文档视界 最新最全的文档下载
当前位置:文档视界 › 中考数学二次函数综合练习题附答案

中考数学二次函数综合练习题附答案

中考数学二次函数综合练习题附答案
中考数学二次函数综合练习题附答案

一、二次函数 真题与模拟题分类汇编(难题易错题)

1.在平面直角坐标系中,我们定义直线y=ax-a 为抛物线y=ax 2+bx+c (a 、b 、c 为常数,a≠0)的“衍生直线”;有一个顶点在抛物线上,另有一个顶点在y 轴上的三角形为其“衍生三角形”.已知抛物线22343

23y x x =-

-+与其“衍生直线”交于A 、B 两点(点A 在点B 的左侧),与x 轴负半轴交于点C .

(1)填空:该抛物线的“衍生直线”的解析式为 ,点A 的坐标为 ,点B 的坐标为 ;

(2)如图,点M 为线段CB 上一动点,将△ACM 以AM 所在直线为对称轴翻折,点C 的对称点为N ,若△AMN 为该抛物线的“衍生三角形”,求点N 的坐标;

(3)当点E 在抛物线的对称轴上运动时,在该抛物线的“衍生直线”上,是否存在点F ,使得以点A 、C 、E 、F 为顶点的四边形为平行四边形?若存在,请直接写出点E 、F 的坐标;若不存在,请说明理由. 【答案】(1)2323

y=;(-2,231,0); (2)N 点的坐标为(0,3-3),(0,23+3); (3)E (-1,43F (023)或E (-1,43),F (-4103)

【解析】 【分析】

(1)由抛物线的“衍生直线”知道二次函数解析式的a 即可;(2)过A 作AD ⊥y 轴于点D ,则可知AN=AC ,结合A 点坐标,则可求出ON 的长,可求出N 点的坐标;(3)分别讨论当AC 为平行四边形的边时,当AC 为平行四边形的对角线时,求出满足条件的E 、F 坐标即可 【详解】 (1)∵2343

2333y x x =-

-+a=233

-

,则抛物线的“衍生直线”的解析式为

2323

y=x+

33

-;

联立两解析式求交点

2

2343

23

2323

y=x+

y x x

?

=--+

??

?

?-

??

,解得

x=-2

y=23

??

?

??

x=1

y=0

?

?

?

∴A(-2,23),B(1,0);

(2)如图1,过A作AD⊥y轴于点D,

在2

2343

23

33

y x x

=--+中,令y=0可求得x= -3或x=1,

∴C(-3,0),且A(-2,23),

∴AC=22

-++213

3=

(23)()

由翻折的性质可知AN=AC=13,

∵△AMN为该抛物线的“衍生三角形”,

∴N在y轴上,且AD=2,

在Rt△AND中,由勾股定理可得

DN=22

AN-AD=13-4=3,

∵OD=23,

∴ON=23-3或ON=23+3,

∴N点的坐标为(0,23-3),(0,23+3);

(3)①当AC为平行四边形的边时,如图2 ,过F作对称轴的垂线FH,过A作AK⊥x轴于点K,则有AC∥EF且AC=EF,

∴∠ ACK=∠ EFH,

在△ ACK和△ EFH中

ACK=EFH

AKC=EHF

AC=EF

∠∠

?

?

∠∠

?

?

?

∴△ ACK≌△ EFH,

∴FH=CK=1,HE=AK=23,

∵抛物线的对称轴为x=-1,

∴ F点的横坐标为0或-2,

∵点F在直线AB上,

∴当F点的横坐标为0时,则F(0,23),此时点E在直线AB下方,∴E到y轴的距离为EH-OF=23-23=43,即E的纵坐标为-43,∴ E(-1,-43);

当F点的横坐标为-2时,则F与A重合,不合题意,舍去;

②当AC为平行四边形的对角线时,

∵ C(-3,0),且A(-2,23),

∴线段AC的中点坐标为(-2.5,3),

设E(-1,t),F(x,y),

则x-1=2×(-2.5),y+t=23,

∴x= -4,y=23-t,

23-t=-23

3

×(-4)+

23

3

,解得t=

43

-

3

∴E(-1,43

-

3),F(-4,

103

3

);

综上可知存在满足条件的点F,此时E(-1,-43

)、(0,

23

)或E(-1,

43

-),F(-4,103

【点睛】

本题是对二次函数的综合知识考查,熟练掌握二次函数,几何图形及辅助线方法是解决本题的关键,属于压轴题

2.已知如图,抛物线y=x2+bx+c过点A(3,0),B(1,0),交y轴于点C,点P是该抛物线上一动点,点P从C点沿抛物线向A点运动(点P不与点A重合),过点P作PD∥y 轴交直线AC于点D.

(1)求抛物线的解析式;

(2)求点P在运动的过程中线段PD长度的最大值;

(3)△APD能否构成直角三角形?若能请直接写出点P坐标,若不能请说明理由;(4)在抛物线对称轴上是否存在点M使|MA﹣MC|最大?若存在请求出点M的坐标,若不存在请说明理由.

【答案】(1)y=x2﹣4x+3;(2)9

4

;(3)点P(1,0)或(2,﹣1);(4)M(2,﹣

3).

【解析】

试题分析:(1)把点A、B的坐标代入抛物线解析式,解方程组得到b、c的值,即可得解;

(2)求出点C的坐标,再利用待定系数法求出直线AC的解析式,再根据抛物线解析式设出点P的坐标,然后表示出PD的长度,再根据二次函数的最值问题解答;

(3)①∠APD是直角时,点P与点B重合,②求出抛物线顶点坐标,然后判断出点P为在抛物线顶点时,∠PAD是直角,分别写出点P的坐标即可;

(4)根据抛物线的对称性可知MA=MB,再根据三角形的任意两边之差小于第三边可知点M为直线CB与对称轴交点时,|MA﹣MC|最大,然后利用待定系数法求出直线BC的解析式,再求解即可.

试题解析:解:(1)∵抛物线y=x2+bx+c过点A(3,0),B(1,0),

930

10

b c

b c

++=

?

?

++=

?

,解得

4

3

b

c

=-

?

?

=

?

,∴抛物线解析式为y=x2﹣4x+3;

(2)令x=0,则y=3,∴点C(0,3),则直线AC的解析式为y=﹣x+3,设点P(x,x2﹣4x+3).∵PD∥y轴,∴点D(x,﹣x+3),∴PD=(﹣x+3)﹣(x2﹣4x+3)=﹣x2+3x=﹣

(x﹣3

2

)2+

9

4

.∵a=﹣1<0,∴当x=

3

2

时,线段PD的长度有最大值

9

4

(3)①∠APD是直角时,点P与点B重合,此时,点P(1,0),②∵y=x2﹣4x+3=(x ﹣2)2﹣1,∴抛物线的顶点坐标为(2,﹣1).∵A(3,0),∴点P为在抛物线顶点

时,∠PAD=45°+45°=90°,此时,点P(2,﹣1).

综上所述:点P(1,0)或(2,﹣1)时,△APD能构成直角三角形;

(4)由抛物线的对称性,对称轴垂直平分AB,∴MA=MB,由三角形的三边关系,|MA﹣MC|<BC,∴当M、B、C三点共线时,|MA﹣MC|最大,为BC的长度,设直线BC的解析

式为y=kx+b(k≠0),则

3

k b

b

+=

?

?

=

?

,解得:

3

3

k

b

=-

?

?

=

?

,∴直线BC的解析式为y=﹣

3x+3.∵抛物线y=x2﹣4x+3的对称轴为直线x=2,∴当x=2时,y=﹣3×2+3=﹣3,∴点M (2,﹣3),即,抛物线对称轴上存在点M(2,﹣3),使|MA﹣MC|最大.

点睛:本题是二次函数综合题,主要利用了待定系数法求二次函数解析式,二次函数的最值问题,二次函数的对称性以及顶点坐标的求解,(2)整理出PD的表达式是解题的关键,(3)关键在于利用点的坐标特征作出判断,(4)根据抛物线的对称性和三角形的三边关系判断出点M的位置是解题的关键.

3.如图,直线l:y=﹣3x+3与x轴、y轴分别相交于A、B两点,抛物线y=ax2﹣2ax+a+4(a<0)经过点B,交x轴正半轴于点C.

(1)求该抛物线的函数表达式;

(2)已知点M是抛物线上的一个动点,并且点M在第一象限内,连接AM、BM,设点M 的横坐标为m,△ABM的面积为S,求S与m的函数表达式,并求出S的最大值及此时动点M的坐标;

(3)将点A绕原点旋转得点A′,连接CA′、BA′,在旋转过程中,一动点M从点B出发,沿线段BA′以每秒3个单位的速度运动到A′,再沿线段A′C以每秒1个单位长度的速度运动到C后停止,求点M在整个运动过程中用时最少是多少?

【答案】(1)y=﹣x2+2x+3;(2)S与m的函数表达式是S=

25

2

m m

-

-,S的最大值是

25 8,此时动点M的坐标是(

5

2

7

4

);(3)点M

秒.

【解析】

【分析】

(1)首先求出B点的坐标,根据B点的坐标即可计算出二次函数的a值,进而即可计算出二次函数的解析式;

(2)计算出C点的坐标,设出M点的坐标,再根据△ABM的面积为S=S四边形OAMB﹣S△AOB =S△BOM+S△OAM﹣S△AOB,化简成二次函数,再根据二次函数求解最大值即可.

(3)首先证明△OHA′∽△OA′B,再结合A′H+A′C≥HC即可计算出t的最小值.

