文档视界 最新最全的文档下载
当前位置:文档视界 › 纳米材料导论复习题

纳米材料导论复习题

纳米材料导论复习题
纳米材料导论复习题

《纳米材料导论》复习题2013.12

第一章

1、纳米材料有哪些危害性?

答:纳米技术对生物的危害性:1)在常态下对动植物体友好的金,在纳米态下则有剧毒;2)小于100nm的物质进入动物体内后,会在大脑和中枢神经富集,从而影响动物的正常生存;3)纳米微粒可以穿过人体皮肤,直接破坏人体的组织及血液循环。

纳米技术对环境的危害性:美国研究人员证明,足球烯分子会限制土壤细菌的生长,而巴基球则对鱼类有毒,这说明纳米技术对生态平衡和生态安全都有一定的破坏性。

2、什么是纳米材料、纳米结构?

答:纳米材料:纳米级结构材料简称为纳米材料,是指组成相或晶粒结构的尺寸介于1纳米~100纳米范围之间,纳米材料大致可分为纳米粉末、纳米纤维、纳米膜、纳米块体等四类。纳米材料有两层含义:

其一,至少在某一维方向,尺度小于100nm,如纳米颗粒、纳米线和纳米薄膜,或构成整体材料的结构单元的尺度小于100nm,如纳米晶合金中的晶粒;其二,尺度效应:即当尺度减小到纳米范围,材料某种性质发生神奇的突变,具有不同于常规材料的、优异的特性量子尺寸效应。

纳米结构:以纳米尺度的物质为单元按一定规律组成的一种体系。

3、什么是纳米科技?

答:纳米科技是研究在千万分之一米(10-7)到十亿分之一米(10-9米)内,原子、分子和其它类型物质的运动和变化的科学;同时在这一尺度范围内对原子、分子进行操纵和加工的技术。

4、什么是纳米技术的科学意义?

答:纳米尺度下的物质世界及其特性,是人类较为陌生的领域,也是一片新的研究疆土在宏观和微观的理论充分完善之后,再介观尺度上有许多新现象、新规律有待发现,这也是新技术发展的源头;纳米科技是多学科交叉融合性质的集中体现,我们已不能将纳米科技归为任何一门传统的学科领域而现代科技的发展几乎都是在交叉和边缘领域取得创新性的突破的,在这一尺度下,充满了原始创新的机会因此,对于还比较陌生的纳米世界中尚待解释的科学问题,科学家有着极大的好奇心和探索欲望。

5、纳米材料有哪 4种维度?举例说明

答:零维:团簇、量子点、纳米粒子

一维:纳米线、量子线、纳米管、纳米棒

二维:纳米带、二维电子器件、超薄膜、多层膜、晶体格

三维:纳米块体

6、名词解释:STM、AFM、SEM、TEM

答:STM扫描隧道显微镜AFM原子力显微镜

SEM扫描电子显微镜XRFX射线荧光分析

TEM透射电子显微镜

7、简述STM和AFM的工作原理及对纳米技术的影响

答:STM工作原理:扫描隧道显微镜是一种利用量子力学的隧道效应的非光学显微镜它主要是利用一根非常细的钨金属探针,针尖电子会跳到待测物体表面上形成穿隧电流,同时,物体表面的高低会影响穿隧电流的大小,针尖随着物体表面的高低上下移动以维持恒定的电流,依此来观测物体表面的形貌

STM对纳米技术的影响:它作为一种扫描探针显微术工具,扫描隧道显微镜可以让科学家观察和定位单个原子,它具有比它的同类原子力显微镜更加高的分辨率此外扫描隧道显微镜在

低温下(4K)可以利用探针尖端精确操纵原子,因此它在纳米科技既是重要的测量工具又是加工工具。

AFM工作原理:AFM的关键组成部分是一个头上带有一个用来扫描样品表面的尖细探针的微观悬臂当探针被放置到样品表面附近的地方时,悬臂会因为受到探针头和表面的引力而遵从胡克定律弯曲偏移在不同的情况下,这种被AFM测量到的力可能是机械接触力、范德华力、毛吸力、化学键、静电力、磁力(见磁力显微镜)喀希米尔效应力、溶剂力等等。通常,偏移会由射在微悬臂上的激光束反射至光敏二极管阵列而测量到,较薄之悬臂表面常镀上反光材质(如铝)以增强其反射通过惠斯登电桥,探头的形变何以被测得,不过这种方法没有激光反射法或干涉法灵敏。

AFM对纳米技术的影响:不同于电子显微镜只能提供二维图像,AFM提供真正的三维表面图同时,AFM不需要对样品的任何特殊处理,如镀铜或碳,这种处理对样品会造成不可逆转的伤害,第三,电子显微镜需要运行在高真空条件下,原子力显微镜在常压下甚至在液体环境下都可以良好工作,这样可以用来研究生物宏观分子,甚至活的生物组织。

8、扫描隧道显微镜和原子力显微镜的工作原理

扫描隧道显微镜:在样品与探针之间加上小的探测电压,调节样品与探针间距控制系统,使针尖靠近样品表面,当针尖原子与样品表面原子距离≤10?时,由于隧道效应,探针和样品表面之间产生电子隧穿,在样品的表面针尖之间有一纳安级电流通过电流强度对探针和样品表面间的距离非常敏感,距离变化1?,电流就变化一个数量级左右移动探针或样品,使探针在样品上扫描。

原子力显微镜:将一个对微弱力极敏感的弹性微悬臂一端固定另一端的针尖与样品表面轻轻接触当针尖尖端原子与样品表面间存在极微弱的作用力(10‐8‐‐10‐6N)时,微悬臂会发生微小的弹性形变,针尖和样品之间的作用力与距离有强烈的依赖关系(遵循胡克定律)。

9、举例说明:常规能源、新能源、可再生能源、不可再生能源。

答:常规能源:指人类已广泛使用且开发利用技术比较成熟的能源,如煤、石油、天然气、水能和生物能等常规能源是目前全世界最主要的能源,占全部能源生产消费总量的90%以上 新能源:指传统能源之外的各种能源形式,即刚开始开发利用或正在积极研究、有待推广的能源,如太阳能、地热能、风能、海洋能(潮汐能、波浪能、海流能、海水温差能、海水盐度差能)、生物质能和核聚变能等。

可再生能源:泛指多种取之不竭的能源,严谨来说,是人类历史时期内都不会耗尽的能源,但可再生能源不包含现时有限的能源如太阳能、地热能、水能、风能、生物能、潮汐能

不可再生能源:指人类开发利用后,在现阶段不可能再生的能源资源,叫“不可再生能源”

如煤、石油、天然气、核能、油页岩。

10、纳米材料与传统材料的主要差别。

第一、这种材料至少有一个方向是在纳米的数量级上比如说纳米尺度的颗粒,或者是分子膜的厚度在纳米尺度范围内

第二、由于量子效应、界面效应、表面效应等,使材料在物理和化学上表现出奇异现象 11、纳米科技的分类

纳米科技从研究内容上可以分为三个方面:

纳米材料是指材料的几何尺寸达到纳米级尺度,并且具有特殊性能的材料是纳米科技发展的物质基础。

纳米器件,就是指从纳米尺度上,设计和制造功能器件纳米器件的研制和应用水平是进入纳米时代的重要标志。

纳米尺度的检测和表征。

12、纳米技术与微电子技术的主要区别是:

纳米技术研究的是以控制单个原子、分子来实现设备特定的功能,是利用电子的波动性来工作的;而微电子技术则主要通过控制电子群体来实现其功能,是利用电子的粒子性来工作的,人们研究和开发纳米技术的目的,就是要实现对整个微观世界的有效控制。

13、了解纳米技术提出的背景及发展过程

背景:1959年,美国物理学家R. Feynman发表“There’s Plenty of Room at the Bottom”的著名讲话。

1962年,日本物理学家久保亮武(R.Kubo)提出针对金属超微粒子的著名的久保理论,即超微粒子的量子限域理论。

1981年,苏黎世IBM研究所G. Binnig和H. Rohrer发明研究纳米的重要工具‐扫描隧道显微镜,为我们揭示一个可见的原子、分子世界,对纳米科技发展产生了积极促进作用; 1984年,德国萨尔大学的H. Gleiter等人首次制备纳米相材料。

1985年,H. W. Kroto, R. E. Smalley 和B. Curl发现碳60,1996年三人获诺贝尔化学奖

发展过程:1987年,Bell实验室的科学家发明了一种靠单电子作为电流开头的晶体管世界上第一个单电子晶体管诞生。

1988年,Dupont公司的科研人员W.Degrado等无意中设计出一种新的蛋白质,世界上第一个人为设计的蛋白质诞生了。

1990年7月,第一届国际纳米科学技术会议在美国巴尔的摩举办,标志着纳米科学技术的正式诞生;

1993年,第一个致力于纳米技术研究的实验室在美国Rice大学诞生。

1999年,美国耶鲁大学的科学家创造了单分子有机开关。

2000年,美国政府启动了“国家纳米行动计划(NNI),NNI的提出统一了对纳米技术的展望,并使这种展望得到普遍的接受自此,全球掀起了纳米科技研究的热潮。

14、什么是纳米世界的“眼”和“手”

扫描隧道显微镜(STM)和原子力显微镜(AFM), STM是20世纪80年代世界十大科技成就之一。

15、纳米科技之父:纳米科技的预言者——理查德?费曼先生,1959年12月29日在美国应用物理年会上的讲话- 《在底部还有很大空间》。主要内容有:如果有一天可以按人的意志排列一个个原子,世界将会发生什么呢?”; “就物理学家而言,一个一个原子地构造物质并不违背物理学规律。” ;“对大尺度的表观物质而言,微小原子的行为无足轻重,但它们都服从量子力学定律。因此当我们下到微观世界把原子胡乱拨弄一通时,我们将在不同的规律下工作,而且可以期望做出不同的事情。” ;“在原子水平上,我们面对着新的力和新的效应,材料的制造和生产问题将十分不同。”

16、与纳米技术相关的诺贝尔奖有几个?

