文档视界 最新最全的文档下载
当前位置:文档视界 › 温度传感器实验

温度传感器实验

温度传感器实验
温度传感器实验

DH-SJ5温度传感器设计性实验装置

使

杭州大华科教仪器研究所

杭州大华仪器制造有限公司

一、温度传感器概述

温度是表征物体冷热程度的物理量。温度只能通过物体随温度变化的某些特性来间接测量。测温传感器就是将温度信息转换成易于传递和处理的电信号的传感器。

一、测温传感器的分类

1.1电阻式传感器

热电阻式传感器是利用导电物体的电阻率随温度而变化的效应制成的传感器。热电阻是中低温区最常用的一种温度检测器。它的主要特点是测量精度高,性能稳定。它分为金属热电阻和半导体热电阻两大类。金属热电阻的电阻值和温度一般可以用以下的近似关系式表示,即

R t =R t0[1+α (t-t 0)]

式中,R t 为温度t 时的阻值;R t0为温度t 0(通常t 0=0℃)时对应电阻值;α为温度系数。

半导体热敏电阻的阻值和温度关系为

t

B

t Ae R =

式中R t 为温度为t 时的阻值;A 、B 取决于半导体材料的结构的常数。 常用的热电阻有铂热电阻、热敏电阻和铜热电阻。其中铂电阻的测量精确度是最高的,它不仅广泛应用于工业测温,而且被制成标准的基准仪。

金属铂具有电阻温度系数大,感应灵敏;电阻率高,元件尺寸小;电阻值随温度变化而变化基本呈线性关系;在测温范围内,物理、化学性能稳定,长期复现性好,测量精度高,是目前公认制造热电阻的最好材料。但铂在高温下,易受还原性介质的污染,使铂丝变脆并改变电阻与温度之间的线性关系,因此使用时应装在保护套管中。用铂的此种物理特性制成的传感器称为铂电阻温度传感器,利用铂的此种物理特性制成的传感器称为铂电阻温度传感器,通常使用的铂电阻温度传感器零度阻值为100Ω,电阻变化率为0.3851Ω/℃,TCR=(R 100-R 0)/(R 0×100) ,R 0为0℃的阻值,R 100为100℃的阻值,按IEC751国际标准,温度系数TCR=0.003851,Pt100(R 0=100Ω)、Pt1000(R 0=1000Ω)为统一设计型铂电阻。铂热电阻的特点是物理化学性能稳定。尤其是耐氧化能力强、测量精度高、应用温度范围广,有很好的重现性,是中低温区(-200℃~650℃)最常用的一种温度检测器。

热敏电阻(Thermally Sensitive Resistor,简称为Thermistor),是对温度敏感的电阻的总称,是一种电阻元件,即电阻值随温度变化的电阻。一般分为两种基本类型:负温度系数热敏电阻NTC (Negative Temperature Coefficient )和正温度系数热敏电阻PTC (Positive Temperature Coefficient )。NTC 热敏电阻表现为随温度的上升,其电阻值下降;而PTC 热敏电阻正好相反。

NTC 热敏热电阻大多数是由Mn(锰)、Ni(镍)、Co(钴)、Fe(铁)、Cu(铜)等金属的氧化物经过烧结而成的半导体材料制成。因此,不能在太高的温度场合下使用。不竟然,其使用范围有的也可以达到了-200℃~700℃,但一般的情况下,其通常的使用范围在-100℃~300℃。

NTC 热敏热电阻热响应时间一般跟封装形式、阻值、材料常数(热敏指数)、热时间常数有关。材料常数(热敏指数)B 值反映了两个温度之间的电阻变化,热敏电阻的特性就是由它的大小决定的,B 值(K )被定义为:2

12

1212111lg lg 3026.211ln ln T T R R T T R R B --?=--=

R T1:温度 T 1(K )时的零功率电阻值;R T2 :温度 T 2(K )时的零功率电阻值;T 1,T 2 :

两个被指定的温度(K)。对于常用的 NTC 热敏电阻,B 值范围一般在 2000K ~ 6000K 之间。热时间常数是指在零功率条件下,当温度突变时,热敏电阻的温度变化了始未两个温度差的 63.2% 时所需的时间。热时间常数与 NTC 热敏电阻的热容量成正比,与其耗散系数成反比。这两种热敏电阻均具有特定的特点和优点,以应用于不同的领域。