【详解】

(1)将x=0代入y=﹣3x+3,得y=3,

∴点B的坐标为(0,3),

∵抛物线y=ax2﹣2ax+a+4(a<0)经过点B,

∴3=a+4,得a=﹣1,

∴抛物线的解析式为:y=﹣x2+2x+3;

(2)将y=0代入y=﹣x2+2x+3,得x1=﹣1,x2=3,

∴点C的坐标为(3,0),

∵点M是抛物线上的一个动点,并且点M在第一象限内,点M的横坐标为m,

∴0<m<3,点M的坐标为(m,﹣m2+2m+3),

将y=0代入y=﹣3x+3,得x=1,

∴点A的坐标(1,0),

∵△ABM的面积为S,

∴S=S四边形OAMB﹣S△AOB=S△BOM+S△OAM﹣S△AOB=

()

2

123

313 222

m m

m?-++

??

+-,

化简,得

S=

25

2

m m

-

-=

2

1525

228

m

??

--+

?

??

∴当m=5

2

时,S取得最大值,此时S=

25

8

,此时点M的坐标为(

5

2

7

4

),

即S与m的函数表达式是S=

25

2

m m

-

-,S的最大值是

25

8

,此时动点M的坐标是

(5

2

7

4

);

(3)如右图所示,取点H的坐标为(0,1

3

),连接HA′、OA′,

∵∠HOA ′=∠A ′OB ,13OH OA '

=,1

3

OA OB '=, ∴△OHA ′∽△OA ′B ,

∴3BA A H

'

'=, 即3

BA A H ''=,

∵A ′H +A ′C ≥HC =2

2182333??+= ???

, ∴t ≥

82

3

, 即点M 在整个运动过程中用时最少是

82

秒.

【点睛】

本题主要考查抛物线的性质,关键在于设元,还有就是(3)中利用代替法计算t 的取值范围,难度系数较大,是中考的压轴题.

4.如图,直线y =-

1

2

x-3与x 轴,y 轴分别交于点A ,C ,经过点A ,C 的抛物线y =ax 2+bx ﹣3与x 轴的另一个交点为点B(2,0),点D 是抛物线上一点,过点D 作DE ⊥x 轴于点E ,连接AD ,DC .设点D 的横坐标为m . (1)求抛物线的解析式;

(2)当点D 在第三象限,设△DAC 的面积为S ,求S 与m 的函数关系式,并求出S 的最大值及此时点D 的坐标;

(3)连接BC ,若∠EAD =∠OBC ,请直接写出此时点D 的坐标.

【答案】(1)y =14x 2+x ﹣3;(2)S △ADC =﹣34

(m+3)2+274;△ADC 的面积最大值为27

4;此时D(﹣3,﹣15

4

);(3)满足条件的点D 坐标为(﹣4,﹣3)或(8,21). 【解析】 【分析】

(1)求出A 坐标,再用待定系数法求解析式;(2)设DE 与AC 的交点为点F.设点D 的坐标为:(m ,

14m 2+m ﹣3),则点F 的坐标为:(m ,﹣1

2

m ﹣3),根据S △ADC =S △ADF +S △DFC 求出解析式,再求最值;(3)①当点D 与点C 关于对称轴对称时,D(﹣4,﹣3),根据对称性此时∠EAD =∠ABC .

②作点D(﹣4,﹣3)关于x 轴的对称点D′(﹣4,3),直线AD′的解析式为y =3

2

x+9,解方程组求出函数图像交点坐标. 【详解】

解:(1)在y =﹣

1

2

x ﹣3中,当y =0时,x =﹣6, 即点A 的坐标为:(﹣6,0),

将A(﹣6,0),B(2,0)代入y =ax 2+bx ﹣3得:

36630

4230a b a b --=??

+-=?

, 解得:141

a b ?

=???=?,

∴抛物线的解析式为:y =14

x 2

+x ﹣3; (2)设点D 的坐标为:(m ,14m 2+m ﹣3),则点F 的坐标为:(m ,﹣1

2

m ﹣3), 设DE 与AC 的交点为点F. ∴DF =﹣

12m ﹣3﹣(14m 2+m ﹣3)=﹣14m 2﹣3

2

m ,

∴S △ADC =S △ADF +S △DFC =12DF?AE+1

2?DF?OE =1

2

DF?OA =

1

2×(﹣14m 2﹣3

2

m)×6 =﹣34m 2﹣9

2

m =﹣

34(m+3)2+274,

∵a =﹣3

4

<0,

∴抛物线开口向下,

∴当m =﹣3时,S △ADC 存在最大值274

, 又∵当m =﹣3时,14

m 2+m ﹣3=﹣154,

∴存在点D(﹣3,﹣

15

4),使得△ADC 的面积最大,最大值为274

; (3)①当点D 与点C 关于对称轴对称时,D(﹣4,﹣3),根据对称性此时∠EAD =∠ABC . ②作点D(﹣4,﹣3)关于x 轴的对称点D′(﹣4,3), 直线AD′的解析式为y =

3

2

x+9, 由2

3

9

2

13

4

y x y x x ?=+????=+-??,解得60x y =-??=?或821x y =??=?,

此时直线AD′与抛物线交于D(8,21),满足条件, 综上所述,满足条件的点D 坐标为(﹣4,﹣3)或(8,21)

【点睛】

本题属于二次函数综合题,考查了待定系数法,一次函数的应用,二次函数的性质等知识,解题的关键是学会构建二次函数解决最值问题,学会构建一次函数解决实际问题,属于中考压轴题..

5.如图,在平面直角坐标系中,直线

4

83

y x =-

+与x 轴,y 轴分别交于点A 、B ,抛物线24y ax ax c =-+经过点A 和点B ,与x 轴的另一个交点为C ,动点D 从点A 出发,以每秒1个单位长度的速度向O 点运动,同时动点E 从点B 出发,以每秒2个单位长度的速度向A 点运动,设运动的时间为t 秒,0﹤t ﹤5.

(1)求抛物线的解析式;

(2)当t 为何值时,以A 、D 、E 为顶点的三角形与△AOB 相似; (3)当△ADE 为等腰三角形时,求t 的值;

(4)抛物线上是否存在一点F ,使得以A 、B 、D 、F 为顶点的四边形是平行四边形?若存在,直接写出F 点的坐标;若不存在,说明理由. 【答案】(1)抛物线的解析式为228

833

y x x =-++; (2)t 的值为3011或50

13; (3)t 的值为

103或6017或258

; (4)符合条件的点F 存在,共有两个1F (4,8),2(227F +,-8). 【解析】

(1)由B 、C 两点的坐标,利用待定系数法可求得抛物线的解析式;(2)利用

△ADE ∽△AOB 和△AED ∽△AOB 即可求出t 的值;(3)过E 作EH ⊥x 轴于点H ,过D 作DM ⊥AB 于点M 即可求出t 的值;(4)分当AD 为边时,当AD 为对角线时符合条件的点F 的坐标.

解:(1)A (6,0),B (0,8),依题意知36240{8

a a c c -+==,解得2

{

38

a c =-

=, ∴228

833

y x x =-

++. (2)∵ A (6,0),B (0,8),∴OA=6,OB=8,AB=10,∴AD=t ,AE=10-2t ,

①当△ADE ∽△AOB 时,AD AE AO AB =,∴102610t t -=,∴30

11t =; ②当△AED ∽△AOB 时,AE AD AO AB =,∴102610t t -=,∴50

13

t =; 综上所述,t 的值为

3011或

5013

. (3) ①当AD=AE 时,t=10-2t ,∴103

t =

; ②当AE=DE 时,过E 作EH ⊥x 轴于点H ,则AD=2AH ,由△AEH ∽△ABO 得,AH=

()31025

t -,∴()61025

t t -=

,∴6017

t =

; ③当AD=DE 时,过D 作DM ⊥AB 于点M ,则AE=2AM ,由△AMD ∽△AOB 得,AM=35

t ,∴61025t t -=

,∴258

t =; 综上所述,t 的值为

103或6017或

25

8

. (4) ①当AD 为边时,则BF ∥x 轴,∴8F B y y ==,求得x=4,∴F (4,8); ②当AD 为对角线时,则8F B y y =-=-,∴228

8833

x x -++=-,解得227x =±,∵x ﹥0,∴227x =+,∴()

227,8+-.

综上所述,符合条件的点F 存在,共有两个1F (4,8),2(227F +,-8).

“点睛”本题考查二次函数综合题、相似三角形等知识,解题的关键是学会待定系数法确定函数解析式,学会分类讨论,用方程的思想解决问题,属于中考压轴题.

6.如图①,已知抛物线y=ax 2+bx+c 的图像经过点A (0,3)、B (1,0),其对称轴为直线l :x=2,过点A 作AC ∥x 轴交抛物线于点C ,∠AOB 的平分线交线段AC 于点E ,点P 是抛物线上的一个动点,设其横坐标为m.

(1)求抛物线的解析式;

(2)若动点P 在直线OE 下方的抛物线上,连结PE 、PO ,当m 为何值时,四边形AOPE

面积最大,并求出其最大值;

(3)如图②,F是抛物线的对称轴l上的一点,在抛物线上是否存在点P使△POF成为以点P为直角顶点的等腰直角三角形?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明理由.

【答案】(1)y=x2-4x+3.(2)当m=5

2

时,四边形AOPE面积最大,最大值为

75

8

.(3)P

点的坐标为:P1(3+5,15

2

-

),P2(

35

2

1+5

2

),P3(

5+5

2

1+5

2

),

P4(55

-

15

-

).

【解析】

分析:(1)利用对称性可得点D的坐标,利用交点式可得抛物线的解析式;

(2)设P(m,m2-4m+3),根据OE的解析式表示点G的坐标,表示PG的长,根据面积和可得四边形AOPE的面积,利用配方法可得其最大值;

(3)存在四种情况:

如图3,作辅助线,构建全等三角形,证明△OMP≌△PNF,根据OM=PN列方程可得点P 的坐标;同理可得其他图形中点P的坐标.