1986年:鲁斯卡(德国)设计第一台透射电子显微镜;比尼格(德国)、罗雷尔(瑞士)设计第一台扫描隧道电子显微镜。

2010年:英国曼彻斯特大学科学家安德烈?盖姆和康斯坦丁?诺沃肖洛夫因在二维空间材料石墨烯的突破性实验获奖。

17、世界上第一个单电子晶体管何年诞生?(1987)

18、世界上第一个人为设计的蛋白质何年诞生?(1988)

19、第一届国际纳米科技会议何年在哪召开? 1990年7月,美国巴尔的摩。

20、首届纳米材料会议在哪召开?1993年,第一届国际纳米技术大会(INTC)在美国召开。

第二章

1、请叙述什么是小尺寸效应、表面效应、量子尺寸效应和宏观量子隧道效应。

小尺寸效应:当纳米粒子的尺寸与光波波长、德布罗意波长、超导态的相干长度或与磁场穿透深度相当或更小时,晶体周期性边界条件将被破坏,非晶态纳米微粒的颗粒表面层附近的原子密度减小,导致声、光、电、磁、热力学等特性出现异常的现象。

表面效应:纳米超微粒子的表面原子数与总原子数之比随着纳米粒子尺寸的减小而大幅度地增加,纳米粒子的表面原子所处的位场环境及结合能与内部原子有所不同存在许多悬空键,配位严重不足,具有不饱和性质,粒子的表面能及表面张力也随着增加,从而引起纳米粒子性能的变化。因而极易与其它原子结合而趋于稳定;

量子尺寸效应:当粒子的尺寸达到纳米量级时,费米能级附近的电子能级由连续态分裂成分立能级。当能级间距大于热能、磁能、静电能、静磁能、光子能或超导态的凝聚能时,会出现纳米材料的量子效应,从而使其磁、光、声、热、电、超导电性能变化的效应。

宏观量子隧道效应:当微观粒子的总能量小于势垒高度时,该粒子仍能穿越这一势垒。纳米粒子的磁化强度等也有隧道效应,它们可以穿过宏观系统的势垒而产生变化,这种被称为纳米粒子的宏观量子隧道效应。

2、与常规材料相比,纳米微粒的熔点、烧结温度和比热发生什么变化,并分别解释原因

熔点和开始烧结温度比常规粉体的低得多,比热容增加。

熔点下降的原因:由于颗粒小,纳米微粒的表面能高、表面原子数多,这些表面原子近邻配位不全,活性大(为原子运动提供动力),纳米粒子熔化时所需增加的内能小,这就使得纳米微粒熔点急剧下降。

烧结温度降低原因:纳米微粒尺寸小,表面能高,压制成块材后的界面具有高能量,在烧结过程中高的界面能成为原子运动的驱动力,有利于界面附近的原子扩散,有利于界面中的孔洞收缩,空位团的埋没因此,在较低的温度下烧结就能达到致密化的目的,即烧结温度降低 比热容增加:纳米结构材料的界面结构原子杂乱分布,晶界体积百分数大(比常规块体) ,因而纳米材料熵对比热的贡献比常规材料高很多需要更多的能量来给表面原子的振动或组态混乱提供背景,使温度上升趋势减慢。

3、激子的定义是什么?

答:在光跃迁过程中,被激发到导带中的电子和在价带中的空穴由于库仑相互作用,将形成一个束缚态,称为激子。通常可分为万尼尔(Wannier)激子和弗伦克尔(Frenkel)激子,前者电子和空穴分布在较大的空间范围,库仑束缚较弱,电子“感受”到的是平均晶格势与空穴的库仑静电势,这种激子主要是半导体中;后者电子和空穴束缚在体元胞范围内,库仑作用较强,这种激子主要是在绝缘体中。

4、试述纳米微粒的光学吸收带发生蓝移和红移的原因;

A.纳米微粒吸收带“蓝移”的解释有两个方面:

1)量子尺寸效应:由于颗粒尺寸下降能隙变宽,这就导致光吸收带移向短波方向, Ball等对这种蓝移现象给出了普适性的解释:已被电子占据分子轨道能级与未被占据分子轨道能级之间的宽度(能隙)随颗粒直径减小而增大,这是产生蓝移的根本原因,这种解释对半导体和绝缘体都适用

2)、表面效应:由于纳米微粒颗粒小,大的表面张力使晶格畸变,晶格常数变小对纳米氧化物和氮化物微粒研究表明:第一近邻和第二近邻的距离变短,键长的缩短导致纳米微粒的键本征振动频率增大,结果使红外光吸收带移向了高波数。

B吸收光谱的红移现象的原因

1)电子限域在小体积中运动,量子限域效应;

2)粒径减小,内应力(P=2g/r, r为半径,g为表面能)增加,这种内应力的增加会导致能带结构的变化,电子波函数重叠加大,结果带隙、能级间距变窄,这就导致电子由低能级向高能级及半导体电子由价带到导带跃迁引起的光吸收带和吸收边发生红移;

3)能级中存在附加能级,如缺陷能级,使电子跃迁能级间距减小;

4)外加压力使能隙减小;

5) 空位、杂质的存在使平均原子间距R增大,导致能级间距变小键长的变长,光吸收带的位置是由影响蜂位的蓝移因素和红移因素共同作用的结果,如果前者的影响大于后者,吸收带蓝移,反之,红移。

5、什么是超顺磁性?

答:磁性材料的磁性随温度的变化而变化,当温度低于居里点时,材料的磁性很难被改变;而当温度高于居里点时,材料将变成“顺磁体”(paramagnetic),其磁性很容易随周围的磁场改变而改变如果温度进一步提高,或者磁性颗粒的粒度很小时,即便在常温下,磁体的极性也呈现出随意性,难以保持稳定的磁性能,这种现象就是所谓的超顺磁效应。

6、 试解释磁性纳米颗粒尺寸小到一定临界值时出现超顺磁性的原因超顺磁状态的起源可归为以下原因:

A当颗粒尺寸小于单畴临界尺寸,随尺寸减小,磁各向异性能(磁畴方向)减小到与热运动能可相比拟,在热扰动作用下,磁化方向就不再固定在一个易磁化方向,易磁化方向作无规律的变化,结果导致超顺磁性的出现;

B不同种类的纳米磁性微粒显现超顺磁性的临界尺寸是不相同的;

7、试述纳米材料的光致发光不同于常规材料的原因

1)由于颗粒很小,出现量子限域效应,界面结构的无序性使激子、特别是表面激子很容易形成,因此容易产生激子发光带;

2)界面体积大,存在大量的缺陷,从而使能隙中产生许多附加能级;

3)平移周期被破坏,在K空间常规材料中电子跃迁的选择定则可能不适用晶体场不对称 4)杂质能级‐‐‐杂质发光带处于较低能量位置,发光带比较宽

8、试述半导体催化剂的微粒尺寸减小,其光催化效率提高的原因

A能隙变宽

(1)当半导体粒子的粒径小于某一临界值(一般约为10nm)时,量子尺寸效应变得显著,电荷载体就会显示出量子行为,主要表现在导带和价带变成分立能级,能隙变宽,价带电位变得更正,导带电位变得更负,这实际上增加了光生电子和空穴的氧化—还原能力,提高了半导体光催化氧化有机物的活性

(2)量子尺寸效应

B电子空穴分离效率高

(1)半导体纳米粒子粒径通常小于空间电荷层的厚度,在离开粒子中心的L距离处的势垒高度为:(2)LD是半导体的德拜长度,空间电荷层的任何影响都可以忽略

(3)光生载流子(电子、空穴)通过简单的扩散从粒子的内部迁移到粒子的表面与电子给体或受体发生氧化或还原反应

(4)在光催化剂中电子和空穴的俘获过程是很快的

这意味着半径越小,光生载流子从体内扩散到表面所需的时间越短,光生电荷分离效果就越高,电子和空穴的复合概率就越小,从而导致光催化活性的提高,提高电子空穴分离效率 C吸附能力强纳米粒子的尺寸很小,处于表面的原子很多,比表面积很大,吸附有机污染物的能力提高,光催化降解有机污染物的能力提高。研究表明,在光催化体系中,反应物吸附在催化剂表面上是光催化反应的一个前置步骤,纳米半导体粒子强的吸附效应甚至允许光生载流子优先与吸附的物质反应,而不管溶液中其他物质的氧化还原电位的顺序。

8、磁性液体的定义及特殊性质

答:定义:磁性液体又称磁液、磁流体、磁性流体或铁磁流体,是由强磁性粒子、基液以及界面活性剂三者混合而成的一种稳定的胶状溶液该流体在静态时无磁性吸引力,当外加磁场

作用时才表现出磁性,它既具有液体的流动性又具有固体磁性材料的磁性。

特殊性质:1)表现为超顺磁性,本征矫顽力为0,没有制磁;2)光通过稀释的磁性液体时,会产生光的双折射效应与双向色效应;3)超声波在其中传播时,其速度及衰减与外磁场有关,呈各向异性。

9、久保理论的两个假设是什么?

A简并液体费米假设——久保把超微粒子靠近费米面附近的电子状态看作是受尺寸限制的简并电子期,并进一步假设他们的能级为准粒子态的不连续能级;

B超微粒子电中性假设:对于一个超微粒子取走或放入一个电子都是十分困难的

量子尺寸效应:

宏观量子隧道效应:

库仑堵塞效应:前一个电子对后一个电子的库伦排斥,小体系单电子运输行为。

10、随着颗粒直径的减小,材料的熔点有什么改变?材料的热稳定性有什么改变?

答:熔点下降,由于颗粒小,纳米微粒的表面能高,表面原子数多,这些表面原子临近配位不全,活性大,纳米例子熔化时,所需增加的内能小,这就使得纳米微粒熔点急剧下降

热稳定性变差,微粒半径越小,热稳定性越差。

11、电子在纳米材料中的传播特点是什么?

答:小尺寸效应,多晶界的存在,电子散射增强,晶界原子更加混乱,使得界面热垒升高,加之纳米材料的量子尺寸效应,共同使电阻变大。

12、表(界)面效应的主要影响:

1)表面化学反应活性(可参与反应)

2)催化活性

3)纳米材料的(不)稳定性

4)铁磁质的居里温度降低

5)熔点降低

6)烧结温度降低

7)晶化温度降低

8)纳米材料的超塑性和超延展性

9)介电材料的高介电常数(界面极化)

10)吸收光谱的红移现象

13、小尺寸效应的主要影响:

1)、金属纳米相材料的电阻增大与临界尺寸现象(电子平均自由程)动量

2)、宽频带强吸收性质(光波波长)

3)、激子增强吸收现象(激子半径)

4)、磁有序态向磁无序态的转变(超顺磁性)(各向异性能)

5)、超导相向正常相的转变(超导相干长度)

6)、磁性纳米颗粒的高矫顽力(单畴临界尺寸)

14、纳米微粒表现出与宏观块体材料不同的的微观特性和宏观性质

A导电的金属在制成超微粒子时就可以变成半导体或绝缘体绝缘体氧化物相反;

B磁化率的大小与颗粒中电子是奇数还是偶数有关;

C比热亦会发生反常变化,与颗粒中电子是奇数还是偶数有关;

D光谱线会产生向短波长方向的移动;

E催化活性与原子数目有奇数的联系,多一个原子活性高,少一个原子活性很低。

第三章

1、“自上而下”(topdown):是指通过微加工或固态技术,不断在尺寸上将人类创造的功能产品微型化。 “自下而上”(bottom up):是指以原子分子为基本单元,根据人们的意愿进行设计和组装,从而构筑成具有特定功能的产品,这种技术路线将减少对原材料的需求,降低环境污染。

2、气相法制备纳米微粒的分类?