而铜(Cu50)热电阻测温范围小,在-50~150℃范围内,稳定性好,便宜;但体积大,机械强度较低。铜电阻在测温范围内电阻值和温度呈线性关系,温度线数大,适用于无腐蚀介质,超过150℃易被氧化。通常用于测量精度不高的场合。铜电阻有R0=50Ω和R0=100Ω两种,它们的分度号为Cu50和Cu100。其中Cu50的应用最为广泛。

1.2半导体温度传感器

PN结半导体温度传感器是利用半导体PN结的温度特性制成的。其工作原理是PN 结两端的电压随着温度的升高而减少。PN结温度传感器则具有灵敏度高、线性好、热响应快和体积轻巧等特点,尤其是温度数字化、温度控制以及用微机进行温度实时讯号处理等方面,乃是其它温度传感器所不能比拟的。目前结型温度传感器主要以硅为材料,原因是硅材料易于实现功能化,即将测温单元和恒流、放大等电路组合成一块集成电路。

美国Motorola公司在1979年就开始生产测温晶体管及其组件,如今灵敏度高达100mV/℃、分辨率不低于0.1℃的硅集成电路温度传感器。但是以硅为材料的这类温度传感器也不是尽善尽美的,在非线性不超过标准值0.5%的条件下,其工作温度一般为-50℃~150℃,与其它温度传感器相比,测温范围的局限性较大,如果采用不同材料如锑化铟或砷化镓的PN结可以展宽低温区或高温区的测量范围。八十年代中期我国就研制成功SiC为材料的PN结温度传感器,其高温区可延伸到500℃,并荣获国际博览会金奖。

1.3晶体温度传感器

晶体温度传感器是利用晶体的各向异性,并通过选择适当的切割角度切割而成,这是一种可将温度转换成频率的传感器,这种传感器用于计算机测量时可省去模数转换。因此,适合于计算机测温的应用。

1.4非接触型温度传感器

非接触型温度传感器是利用物体表面散发出来的光或热来进行测量的。常用的非接触型传感器多数是红外传感器,适合于高速运行物体、带电体、高温及高压物体的温度测量。这种红外测温传感器具有反应速度快、灵敏度高、测量准确、测温范围广泛等特点。

1.5热电式传感器

1、热电偶测温基本原理

将两种不同的金属丝一端熔合起来,如果给它们的连结点和基准点之间提供不同的温度,就会产生电压,即热电势。这种现象叫做塞贝克效应。

将两种不同材料的导体或半导体A和B焊接起来,构成一个闭合回路,如图1-1所示。当导体A和B的两个执着点1和2之间存在温差时,两者之间便

产生电动势,因而在回路中形成一个大小的电流,这种现象称为

热电效应。热电偶就是利用这一效应来工作的,属有源传感

器。它能将温度直接转换成热电势。热电偶是工业上最常用

的温度检测元件之一。其优点是:

(1)测量精度高。因热电偶直接与被测对象接触,不受

中间介质的影响。

(2)测量范围广。测温范围极宽、从-270℃的极低温度到

2600℃的超高温度都可以测量,而且在600℃~2000℃的温图1-1

度范围内可以进行精确的测量(600℃以下时,铂电阻的测量精度更高)。某些特殊热电偶最低可测到-269℃(如金铁镍铬),最高可达+2800℃(如钨-铼)。

(3)构造简单,使用方便。热电偶通常是由两种不同的金属丝组成,而且不受大小

和开头的限制,外有保护套管,用起来非常方便。

(4)测温精度高、准确、可靠、性能稳定、热惯性小。通常用于高温炉的测量和快速测量方面。

2、热电偶的种类及结构形成

(1)热电偶的种类

常用热电偶可分为标准热电偶和非标准热电偶两大类。所调用标准热电偶是指国家标准规定了其热电势与温度的关系、允许误差、并有统一的标准分度表的热电偶,它有与其配套的显示仪表可供选用。非标准化热电偶在使用范围或数量级上均不及标准化热电偶,一般也没有统一的分度表,主要用于某些特殊场合的测量。标准化热电偶我国从1988年1月1日起,热电偶和热电阻全部按IEC国际标准生产,并指定S、B、E、K、R、J、T七种标准化热电偶为我国统一设计型热电偶。

(2)热电偶的结构形式为了保证热电偶可靠、稳定地工作,对它的结构要求如下:

①组成热电偶的两个热电极的焊接必须牢固。

②两个热电极彼此之间应很好地绝缘,以防短路。

③补偿导线与热电偶自由端的连接要方便可靠。

④保护套管应能保证热电极与有害介质充分隔离。

3、热电偶冷端的温度补偿

由于热电偶的材料一般都比较贵重(特别是采用贵金属时),而测温点到仪表的距离都很远,为了节省热电偶材料,降低成本,通常采用补偿导线把热电偶的冷端(自由端)延伸到温度比较稳定的控制室内,连接到仪表端子上。必须指出,热电偶补偿导线的作用只起延伸热电极,使热电偶的冷端移动到控制室的仪表端子上,它本身并不能消除冷端温度变化对测温的影响,不起补偿作用。因此,还需采用其他修正方法来补偿冷端温度t0≠0℃时对测温的影响。