详解:(1)如图1,设抛物线与x轴的另一个交点为D,

由对称性得:D(3,0),

设抛物线的解析式为:y=a(x-1)(x-3),

把A(0,3)代入得:3=3a,

a=1,

∴抛物线的解析式;y=x2-4x+3;

(2)如图2,设P(m,m2-4m+3),

∵OE平分∠AOB,∠AOB=90°,∴∠AOE=45°,

∴△AOE是等腰直角三角形,

∴AE=OA=3,

∴E(3,3),

易得OE的解析式为:y=x,

过P作PG∥y轴,交OE于点G,∴G(m,m),

∴PG=m-(m2-4m+3)=-m2+5m-3,∴S四边形AOPE=S△AOE+S△POE,

=1

2

×3×3+

1

2

PG?AE,

=9

2

+

1

2

×3×(-m2+5m-3),

=-3

2

m2+

15

2

m,

=3

2

(m-

5

2

)2+

75

8

∵-3

2

<0,

∴当m=5

2

时,S有最大值是

75

8

(3)如图3,过P作MN⊥y轴,交y轴于M,交l于N,

∵△OPF 是等腰直角三角形,且OP=PF , 易得△OMP ≌△PNF , ∴OM=PN ,

∵P (m ,m 2-4m+3), 则-m 2+4m-3=2-m , 解得:m=

5+52

或55

2-,

∴P 的坐标为(

5+5,1+5)或(55-,15-);

如图4,过P 作MN ⊥x 轴于N ,过F 作FM ⊥MN 于M ,

同理得△ONP ≌△PMF , ∴PN=FM , 则-m 2+4m-3=m-2, 解得:3+5

35; P 3+5152-35,1+52

);

综上所述,点P 5+51+5255-1523+5

15-)或(352,1+5

). 点睛:本题属于二次函数综合题,主要考查了二次函数的综合应用,相似三角形的判定与性质以及解一元二次方程的方法,解第(2)问时需要运用配方法,解第(3)问时需要运用分类讨论思想和方程的思想解决问题.

7.综合与探究

如图,抛物线2

6y ax bx =++经过点A(-2,0),B(4,0)两点,与y 轴交于点C ,点D 是抛物

线上一个动点,设点D 的横坐标为(14)m m <<.连接AC ,BC ,DB ,DC . (1)求抛物线的函数表达式; (2)△BCD 的面积等于△AOC 的面积的

3

4

时,求m 的值; (3)在(2)的条件下,若点M 是x 轴上的一个动点,点N 是抛物线上一动点,试判断是否存在这样的点M,使得以点B ,D ,M ,N 为顶点的四边形是平行四边形,若存在,请直接写出点M 的坐标;若不存在,请说明理由.

【答案】(1)233

642

y x x =-++;(2)3;(3)1234(8,0),(0,0),(14,0),(14,0)M M M M -. 【解析】 【分析】

(1)利用待定系数法进行求解即可;

(2)作直线DE ⊥x 轴于点E ,交BC 于点G ,作CF ⊥DE ,垂足为F ,先求出S △OAC =6,再根据

S △BCD =

34S △AOC ,得到S △BCD =92

,然后求出BC 的解析式为3

62y x =-+,则可得点G 的坐

标为3(,6)2m m -+,由此可得2

334

DG m m =-+,再根据

S △BCD =S △CDG +S △BDG =1

2

DG BO ??,可得关于m 的方程,解方程即可求得答案;

(3)存在,如下图所示,以BD 为边或者以BD 为对角线进行平行四边形的构图,以BD 为边时,有3种情况,由点D 的坐标可得点N 点纵坐标为±

154,然后分点N 的纵坐标为154

点N 的纵坐标为15

4

-

两种情况分别求解;以BD 为对角线时,有1种情况,此时N 1点与N 2点重合,根据平行四边形的对边平行且相等可求得BM 1=N 1D=4,继而求得OM 1= 8,由此即可求得答案. 【详解】

(1)抛物线2y ax bx c =++经过点A(-2,0),B(4,0),

∴426016460a b a b -+=??++=?

, 解得3432a b ?=-????=??

∴抛物线的函数表达式为233

642

y x x =-

++; (2)作直线DE ⊥x 轴于点E ,交BC 于点G ,作CF ⊥DE ,垂足为F , ∵点A 的坐标为(-2,0),∴OA=2,

由0x =,得6y =,∴点C 的坐标为(0,6),∴OC=6, ∴S △OAC =11

26622

OA OC ??=??=, ∵S △BCD =

3

4S △AOC , ∴S △BCD =39

642

?=,

设直线BC 的函数表达式为y kx n =+,

由B ,C 两点的坐标得406k n n +=??=?,解得326

k n ?

=-

???=?,

∴直线BC 的函数表达式为3

62

y x =-+, ∴点G 的坐标为3

(,6)2

m m -+, ∴223333

6(6)34224

DG m m m m m =-

++--+=-+, ∵点B 的坐标为(4,0),∴OB=4,

∵S △BCD =S △CDG +S △BDG =1111

()2222

DG CF DG BE DG CF BE DG BO ??+??=?+=??, ∴S △BCD =221

33346242

m m m m -

+?=-+(),

∴239622

m m -

+=, 解得11m =(舍),23m =, ∴m 的值为3;

(3)存在,如下图所示,以BD 为边或者以BD 为对角线进行平行四边形的构图, 以BD 为边时,有3种情况, ∵D 点坐标为15(3,

)4

,∴点N 点纵坐标为±15

4,

当点N 的纵坐标为15

4

时,如点N 2, 此时23315

6424x x -

++=,解得:121,3x x =-=(舍), ∴215

(1,

)4

N -,∴2(0,0)M ; 当点N 的纵坐标为15

4

-时,如点N 3,N 4, 此时23315

6424

x x -

++=-,解得:12114,114x x ==∴315(114,)4N +-

,415

(114,)4

N -, ∴3(14,0)M ,4(14,0)M -;

以BD 为对角线时,有1种情况,此时N 1点与N 2点重合,

∵115(1,

)4

N -,D(3,154),

∴N 1D=4, ∴BM 1=N 1D=4, ∴OM 1=OB+BM 1=8, ∴M 1(8,0),

综上,点M 的坐标为:1234(80)(00)(14(14M M M M -,,,,,,,.

【点睛】

本题考查的是二次函数的综合题,涉及了待定系数法、三角形的面积、解一元二次方程、平行四边形的性质等知识,运用了数形结合思想、分类讨论思想等数学思想,熟练掌握和灵活运用相关知识是解题的关键.

8.在直角坐标系中,我们不妨将横坐标,纵坐标均为整数的点称之为“中国结”。 (1)求函数3的图像上所有“中国结”的坐标;

(2)求函数y=

k

x

(k≠0,k 为常数)的图像上有且只有两个“中国结”,试求出常数k 的值与相应“中国结”的坐标;

(3)若二次函数y=2222

(32)(241)k k x k k x k k -++-++-(k 为常数)的图像与x 轴

相交得到两个不同的“中国结”,试问该函数的图像与x 轴所围成的平面图形中(含边界),一共包含有多少个“中国结”?

【答案】(1)(0,2);(2)当k=1时,对应“中国结”为(1,1)(-1,-1);当k=-1时,对应“中国结”为(1,-1),(-1,1);(3)6个. 【解析】

试题分析:(1)因为x 是整数,x≠03是一个无理数,所以x≠03不是整数,所以x=0,y=2,据此求出函数3x+2的图象上所有“中国结”的坐标即可. (2)首先判断出当k=1时,函数y=

k

x

(k≠0,k 为常数)的图象上有且只有两个“中国结”:(1,1)、(﹣1、﹣1);然后判断出当k≠1时,函数y=

k

x

(k≠0,k 为常数)的图象上最少有4个“中国结”,据此求出常数k 的值与相应“中国结”的坐标即可.

(3)首先令(k 2﹣3k+2)x 2+(2k 2﹣4k+1)x+k 2﹣k=0,则[(k ﹣1)x+k][(k ﹣2)x+(k ﹣1)]=0,求出x 1、x 2的值是多少;然后根据x 1、x 2的值是整数,求出k 的值是多少;最后根据横坐标,纵坐标均为整数的点称之为“中国结”,判断出该函数的图象与x 轴所围成的平面图形中(含边界),一共包含有多少个“中国结”即可. 试题解析:(1)∵x 是整数,x≠03是一个无理数,

∴x≠0

x+2不是整数, ∴x=0,y=2,

即函数

x+2的图象上“中国结”的坐标是(0,2).

(2)①当k=1时,函数y=

k

x

(k≠0,k 为常数)的图象上有且只有两个“中国结”: (1,1)、(﹣1、﹣1);

②当k=﹣1时,函数y=k

x

(k≠0,k 为常数)的图象上有且只有两个“中国结”: (1,﹣1)、(﹣1,1).

③当k≠±1时,函数y=

k

x

(k≠0,k 为常数)的图象上最少有4个“中国结”: (1,k )、(﹣1,﹣k )、(k ,1)、(﹣k ,﹣1),这与函数y=k

x

(k≠0,k 为常数)的图象上有且只有两个“中国结”矛盾, 综上可得,k=1时,函数y=k

x

(k≠0,k 为常数)的图象上有且只有两个“中国结”:(1,1)、(﹣1、﹣1); k=﹣1时,函数y=k

x

(k≠0,k 为常数)的图象上有且只有两个“中国结”:(1,﹣1)、(﹣1、1).