气相法制备纳米微粒包括:

化学气相反应法:气相分解法,气相合成法,气-固反应法

物理气相法:气体冷凝法,氢电弧等离子体法,溅射法,真空沉积法,加热蒸发法,混合等离子体法。

3、液相法制备纳米微粒的分类?

液相法制备纳米微粒分为:沉淀法,水热法,溶胶凝胶法,冷冻干燥法,喷雾法

4、试述气体冷凝法制备纳米微粒的基本原理

定义:此种制备方法是在低压的氩、氦等惰性气体中加热金属,使其蒸发后形成超微粒(1~1000nm)或纳米微粒。

原理:整个过程是在超高真空室内进行通过分子涡轮使其达到0.1Pa上的真空度,然后充入低压(约2KPa)的净惰性气体 (He或Ar,纯度为~99.9996%),欲蒸的物质(例如,金属,CaF2,NaCl,FeF等离子化合物、过渡族金属氮化物及易升华的氧化物等)置于坩埚内,通过钨电阻加热器或石墨加热器等加热装置逐渐加热蒸发,产生原物质烟雾,由于惰性气体的对流,烟雾向上移动,并接近充液氦的冷却棒(冷阱,77K)在蒸发过程中,原物质发出的原子与惰性气体原子碰撞而迅速损失能量而冷却,在原物质的蒸气中造成很高的局域过饱和,导致均匀的成核过程,在接近冷却棒的过程中,原物质的蒸气首先形成原子簇,然后形成单个纳米微粒在接近冷却棒表面的区域内,单个纳米微粒聚合长大,最后在冷却棒表面上积累起来用聚四氟乙烯刮刀刻下并收集起来获得纳米粉。

5、溶胶凝胶法制备纳米微粒的基本原理

将金属醇盐或无机盐经水解,然后使溶质聚合凝胶化,再将凝胶干燥、煅烧除去有机成分,最后得到无机材料。

6、名词解释CVD、PVD、PLD、MBE、PECVD

答:CVD化学气相沉积法PVD物理气相沉积法.

PLD激光诱导沉积法MBE分子束外延.

PECVD等离子体增强化学气相沉积法.

7、详细描述纳米粒子的一种制备方法和一种应用

答:物理方法1)真空冷凝法:用真空蒸发,加热,高频感应等方法使原料气化或形成等离子体,然后骤冷,其特点纯度高,结晶组织好,粒度可控,但技术设备要求高;2)物理粉碎法:通过机械粉碎,电火花爆炸等方法得到纳米粒子,其特点操作简单,成本低,但产品纯度低,颗粒分布不均匀;3)机械球磨法:采用球磨方法,控制适当的条件得到纯元素纳米粒子,合金纳米粒子或复合材料的纳米粒子,其特点操作简单,成本低,但产品纯度低,颗粒分布不均匀

化学方法:1)气相沉积法:利用金属化合物蒸气的化学反应合成纳米材料,其特点产品纯度高,粒度分布窄;2)沉淀法:把沉淀剂加入到盐溶液中反应后,将沉淀热处理得到纳米材料其特点简单易行,但纯度低,颗粒半径大,适合制备氧化物;3)水热合成法:高温高压下在水溶液或蒸汽等流体中合成,再经分离和热处理得纳米粒子,其特点纯度高,分散性好,粒度易控制;4)溶胶凝胶法:金属化合物经溶液,溶胶,凝胶而固化,再经低温热处理而生成纳米粒子,其特点反应物种多,产物颗粒均一,过程易控制,适于氧化物和Ⅱ~Ⅵ族化合物的制备;5)微乳液法:两种互不相溶的溶剂在表面活性剂的作用下形成乳液在微泡中经成核,聚结,团聚,热处理后得纳米粒子,其特点粒子的单分散和界面性好,Ⅱ~Ⅵ族

半导体纳米粒子多用此法制备

详细方法描述:1)惰性气体冷凝法(IGC)制备纳米粉体(固体),其主要过程是:在真空蒸发室内充入低压惰性气体(He或Ar),将蒸发源加热蒸发,产生原子雾,与惰性气体原子碰撞而失去能量,凝聚形成纳米尺寸的团簇,并在液氮冷棒上聚集起来,将聚集的粉状颗粒刮下,传送至真空压实装置,在数百MPa至几GPa压力下制成直径为几毫米,厚度为10mm~1mm的圆片 。2)高能机械球磨法制备纳米粉体,它是一个无外部热能供给的、干的高能球磨过程,是一个由大晶粒变为小晶粒的过程此法可合成单质金属纳米材料,还可通过颗粒间的固相反应直接合成各种化合物(尤其是高熔点纳米材料):大多数金属碳化物、金属间化合物、Ⅲ‐Ⅴ族半导体、金属‐氧化物复合材料、金属‐硫化物复合材料、氟化物、氮化物3)低能团簇束沉积法(LEBCD)制备,纳米薄膜该技术也是新近出现的,由Paillard等人于1994年初发展起来首先将所要沉积的材料激发成原子状态,以Ar、He气作为载体使之形成团簇,同时采用电子束使团簇离化,然后利用飞行时间质谱仪进行分离,从而控制一定质量、一定能量的团簇束沉积而形成薄膜此法可有效地控制沉积在衬底上的原子数目。

8、详细描述一种薄膜制备的方法

答:溶胶——凝胶法的机理:1)先将前驱体溶在溶剂中(就如一般的sol‐gel法一样);2)经过水解缩聚反应变为溶胶;3)溶胶再经过陈化变为湿凝胶;4)经过干燥处理变为干凝胶而对于制备纳米薄膜,则将2)步中得到的硅酸盐凝胶通过喷涂或浸渍法将其涂于基片表面,再经过空气中水分作用,发生水解和缩聚产生凝胶薄膜,而后将其干燥处理变得到纳米薄膜。物理气相沉积方法制备纳米薄膜,此法作为一种常规的薄膜制备手段被广泛应用于纳米薄膜的制备与研究工作,包括蒸镀、电子束蒸镀、溅射等这一方法主要通过两种途径获得纳米薄膜:1)在非晶薄膜晶化的过程中控制纳米结构的形成,比如采用共溅射法制备Si/SiO2薄膜,在700~900℃氮气气氛下快速降温获得Si颗粒;2)在薄膜的成核生长过程中控制纳米结构的形成,其中薄膜沉积条件的控制和在溅射过程中,采用高溅射气压、低溅射功率显得特别重要,这样易于得到纳米结构的薄膜。

9、请举出一种纳米薄膜的应用例子。

答:纳米薄膜材料有诸多应用例如,作为光的传感器,金颗粒膜从可见光到红外线的范围内,光的吸收效率与波长的依赖性甚小,从而可作为红外线传感元件铬—三氧化二铬颗粒膜对太阳光有强烈的吸收作用,可以有效地将太阳能转变为热能;硅、磷、硼颗粒膜可以有效地将太阳能转变为电能;氧化锡颗粒膜可制成气体—湿度多功能传感器,通过改变工作温度,可以用同一种膜有选择地检测多种气体。

10、分子自组装:是指分子与分子在平衡条件,依赖分子间非共价键力自发的结合成稳定的分子聚集体的过程。主要有三个过程(详见PPT)。

第四章

1、团簇:原子团簇是指几个至几百个原子的聚集体(粒径小于或等于1 nm)。

2、纳米微粒:是指颗粒尺寸为纳米量级的超细微粒,它的尺度大于原子簇,小于通常的微粉。

量子点:是指载流子仅在一个方向上可以自由运动,而在另外两个方向上则受到约束也叫一维量子线。

量子线:是指载流子在三个方向上的运动都要受到约束的材料体系,即电子在三个维度上的能量都是量子化的也叫零维量子点。

量子阱:是指载流子在两个方向(如在X,Y平面内)上可以自由运动,而在另外一个方向(Z)则受到约束,即材料在这个方向上的特征尺寸与电子的德布罗意波长或电子的平均自由程相比拟或更小有时也称为二维超晶格。

人造原子:人造原子是由一定数量的实际原子组成的聚集体,它们的尺寸小于100nm

3、人造原子与真正原子的相似和不同之处:

1)人造原子含有一定数量的真正原子;

2)人造原子形状和对称性多种多样(形貌),真正原子可用球形或立方形描述;

3)电子间强交互作用比实际原子复杂得多(多电子交互作用);

4)实际原子中电子受原子核吸引作轨道运动,而人造原子中电子是处于抛物线形的势阱中,具有向势阱底部下落的趋势。

4、碳纳米管的结构:

多壁碳纳米管一般由几个到几十个单壁碳纳米管同轴构成管间距为0.34nm左右,这相当于石墨的面间距碳纳米管的直径为零点几纳米至几十纳米,长度一般为几十纳米至微米级每个单壁管侧面由碳原子六边形组成,两端由碳原子的五边形封顶。

碳纳米管的分类:

根据管壁可以分为单壁碳纳米管(SWNTS)和多壁碳纳米管(MWNTS)。存在三种类型的结构:单臂纳米管、锯齿形纳米管和手性形纳米管。

5、石墨烯的显著特征是什么?

答:1)具有比硅高得多的载流子迁移率,在室温下有微米级的平均自由程和很长的相干长度,是纳米电路的理想材料;2)电子运输特性表现出了异常的整数量子霍尔效应;3)石墨烯结构非常稳定,迄今为止研究者仍未发现石墨烯中有碳原子缺失的情况;4)尽管只有单层原子厚度,但石墨烯具有相当的不透明度:可以吸收大约2.3%的可见光;5)石墨烯比钻石还坚硬,强度比世界上最好的钢铁还要高上100倍.

6、什么是纳米管、量子点?