在使用热电偶补偿导线时必须注意型号相配,极性不能接错,补偿导线与热电偶连接端的温度不能超过100℃。

1.6光纤温度传感器

光纤温度传感器分为相位调制型光纤温度传感器(灵敏度高)、热辐射光纤温度传感器(可监视一些大型电气设备,如电机、变压器等内部热点的变化情况)和传光型光纤温度传感器(体积小、灵敏度高、工作可靠、易制作)。

1.7液压温度传感器

这种传感器流体受热会产生膨胀,膨胀程度与所加的热量成正比。在根据液压原理制成的温度传感器中,最普通的就是大家熟悉的水银温度计。

1.8智能温度传感器

智能温度传感器由于在一个芯片上集成有温度传感器、处理器、存储器、A/D转换器等部件。因此,这类传感器具有判断和信息处理能力,并可对测量值进行各种修正和误差补偿,同时还带有自诊断、自校准功能,可大大提高系统的可靠性,并能和计算机直接联机。

二、目前热电阻的引线主要有三种方式

1、二线制:如图1-2所示,在热电阻的两端各连接一根导线来引出电阻信号的方式叫二线制:这种引线方法很简单,但由于连接导线必然存在引线电阻r,r大小与导线的材质和长度的因素有关,因此这种引线方式只适用于测量精度较低的场合。

2、三线制:如图1-3所示,在热电阻的根部的一端连接一根引线,另一端连接两根引线的方式称为三线制,这种方式通常与电桥配套使用,可以较好的消除引线电阻的影响,是工业过程控制中的最常用的引线电阻。

3、四线制:如图1-4所示,在热电阻的根部两端各连接两根导线的方式称为四线制,

其中两根引线为热电阻提供恒定电流I,把R转换成电压信号U,再通过另两根引线把U 引至二次仪表。可见这种引线方式可完全消除引线的电阻影响,主要用于高精度的温度检测。

图1-2

图1-3

图1-4

二、DH-SJ5温度传感器实验装置

一、概述

DH-SJ5型温度传感器实验装置是以分离的温度传感器探头元器件,单个电子元件,以九孔板为实验平台来测量温度的设计性实验装置。该实验装置提供了多种测温方法,自行设计测温电路来测量温度传感器的温度特性。实验配有铂电阻Pt100、热敏电阻(NTC 和PTC)、铜电阻Cu50、铜-康铜热电偶、PN结、AD590和LM35等温度传感器。本实验装置采用智能温度控制器控温。具有以下的特点:

1、控温精度高、范围广、加热所需的温度可自由设定,采用数字显示。

2、使用低电压恒流加热、安全可靠、无污染。加热电流连续可调。

3、本仪器提供的是单个分离的温度传感器,形象直观,给实验带来了很大的方便,可对不同传感器的温度特性进行比较,更易于掌握它们的温度特性。

4、采用九孔板作为实验平台,提供设计性实验。

5、加热炉配有风扇,在做降温实验过程中可采用风扇快速降温。

6、整体结构设计新颖,紧凑合理,外型美观大方。

二、主要技术指标

1、电源电压:AC220V±10%(50/60H Z)

2、工作环境:温度0~40℃,相对湿度<80%的无腐蚀性场合

3、控温范围:室温~120℃

4、温度控制精度:±0.2℃

5、分辩率:0.1℃

6、控制方式:先进的PID控制

三、温控仪与恒温炉的连线

图2-1

Pt100的插头与温控仪上的插座颜色对应得相连接。红→红;黄→黄;蓝→蓝。

警告:在做实验中或做完实验后,禁止手触传感器的钢钾护套!