(3)令(k 2﹣3k+2)x 2+(2k 2﹣4k+1)x+k 2﹣k=0, 则[(k ﹣1)x+k][(k ﹣2)x+(k ﹣1)]=0,

∴121{12k x k

k x k =

--=

-

∴121221

11

x x k x x +=

=++, 整理,可得 x 1x 2+2x 2+1=0, ∴x 2(x 1+2)=﹣1, ∵x 1、x 2都是整数, ∴211{21x x =+=-或211{

21

x x =-+=

∴123{

1

x x =-=或121{

1

x x =-=-

①当123{

1

x x =-=时,

1

12k k -=-, ∴k=

32

; ②当121{1

x x =-=-时,

11k

k

=--, ∴k=k ﹣1,无解; 综上,可得 k=

3

2

,x 1=﹣3,x 2=1, y=(k 2﹣3k+2)x 2+(2k 2﹣4k+1)x+k 2﹣k =[(

32)2﹣3×32+2]x 2+[2×(32)2﹣4×32+1]x+(32)2﹣32 =﹣

14x 2﹣12x+34

①当x=﹣2时, y=﹣14x 2﹣12x+34=﹣14×(﹣2)2﹣1

2×(﹣2)+34

=

34

②当x=﹣1时, y=﹣14x 2﹣12x+34

=﹣14×(﹣1)2﹣1

2×(﹣1)+34

=1

③当x=0时,y=

3

4

, 另外,该函数的图象与x 轴所围成的平面图形中x 轴上的“中国结”有3个: (﹣2,0)、(﹣1、0)、(0,0). 综上,可得

若二次函数y=(k 2﹣3k+2)x 2+(2k 2﹣4k+1)x+k 2﹣k (k 为常数)的图象与x 轴相交得到两个不同的“中国结”,

该函数的图象与x 轴所围成的平面图形中(含边界),一共包含有6个“中国结”:(﹣3,0)、(﹣2,0)、(﹣1,0)(﹣1,1)、(0,0)、(1,0). 考点:反比例函数综合题

中考数学二次函数压轴题(含答案)

中考数学二次函数压轴题(含答案) 面积类 1.如图,已知抛物线经过点A(﹣1,0)、B(3,0)、C(0,3)三点. (1)求抛物线的解析式. (2)点M是线段BC上的点(不与B,C重合),过M作MN∥y轴交抛物线于N,若点M的横坐标为m,请用m的代数式表示MN的长. (3)在(2)的条件下,连接NB、NC,是否存在m,使△BNC的面积最大?若存在,求m的值;若不存在,说明理由. 解答: 解:(1)设抛物线的解析式为:y=a(x+1)(x﹣3),则: a(0+1)(0﹣3)=3,a=﹣1; ∴抛物线的解析式:y=﹣(x+1)(x﹣3)=﹣x2+2x+3. (2)设直线BC的解析式为:y=kx+b,则有: , 解得;

故直线BC的解析式:y=﹣x+3. 已知点M的横坐标为m,MN∥y,则M(m,﹣m+3)、N(m,﹣m2+2m+3); ∴故MN=﹣m2+2m+3﹣(﹣m+3)=﹣m2+3m(0<m<3). (3)如图; ∵S△BNC=S△MNC+S△MNB=MN(OD+DB)=MN?OB, ∴S△BNC=(﹣m2+3m)?3=﹣(m﹣)2+(0<m<3); ∴当m=时,△BNC的面积最大,最大值为. 2.如图,抛物线的图象与x轴交于A、B两点,与y轴交于C点,已知B点坐标为(4,0). (1)求抛物线的解析式; (2)试探究△ABC的外接圆的圆心位置,并求出圆心坐标; (3)若点M是线段BC下方的抛物线上一点,求△MBC的面积的最大值,并求出此时M点的坐标. 解答:

解:(1)将B(4,0)代入抛物线的解析式中,得: 0=16a﹣×4﹣2,即:a=; ∴抛物线的解析式为:y=x2﹣x﹣2. (2)由(1)的函数解析式可求得:A(﹣1,0)、C(0,﹣2); ∴OA=1,OC=2,OB=4, 即:OC2=OA?OB,又:OC⊥AB, ∴△OAC∽△OCB,得:∠OCA=∠OBC; ∴∠ACB=∠OCA+∠OCB=∠OBC+∠OCB=90°, ∴△ABC为直角三角形,AB为△ABC外接圆的直径; 所以该外接圆的圆心为AB的中点,且坐标为:(,0). (3)已求得:B(4,0)、C(0,﹣2),可得直线BC的解析式为:y=x﹣2; 设直线l∥BC,则该直线的解析式可表示为:y=x+b,当直线l与抛物线只有一个交点时,可列方程:x+b=x2﹣x﹣2,即:x2﹣2x﹣2﹣b=0,且△=0; ∴4﹣4×(﹣2﹣b)=0,即b=﹣4; ∴直线l:y=x﹣4. 所以点M即直线l和抛物线的唯一交点,有: ,解得:即M(2,﹣3). 过M点作MN⊥x轴于N, S△BMC=S梯形OCMN+S△MNB﹣S△OCB=×2×(2+3)+×2×3﹣×2×4=4.

中考二次函数压轴题经典题型

中考二次函数压轴题经典题型 1、如图,已知;边长为4的正方形截去一角成为五边形ABCDE,其中AF=2,BF=l,在AB上的一点P,使矩形PNDM 有最大面积,求矩形PNDM的面积最大值? 2、如图,二次函数的图象经过点D(0, 3 9 7 ),且顶点C的横坐标为4,该图象在x 轴上截得的线段AB的长为6. ⑴求二次函数的解析式; ⑵在该抛物线的对称轴上找一点P,使PA+PD最小,求出点P的坐标; ⑶在抛物线上是否存在点Q,使△QAB与△ABC相似?如果存在,求出点Q的坐标;如果不存在,请说明理由. 3.如图,直线y=x+2与抛物线y=ax2+bx+6(a≠0)相交于A(1 2 , 5 2 )和B(4,m),点P是线段AB 上异于A、B的动点,过点P作PC⊥x轴于点D,交抛物线于点C. (1)求抛物线的解析式; (2)是否存在这样的P点,使线段PC的长有最大值,若存在,求出这个最大值;若不存在,请说明理由; (3)求△PAC为直角三角形时点P的坐标.

4、如图,二次函数y=a+bx的图象经过点A(2,4)与B(6,0). (1)求a,b的值; (2)点C是该二次函数图象上A,B两点之间的一动点,横坐标为x(2<x<6),写出四边形OACB 的面积S关于点C的横坐标x的函数表达式,并求S的最大值。 5、如图1,对称轴x=为直线的抛物线经过B(2,0)、C(0,4)两点,抛物线与轴的另一交点为A.(1)求抛物线的解析式; (2)若点P为第一象限内抛物线上一点,设四边形COBP的面积为S,求S的最大值; (3)如图2,若M是线段BC上一动点,在轴上是否存在这样有点Q,使△MQC为等腰三角形且△MQB 为直角三角形?若存在,求出Q点坐标;若不存在,请说明理由.

二次函数综合题经典习题(含答案及基本讲解)

二次函数综合题训练题型集合 1、如图1,已知二次函数图象的顶点坐标为C(1,0),直线m x y+ =与该二次函数的图象交于A、B两点,其中A点的坐标为(3,4),B点在轴y上. (1)求m的值及这个二次函数的关系式; (2)P为线段AB上的一个动点(点P与A、B不重合),过P作x轴的垂线与这个二次函数的图象交于点E点,设线段PE的长为h,点P的横坐标为x,求h与x之间 的函数关系式,并写出自变量x的取值范围; (3)D为直线AB与这个二次函数图象对称轴的交点,在线段AB上是否存在一点P,使得四边形DCEP是平行四边形?若存在,请求出此时P点的坐标;若不存在,请说 明理由. 2、如图2,已知二次函数24 y ax x c =-+的图像经过点A和点B.(1)求该二次函数的表达式; (2)写出该抛物线的对称轴及顶点坐标; (3)点P(m,m)与点Q均在该函数图像上(其中m>0),且这两点关于抛物线的对称轴对称,求m的值及点Q 到x轴的距离 E B A C P 图1 O x y D x y O 3 -9 -1 -1 A B 图2

P B A C O x y Q 图3 3、如图3,已知抛物线c x b x a y ++=2经过O(0,0),A(4,0),B(3,3)三点,连结AB ,过点B 作BC ∥x 轴交该抛物线于点C. (1) 求这条抛物线的函数关系式. (2) 两个动点P 、Q 分别从O 、A 两点同时出发,以每秒1个单位长度的速度运动. 其中,点P 沿着线段0A 向A 点运动,点Q 沿着折线A →B →C 的路线向C 点运动. 设这两个动点运动的时间为t (秒) (0<t <4),△PQA 的面积记为S. ① 求S 与t 的函数关系式; ② 当t 为何值时,S 有最大值,最大值是多少?并指出此时△PQA 的形状; ③ 是否存在这样的t 值,使得△PQA 是直角三角形?若存在,请直接写出此时P 、Q 两点的坐标;若不存在,请说明理由. 7、(07海南中考)如图7,直线43 4 +- =x y 与x 轴交于点A ,与y 轴交于点C ,已知二次函数的图象经过点A 、C 和点()0,1-B . (1)求该二次函数的关系式; (2)设该二次函数的图象的顶点为M ,求四边形AOCM 的面积; (3)有两动点D 、E 同时从点O 出发,其中点D 以每秒 2 3 个单位长度的速度沿折线OAC 按O →A →C 的路线运动,点E 以每秒4个单位长度的速度沿折线OCA 按O →C → A 的路线运动, 当D 、E 两点相遇时,它们都停止运动.设D 、E 同时从点O 出发t 秒时,ODE ?的面积为S . ①请问D 、E 两点在运动过程中,是否存在DE ∥OC ,若存在,请求出此时t 的值;若不存在,请说明理由; ②请求出S 关于t 的函数关系式,并写出自变量t 的取值范围; ③设0S 是②中函数S 的最大值,那么0S = . C A M y B O x C A M y B O x C A M y B O x