答:纳米管:纳米管是一种具有特殊结构(径向尺寸为纳米量级,轴向尺寸为微米量级,管两端基本上都封口)的一维量子材料纳米管的硬度要比钢材坚硬100倍它可以耐受6500°F (3593℃)的高温,并且具有卓越的导热性能纳米管既可以用作金属导电体,比金的电高多得多,也可以用作制造电脑芯片所必须的半导体纳米管在极低的温度下还具有超导性

量子点:量子点是准零维的纳米材料,由少量的原子所构成。粗略地说,量子点三个维度的尺寸都在100纳米以下,外观恰似一极小的点状物,其内部电子在各方向上的运动都受到局限,所以量子局限效应特别显著由于量子局限效应会导致类似原子的不连续电子能阶结构,因此量子点又被称为“人造原子”。

7、C 60 的结构

Kroto等首先提出了的封闭结构设想,由20个六边形环和12个五边形环组成的球形32面体,其中五边形环只与六边形环相邻,而不相互联接;32面体共有60个顶角,每个顶角由一个碳原子占据,这种32面体也可看成是由20面体经截顶后形成的,故又称截顶20面体,球形C60分子的直径的理论计算值为7.1?,大约有3 ?的空心。

8、纳米脂质体由磷脂为膜材,胆固醇为主要附加剂组成。通过吸附、脂交换、内吞和融合与细胞相互作用。

9、纳米玻璃制备方法

熔融热处理法,溶胶-凝胶法,离子注入法,射频磁控溅射,气相沉积法,熔融-分相法,辅助电场(磁场)法,熔融光诱导热处理晶化法等。

纳米材料与技术思考题2016

纳米材料导论复习题(2016) 一、填空: 1.纳米尺度是指 2.纳米科学是研究纳米尺度内原子、分子和其他类型物质的科学 3.纳米技术是在纳米尺度范围内对原子、分子等进行的技术 4.当材料的某一维、二维或三维方向上的尺度达到纳米范围尺寸时,可将此类材料称为 5.一维纳米材料中电子在个方向受到约束,仅能在个方向自由运动,即电子在 个方向的能量已量子化一维纳米材料是在纳米碳管发现后才得到广泛关注的,又称为 6.1997年以前关于Au、Cu、Pd纳米晶样品的弹性模量值明显偏低,其主要原因是 7.纳米材料热力学上的不稳定性表现在和两个方面 8.纳米材料具有高比例的内界面,包括、等 9.根据原料的不同,溶胶-凝胶法可分为: 10.隧穿过程发生的条件为. 11.磁性液体由三部分组成:、和 12.随着半导体粒子尺寸的减小,其带隙增加,相应的吸收光谱和荧光光谱将向方向移动,即 13.光致发光指在照射下被激发到高能级激发态的电子重新跃入低能级被空穴捕获而发光的微观过程仅在激发过程中发射的光为在激发停止后还继续发射一定时间的光为 14.根据碳纳米管中碳六边形沿轴向的不同取向,可将其分成三种结构:、和 15.STM成像的两种模式是和. 二、简答题:(每题5分,总共45分) 1、简述纳米材料科技的研究方法有哪些? 2、纳米材料的分类? 3、纳米颗粒与微细颗粒及原子团簇的区别? 4、简述PVD制粉原理 5、纳米材料的电导(电阻)有什么不同于粗晶材料电导的特点? 6、请分别从能带变化和晶体结构来说明蓝移现象

7、在化妆品中加入纳米微粒能起到防晒作用的基本原理是什么? 8、解释纳米材料熔点降低现象 9、AFM针尖状况对图像有何影响?画简图说明 1. 纳米科学技术 (Nano-ST):20世纪80年代末期刚刚诞生并正在崛起的新科技,是研究在千万分之一米10–7)到十亿分之一米(10–9米)内,原子、分子和其它类型物质的运动和变化的科学;同时在这一尺度范围内对原子、分子等进行操纵和加工的技术,又称为纳米技术 2、什么是纳米材料、纳米结构? 答:纳米材料:把组成相或晶粒结构的尺寸控制在100纳米以下的具有特殊功能的材料称为纳米材料,即三维空间中至少有一维尺寸小于100nm的材料或由它们作为基本单元构成的具有特殊功能的材料,大致可分为纳米粉末、纳米纤维、纳米膜、纳米块体等四类;纳米材料有两层含义: 其一,至少在某一维方向,尺度小于100nm,如纳米颗粒、纳米线和纳米薄膜,或构成整体材料的结构单元的尺度小于100nm,如纳米晶合金中的晶粒;其二,尺度效应:即当尺度减小到纳米范围,材料某种性质发生神奇的突变,具有不同于常规材料的、优异的特性量子尺寸效应。 纳米结构:以纳米尺度的物质为单元按一定规律组成的一种体系 3、什么是纳米科技? 答:纳米科技是研究在千万分之一米(10-8)到亿分之一米(10-9米)内,原子、分子和其它类型物质的运动和变化的学问;同时在这一尺度范围内对原子、分子进行操纵和加工 4、什么是纳米技术的科学意义? 答:纳米尺度下的物质世界及其特性,是人类较为陌生的领域,也是一片新的研究疆土在宏观和微观的理论充分完善之后,再介观尺度上有许多新现象、新规律有待发现,这也是新技术发展的源头;纳米科技是多学科交叉融合性质的集中体现,我们已不能将纳米科技归为任何一门传统的学科领域而现代科技的发展几乎都是在交叉和边缘领域取得创新性的突破的,在这一尺度下,充满了原始创新的机会因此,对于还比较陌生的纳米世界中尚待解释的科学问题,科学家有着极大的好奇心和探索欲望 5、纳米材料有哪4种维度?举例说明 答:零维:团簇、量子点、纳米粒子 一维:纳米线、量子线、纳米管、纳米棒 二维:纳米带、二维电子器件、超薄膜、多层膜、晶体格 三维:纳米块体 6、请叙述什么是小尺寸效应、表面效应、量子效应和宏观量子隧道效应、库仑堵塞效应 答:小尺寸效应:当颗粒的尺寸与光波波长、德布罗意波长以及超导态的相干长度或透射深度等物理特征尺寸相当或更小时,晶体周期性的边界条件将被破坏,非晶态纳米粒子的颗粒表面层附近的原子密度减少,导致声、光、电、磁、热、力学等特性呈现新的物理性质的变化称为小尺寸效应 表面效应:球形颗粒的表面积与直径的平方成正比,其体积与直径的立方成正比,故其比表面积(表面积/体积)与直径成反比随着颗粒直径的变小,比表面积将会显著地增加,颗粒表面原子数相对增多,从而使这些表面原子具有很高的活性且极不稳定,致使颗粒表现出不一样的特性,这就是表面效应 量子尺寸效应:当粒子的尺寸达到纳米量级时,费米能级附近的电子能级由连续态分裂成分立能级当能级间距大于热能、磁能、静电能、静磁能、光子能或超导态的凝聚能时,会出现纳米材料

纳米材料考试试题3

纳米材料考试试题3

判断和填空 1由纳米薄膜的特殊性质,可分为两类:a、含有那么颗粒与原子团簇——基质薄膜。b、纳米尺寸厚度的薄膜,其厚度接近于电子自由程和Debye长度,可以利用其显著的量子特性和统计特性组装成新型功能器件。 2、.增强相为纳米颗粒、纳米晶须、纳米晶片、纳米纤维的复合材料称为纳米复合材料;纳米复合材料包括金属基、陶瓷基和高分子基纳米复合材料;复合方式有:晶内型、晶间型、晶内-晶间混合型、纳米-纳米型等 3、宏观量子隧道效应微粒具有贯穿势垒的能力称为隧道效应。微粒的磁化强度,量子相干器 件中的磁通量等,具有隧道效应、称为宏观的量子隧道效应。 4、纳米微粒反常现象原因:小尺寸效应、表面界面效应、量子尺寸效应及量子隧道效应。 举例:金属体为导体,但纳米金属微粒在低温由于量子尺寸效应会呈现电绝缘性。化学惰性的金属铂制成纳米微粒(铂黑)后却成为活性极好的催化剂。 5、非晶纳米微粒的晶化温度低于常规粉体。 6、超顺磁性纳米微粒尺寸小到一定临界值进入超顺磁状态,例如a-Fe Fe3O4和a-Fe2O3 粒径分别为5nm 16nm和20nm时变成顺磁体这时磁化率X不再服从居里-外斯定律。 7、超顺磁状态的起源:在小尺寸下,当各向异性能减小到与热运动能可相比拟时,磁化方向就不再固定一个易磁化方向,易磁化方向作无规律的变化,结果导致超顺磁性的出现。不同种类的纳米微粒显现的超顺的临界尺寸是不同的。 8纳米微粒尺寸高于超顺磁临界尺寸时通常呈现高的矫顽力Hc 10矫顽力的起源两种解释一致转动模式和球链反转磁化模式。 11.居里温度Tc为物质磁性的重要参数与交换积分成正比,并与原子构型和间距有关。对于薄膜随着铁磁薄膜厚度的减小,居里温度下降。对于纳米微粒,由于小尺寸效应而导致纳米粒子的本征和内禀的磁性变化,因此具有较低的居里温度。 12,大块金属具有不不同颜色的光泽,表明对可见光各种颜色的反射和吸收能力不同。当尺寸减小到纳米级时各种金属纳米微粒几乎都呈黑色,它们对可见光的反射率极低。反射率:Pt为1%,Au小于10%。对可见光低反射率、强吸收率导致粒子变黑。 13、当纳米微粒的尺寸小到一定值时可在一定波长的光激发下发光。 14、物理法制备纳米粒子:粉碎法和构筑法。前者以大块固体为原料,将块状物质粉碎、细化,从而得到不同粒径范围的纳米粒子;构筑法是由小极限原子或分子的集合体人工合成超微粒子。 15、物料的基本粉碎方式:压碎、剪碎、冲击破碎和磨碎。 16、非晶纳米微粒的晶化温度低于常规粉体 17.原位复合法主要有:共晶定向凝固法、直接氧化法和反应合成法 18、纳米增强相和金属基体之间的界面类型三种:不反应不溶解;不反应但相互;相互反应生成界面反应物。界面结合方式有四种:机械结合;浸润与溶解结合;化学反应结合;混合结合。界面的溶解和析出是影响界面稳定性的物理因素,而界面反应是影响界面的化学因素。 19、使纳米增强相遇金属基体之间具有最佳界面结合状态的措施:应该使纳米增强相与金属基体之间具有良好的润湿后,互相间应发生一定程度的溶解;保持适当的界面结合力,提高复合材料的强韧性;并产生适当的界面反应,而界面反应产物层应质地均匀,无脆性异物,不能成为内部缺陷(裂纹源),界面反应可以控制等。措施:增强相表面改性(如涂覆);基体合金化(改性)。 20、原位复合法关键:在陶瓷基体中均匀加入可生成纳米第二相的元素或化合物,控制其反应生成条件,使其在陶瓷基体致密化过程中,在原位同时生长处纳米颗粒、晶须和纤维等,形成陶瓷基纳米复合材料。也可以利用陶瓷液相烧结时某些晶相生长成高长径比的习性,控制烧结工艺。也可以使基体中生长高长径比晶体,形成陶瓷基复合材料。优点:有利于制作形状复杂的结构件,成本低,同时还能有效地避免人体与晶须等地直接接触,减轻环境污染。 21、陶瓷基纳米复合材料的基体主要有:氧化铝、碳化硅、氮化硅和玻璃陶瓷。与纳米级第二相的界面粘结形式:机械粘结和化学粘结

