、 2 3 D 、1 二、填空题:(30分) 11、在Rt △ABC 中,∠C =90°,a =2,b =3,则cosA = .,sinB = ,tanB = . 12、直角三角形ABC 的面积为24cm 2,直角边AB 为6cm ,∠A 是锐角,则sinA = . 13、已知tan α= 12 5,α是锐角,则sin α= . 14、cos 2(50°+α)+cos 2(40°-α)-tan(30°-α)tan(60°+α)= . 15、如图,机器人从A 点,沿着西南方向,行了个42单位,到达B 点后观察 到原点O 在它的南偏东60°的方向上,则原来A 的坐标为 .(结果保留根号). 16、等腰三角形底边长10cm ,周长为36cm ,则一底角的正切值为 . 17、某人沿着坡度i=1:3的山坡走了50米,则他离地面 米高。 18、如图,在坡度为1:2 的山坡上种树,要求株距(相邻两树间的水平距离)是6米,斜坡上相邻两树间的坡面距离是 米。 19、在△ABC 中,∠ACB =90°,cosA= 3 ,AB =8cm ,则△ABC 的面积为 . x O A y B

初三锐角三角函数知识点总结典型例题练习

三角函数专项复习 锐角三角函数知识点总结 1、勾股定理:直角三角形两直角边a 、b 的平方和等于斜边c 的平方。 2、如下图,在Rt △ABC 中,∠C 为直角,则∠A 的锐角三角函数为(∠A 可换成∠B): 3、任意锐角的正弦值等于它的余角的余弦值;任意锐角的余弦值等于它的余角的正弦值。 4、0°、30°、45°、60°、90°特殊角的三角函数值(重要) 当0°≤α≤90°时,sin α随α的增大而增大,cos α随α的增大而减小。 6、正切的增减性: 当0°<α<90°时,tan α随α的增大而增大, A 90B 90∠-?=∠?=∠+∠得由B A 对 边 C

7、解直角三角形的定义:已知边和角(两个,其中必有一边)→所有未知的边和角。 依据:①边的关系:222c b a =+;②角的关系:A+B=90°;③边角关系:三角函数的定义。(注意:尽量避免使用中间数据和除法) 8、应用举例: (1)仰角:视线在水平线上方的角;俯角:视线在水平线下方的角。 仰角铅垂线 水平线 视线 视线俯角 (2)坡面的铅直高度h 和水平宽度l 的比叫做 坡度(坡比)。用字母i 表示,即h i l =。坡度一般写成1:m 的形式,如1:5i =等。 把坡面与水平面的夹角记作α(叫做坡角),那么tan h i l α= =。 3、从某点的指北方向按顺时针转到目标方向的水平角,叫做方位角。如图3,OA 、OB 、OC 、OD 的方向角分别是:45°、135°、225°。 4、指北或指南方向线与目标方向 线所成的小于90°的水平角,叫做方向角。如图4,OA 、OB 、OC 、OD 的方向角分别是:北偏东45°(东北方向) , 南偏东45°(东南方向), 南偏西45°(西南方向), 北偏西45°(西北方向)。 :i h l =h l α

锐角三角函数经典总结

锐角三角函数经典总结-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

锐角三角函数与特殊角专题训练 【基础知识精讲】 一、 正弦与余弦: 1、 在ABC ?中,C ∠为直角,我们把锐角A 的对边与斜边的比叫做 A ∠的正弦,记作A sin , 锐角A 的邻边与斜边的比叫做A ∠的余弦,记作A cos . 斜边 的邻边 斜边 的对边 A A A A ∠= ? ∠= cos sin . 若把A ∠的对边BC 记作a ,邻边AC 记作b ,斜边AB 记作c , 则c a A =sin ,c b A =cos 。 2、当A ∠为锐角时, 1sin 0<

相关文档
相关文档 最新文档