北京国子监中学数学 二次函数中考真题汇编[解析版]

北京国子监中学数学二次函数中考真题汇编[解析版] 一、初三数学二次函数易错题压轴题(难) 1.如图,二次函数y=ax2+bx+c交x轴于点A(1,0)和点B(3,0),交y轴于点C,抛物线上一点D的坐标为(4,3) (1)求该二次函数所对应的函数解析式; (2)如图1,点P是直线BC下方抛物线上的一个动点,PE//x轴,PF//y轴,求线段EF的最大值; (3)如图2,点M是线段CD上的一个动点,过点M作x轴的垂线,交抛物线于点N,当△CBN是直角三角形时,请直接写出所有满足条件的点M的坐标. 【答案】(1)y=x2﹣4x+3;(2)EF的最大值为 2 4 ;(3)M点坐标为可以为(2, 3),(55 2 + ,3),( 55 2 - ,3). 【解析】 【分析】 (1)根据题意由A、B两点坐标在二次函数图象上,设二次函数解析式的交点式,将D点坐标代入求出a的值,最后将二次函数的交点式转化成一般式形式. (2)由题意可知点P在二次函数图象上,坐标为(p,p2﹣4p+3).又因为PF//y轴,点F 在直线BC上,P的坐标为(p,﹣p+3),在Rt△FPE中,可得FE2PF,用纵坐标差的绝对值可求线段EF的最大值. (3)根据题意求△CBN是直角三角形,分为∠CBN=90°和∠CNB=90°两类情况计算,利用三角形相似知识进行分析求解. 【详解】 解:(1)设二次函数的解析式为y=a(x﹣b)(x﹣c), ∵y=ax2+bx+与x轴r的两个交点A、B的坐标分别为(1,0)和(3,0), ∴二次函数解析式:y=a(x﹣1)(x﹣3). 又∵点D(4,3)在二次函数上, ∴(4﹣3)×(4﹣1)a=3, ∴解得:a=1. ∴二次函数的解析式:y=(x﹣1)(x﹣3),即y=x2﹣4x+3.

全国中考数学二次函数的综合中考真题汇总及答案解析

一、二次函数 真题与模拟题分类汇编(难题易错题) 1.如图1,抛物线y=ax 2+bx+c (a≠0)与x 轴交于点A (﹣1,0)、B (4,0)两点,与y 轴交于点C ,且OC=3OA .点P 是抛物线上的一个动点,过点P 作PE ⊥x 轴于点E ,交直线BC 于点D ,连接PC . (1)求抛物线的解析式; (2)如图2,当动点P 只在第一象限的抛物线上运动时,求过点P 作PF ⊥BC 于点F ,试问△PDF 的周长是否有最大值?如果有,请求出其最大值,如果没有,请说明理由. (3)当点P 在抛物线上运动时,将△CPD 沿直线CP 翻折,点D 的对应点为点Q ,试问,四边形CDPQ 是否成为菱形?如果能,请求出此时点P 的坐标,如果不能,请说明理由. 【答案】(1) y=﹣23 4x +94x+3;(2) 有最大值,365 ;(3) 存在这样的Q 点,使得四边形CDPQ 是菱形,此时点P 的坐标为( 73,256)或(173,﹣253). 【解析】 试题分析: (1)利用待定系数法求二次函数的解析式; (2)设P (m ,﹣ 34m 2+94m+3),△PFD 的周长为L ,再利用待定系数法求直线BC 的解析式为:y=﹣ 34x+3,表示PD=﹣2334m m ,证明△PFD ∽△BOC ,根据周长比等于对应边的比得:=PED PD BOC BC 的周长的周长,代入得:L=﹣95(m ﹣2)2+365 ,求L 的最大值即可; (3)如图3,当点Q 落在y 轴上时,四边形CDPQ 是菱形,根据翻折的性质知:CD=CQ ,PQ=PD ,∠PCQ=∠PCD ,又知Q 落在y 轴上时,则CQ ∥PD ,由四边相等:CD=DP=PQ=QC ,得四边形CDPQ 是菱形,表示P (n ,﹣23n 4 +94 n+3),则D (n ,﹣34n+3),G (0,﹣34 n+3),利用勾股定理表示PD 和CD 的长并列式可得结论. 试题解析: (1)由OC=3OA ,有C (0,3), 将A (﹣1,0),B (4,0),C (0,3)代入y=ax 2+bx+c 中,得:

二次函数经典例题及答案

二次函数经典例题及答案 1.已知抛物线的顶点为P (- 4,—2),与x轴交于A B两点,与y轴交于点C,其中B点坐标为(1 , 0)。 (1) 求这条抛物线的函数关系式; (2) 若抛物线的对称轴交x轴于点D,则在线段AC上是否存在这样的点Q,使得△ ADQ 1 2 9 . 135 y=2 x +4x - 2;存在点Q (-1 , -4 ) , Q (2^5-9,-%'5 ) , Q (--^, -4) ?析 一2 25 试题分析:(1)根据顶点坐标把抛物线设为顶点式形式y=a ( x+4) - 2,然后把点B的坐 标代入解析式求出a的值,即可得解; (2)先根据顶点坐标求出点D 的坐标,再根据抛物线解析式求出点A、C的坐标,从而得 到OA OC AD的长度,根据勾股定理列式求出AC的长度,然后根据锐角三角形函数求出/ OAC勺正弦值与余弦值,再分① AD=QD时,过Q作QE1丄x轴于点E,根据等腰三角形三线合一的性质求出AQ,再利用/ OAC勺正弦求出QE的长度,根据/ OAC勺余弦求出AE的长度,然后求出OE,从而得到点Q的坐标;②AD=AQ时,过Q作QE2丄x轴于点E>,利用/ OAC勺正弦求出QE2的长度,根据/ OAC勺余弦求出AE的长度,然后求出OE,从而得到点Q的坐标;③AQ=DQ时,过Q作QE3丄x轴于点已,根据等腰三角形三线合一的性质求出AE 的长度,然后求出OE,再由相似三角形对应边成比例列式求出QE3的长度,从而得到点Q 的坐标. 试题解析:(1 )???抛物线顶点坐标为( 25 -4 , - 2), ???设抛物线解析式为 2 25 y=a (x+4) - 2 为等腰三角形?若存在,请求出符合条件的点

(完整版)初中数学二次函数综合题及答案

二次函数题 选择题: 1、y=(m-2)x m2- m 是关于x 的二次函数,则m=( ) A -1 B 2 C -1或2 D m 不存在 2、下列函数关系中,可以看作二次函数y=ax 2+bx+c(a ≠0)模型的是( ) A 在一定距离内,汽车行驶的速度与行驶的时间的关系 B 我国人中自然增长率为1%,这样我国总人口数随年份变化的关系 C 矩形周长一定时,矩形面积和矩形边长之间的关系 D 圆的周长与半径之间的关系 4、将一抛物线向下向右各平移2个单位得到的抛物线是y=-x 2,则抛物线的解析式是( ) A y=—( x-2)2+2 B y=—( x+2)2+2 C y=— ( x+2)2+2 D y=—( x-2)2—2 5、抛物线y= 2 1 x 2 -6x+24的顶点坐标是( ) A (—6,—6) B (—6,6) C (6,6) D (6,—6) 6、已知函数y=ax 2+bx+c,图象如图所示,则下列结论中正确的有( )个 ①abc 〈0 ②a +c 〈b ③ a+b+c 〉0 ④ 2c 〈3b A 1 B 2 C 3 D 4 7、函数y=ax 2-bx+c (a ≠0)的图象过点(-1,0),则 c b a + =c a b + =b a c + 的值是( ) A -1 B 1 C 21 D -2 1 8、已知一次函数y= ax+c 与二次函数y=ax 2+bx+c (a ≠0),它们在同一坐标系内的大致图象是图中的( ) A B C D 二填空题: 13、无论m 为任何实数,总在抛物线y=x 2+2mx +m 上的点的坐标是————————————。 16、若抛物线y=ax 2+bx+c (a ≠0)的对称轴为直线x =2,最小值为-2,则关于方程ax 2+bx+c =-2的根为————————————。 17、抛物线y=(k+1)x 2+k 2-9开口向下,且经过原点,则k =————————— 解答题:(二次函数与三角形) 1、已知:二次函数y=x 2 +bx+c ,其图象对称轴为直线x=1,且经过点(2,﹣). (1)求此二次函数的解析式. (2)设该图象与x 轴交于B 、C 两点(B 点在C 点的左侧),请在此二次函数x 轴下方的图象上确定一点E ,使△EBC 的面积最大,并求出最大面积. 1 —1 0 x y y x -1 x y y x y x y

九年级上册数学 二次函数中考真题汇编[解析版]