《纳米技术就在我们身边》知识点整理

教材分析: 这是一篇介绍纳米、纳米技术的科普说明文,说明思路清晰,逻辑性强。作者以大胆的想象,通俗易懂的语言,向我们介绍了纳米技术的神奇,展示了纳米技术在应用上的美妙前景。文章除了向我们介绍“纳米”等科学术语外,在内容上更突出介绍纳米的神奇,对此作家将纳米技术在社会生活中的应用通过想象表现得淋漓尽致。这样大批的举例使枯燥的科学变得生动起来,让我们看到了纳米技术在应用上的前景,激发了我们热爱科学、乐于观察和探究的兴趣。 作者介绍: 刘忠范,男,汉族,1962年10月生,吉林九台人,2007年12月加入九三学社,1990年4月参加工作,研究生毕业(日本东京大学光电化学专业),工学博士,教授,中国科学院院士。 我会写: 纳:纳米接纳容纳吐故纳新 拥:拥有拥抱拥挤蜂拥而至 箱:冰箱信箱邮箱箱子 臭:除臭臭气臭味遗臭万年 蔬:蔬菜果蔬时蔬瓜果菜蔬 碳:低碳碳酸二氧化碳 钢:钢铁钢笔钢琴百炼成钢 隐:隐蔽隐藏隐患若隐若现 健:健康强健健身健忘 康:健康康乐小康康庄大道 胞:细胞胞衣胞兄侨胞同胞

疾:疾病顽疾疾驰疾恶如仇 防:预防防御国防防微杜渐 灶:灶台灶王病灶另起炉灶 需:需要必需军需各取所需 书写指导: “臭”上下结构,上面是个“自”下面是个“犬”,不要少写“自”里的一横和“犬”上的一点。 “蔬”上窄下宽,下面是“疏”,不要多写横撇下的一撇,也不要少写了撇折右边的一点。 “健”左窄右宽,注意中间是“廴”不是“辶”。 “康”半包围结构,注意里面的部分,最后四笔分别是:点、提、撇、捺。 形近字: 蔬(蔬菜)疏(亲疏)钢(钢铁)刚(刚才) 健(健康)建(建筑) 多音字: 臭:chòu臭味xiù乳臭未干 率:lǜ概率shuài 率领 近义词:

新材料科学导论期末复习题(有答案版)

一、填空题: 1.材料性质的表述包括力学性能、物理性质和化学性质。 2.化学分析、物理分析和谱学分析是材料成分分析的三种基本方法。 3.材料的结构包括键合结构、晶体结构和组织结构。 4.材料科学与工程有四个基本要素,它们分别是:使用性能、材料的性质、制备/加工和结构/成分。 5.按组成和结构分,材料分为金属材料,无机非金属材料,高分子材料和复合材料。 6.高分子材料分子量很大,是由许多相同的结构单元组成,并以共价键的形式重复连接而成。 7.复合材料可分为结构复合材料和功能复合材料两大类。 8.聚合物分子运动具有多重性和明显的松弛特性。 9.功能复合材料是指除力学性能以外,具有良好的其他物理性能并包括部分化学和生物性能的复合材料。如有 光,电,热,磁,阻尼,声,摩擦等功能。 10.材料的物理性质表述为光学性质、磁学性质、电学性质和热学性质。 11.由于高分子是链状结构,所以把简单重复(结构)单元称为链节,简单重复(结构)单元的个数称为聚 合度。 12.对于脆性的高强度纤维增强体与韧性基体复合时,两相间若能得到适宜的结合而形成的复合材料,其性能显示 为增强体与基体的互补。(ppt-复合材料,15页) 13.影响储氢材料吸氢能力的因素有:(1)活化处理;(2)耐久性(抗中毒性能); (3)抗粉末化性能;(4)导热性能;(5)滞后现象。 14.典型热处理工艺有淬火、退火、回火和正火。 15.功能复合效应是组元材料之间的协同作用与交互作用表现出的复合效应。复合效应表现线性效应和非线性效 应,其中线性效应包括加和效应、平均效应、相补效应和相抵效应。 16.新材料发展的重点已经从结构材料转向功能材料。 17.功能高分子材料的制备一般是指通过物理的或化学的方法将功能基团与聚合物骨架相结合的过程。功能高 分子材料的制备主要有以下三种基本类型: ①功能小分子固定在骨架材料上; ②大分子材料的功能化; ③已有功能高分子材料的功能扩展; 18.材料的化学性质主要表现为催化性能和抗腐蚀性。 19.1977年,美国化学家MacDiarmid,物理学家Heeger和日本化学家Shirakawa首次发现掺杂碘的聚乙炔具有金 属的导电特性,并因此获得2000年诺贝尔化学奖。 20.陶瓷材料的韧性和塑性较低,这是陶瓷材料的最大弱点。 第二部分名词解释

纳米材料学教案

《纳米材料》教学大纲 一、课程基本信息 课程编号:2 中文名称:纳米材料 英文名称:Nano-materials 适用专业:化学工程与工艺 课程类别:专业选修课 开课时间:第5学期 总学时:32 总学分:2 二、课程简介(字数控制在250以内) 《纳米材料》是化学工程与工艺专业的一门专业选修课,本课程系统地讲授各类纳米材料的概念、制备方法、结构和性能特征以及表征技术和方法,在此基础上,对其发展前景进行了展望。通过本课程的学习,引导大学生对纳米科学和技术进行认知与了解,帮助他们掌握纳米科技和纳米材料学的基本概念、基本原理、研究现状以及未来发展前景,从而启迪大学生的创新思维,拓宽其科学视野,培养他们对纳米科技的学习兴趣。 三、相关课程的衔接 与相关课程的前后续关系。 预修课程(编号):高等数学B1(210102000913)、高等数学B2(210102000713)、物理化学A1(2)、物理化学A2(2),无机化学(A1)(2)、无机化学(A2)(2)。 并修课程(编号):无特别要求 四、教学的目的、要求与方法 (一)教学目的 通过本课程的学习,引导大学生对纳米科学和技术进行认知与了解,帮助他们掌握纳米科技和纳米材料学的基本概念、基本原理、研究现状以及未来发展前景,从而启迪大学生的创新思维,拓宽其科学视野,培养他们对纳米科技的学习兴趣。 (二)教学要求 掌握纳米科技和纳米材料学的基本概念、基本原理、研究现状,对未来发展前景有一定的认识。

(三)教学方法 本课程遵循科学性、系统性、循序渐进、少而精和理论联系实际的教学原则,结合最新的研究成果着重讲述有关纳米材料的基本理论、理论知识的应用。本课程以课堂讲授教学为主,教学环节还包括学生课前预习、课后复习,习题,答疑、期末考试等。 五、教学内容(实验内容)及学时分配 (1学时) 第一章绪论(2学时) 1、教学内容 1.1纳米科技的基本内涵 1.2纳米科技的研究意义 1.3纳米材料的研究历史 1.4纳米材料的研究范畴 1.5纳米化的机遇与挑战 2、本章的重点和难点 本章重点是纳米科技与纳米材料的基本概念。 第二章纳米材料的基本效应(2学时) 1、教学内容 2.1 小尺寸效应 2.2 表面效应 2.3 量子尺寸效应 2.4宏观量子隧道效应 2.5 库仑堵塞与量子隧穿效应 2.6 介电限域效应 2.7 量子限域效应 2.8 应用实例 2、本章的重点和难点 重点:纳米材料的表面效应、小尺寸效应及量子尺寸效应。难点:宏观量子隧道效应。 第三章零维纳米结构单元(4学时) 1、教学内容 3.1 原子团簇

化学与生活知识点总结

化学与生活知识点总结 专题一洁净安全的生存环境 第一单元空气质量的改善 一、空气质量报告 (一)、空气质量评价包括:二氧化硫(SO2)、二氧化氮(NO2)、可吸入颗粒物 空气污染指数:根据空气中二氧化硫(SO2)、二氧化氮(NO2)、可吸入颗粒物等污染物的浓度计算出来的数值。首要污染指数即位该地区的空气污染指数 (二)、大气主要污染物及其危害 1、温室效应 (1)原因:①全球化石燃料用量猛增排放出大量的CO2;②乱砍乱伐导致森林面积急剧减少,吸收CO2能力下降。 2、主要危害:(1)冰川熔化,使海平面上升(2)地球上的病虫害增加(3)气候反常,海洋风暴增多(4)土地干旱,沙漠化面积增大。 3、控制温室效应的措施 (1)逐步调整能源结构,开发利用太阳能、风能、核能、地热能、潮汐能等,减少化石燃料的燃烧;(2)进一步植树造林、护林、转化空气中的CO2 2、酸雨 (1)原因:酸性氧化物(SO2、NO2)SO2+H2O H2SO3 2H2SO3+O2==2H2SO4(2)防止方法:①开发新能源(太阳能、风能、核能等)②减少化石燃料中S的含量 钙基脱硫CaCO3==CaO+CO2CaO+SO2==CaSO3 2CaSO3+O2==2CaSO4 ③吸收空气中的SO2④加强环保教育 3、机动车尾气污染:尾气净化装置2NO+2CO N2+2CO2 4、CO 能和人体的血红蛋白结合使能中毒 5、可吸入颗粒物:静电出尘 6、居室空气污染物:甲醛、苯及其苯的同系物、氡等 危害:甲醛对人体健康的影响(肝功能异常等) 7、白色污染的危害:①破坏土壤结构②降低土壤肥效③污染地下水④危及海洋生物的生存第二单元水资源的合理利用