三、温度传感器特性实验

实验一 热电阻特性实验

【实验目的】

1、研究Pt100铂电阻、Cu50铜电阻和热敏电阻(NTC 和PTC )的温度特性及其测温原理。

2、研究比较不同温度传感器的温度特性及其测温原理。

3、掌握单臂电桥及非平衡电桥的原理,及其应用。

4、了解温度控制的最小微机控制系统。

5、掌握实验中单片机在温度实时控制、数据采集、数据处理等方面的应用。

6、学习运用不同的温度传感器设计测温电路。

【实验原理】

1、Pt100铂电阻的的测温原理

金属铂(Pt )的电阻值随温度变化而变化,并且具有很好的重现性和稳定性,利用铂的此种物理特性制成的传感器称为铂电阻温度传感器,通常使用的铂电阻温度传感器零度阻值为100Ω,电阻变化率为0.3851Ω/℃。铂电阻温度传感器精度高,稳定性好,应用温度范围广,是中低温区(-200~650℃)最常用的一种温度检测器,不仅广泛应用于工业测温,而且被制成各种标准温度计(涵盖国家和世界基准温度)供计量和校准使用。

按IEC751国际标准, 温度系数TCR=0.003851,Pt100(R 0=100Ω)、Pt1000(R 0=1000Ω)为统一设计型铂电阻。

TCR=(R100-R0)/(R0×100) (1)

100℃时标准电阻值R100=138.51Ω。100℃时标准电阻值R1000=1385.1Ω。

Pt100铂电阻的阻值随温度变化而变化计算公式:

-200

0

t ] (3)

R t 在t ℃时的电阻值;R 0在0℃时的电阻值 。式中A 、B 、C 的系数各为: A=3.90802×10-3C -1 ;B=-5.802×10-7C -2 ;C=-4.27350×10-12C -4 。

三线制接法要求引出的三根导线截面积和长度均相同,测量铂电阻的电路一般是不平衡电桥,铂电阻作为电桥的一个桥臂电阻,将导线一根接到电桥的电源端,其余两根分别接到铂电阻所在的桥臂及与其相邻的桥臂上,当桥路平衡时,通过计算可知:

r R rR R R R R t -+=

2

1

231 (4) 当R 1=R 2时,导线电阻的变化对测量结果没有任何影响,这样就消除了导线线路电阻

带来的测量误差,但是必须为全等臂电桥,否则不可能完全消除导线电阻的影响,但分析可见,采用三线制会大大减小导线电阻带来的附加误差,工业上一般都采用三线制接法。 2、热敏电阻温度特性原理(NTC 型)

热敏电阻是阻值对温度变化非常敏感的一种半导体电阻,它有负温度系数和正温度系数两种。负温度系数的热敏电阻(NTC )的电阻率随着温度的升高而下降(一般是按指数规律);而正温度系数热敏电阻(PTC )的电阻率随着温度的升高而升高;金属的电阻率则是随温度的升高而缓慢地上升。热敏电阻对于温度的反应要比金属电阻灵敏得多,热敏电阻的体积也可以做得很小,用它来制成的半导体温度计,已广泛地使用在自动控制和科学仪器中,并在物理、化学和生物学研究等方面得到了广泛的应用。

在一定的温度范围内,半导体的电阻率ρ和温度T 之间有如下关系: T

B e A /1=ρ (5)

式中A 1和B 是与材料物理性质有关的常数,T 为绝对温度。对于截面均匀的热敏电阻,

其阻值R T 可用下式表示:

s

l

R T ρ= (6) 式中R T 的单位为Ω,ρ的单位为Ωcm ,l 为两电极间的距离,单位为cm ,S 为电阻的横

截面积,单位为cm 2。将(5)式代入(6)式,令s

l

A A 1

=,于是可得: T /B T Ae R = (7)

对一定的电阻而言,A 和B 均为常数。对(7)式两边取对数,则有 A T

B

R T ln 1

ln += (8) T R ln 与

T

1

成线性关系,在实验中测得各个温度T 的R T 值后,即可通过作图求出B 和A 值,代入(7)式,即可得到R T 的表达式。式中R T 为在温度T (K )时的电阻值(Ω),A 为在某温度时的电阻值(Ω),B 为常数(K ),其值与半导体材料的成分和制造方法有关。

图3-1表示了热敏电阻(NTC )与普通电阻的不同温度

特性。

3、Cu50铜电阻温度特性原理

铜电阻是利用物质在温度变化时本身电阻也随着发 图3-1

生变化的特性来测量温度的。铜电阻的受热部分(感温元件)是用细金属丝均匀地双绕在绝缘材料制成的骨架上,当被测介质中有温度梯度存在时,所测得的温度 是感温元件所在范围内介质层中的平均温度。

4、单臂电桥原理

惠斯登电桥线路如图3-2所示,四个电阻R 1、R 2、 R 0、R X 连成一个四边形,称电桥的四个臂。四边形的 一个对角线接有检流计,称为“桥”,四边形的另一个 对角线上接电源E ,称为电桥的电源对角线。电源接通, 电桥线路中各支路均有电流通过。