九年级上册数学 二次函数中考真题汇编[解析版] 一、初三数学二次函数易错题压轴题(难) 1.如图1,抛物线y=mx2﹣3mx+n(m≠0)与x轴交于点C(﹣1,0)与y轴交于点B (0,3),在线段OA上有一动点E(不与O、A重合),过点E作x轴的垂线交直线AB 于点N,交抛物线于点P,过点P作PM⊥AB于点M. (1)分别求出抛物线和直线AB的函数表达式; (2)设△PMN的面积为S1,△AEN的面积为S2,当1 236 25 S S =时,求点P的坐标;(3)如图2,在(2)的条件下,将线段OE绕点O逆时针旋转的到OE′,旋转角为α (0°<α<90°),连接E′A、E′B,求E'A+2 3 E'B的最小值. 【答案】(1)抛物线y=﹣3 4 x2+ 9 4 x+3,直线AB解析式为y=﹣ 3 4 x+3;(2)P(2, 3 2);(3 410 【解析】 【分析】 (1)由题意令y=0,求出抛物线与x轴交点,列出方程即可求出a,根据待定系数法可以确定直线AB解析式; (2)根据题意由△PNM∽△ANE,推出 6 5 PN AN =,以此列出方程求解即可解决问题; (3)根据题意在y轴上取一点M使得OM′=4 3 ,构造相似三角形,可以证明AM′就是 E′A+2 3 E′B的最小值. 【详解】 解:(1)∵抛物线y=mx2﹣3mx+n(m≠0)与x轴交于点C(﹣1,0)与y轴交于点B (0,3),

则有 3 30 n m m n ? ? ?++ = = ,解得4 3 3 m n ? ? ? ? - ? = = , ∴抛物线2 39 3 44 y x x =-++, 令y=0,得到2 39 3 44 x x -++=0, 解得:x=4或﹣1, ∴A(4,0),B(0,3), 设直线AB解析式为y=kx+b,则 3 40 b k b + ? ? ? = = , 解得 3 3 4 k b ? - ? ? ?? = = , ∴直线AB解析式为y=3 4 -x+3. (2)如图1中,设P(m,2 39 3 44 m m -++),则E(m,0), ∵PM⊥AB,PE⊥OA, ∴∠PMN=∠AEN, ∵∠PNM=∠ANE, ∴△PNM∽△ANE, ∵△PMN的面积为S1,△AEN的面积为S2,1 2 36 25 S S =, ∴6 5 PN AN =, ∵NE∥OB, ∴AN AE AB OA =, ∴AN=5 4 5 4 5 4 5 4 (4﹣m),

2018中考数学专题二次函数

2018中考数专题二次函数 (共40题) 1.如图,抛物线y=﹣x2+bx+c与直线AB交于A(﹣4,﹣4),B(0,4)两点,直线AC:y=﹣x﹣6交y轴于点C.点E是直线AB上的动点,过点E作EF⊥x轴交AC于点F,交抛物线于点G. (1)求抛物线y=﹣x2+bx+c的表达式; (2)连接GB,EO,当四边形GEOB是平行四边形时,求点G的坐标; (3)①在y轴上存在一点H,连接EH,HF,当点E运动到什么位置时,以A,E,F,H为顶点的四边形是矩形?求出此时点E,H的坐标; ②在①的前提下,以点E为圆心,EH长为半径作圆,点M为⊙E上一动点,求AM+CM它的最小值. 2.如图,抛物线y=a(x﹣1)(x﹣3)与x轴交于A,B两点,与y轴的正半轴交于点C,其顶点为D. (1)写出C,D两点的坐标(用含a的式子表示); (2)设S△BCD:S△ABD=k,求k的值; (3)当△BCD是直角三角形时,求对应抛物线的解析式. 3.如图,直线y=kx+b(k、b为常数)分别与x轴、y轴交于点A(﹣4,0)、B(0,3),抛物线y=﹣x2+2x+1与y轴交于点C. (1)求直线y=kx+b的函数解析式; (2)若点P(x,y)是抛物线y=﹣x2+2x+1上的任意一点,设点P到直线AB的距离为d,求d关于x的函数解析式,并求d取最小值时点P的坐标;

(3)若点E在抛物线y=﹣x2+2x+1的对称轴上移动,点F在直线AB上移动,求CE+EF的最小值. 4.如图,已知抛物线y=﹣x2+bx+c与y轴相交于点A(0,3),与x正半轴相交于点B,对称轴是直线x=1 (1)求此抛物线的解析式以及点B的坐标. (2)动点M从点O出发,以每秒2个单位长度的速度沿x轴正方向运动,同时动点N从点O出发,以每秒3个单位长度的速度沿y轴正方向运动,当N点到达A点时,M、N同时停止运动.过动点M作x轴的垂线交线段AB于点Q,交抛物线于点P,设运动的时间为t秒. ①当t为何值时,四边形OMPN为矩形. ②当t>0时,△BOQ能否为等腰三角形?若能,求出t的值;若不能,请说明理由. 5.如图,抛物线y=﹣x2+bx+c与x轴分别交于A(﹣1,0),B(5,0)两点. (1)求抛物线的解析式; (2)在第二象限取一点C,作CD垂直X轴于点D,AC,且AD=5,CD=8,将Rt△ACD沿x轴向右平移m个单位,当点C落在抛物线上时,求m的值; (3)在(2)的条件下,当点C第一次落在抛物线上记为点E,点P是抛物线对称轴上一点.试探究:在抛物线上是否存在点Q,使以点B、E、P、Q为顶点的四边形是平行四边形?若存

二次函数经典中考试题(含答案)

二次函数经典中考试题(含答案) —、解答题(共30小题) 1. (2013?武汉)科幻小说《实验室的故事》中,有这样一个情节:科学家把一种珍奇的植物 分别放在不同温度的环境中,经过一天后,测试出这种植物高度的增长情况(如下表) : 温度 x/C … -4 - 2 0 2 4 4.5 … 植物每天高度增长量 y/mm … 41 49 49 41 25 19.75 … 由这些数据,科学家推测出植物每天高度增长量 y 是温度x 的函数,且这种函数是反比例函 数、一次函数和二次函数中的一种. (1) 请你选择一种适当的函数,求出它的函数关系式,并简要说明不选择另外两种函数的理 由; (2) 温度为多少时,这种植物每天高度增长量最大? (3) 如果实验室温度保持不变,在10天内要使该植物高度增长量的总和超过 250mm ,那么 实验室的温度x 应该在哪个范围内选择?请直接写出结果. 2. (2013?莆田)如图所示,某学校拟建一个含内接矩形的菱形花坛 (花坛为轴对称图形).矩 形的四个顶点分别在菱形四条边上,菱形 ABCD 的边长AB=4米,/ ABC=60 °设AE=x 米 (0v x V 4),矩形EFGH 的面积为S 米2. (1) 求S 与x 的函数关系式; (2) 学校准备在矩形内种植红色花草,四个三角形内种植黄色花草?已知红色花草的价格为 20元咪2,黄色花草的价格为40元咪2?当x 为何值时,购买花草所需的总费用最低,并求 出最低总费用(结果保留根号)? y 的二元一次方程组 (1) 若a=3.求方程组的解; (2) 若S=a (3x+y ),当a 为何值时,S 有最值. 4. (2013?南宁)如图,抛物线 y=ax 2+c (a 旳)经过C (2,0),D (0,- 1)两点,并与直 线y=kx 交于A 、B 两点,直线I 过点E (0,- 2)且平行于x 轴,过A 、B 两点分别作直线 l 的垂线,垂足分别为点M 、N . (1) 求此抛物线的解析式; (2) 求证:AO=AM ; (3) 探究: ①当k=0时,直线y=kx 与x 轴重合,求出此时 的值; 3. (2013?资阳)在关于 x ,

中考数学压轴题专题复习—二次函数的综合含答案

一、二次函数真题与模拟题分类汇编(难题易错题) 1.已知:如图,抛物线y=ax2+bx+c与坐标轴分别交于点A(0,6),B(6,0),C(﹣2,0),点P是线段AB上方抛物线上的一个动点. (1)求抛物线的解析式; (2)当点P运动到什么位置时,△PAB的面积有最大值? (3)过点P作x轴的垂线,交线段AB于点D,再过点P做PE∥x轴交抛物线于点E,连结DE,请问是否存在点P使△PDE为等腰直角三角形?若存在,求出点P的坐标;若不存在,说明理由. 【答案】(1)抛物线解析式为y=﹣1 2 x2+2x+6;(2)当t=3时,△PAB的面积有最大值; (3)点P(4,6). 【解析】 【分析】(1)利用待定系数法进行求解即可得; (2)作PM⊥OB与点M,交AB于点N,作AG⊥PM,先求出直线AB解析式为y=﹣x+6, 设P(t,﹣1 2 t2+2t+6),则N(t,﹣t+6),由 S△PAB=S△PAN+S△PBN=1 2 PN?AG+ 1 2 PN?BM= 1 2 PN?OB列出关于t的函数表达式,利用二次函数 的性质求解可得; (3)由PH⊥OB知DH∥AO,据此由OA=OB=6得∠BDH=∠BAO=45°,结合∠DPE=90°知若△PDE为等腰直角三角形,则∠EDP=45°,从而得出点E与点A重合,求出y=6时x的值即可得出答案. 【详解】(1)∵抛物线过点B(6,0)、C(﹣2,0), ∴设抛物线解析式为y=a(x﹣6)(x+2), 将点A(0,6)代入,得:﹣12a=6, 解得:a=﹣1 2 , 所以抛物线解析式为y=﹣1 2 (x﹣6)(x+2)=﹣ 1 2 x2+2x+6; (2)如图1,过点P作PM⊥OB与点M,交AB于点N,作AG⊥PM于点G,

二次函数中考真题汇编[解析版]

二次函数中考真题汇编[解析版] 一、初三数学二次函数易错题压轴题(难) 1.如图,二次函数y=ax2+bx+c交x轴于点A(1,0)和点B(3,0),交y轴于点C,抛物线上一点D的坐标为(4,3) (1)求该二次函数所对应的函数解析式; (2)如图1,点P是直线BC下方抛物线上的一个动点,PE//x轴,PF//y轴,求线段EF的最大值; (3)如图2,点M是线段CD上的一个动点,过点M作x轴的垂线,交抛物线于点N,当△CBN是直角三角形时,请直接写出所有满足条件的点M的坐标. 【答案】(1)y=x2﹣4x+3;(2)EF的最大值为 2 4 ;(3)M点坐标为可以为(2, 3),(55 2 + ,3),( 55 2 - ,3). 【解析】 【分析】 (1)根据题意由A、B两点坐标在二次函数图象上,设二次函数解析式的交点式,将D点坐标代入求出a的值,最后将二次函数的交点式转化成一般式形式. (2)由题意可知点P在二次函数图象上,坐标为(p,p2﹣4p+3).又因为PF//y轴,点F 在直线BC上,P的坐标为(p,﹣p+3),在Rt△FPE中,可得FE2PF,用纵坐标差的绝对值可求线段EF的最大值. (3)根据题意求△CBN是直角三角形,分为∠CBN=90°和∠CNB=90°两类情况计算,利用三角形相似知识进行分析求解. 【详解】 解:(1)设二次函数的解析式为y=a(x﹣b)(x﹣c), ∵y=ax2+bx+与x轴r的两个交点A、B的坐标分别为(1,0)和(3,0), ∴二次函数解析式:y=a(x﹣1)(x﹣3). 又∵点D(4,3)在二次函数上, ∴(4﹣3)×(4﹣1)a=3, ∴解得:a=1. ∴二次函数的解析式:y=(x﹣1)(x﹣3),即y=x2﹣4x+3.