纳米材料导论期末复习重点

名词解释: 1、纳米:纳米是长度单位,10-9米,10埃。 2、纳米材料:指三维空间中至少有一维处于纳米尺度范围(1-100nm)或由他们作为基本单元构成的材料。 3、原子团簇:由几个乃至上千个原子通过物理或化学结合力组成的相对稳定的微观或亚微观聚集体(原子团簇尺寸一般小于20nm)。 4、纳米技术:指在纳米尺寸范围内,通过操纵单个原子、分子来组装和创造具有特定功能的新物质。 5、布朗运动:悬浮微粒不停地做无规则运动的现象。 6、均匀沉淀法:利用某一化学反应使溶液中的构晶离子由溶液中缓慢地、均匀地释放出来,再与沉淀组分发生反应。 7、纳米薄膜材料:指由尺寸在纳米量级的颗粒构成的薄膜材料或纳米晶粒镶嵌与某种薄膜中构成的复合膜且每层厚度都在纳米量级的单层或多层膜。 8、真空蒸镀:指在高真空中用加热蒸发的方法是源物质转化为气相,然后凝聚在基体表面的方法。 9、超塑性:超塑性是指在一定应力下伸长率≥100%的塑性变形。 10、弹性形变:指固体受外力作用而使各点间相对位置的改变,当外力撤消后,固体又恢复原状。 11、塑性形变:指固体受外力作用而使各点间相对位置的改变,当外力撤消后,固体不会恢复原状。 HAII-Petch公式: σ--强度;H--硬度;d--晶粒尺寸;K--常数 纳米复合材料:指分散相尺度至少有一维小于100nm的复合材料。 14、蠕变:固体材料在保持应力不变的条件下,应变随时间延长而增加的现象。 15、热塑性:物质在加热时能发生流动变形,冷却后可以保持一定形状的性质。 大题: 纳米粒子的基本特性? (1)小尺寸效应:随着颗粒尺寸的量变,在一定条件下会造成颗粒性质的质变,由于颗粒尺寸的变小,所导致的颗粒宏观物理性质的改变称为小尺寸效应。 (2)表面效应:纳米粒子表面原子数与总原子数之比随着纳米粒子尺寸的减小而显著增加,粒子的表面能和表面张力也随着增加,物理化学性质发生变化。(粒度减小,比表面积增大;粒度减小,表面原子所占比例增大;表面原子比内部原子具有更高的比表面能;表面原子比内部原子具有更高的活性) (3)量子尺寸效应:当金属粒子的尺寸下降到某一值时,金属费米能级附近的能级由准连续变为离散能级或能隙变宽的现象。 (4)宏观量子隧道效应:宏观物理量具有的隧道效应。 纳米陶瓷具有较好韧性的原因? (1)纳米陶瓷材料有纳米相,具有纳米材料相关的性能,而纳米材料具有大的界面,界面原子排列相当混乱,原子在外力变形条件下容易迁移,从而表现出优良的韧性,因而纳米陶瓷也具有较好的韧性; (2)纳米级弥散相阻止晶粒长大,起到细晶强化作用,使强度、硬度、韧性都得到提高;(3)纳米级粒子的穿晶断裂,并由硬粒子对裂纹尖端的反射作用而产生韧化。

纳米技术考试题答案

纳米材料和纳米机构。。。。。。2 纳米材料分析。。。。。。。。。。。。1 一纳米技术的内容和定义(2-2) 纳米技术(nanotechnology)是用单个原子、分子制造物质的科学技术,研究结构尺寸在0.1至100纳米范围内材料的性质和应用。纳米科学技术是以许多现代先进科学技术为基础的科学技术,它是现代科学(混沌物理、量子力学、介观物理、分子生物学)和现代技术(计算机技术、微电子和扫描隧道显微镜技术、核分析技术)结合的产物,纳米科学技术又将引发一系列新的科学技术,例如:纳米物理学、纳米生物学、纳米化学、纳米电子学、纳米加工技术和纳米计量学等二纳米技术三个层面概念的理解 从迄今为止的研究来看,关于纳米技术分为三种概念: 第一种,是1986年美国科学家德雷克斯勒博士在《创造的机器》一书中提出的分子纳米技术。根据这一概念,可以使组合分子的机器实用化,从而可以任意组合所有种类的分子,可以制造出任何种类的分子结构。这种概念的纳米技术还未取得重大进展。 第二种概念把纳米技术定位为微加工技术的极限。也就是通过纳米精度的"加工"来人工形成纳米大小的结构的技术。这种纳米级的加工技术,也使半导体微型化即将达到极限。现有技术即使发展下去,从理论上讲终将会达到限度,这是因为,如果把电路的线幅逐渐变小,将使构成电路的绝缘膜变得极薄,这样将破坏绝缘效果。此外,还有发

热和晃动等问题。为了解决这些问题,研究人员正在研究新型的纳米技术。 第三种概念是从生物的角度出发而提出的。本来,生物在细胞和生物膜内就存在纳米级的结构。DNA分子计算机、细胞生物计算机的开发,成为纳米生物技术的重要内容。 三纳米技术的发展史,起源和发展方向(2-9) 四我国的纳米发展史 1.“中国实验室国家认可委员会”是负责实验室和检查机构认可及相关工作的认可机构,为规范纳米产品市场、推动制定相关纳米材料及产品的标准,“国家纳米科学中心”和“中国实验室国家认可委员会”会商多次,联合成立“纳米技术专门委员会”,挂靠在“国家纳米科学中心”。 2. 中国政府透过中国科学院主导众多纳米科技研发计划,多数强调半导体制造技术和发展以纳米科技为基础的电子元件,另一是利用纳米材料保存考古文物。 已成功发展出的产品包括新式冷气机,其特点为利用创新的纳米材质。另估计约有两百家企业积极从事纳米科技产品的商业化。 五纳米材料的四大效应(2-59) 六纳米材料的制备方法(2-112) 按制备原理分为:物理和化学 按生成介质分为:固液气

纳米材料特性

《纳米材料导论》作业 1、什么是纳米材料?怎样对纳米材料进行分类? 答:任何至少有一个维度的尺寸小于100nm或由小于100nm的基本单元组成的材料称作纳米材料。它包括体积分数近似相等的两部分:一是直径为几或几十纳米的粒子,二是粒子间的界面。纳米材料通常按照维度进行分类。原子团簇、纳米微粒等为0维纳米材料。纳米线为1维纳米材料,纳米薄膜为2维纳米材料,纳米块体为3维纳米材料,及由他们组成的纳米复合材料。 按照形态还可以分为粉体材料、晶体材料、薄膜材料。 2、纳米材料有哪些基本的效应?试举例说明。 答:纳米材料的基本效应有:一、尺寸效应,纳米微粒的尺寸相当或小于光波波长、传导电子的德布罗意波长、超导态的相干长度或投射深度等特征尺寸时,周期性的边界条件将被破坏,声、光、电、磁、热力学等特征性即呈现新的小尺寸效应。出现光吸收显著增加并产生吸收峰的等离子共振频移; 磁有序态转为无序态;超导相转变为正常相;声子谱发生改变等。例如,纳米微粒的熔点远低于块状金属;纳米强磁性颗粒尺寸为单畴临界尺寸时,具有很高的矫顽力;库仑阻塞效应等。二、量子效应,当能级间距δ大于热能、磁能、静磁能、静电能、光子能量或超导态的凝聚能时,必须考虑量子效应,随着金属微粒尺寸的减小,金属费米能级附近的电子能级由准连续变为离散能级的现象和半导体微粒存在不连续的最高被占据分子轨道和最低未被占据分子轨道,能隙变宽的现象均称为量子效应。例如,颗粒的磁化率、比热容与所含电子的奇、偶有关,相应会产生光谱线的频移,介电常数变化等。 三、界面效应,纳米材料由于表面原子数增多,晶界上的原子占有相当高的 比例,而表面原子配位数不足和高的表面自由能,使这些原子易与其它原子相结合而稳定下来,从而具有很高的化学活性。引起表面电子自旋构象和电子能谱的变化;纳米微粒表面原子运输和构型的变化。四、体积效应,由于纳米粒子体积很小,包含原子数很少,许多现象不能用有无限个原子的块状物质的性质加以说明,即称体积效应。久保理论对此做了些解释。 3、纳米材料的晶界有哪些不同于粗晶晶界的特点? 答:纳米晶的晶界具有以下不同于粗晶晶界结构的特点:1)晶界具有大量未被原子占据的空间或过剩体积,2)低的配位数和密度,3)大的原子均方间距,4)存在三叉晶界。此外,纳米晶材料晶间原子的热振动要大于粗晶的晶间原子的热振动,晶界还存在有空位团、微孔等缺陷,它们与旋错、晶粒内的位错、孪晶、层错以及晶面等共同形成纳米材料的缺陷。 4、纳米材料有哪些缺陷?总结纳米材料中位错的特点。 答:纳米材料的缺陷有:一、点缺陷,如空位,溶质原子和杂质原子等,这是一种零维缺陷。二、线缺陷,如位错,一种一维缺陷,位错的线长度及位错运动的平均自由程均小于晶粒的尺寸。三、面缺陷,如孪晶、层错等,这是一种二维缺陷。纳米晶粒内的位错具有尺寸效应,当晶粒小于某一临界尺寸时,位错不稳定,趋向于离开晶粒,而当粒径大于该临界尺寸时,位错便稳定地存在于晶粒 T 内。位错与晶粒大小之间的关系为:1)当晶粒尺寸在50~100nm之间,温度<0.5 m

最新人教版四年级语文下册《纳米技术就在我们身边》知识点

统编版四年级语文下册第7课 《纳米技术就在我们身边》知识点 知识点 课文主题归纳: 这是一篇介绍纳米、纳米技术的文章。作者以通俗易懂的语言向我们介绍了纳米技术的神奇,以及纳米技术在我们生活中的应用,告诉我们在不远的将来纳米技术将改变我们的生活。 全文共分三部分: 第一部分(1):写21世纪是纳米的世纪。 第二部分(2~4):具体介绍什么是纳米技术,以及纳米技术的应用。第三部分(5):写在不远的将来,纳米技术将改变我们的生活。 课内重点词语: 纳米拥有冰箱除臭蔬菜钢铁 隐形健康细胞疾病预防病灶 需要功能材料深刻 多音字: 臭:chòu臭味xiù 乳臭未干 率:lǜ 概率shuài 率领