当C 、D 之间的电位不相等时,桥路中的电流I g ≠0, 检流计的指针发生偏转。当C 、D 两点之间的电位相等时, “桥”路中的电流I g =0,检流计指针指零,这时我们称电 桥处于平衡状态。 图3-2

当电桥平衡时,0=g I ,则有

???==DB CB

AD AC U U U U , 即???==22011

21R I R I R I R I x

于是

2

1

0R R R R x = 根据电桥的平衡条件,若已知其中三个臂的电阻,就可以计算出另一个桥臂的电阻,因此,电桥测电阻的计算式为

02

1

R R R R x =

(9) 电阻

2

1

R R 为电桥的比率臂,R 0为比较笔,常用标准电阻箱。R x 作为待测臂,在热敏电阻测量中用R T 表示。

【实验仪器】

九孔板,DH -VC1直流恒压源恒流源,DH -SJ 型温度传感器实验装置,数字万用表,电阻箱(自备)。

【实验内容与步骤】

1、用万用表直接测量法

1)参照附录4的使用方法,将温度传感器直接插在温度传感器实验装置的恒温炉中。在传感器的输出端用数字万用表直接测量其电阻值。本实验的热敏电阻NTC 温度传感器25℃的阻值5KΩ;PTC 温度传感器

25℃的阻值350Ω。 图3-3

2)在不同的温度下,观察Pt100铂电阻、热敏电阻(NTC 和PTC )和Cu50铜电阻的

阻值的变化,从室温到120℃(注:PTC温度实验从室温到100℃。),每隔5℃(或自定度数)测一个数据,将测量数据逐一记录在表格内。

3)以温标为横轴,以阻值为纵轴,按等精度作图的方法,用所测的各对应数据作出R T-t曲线。

4)分析比较它们的温度特性。

2、单臂电桥法

1)根据单臂电桥原理,参照图1-2和1-3。按图3-3的方式连接成单臂电桥形式。运用万用表,自行判定三线制Pt100的接线。将R3用电位器代替。用DH-VC1直流恒压源恒流源的恒压源来提供稳定的电压源,范围0~5V。注意:将电压由0~5V缓慢调节,具体电压自定。

2)将温度传感器作为其中的一个臂。根据不同的温度传感器,参照附录2和3中的温度传感器在0℃的对应阻值,把电阻器件调到与Pt100或Cu50温度传感器对应得阻值(Cu50在0℃的阻值是50Ω,用100Ω并联220Ω的电位器,比较臂R3的阻值可以按照同样思路来匹配),仔细调节比较臂R3使桥路平衡,即万用表的示数为零。NTC和PTC温度传感器以25℃时阻值为桥路平衡的零点。把电阻器件调到与NTC或PTC温度传感器对应得25℃时的阻值(NTC的阻值5KΩ,用1KΩ的电阻串联5KΩ和220Ω的电位器,比较臂R3的阻值可以按照同样思路来匹配),仔细调节比较臂R3使桥路平衡,即万用表的示数为零。

3)参照附录4的使用方法。直接插在温度传感器实验装置的恒温炉中。通过温控仪加热,在不同的温度下,观察Pt100铂电阻、热敏电阻(NTC和PTC)和Cu50铜电阻的阻值的变化,从室温到120℃(注:PTC温度实验从室温到100℃。),每隔5℃(或自定度数)测一个数据,将测量数据逐一记录在表格内。

4) 以温标为横轴,以电压为纵轴,按等精度作图的

方法,用所测的各对应数据作出V-t曲线。

5)推导测量原理计算公式。

6)分析比较它们的温度特性。

3、恒流法

1)按照图3-4接线。用DH-VC1来提供1mA或0.1mA

直流电流源。用万用表测量取样电阻R0,调节DH-VC1

上的恒流源的电位器使其两端的电压为1V或0.1V。注意:

将电压由0~1V缓慢调节。

2)将温度传感器直接插在温度传感器实验装置的恒

温炉中。通过温控仪加热,在不同的温度下,观察Pt100铂电阻、图3-4

热敏电阻(NTC和PTC)和Cu50铜电阻的阻值的变化,从室温到120℃(注:PTC温度实验从室温到100℃。),每隔5℃(或自定度数)测一个数据,将测量数据逐一记录在表格内。温控仪的使用方法详见附录4。