中考数学 二次函数知识点总结

中考数学二次函数知识 点总结 Pleasure Group Office【T985AB-B866SYT-B182C-BS682T-STT18】

二次函数知识点总结 二次函数知识点: 1.二次函数的概念:一般地,形如2 y ax bx c =++(a b c ,,是常数,0 a≠)的函数,叫做二次函数。 这里需要强调:和一元二次方程类似,二次项系数0 ,可以为零.二次函数的定义域是 a≠,而b c 全体实数. 2. 二次函数2 =++的结构特征: y ax bx c ⑴等号左边是函数,右边是关于自变量x的二次式,x的最高次数是2. ⑵a b c ,,是常数,a是二次项系数,b是一次项系数,c是常数项. 二次函数的基本形式 1. 二次函数基本形式:2 =的性质: y ax 结论:a 的绝对值越大,抛物线的开口越小。 总结: 2. 2 =+的 y ax c 性质:

结论:上加下减。 总结: 3. ()2 =-的性 y a x h 质: 结论:左加右减。 总结: 4.

()2 y a x h k =-+的性质: 总结: 二次函数图象 的平 移 1. 平移步 骤: ⑴ 将抛物线解析式转化成顶点式()2 y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下: 【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位 2. 平移规律 在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”.

初中数学二次函数综合题及答案(经典题型)

二次函数试题 论:①抛物线y lx21 是由抛物线y-x2怎样移动得到的22 ②抛物线y2(x 2 1)是由抛物线y 1 x2 2 :怎样移动得到的 ③抛物线y[(x1)21是由抛物线y 1 2 x21怎样移动得到的 22 ④抛物线 y ](x1)21是由抛物线 y 1 2 (x 1)2怎样移动得到22 ⑤抛物线y2(x1)21是由抛物线y 1 2 -x2怎样移动得到的 22 选择题:1、y=(m-2)x m2- m是关于x的二次函数,贝U m=() A -1 B 2 C -1 或2 D m 不存在 2、下列函数关系中,可以看作二次函数y=ax2+bx+c(a丰0)模型的是() 在一定距离内,汽车行驶的速度与行驶的时间的关系 我国人中自然增长率为1%这样我国总人口数随年份变化的关系 矩形周长一定时,矩形面积和矩形边长之间的关系 圆的周长与半径之间的关系 4、将一抛物线向下向右各平移2个单位得到的抛物线是y=-x2,则抛物线的解析式是( A y= —( x-2 ) 2+2 B y= —(x+2 )2+2 C y= (x+2 ) 2+2 D y= —( x-2 1 2 5、抛物线y= x -6x+24 2 的顶点坐标是( A (—6,—6) B(—6, 6) C(6,6) D (6,—6) 6、已知函数y=ax2+bx+c,图象如图所示,则下列结论中正确的有 ①abc〈0 ②a+ c〈 b ③ a+b+c > 7、函数y=ax2-bx+c (a丰 0) 的图象过点( A -1 B 1 C - 的值是 b 1 )个 -1 ,

填空题: 13、无论m为任何实数,总在抛物线y=x2+ 2mx+ m上的点的坐标是------------ 。 16、若抛物线y=ax2+bx+c(0)的对称轴为直线x =2,最小值为—2,则关于方程ax2+bx+c =-2的根为一 17、抛物线y= (k+1)x2+k2-9开口向下,且经过原点,则k= ---------------- 解答题:(二次函数与三角形) 1、已知:二次函数y==x2+bx+c,其图象对称轴为直线x=1,且经过点 4 (1)求此二次函数的解析式. (2)设该图象与x轴交于B、C两点(B点在C点的左侧),请在此二次函数x轴下方的图象上确定一点并求出最大面积. 2、如图,在平面直角坐标系中,抛物线与x轴交于A B两点(A在B的左侧),与y轴 9 交于点C (0,4),顶点为(1,2)? (1)求抛物线的函数表达式; (2)设抛物线的对称轴与轴交于点D,试在对称轴上找出点卩,使厶CDP为等腰三角形,请直接写岀满足条件的所有点P的坐标. (3)若点E是线段AB上的一个动点(与A B不重合),分另U连接AC BC过点E作EF // AC交线段BC于点F,连接CE记厶CEF的面积为S S是否存在最大值若存在,求出 存在,请说明理由. 4 2 3、如图,一次函数y=—4x—4的图象与x轴、y轴分别交于A、C两点,抛物线y= + bx+ c的图象经过A C两点,且与x轴交于点B (1)求抛物线的函数表达式;己,使厶EBC的面积最大, (第2题图) S的最大值及此时E点的坐标;若不

数学九年级上册 二次函数中考真题汇编[解析版]

数学九年级上册 二次函数中考真题汇编[解析版] 一、初三数学 二次函数易错题压轴题(难) 1.对于函数y =ax 2+(b+1)x+b ﹣2(a ≠0),若存在实数x0,使得a 2 0x +(b+1)x 0+b ﹣2 =x0成立,则称x 0为函数y =ax 2+(b+1)x+b ﹣2(a ≠0)的不动点. (1)当a =2,b =﹣2时,求y =ax 2+(b+1)x+b ﹣2(a ≠0)的不动点; (2)若对于任何实数b ,函数y =ax 2+(b+1)x+b ﹣2(a ≠0)恒有两相异的不动点,求实数a 的取值范围; (3)在(2)的条件下,若y =ax 2+(b+1)x+b ﹣2(a ≠0)的图象上A ,B 两点的横坐标是函数y =ax 2+(b+1)x+b ﹣2(a ≠0)的不动点,且直线y =﹣x+2 121 a +是线段AB 的垂 直平分线,求实数b 的取值范围. 【答案】(1)不动点是﹣1或2;(2)a 的取值范围是0<a <2;(3)b 的取值范围是﹣ b <0. 【解析】 【分析】 (1)将a =2,b =﹣2代入函数y =ax 2+(b+1)x+b ﹣2(a ≠0),得y =2x 2﹣x ﹣4,然后令x =2x 2﹣x ﹣4,求出x 的值,即y =ax 2+(b+1)x+b ﹣2(a ≠0)的不动点; (2)对于任何实数b ,函数y =ax 2+(b+1)x+b ﹣2(a ≠0)恒有两相异的不动点,可以得到x =ax 2+(b+1)x+b ﹣2(a ≠0)时,对于任何实数b 都有△>0,然后再设t =△,即可求得a 的取值范围; (3)根据y =ax 2+(b+1)x+b ﹣2(a ≠0)的图象上A ,B 两点的横坐标是函数y =ax 2+(b+1)x+b ﹣2(a ≠0)的不动点,可知点A 和点B 均在直线y =x 上,然后设出点A 和点B 的坐标,从而可以得到线段AB 的中点坐标,再根据直线y =﹣x+2121 a +是线段AB 的垂 直平分线,从而可以求得b 的取值范围. 【详解】 解:(1)当a =2,b =﹣2时, 函数y =2x 2﹣x ﹣4, 令x =2x 2﹣x ﹣4, 化简,得x 2﹣x ﹣2=0 解得,x 1=2,x 2=﹣1, 即y =ax 2+(b+1)x+b ﹣2(a ≠0)的不动点是﹣1或2; (2)令x =ax 2+(b+1)x+b ﹣2, 整理,得 ax 2+bx+b ﹣2=0, ∵对于任何实数b ,函数y =ax 2+(b+1)x+b ﹣2(a ≠0)恒有两相异的不动点, ∴△=b 2﹣4a (b ﹣2)>0,

二次函数综合题训练(含答案)

二次函数综合题训练 一、综合题(共24题;共305分) 1.如图,在平面直角坐标系中,二次函数图象的顶点坐标为,该图象与轴相交于点、,与轴相交于点,其中点的横坐标为1. (1)求该二次函数的表达式; (2)求. 2.如图,在平面直角坐标系中,二次函数的图象交x轴于点A,B(点A在点B的左侧). (1)求点A,B的坐标,并根据该函数图象写出y≥0时x的取值范围; (2)把点B向上平移m个单位得点B1.若点B1向左平移n个单位,将与该二次函数图象上的点B2重合;若点B1向左平移(n+6)个单位,将与该二次函数图象上的点B3重合.已知m>0,n>0,求m,n 的值. 3.已知抛物线y=2x2-4x+c与x轴有两个不同的交点. (1)求c的取值范围; (2)若抛物线y=2x2-4x+c经过点A(2,m)和点B(3,n),试比较m与n的大小,并说明理由. 4.如图,已知二次函数y=x2+ax+3的图象经过点P(-2,3). (1)求a的值和图象的顶点坐标。 (2)点Q(m,n)在该二次函数图象上. ①当m=2时,求n的值;