形近字: 蔬(蔬菜)疏(亲疏)钢(钢铁)刚(刚才)健(健康)建(建筑) 生字组词: 纳:纳米接纳容纳吐故纳新 拥:拥有拥抱拥挤蜂拥而至 箱:冰箱信箱邮箱箱子 臭:除臭臭气臭味遗臭万年 蔬:蔬菜果蔬时蔬瓜果菜蔬 碳:低碳碳酸二氧化碳 钢:钢铁钢笔钢琴百炼成钢 隐:隐蔽隐藏隐患若隐若现 健:健康强健健身健忘 康:健康康乐小康康庄大道 胞:细胞胞衣胞兄侨胞同胞 疾:疾病顽疾疾驰疾恶如仇 防:预防防御国防防微杜渐 灶:灶台灶王病灶另起炉灶 需:需要必需军需各取所需

词语解释: 【无能为力】用不上力量;没有能力或能力达不到。 【特性】某人或某事物所特有的性质。 【造福】给人带来幸福。 【杀菌】用日光、高温、过氧乙酸、酒精抗生素等杀死病菌。【癌症】生有恶性肿瘤的病。 【预防】事先防备。 【病灶】机体上发生病变的部分。 近义词: 特性——特征神奇——奇妙 结实——牢固灵敏——灵活 反义词: 普通——特别先进——落后 吸收——释放降低——增加

东北大学《材料科学导论》期末考试必备真题集(含答案)18

东北大学继续教育学院 材料科学导论复习题 一、选择填空,在给出的a、b、c、d选项中选择一或多个你认为最合适的答案, 使得题目中给出描述完整准确。 1、材料的性质是在元器件或设备实现预期的使用性能而得到利用的。即材料的使用性能取决于( b )。 a 材料的组成 b 材料的基本性能 c 材料的结构 d 材料的合成与加工工艺 2、钢铁、有色金属、玻璃、陶瓷、高分子材料等的原材料多数来自( d )、为矿物资源,形成于亿万年之前,是不可再生的资源。因此,在材料生产中必须节省资源、节约能源、回收再生。 a 工业 b 农业 c 材料加工行业 d 采掘工业 3、高分子材料、金属材料和无机非金属材料,不论其形状大小如何,其宏观性能都是由( b )。 a 它的化学成分所决定的 b其化学组成和组织结构决定的。 c 其加工工艺过程所决定的 d其使用环境所决定的 4、如果使用温度是室温,就可以优先考虑高分子材料,因为在相同密度的材料中它们是 b、d 的。 a 最容易得到 b最便宜 c 最常见 d 加工最方便 5、根据其性能及用途的不同,可将陶瓷材料分为( a、c )和两大类。 a 结构材料用陶瓷 b特种陶瓷 c功能陶瓷 d 传统陶瓷 6、金属材料与无机非金属材料成型加工时由于工艺条件的不同也会造成制品性能的差异。因此,材料的( a、d )的总和决定了制品性能。 a 内在性能 b成型加工 c附加性能 d 成型加工所赋予的附加性能 7、材料的化学性能是指材料抵抗各种介质作用的能力。它包括溶蚀性、耐腐蚀性、抗渗

入性、抗氧化性等,可归结为材料的( c )。 a 有效性 b 实用性 c 稳定性 d 可用性 8、切削物体或对物体进行塑性变形加工的工具材料可分为高碳钢、高速钢、超硬质合金、金刚石等材料,其中可列入超硬质材料范畴的是( c、d )。 a高碳钢 b高速钢 c超硬质合金 d金刚石 9、纳米材料通常定义为材料的显微结构中,包括( a、b、c、d )等特征尺度都处于纳米尺寸水平的材料,通常由直径为纳米数量级的粒子压缩而成。 a 颗粒直径 b 晶粒大小 c 晶界 d 厚度 10、天然矿物原料一般杂质较多,价格较低;而人工合成原料( a、b )。此外,对环境的影响也是选用原材料时必须考虑的因素之一。 a 纯度较高 b价格也较高 c难以得到 d 以上所有 11、电化学腐蚀必须要有一个阴极与一个阳极。在纯金属中( a )或( b )可以构成阴极。 a 晶界 b 晶粒 c 环境的介质 d 更小的不均匀物种 12、腐蚀一旦发生,材料或制品就会( d );所以腐蚀是材料设计和选择时不得不考虑的重要因素。 a大受影响 b性能显著下降 c服务寿命缩短 d 以上所有 13、晶体的宏观形貌可以是( d )。 a一维的 b 二维的 c 三维的 d 上述所有 14、范德华键是永远存在于分子间或分子内非键结合的力,是一种( a )。

《科学与技术》期末考试试题与答案版

科学与技术复习试题 一、选择题(每题2分,共10分) 1.自然界中一切物体的相互作用,都可能归结为四种基本的相 互作用,即引力、弹力、电磁力和(C)相互作用。A.地磁力B.分子力C强力D.结合力 2.基因是含特定遗传信息的核苷酸序列,是(D)的最小功能单位。 A .细胞 B .蛋白质 C .氨基酸 D .遗传物质 3.1996年,世界上第一只克隆羊——多利面世,这 是世界上首次利用(A)技术而培养出的克隆动物。 A. 细胞核移植 B .细胞融合C.细胞培养 D .细胞膜嫁 接 4.由无数恒星和星际物质构成的巨大集合体称为(A) 。 A.星系 B .星空 C .星云 D .星际 5.光纤通信利用光纤来传送(C),它是20世纪70年代发展起来的一种新的通信方式。 A.电 B .声 C .光 D .机械 二、填空题(每空2分,共10分) 6.科学是技术发展的__理论__基础,技术是科学发展的手段, 他们相互依存、相互渗透、相互转化。 7 .我国863计划中,被评选列入该纲要的8个技术群是生物技 术、航天技术、信息技术、激光技术、自动化技术、能 源技术、新材料技术和海洋技术。 8 .新技术革命的兴起是以__信息技术为先导的。 9.板块构造说的理论是在__大陆漂移学说、海底扩张 学说的基础上发展起的。 10.1987年,世界环境与发展委员会发布了一份 题为《我们共同的未来》的报告,首次提出了“可持续 发展”的概念。 三、名词解释(每题5分,共20分) 11.核能是在原子核变化过程中,从变化前后原子核质量亏损的质量 差转化来的能量。 12. 纳米材料就是用特殊的方法将材料颗粒加工到纳米级(lo-g 米),再用这种超细微粒子制造的材料。 13. 地球外部圈层结构指地球外部离地表平均800千米以内的圈 层,包括大气圈、水圈和生物圈。 14 .物质生产力一(劳动者十劳动资料十劳动对象十管理 +??) 高科技。四、简答题(每题15分.共30分) 15.简述科学认识发展的动因。 (1)科学认识发展的外部动因(8分) 恩格斯曾经指出:“经济上的需要曾经是,而且越来 越是对自然界的认识进展的主要动力”。 一般地说,在19世纪中叶以前,科学是落后于生产和技术的, 它的发展是在生产需要的推动下进行的。而从19世纪下半叶以后,科学理论研究不仅走在技术和生产的前面,还为技术和生产的发展开辟了各种可能的途径。进入二十世纪以后,现代科学产生了空前的先行作用,科学变成了超越一般技术进步的因素。 (2)科学认识发展的内部动因(7分) 科学作为系统化的理论知识体系,有其自身的矛盾运 动和继承积累关系。科学发展的内部矛盾运动是它的内部动力。它表现为:1)新事实和1日理论的矛盾。2)各种不同观点、假说和理论的矛盾。 16.简述新材料发展的方向。 随着社会的进步,人类总是不断地对材料提出新的要求。当今新材料的发展有以下几点: (1)结构与功能相结合。即新材料应是结构和功能 上较为完美的结合。(3分) (2)智能型材料的开发。所谓智能型是要求材料本身具 有一定的 模仿生命体系的作用,既具有敏感又有驱动的双重的功能。(3 分) (3)少污染或不污染环境。新材料在开发和使用过 程中,甚至废弃后,应尽可能少地对环境产生污染。 (3分) 18世纪中叶产 生

纳米知识点与答案(DOC)

第一章 1、纳米科学技术概念 纳米科学技术是研究在千万分之一米(10–7)到十亿分之一米(10–9米)内,原子、分子和其它类型物质的运动和变化的科学;同时在这一尺度范围内对原子、分子等进行操纵和加工的技术,又称为纳米技术。 2、纳米材料的定义 把组成相或晶粒结构的尺寸控制在100纳米以下的具有特殊功能的材料称为纳米材料。即三维空间中至少有一维尺寸小于100 nm的材料或由它们作为基本单元构成的具有特殊功能的材料。“功能”概念,即“量子尺寸效应”。 3、纳米材料五个类(维度) 0维材料,1维材料,2维材料,体相纳米材料,纳米孔材料 4、0、1、2维材料定义、例子 0维材料—尺寸为纳米级(100 nm)以下的颗粒状物质。 富勒烯、胶体微粒、半导体量子点 1维材料—线径为1—100 nm的纤维(管)。 纳米线、纳米棒、纳米管、纳米丝 2维材料—厚度为1 —100 nm的薄膜。 薄片、材料表面相当薄的单层或多层膜 5、纳米材料与传统材料的主要差别 尺寸:第一、这种材料至少有一个方向是在纳米的数量级上。 比如说纳米尺度的颗粒,或者是分子膜的厚度在纳米尺度范围内。 性能:第二、由于量子效应、界面效应、表面效应等,使材料在物理和化学上表现出奇异现象。 比如物体的强度、韧性、比热、导电率、扩散率等完全不同于或大大优于常规的体相材料。 6、金属纳米粒子随粒径的减小,能级间隔增大 7、与块体材料相比,半导体纳米团簇的带隙展宽,展宽量与颗粒尺寸成反比 8、纳米材料的四大基本效应 尺寸效应,介电限域效应,表(界)面效应,量子效应 9、什么是量子尺寸效应 当粒子尺寸下降到某一值时,金属费米能级附近的电子能级由准连续变为离散能级的现象;纳米半导体颗粒存在不连续的最高被占据分子轨道(HOMO)和最低未被占据分子轨道能级(LUMO),能隙变宽的现象,均称为量子尺寸效应。 10、什么是小尺寸效应 当超细颗粒的尺寸与光波波长、德布罗意波长、以及超导态的相干长度或透射深度等物理特征尺寸相当或更小时,晶体周期性的边界条件将被破坏;非晶态纳米颗粒的颗粒表面层附近原子密度减小,导致声、光、电、磁、热、力学等特性呈现新的小尺寸效应。 11、什么是表(界)面效应 纳米微粒尺寸小,表面能高,位于表面的原子占相当大的比例。由于表面原子数增多,原子配位不足及高的表面能,使这些表面原子具有高的化学活性,催化活性,吸附活性。表面效应是指纳米粒子表(界)面原子数与总原子数之比随粒径的变小而急剧增大后引起的性质上的变化。 12、什么是宏观量子隧道效应