3)以温标为横轴,以电压为纵轴,按等精度作图的方法,用所测的各对应数据作出V-t曲线。

4)推导测量原理计算公式。

5)分析比较它们的温度特性。

6)分析比较单臂电桥法与恒流法这两种测量方法的特点。

4、学习运用电桥和差分放大器自行设计数字测温电路。

图3-5

注意:正温度系数热敏电阻(PTC)随温度的变化成指数函数变化,在80℃以下阻值变化比较平滑,而在80℃以上变化非常快。整体成指数上升曲线。

【数据记录1】

【数据记录2】

【数据记录3】

PTC正温度系数热敏电阻数据记录室温℃

【数据记录4】

实验二热电偶温差电动势测量与研究

【实验目的】

1、研究热电偶的温差电动势。

2、学习热电偶测温的原理及其方法。

3、学习热电偶定标。

4、学习运用热电偶传感器设计测温电路。

【实验原理】

1、热电偶测温原理

热电偶亦称温差电偶,是由A、B两种不同材料的金属丝的

端点彼此紧密接触而组成的。当两个接点处于不同温度时(如图

3-6),在回路中就有直流电动势产生,该电动势称温差电动势或

热电动势。当组成热电偶的材料一定时,温差电动势Ex仅与两接

点处的温度有关,并且两接点的温差在一定的温度范围内有如下

近似关系式:

E X≈α( t-t0 ) (1)

式中α称为温差电系数,对于不同金属组成的热电偶,α是不同的,

其数值上等于两接点温度差为1℃时所产生的电动势。t为工作端

的温度,t 0为冷端的温度。图3-6

为了测量温差电动势,就需要在图3-6的回路中

接入电位差计,但测量仪器的引入不能影响热电偶原

来的性质,例如不影响它在一定的温差t-t0下应有的

电动势E X值。要做到这一点,实验时应保证一定的

条件。根据伏打定律,即在A、B两种金属之间插入

第三种金属C时,若它与A、B的两连接点处于同

一温度t0(图3-6),则该闭合回路的温差电动势与上

述只有A、B两种金属组成回路时的数值完全相同。

所以,我们把A、B两根不同化学成份的金属丝的一图3-7 端焊在一起,构成热电偶的热端(工作端)。将另两端各与铜引线(即第三种金属C)焊接,构成两个同温度(t0)的冷端(自由端)。铜引线与电位差计相连,这样就组成一个热电偶温度计。如图3-7所示。通常将冷端置于冰水混合物中,保持t0 = 0℃,将热端置于待测温度处,即可测得相应的温差电动势,再根据事先校正好的曲线或数据来求出温度t。热电偶温度计的优点是热容量小,灵敏度高,反应迅速,测温范围广,还能直接把非电学量温度转换成电学量。因此,在自动测温、自动控温等系统中得到广泛应用。

在本实验的热点偶为铜-康铜热点偶,属于T型热点偶。其测温范围-270~400℃;优点有:热电动势的直线性好;低温特性良好;再现性好,精度高;但是(+)端的铜易氧化。

【实验仪器】

九孔板,DH-VC1直流恒压源恒流源,DH-SJ型温度传感器实验装置,数字万用表。

【实验内容与步骤】

1、对热电偶进行定标,并求出热电偶的温差电系数α0。

2、用实验方法测量热电偶的温差电动势与工作端温度之间的关系曲线,称为对热电偶定标。本实验采用常用的比较定标法,即用一标准的测温仪器(如标准水银温度计或已知高一级的标准热电偶)与待测热电偶置于同一能改变温度的调温装置中,测出Ex-t定标曲线。具体步骤如下:

(1)按图3-7所示原理连接线路,注意热电偶的正、负极的正确连接。将热电偶的冷端置于冰水混合物中之中,确保t0 =0℃。测温端直接插在恒温炉内。

(2)测量待测热电偶的电动势。用万用表测出室温时热电偶的电动势(建议采用我公司的UJ33d型电位差计来测量),然后开启温控仪电源,给热端加温。每隔10℃左右测一组(t,Ex),直至100℃为止。由于升温测量时,温度是动态变化的,故测量时可提前2℃进行跟踪,以保证测量速度与测量精度。测量时,一旦达到补偿状态应立即读取温度值和电动势值,再做一次降温测量,即先升温至100℃,然后每降低10℃测一组(t,Ex),再取升温降温测量数据的平均值作为最后测量值。