②若点Q到y轴的距离小于2,请根据图象直接写出n的取值范围. 5.若二次函数图象的顶点在一次函数的图象上,则称 为的伴随函数,如:是的伴随函数. (1)若是的伴随函数,求直线与两坐标轴围成的三角形的面积;(2)若函数的伴随函数与轴两个交点间的距离为4,求,的值. 6.已知k是常数,抛物线y=x2+(k2+k-6)x+3k的对称轴是y轴,并且与x轴有两个交点. (1)求k的值: (2)若点P在抛物线y=x2+(k2+k-6)x+3k上,且P到y轴的距离是2,求点P的坐标. 7.如图,在平面直角坐标系中,抛物线与轴交于点、点,与轴交于点. (1)求拋物线的解析式; (2)过点作直线轴,点在直线上且,直接写出点的坐标.8.在平面直角坐标系中,抛物线与轴交于点A,将点A向右平移2个单位长度,得到点B,点B在抛物线上. (1)求点B的坐标(用含的式子表示); (2)求抛物线的对称轴; (3)已知点,.若抛物线与线段PQ恰有一个公共点,结合函数图象,求的取值范围. 9.如图,直线与轴、轴分别交于两点,抛物线经过点 ,与轴另一交点为,顶点为. (1)求抛物线的解析式; (2)在轴上找一点,使的值最小,求的最小值;

人教版九年级上册数学 二次函数中考真题汇编[解析版]

人教版九年级上册数学二次函数中考真题汇编[解析版] 一、初三数学二次函数易错题压轴题(难) 1.图①,二次函数y=ax2+bx+c(a≠0)的图象经过点A(﹣1,0),并且与直线y=1 2 x ﹣2相交于坐标轴上的B、C两点,动点P在直线BC下方的二次函数的图象上. (1)求此二次函数的表达式; (2)如图①,连接PC,PB,设△PCB的面积为S,求S的最大值; (3)如图②,抛物线上是否存在点Q,使得∠ABQ=2∠ABC?若存在,则求出直线BQ的解析式及Q点坐标;若不存在,请说明理由. 【答案】(1)y=1 2 x2﹣ 3 2 x﹣2;(2)﹣1<0,故S有最大值,当x=2时,S的最大值 为4;(3)Q的坐标为(5 3 ,﹣ 28 9 )或(﹣ 11 3 , 92 9 ). 【解析】 【分析】 (1)根据题意先求出点B、C的坐标,进而利用待定系数法即可求解; (2)由题意过点P作PH//y轴交BC于点H,并设点P(x,1 2 x2﹣ 3 2 x﹣2),进而根据S =S△PHB+S△PHC=1 2 PH?(x B﹣x C),进行计算即可求解; (3)根据题意分点Q在BC下方、点Q在BC上方两种情况,利用解直角三角形的方法,求出点H的坐标,进而分析求解. 【详解】 解:(1)对于直线y=1 2 x﹣2, 令x=0,则y=﹣2, 令y=0,即1 2 x﹣2=0,解得:x=4, 故点B、C的坐标分别为(4,0)、(0,﹣2),抛物线过点A、B两点,则y=a(x+1)(x﹣4), 将点C的坐标代入上式并解得:a=1 2 ,

故抛物线的表达式为y= 1 2 x2 ﹣ 3 2 x﹣2①; (2)如图2,过点P作PH//y轴交BC于点H, 设点P(x, 1 2 x2﹣ 3 2 x﹣2),则点H(x, 1 2 x﹣2), S=S△PHB+S△PHC= 1 2 PH?(x B﹣x C)= 1 2 ×4×( 1 2 x﹣2﹣ 1 2 x2+ 3 2 x+2)=﹣x2+4x, ∵﹣1<0,故S有最大值,当x=2时,S的最大值为4; (3)①当点Q在BC下方时,如图2, 延长BQ交y轴于点H,过点Q作QC⊥BC交x轴于点R,过点Q作QK⊥x轴于点K,∵∠ABQ=2∠ABC,则BC是∠ABH的角平分线,则△RQB为等腰三角形, 则点C是RQ的中点, 在△BOC中,tan∠OBC= OC OB = 1 2 =tan∠ROC= RC BC , 则设RC=x=QB,则BC=2x,则RB22 (2) x x 5=BQ, 在△QRB中,S△RQB= 1 2 ×QR?BC= 1 2 BR?QK,即 1 2 2x?2x= 1 2 5, 解得:KQ 5 ∴sin∠RBQ= KQ BQ 5 5x = 4 5 ,则tanRBH= 4 3 ,

初三数学二次函数所有经典题型

初三数学二次函数经典题型 二次函数单元检测 (A) 姓名___ ____ 一、填空题: 1、函数21(1)21m y m x mx +=--+是抛物线,则m = . 2、抛物线223y x x =--+与x 轴交点为 ,与y 轴交点为 . 3、二次函数2y ax =的图象过点(-1,2),则它的解析式是 , 当x 时,y 随x 的增大而增大. 4.抛物线2)1(62-+=x y 可由抛物线262-=x y 向 平移 个单位得到. 5.抛物线342++=x x y 在x 轴上截得的线段长度是 . 6.抛物线()4222-++=m x x y 的图象经过原点,则=m . 7.抛物线m x x y +-=2,若其顶点在x 轴上,则=m . 8. 如果抛物线c bx ax y ++=2 的对称轴是x =-2,且开口方向与形状与抛物线 相同,又过原点,那么a = ,b = ,c = . 9、二次函数2y x bx c =++的图象如下左图所示,则对称轴是 ,当函数值0y <时, 对应x 的取值范围是 . 10、已知二次函数21(0)y ax bx c a =++≠与一次函数2(0)y kx m k =+≠的图象相交于点 A (-2,4)和B (8,2),如上右图所示,则能使1y 2y >成立的x 的取值范围 . 二、选择题: 11.下列各式中,y 是x 的二次函数的是 ( ) A .21xy x += B . 220x y +-= C . 22y ax -=- D .2210x y -+= 12.在同一坐标系中,作22y x =、22y x =-、212 y x =的图象,它们共同特点是 ( ) 22 3x y -=

初中数学二次函数经典测试题及答案

初中数学二次函数经典测试题及答案 一、选择题 1.四位同学在研究函数2y x bx c =++(,b c 是常数)时,甲发现当1x =时,函数有最小值;乙发现1-是方程20x bx c ++=的一个根;丙发现函数的最小值为3;丁发现当 2x =时,4y =,已知这四位同学中只有一位发现的结论是错误的,则该同学是( ) A .甲 B .乙 C .丙 D .丁 【答案】B 【解析】 【分析】 利用假设法逐一分析,分别求出二次函数的解析式,再判断与假设是否矛盾即可得出结论. 【详解】 解:A .假设甲同学的结论错误,则乙、丙、丁的结论都正确 由乙、丁同学的结论可得 01442b c b c =-+?? =++? 解得:13 23b c ? =????=-?? ∴二次函数的解析式为:2 21212533636 ??=+-=+ ???-y x x x ∴当x=16-时,y 的最小值为25 36 -,与丙的结论矛盾,故假设不成立,故本选项不符合题意; B .假设乙同学的结论错误,则甲、丙、丁的结论都正确 由甲、丙的结论可得二次函数解析式为()2 13y x =-+ 当x=2时,解得y=4,当x=-1时,y=7≠0 ∴此时符合假设条件,故本选项符合题意; C . 假设丙同学的结论错误,则甲、乙、丁的结论都正确 由甲乙的结论可得 1 2 01b b c ?-=???=-+? 解得:23b c =-??=-?

∴223y x x =-- 当x=2时,解得:y=-3,与丁的结论矛盾,故假设不成立,故本选项不符合题意; D . 假设丁同学的结论错误,则甲、乙、丙的结论都正确 由甲、丙的结论可得二次函数解析式为()2 13y x =-+ 当x=-1时,解得y=7≠0,与乙的结论矛盾,故假设不成立,故本选项不符合题意. 故选B . 【点睛】 此题考查的是利用待定系数法求二次函数解析式,利用假设法求出b 、c 的值是解决此题的关键. 2.抛物线y =-x 2+bx +3的对称轴为直线x =-1.若关于x 的一元二次方程-x 2+bx +3﹣t =0(t 为实数)在﹣2<x <3的范围内有实数根,则t 的取值范围是( ) A .-12<t ≤3 B .-12<t <4 C .-12<t ≤4 D .-12<t <3 【答案】C 【解析】 【分析】 根据给出的对称轴求出函数解析式为y =-x 2?2x +3,将一元二次方程-x 2+bx +3?t =0的实数根看做是y =-x 2?2x +3与函数y =t 的交点,再由﹣2<x <3确定y 的取值范围即可求解. 【详解】 解:∵y =-x 2+bx +3的对称轴为直线x =-1, ∴b =?2, ∴y =-x 2?2x +3, ∴一元二次方程-x 2+bx +3?t =0的实数根可以看做是y =-x 2?2x +3与函数y =t 的交点, ∵当x =?1时,y =4;当x =3时,y =-12, ∴函数y =-x 2?2x +3在﹣2<x <3的范围内-12<y≤4, ∴-12<t≤4, 故选:C . 【点睛】 本题考查二次函数的图象及性质,能够将方程的实数根问题转化为二次函数与直线的交点问题是解题关键. 3.二次函数2(0)y ax bx c a =++≠的图象如图所示,下列结论①24b ac >,②0abc <,③20a b c +->,④0a b c ++<.其中正确的是( )

相关文档
相关文档 最新文档