最新纳米结构与纳米材料25个题目+完整答案资料

1.什么是纳米材料?其内涵是什么?(从零、一、二、三维考虑) 2.纳米材料的四大效应是什么?对每一效应举例说明。 3.纳米材料的常用的表征方法有哪些? 4.用来直接观察材料形态的SEM、TEM、AFM对所测定的样品有哪些特定要求?从它们的图像中能够得到哪些基本信息? 5.纳米颗粒的高表面活性有何优缺点?如何利用? 6.在纳米颗粒的气相合成中涉及到哪些基本环节?气相合成大致可分为哪四种?气相成核理论的机制有哪两种? 7.溶胶-凝胶法制备纳米颗粒的基本过程是怎样的? 8.用溶胶-凝胶技术结合碳纳米管的生长机理,可获得密度不同的碳纳米管阵列(也叫纳米森林),简要阐述其主要步骤及如何控制碳纳米管的分布密度? 9.改变条件可制备不同晶粒大小的二氧化钛,下图分别为两种晶粒尺寸不同的二氧化钛的XRD图与比表面积数据。请用Scherrer 方程、BET比表面积分别估算这两种二氧化钛的晶粒尺寸(XRD测试时所用的 = 1.5406?,锐钛矿相二氧化钛的密度是3.84 g/cm3)(默写出公式并根据图中的数据来计算)。 10.氧化物或者氮化物纳米材料具有许多特殊的功能,请以一种氧化物或者氮化物为例,举出其三种主要的制备方法(用到的原料、反应介质、主要的表征手段)、主要用途(与纳米效应有关的用途)、并介绍这种物质的至少两种晶相。 11.举出五种碳的纳米材料,阐述其一维材料与二维材料的结构特点、用途。 12.简述纳米材料的力学性能、热学性能与光学性能有怎样的变化? 13.什么叫化学气相沉积法,它与外场结合又可衍生出哪些方法?简述VLS机制。 14.纳米半导体颗粒具有光催化性能的主要原因是什么?光催化有哪些具体应用 15.利用机械球磨法制备纳米颗粒的主要机制是什么?有何优、缺点? 16 何为“自催化VLS生长”?怎样利用自催化VLS生长实现纳米线的掺杂? 17.液相合成金属纳米线,加入包络剂(capping reagent)的作用是什么? 18.何为纳米材料的模板法合成?它由哪些优点?合成一维纳米材料的模板有哪些? 19.试结合工艺流程图分别说明氧化铝模板的制备过程以及氧化铝模板合成纳米线阵列的过程 20.从力学特性、电学特性和化学特性来阐述碳纳米管的性质,它有哪些主要的应用前景? 21.如何提高传统光刻技术中曝光系统的分辩率? 22.试比较电子束刻蚀和离子束刻蚀技术的异同点和优缺点。 23.比较极紫外光刻技术和X射线光刻技术的异同。 24.何为纳米材料的自组装?用于制备纳米结构的微乳液体系一般有几个组成部分? 25 何谓“取向搭接Oriented attachment”“奥斯德瓦尔德熟化Ostwald ripening”?

造型材料与工艺知识点总结

包括:金属、塑料、陶瓷、玻璃、木材、涂料、胶粘剂 加工成型和表面处理工艺 1.金属材料 (1)钢铁及其合金,不锈钢(2)铜及其合金(3)铝合金 2.非金属材料 (1)塑料(2)木材(3)橡胶(4)胶粘剂(5)涂料 (6)玻璃(7)陶瓷(8)先进陶瓷 3.复合材料 (1)金属-金属不锈钢复合管(2)金属-非金属塑铝板 (3)非金属-非金属 4.纳米材料 1、密度单位体积的质量 视密度、容量、产品的重量 2、熔点。固转液的温度 注塑与铸造 3、比热容。一千克材料升高一摄氏度,为该材料的比热 4、热导率。温差,长度,能量,散热 5、热胀系数。关系到材料的失效和精率,结构稳定性。大桥桥板的接口 6、强度。抗破坏性 7、弹性和塑性。变形能力 8、脆性与韧性。 9、硬度。抗局部变形的能力 10、耐磨性 11、导电性与电绝缘性 12、材料的化学性能抗腐蚀抗氧化耐候性 质感设计的作用 A、提高整体设计的实用性 B、提高工业产品装饰性,弥补形态,色彩等不足 C、替代和补救自然质感 D、提高产品的真实性和价值性 造型材料应具备的特性 1、感觉物性质感形态色彩 2、环境耐侯性 3、加工成型性 4、表面工艺性 金属 金属是一种具有光泽(即对可见光强烈反射)、富有延展性、容易导电、导热等性质的物质。金属的上述特性都跟金属晶体内含有自由电子有关。 金属材料是广泛应用的一种材料

1、机械性能 弹性 刚度 塑性 强度 硬度 动载荷、冲击特性 交变载荷 2、物理与化学性能 物理性能:比重、导热性、导电性、热膨胀性、磁性等 化学性能:抗蚀性、抗氧化性 3、工艺性能 材料适应加工和工艺处理要求的能力。 铸造性能 锻造性能 焊接性能 切削加工性能 合金的概念 纯金属的缺点:品种少,提炼困难,机械性能不能满足需求,所以要合金来补充。 合金的基本概念 一种金属加入另外一种或几种金属或非金属,经过熔合而组成,具有金属特性的材料。 合金相结构的不同分为三种类型:固溶体、金属化合物、机械混合物 铁碳合金的基本组织 铁碳合金由铁和碳两种元素组成合金——碳钢和铸铁 基本组织:固溶体,金属化合物,机械混合三种形式 1、铁素体(F)(C,-Fe ) 2、奥氏体(A)(C, -Fe ) 3、渗碳体(Fe3C ) 4、珠光体(P)(F+ Fe3C) 5、莱氏体(Ld)(A + Fe3C) 6、马氏体(A)(C, -Fe ) 过饱和 1.普通热处理: (1)退火,加热,保温,炉内冷却,接近平衡状态组织。A、完全退火>AC320-600C。B、球化退火>AC320-400C 。C、去应力退火、低温 (2)正火>AC350-1000C。空气中冷却 (3)淬火>AC350-1000C。油水、盐水、速冷—马氏体

复合材料试题B卷及答案

2014学年度第一学期课程考试 《复合材料》 本科试卷(B 卷) 注意事项:1.本试卷共 六 大题,满分100分,考试时间90分钟,闭卷; 2. 考前请将密封线内各项信息填写清楚; 3. 所有答案必须写在试卷上,做在草稿纸上无效; 分: 】 A 、玻璃纤维增强Al 基复合材料。 B 、玻璃纤维增强塑料。 C 、碳纤维增强塑料。 D 、氧化铝纤维增强塑料。 2. 材料的比模量和比强度越高( ) A 、 制作同一零件时自重越小、刚度越大。 B 、 制作同一零件时自重越大、刚度越大。 C 、 制作同一零件时自重越小、刚度越小。 D 制作同一零件时自重越大、刚度越小。 3. 在体积含量 相同情况下,纳米颗粒与普通颗粒增强塑料复合材料( ) A 、前者成本低 B C 、前者原料来源广泛 D 4、 K evlar 纤维( ) A 、由干喷湿纺法制成。 B 4.考试结束,试卷、草稿纸一并交回 一、选 (30 分, 分 ) 择 每 【 、前者的拉伸强度好 、前者加工更容易 、轴向强度较径向强度低 D 、由化学沉积方法制成。 、轴向强度较径向强度低。 D 、由先纺丝后碳化工艺制成 ( )

C、强度性能可保持到1000C以上。 5、碳纤维() A、由化学沉积方法制成。B C、强度性能可保持到3000C以上。 6、聚丙烯增强塑料的使用温度一般在: A 120C以下B、180C以下C、250E以下 D、250 E以上 7、碳纤维增强环氧复合材料力学性能受吸湿影响,原因之一是() A、环氧树脂吸湿变脆。 B 、水起增塑剂作用,降低树脂玻璃化温度

8、玻璃纤维( ) A 、由SiO 2玻璃制成。 B 、在所有纤维中具有最高的比弹性模量。 C 、其强度比整块玻璃差。 D 、价格贵、应用少。 9、 生产锦纶纤维的主要原料有( ) A 、聚碳酸酯。 B 、聚丙烯腈。 C 、尼龙。 D 、聚丙烯。 10、 晶须( ) A 、其强度高于相应的本体材料。 B 、长径比一般小于 5。 C 、直径为数十微米。 D 、含有很少缺陷的长纤维。 11、对玻璃纤维和聚酰胺树脂构成的复合材料命名不正确的是( )。 A .玻璃纤维聚酰胺树脂复合材料 B ?玻璃纤维/聚酰胺树脂复合材料 C .聚酰胺材料 D .聚酰胺基玻璃纤维复合材料 12、目前,复合材料使用量最大的增强纤维是 14.聚合物基复合材料制备的大体过程不包括( ) A .预浸料制造 15、有关环氧树脂,说法正确的是( 1、复合材料是由两个组元以上的材料化合而成的。 2、混杂复合总是指两种以上的纤维增强基体。 3、层板复合材料主要是指由颗料增强的复合材料。 4、最广泛应用的复合材料是金属基复合材料。 5、复合材料具有可设计性。 6、竹、麻、木、骨、皮肤是天然复合材料。 7、分散相总是较基体强度和硬度高、刚度大。 8、玻璃钢问世于二十世纪四十年代。 10、硼纤维是由三溴化硼沉积到加热的钨丝芯上形成的 9、 般酚醛树脂和沥青的焦化率基本相同,在高压下,它们的焦化率可以提高到 90%。 A .碳纤维 B . 氧化铝纤维 C . 玻璃纤维 D .碳化硅纤维 13、目前,复合材料使用量最大的民用热固性树脂是( )。 A .环氧树脂 B .不饱和聚酯 C .酚醛树脂 D .尼龙 C .固化及后处理加工 D .干燥 B .制件的铺层 A 、含有大量的双键 B 、 使用引发剂固化 C 、使用胺类固化剂固化 、判断题 (20分,每题 2 D 、 属于热塑性塑料 得分:

相关文档
相关文档 最新文档