另外一种方法是设定需要测量的温度,等控温仪稳定后再测量该温度下温差电动势。这样可以测得更精确些,但需花费较长的实验时间。

3、自行设计热电偶数字测温电路。

4、实验注意事项

(1)传感器头如果没有完全侵入到冰水混合物中,或接触到保温杯壁会对实验影响。

(2)传感器头如果没有接触恒温炉孔的底或壁,会对实验产生影响。

(3)加了铠甲封装的要比未加铠甲封装的热电偶误差要大。

【实验数据与分析】

1.热电偶定标数据记录

室温t_________℃E N t=___________V t0= 0 ℃

用直角坐标系作Ex~t曲线。定标曲线为不光滑的折线,相邻点应直线相连,这样在两个校正点之间的变化关系用线性内插法予以近似,从而得到除校正点之外其他点的电动势和温度之间的关系。所以,作出了定标曲线,热电偶便可以作为温度计使用了。

3.求铜-康铜热电偶的温差电系数α

在本实验温度范围内,Ex-t 函数关系近似为线性,即E 2 =α×t (t 0 =0℃)。所以,在定标曲线上可给出线性化后的平均直线,从而求得α。在直线上取两点a(E a ,t a ),b(E b ,t b )(不要取原来测量的数据点,并且两点间尽可能相距远一些),求斜率 a

b a

b t t E E K --= (2)

即为所求的α,分析其原理。

实验三 PN 结正向压降与温度关系的研究和应用

(仅供参考)

常用的温度传感器有热电偶、测温电阻器和热敏电阻等,这些温度传感器均有各自的优点,但也有它的不足之处,如热电偶适用温度范围宽,但灵敏度低、且需要参考温度;热敏电阻灵敏度高、热响应快、体积小,缺点是非线性,且一致性较差,这对于仪表的校准和调节均感不便;测温电阻如铂电阻有精度高、线性好的优点,但灵敏度低且价格较贵;而PN 结温度传感器则有灵敏度高、线性较好、热响应快和体小轻巧易集成化等优点,所以其应用势必日益广泛。但是这类温度传感器的工作温度一般为-50℃-150℃,与其它温度传感器相比,测温范围的局限性较大,有待于进一步改进和开发。

【实验目的】

1、了解PN 结正向压降随温度变化的基本关系式。

2、在恒定正向电流条件下,测绘PN 结正向压降随温度变化曲线,并由此确定其灵敏度及被测PN 结材料的禁带宽度。

3、学习用PN 结测温的方法。

【实验原理】

理想的PN 结的正向电流I F 和正向压降V F 存在如下近关系式: )exp(

kT

qV I I F

s F = (1) 其中q 为电子电荷;k 为玻尔兹曼常数;T 为绝对温度;I S 为反向饱和电流,它是一个和PN 结材料的禁带宽度以及温度有关的系数,可以证明 )exp()

0(kT

qV CT I g r

F -

= (2) 其中C 是与结面积、掺质浓度等有关的常数,r 也是常数(r 的数值取决于少数载流子迁移率对温度的关系,通常取r=3.4);V g (0)为绝对零度时PN 结材料的带底和价带顶的电势差。(2)式的具体证明参阅黄昆,谢德著的《半导体物理》。 将(2)式代入(1)式,两边取对数可得

1n 1r F )0(g F V V T ln q

kT

T )I C ln q k (V V +=-

-= (3) 其中 T I C q k V V F

g )ln

()0(1-= r n T q

kT

V ln 1-

= 方程(3)就是PN 结正向压降作为电流和温度函数的表达式,它是PN 结温度传感器

的基本方程。令I F =常数,则正向压降只随温度而变化,但是在方程(3)中还包含非线性顶V n1。下面来分析一下V n1项所引起的线性误差。

设温度由T 1变为T 时,正向电压由V F1变为V F ,由(3)式可得 r

F g g F T T q kT T T V V V V )ln()

(1

11)0()0(---= (4) 按理想的线性温度响应,V F 应取如下形式

)(11

1T T T V V V F F -??+

=理想 (5) T V 1

F ??等于T 1温度时的T

V F ??值

由(3)式可得

r q

k

T V V T V F g F ---=??11)0(1 (6) 所以)(111)0(1T T r q k T V V V V F g F -????

?

?---

+=理想 =r T T q

k

T T V V V F g g )()

(111)0()0(---- (7) 由理想线性温度响应(7)式和实际响应(4)式相比较,可得实际响应对线性的理论偏差为

△=V 理想-V F =r T T q kT r T T q k )ln()(1

1+--

(8) 设T 1=300°K ,T=310°K ,取r=3.4,由(8)式可得△=0.048mV ,而相应的V F 的改变量约20 mV ,相比之下误差甚小。不过当温度变化范围增大时,V F 温度响应的非线性误差将有所递增,这主要由于r 因子所致。

综上所述,在恒流供电条件下,PN 结的V F 对T 的依赖关系取决于线性项V 1,即正向压降几乎随温度升高而线性下降,这就是PN 结测温的理论依据。必须指出,上述结论仅适用于杂质全部电离,本征激发可以忽略的温度区间(对于通常的硅二极管来说,温度范围约-50℃-150℃)。如果温度低于或高于上述范围时,由于杂质电离因子减小或本征载流子迅速增加,V F —T 关系将产生新的非线性,这一现象说明V F —T 的特性还随PN 结的材料而异,对于宽带材料(如GaAs ,Eg 为1.43eV )的PN 结,其高温端的线性区则宽;而材料杂质电离能小(如Insb )的PN 结,则低温端的线性范围宽。对于给定的PN 结,即

使在杂质导电和非本征激发温度范围内,其线性度亦随温度的高低而有所不同,这是非线

性项V n1引起的,由V n1对T 的二阶导数T dT

V d 12

2 可知,dT dV

1n 的变化与T 成反比,所以V F —T 的线性度在高温端优于低温端,这是PN 结温度传感器的普遍规律。此外,由(4)式可知,减小I F ,可以改善线性度,但并不能从根本上解决问题,目前行之有效的方法大致有两种:

1、利用对管的两个be 结(将三极管的基极与集电极短路与发射极组成一个PN 结),分别在不同电流I F1、I F2下工作,由此获得两者之差(I F1-I F2)与温度成线性函数关系,即 V F1-V F2=

2

1

1F F I I n q KT (9) 由于晶体管的参数有一定的离散性,实际值与理论值仍存在差距,但于单个PN 结相比其线性度与精度均有所提高,这种电路结构与恒流、放大等电路集成一体,便构成电路温度传感器。

2、采用电流函数发生器来消除非线性误差。由(3)式可知,非线性误差来自T r 项,利用函数发生器,I F 比例于绝对温度的r 次方,则V F —T 的线性理论误差为△=0。实验结果与理论值比较一致,其精度可达0.01℃。

【实验仪器】

九孔板,DH-VC1直流恒压源恒流源,DH-SJ 型温度传感器实验装置数字万用表。

【实验内容与步骤】

1)参照附录4,将“加热电流”开关置“关”位置,将“风扇电流”开关置“关”位置,接上加热电源线和信号传输线,两者连接均为直插式。PN 结传感器引脚如图3-8所示。按图3-9方

式连接电路。用DH -VC1直流恒压源恒流源来提供恒流源。

2)此时测试仪上将显示出室温T R ,记录下起始温度T R 。把恒流源调节至1mA ,记录下V F (T R )值。再将PN 结传感器置于冰水混合物中,静置几分钟后,记录下V F (0)值。

3)测定△V —T 曲线 图3-8

把温度控制器温度设定在100℃,开启加热电流,并记录对应的V F 和T ,至于△V F 、T 的数据测量,可按V F 每改变10或15mV 立即读取一组△V F 、T ,这样可以减小测量误差。应该注意:在整个实验过程中,控温加热电流不要太大,确保升温速率慢,方便读数即可。且设定的温度不宜过高,最好控制在120℃以内。

4)求被测PN 结正向压降随温度变化的灵敏度S (mV/℃)。以T 为横坐标,△V F 为

纵坐标,作△V F—T曲线,其斜率就是S。

*5)估算被测PN结材料的禁带宽度。根据(6)式,略去非线性项,可得

V g(0)=V F(0)+

()

T

V

F0△T=V F(0)+S·△T

式中△T=-273.2K,即摄氏温标与凯尔文温标之差。V F(0)为

0℃时PN结正向压降。将实验所得的E g(0)=eV g(0)与公认值

E g(0)=1.21电子伏比较,求其误差。

图3-9 6)数据记录

实验起始温度:T R= ℃。工作电流:I F= mA。

起始温度为T R时的正向压降:V F(TR)= mV。

7)改变工作电流I F=0.5~1mA重复上述(1~7)步骤进行测量,并比较两组测量结果。

*8)根据实验原理及结论将该PN结制成温度传感器,使其灵敏度最大,试确定其工作电流及其测量范围,并标定其刻度。

【实验数据与分析】

1、测V F(TR)的目的何在?为什么实验要求测△V F—T曲线而不是V F—T曲线。

2、测△V F—T为何按△V的变化读取T,而不是按自变量T读取△V。

3、在测量PN结正向压降和温度的变化关系时,温度高时△V F—T线性好,还是温度低好?

4、测量时,为什么温度必须在-50℃-150℃范围内?

实验四 集成温度传感器

【实验目的】

1、研究常用集成温度传感器(AD590和LM35)的测温原理,及其温度特性。

2、学习用集成温度传感器设计测温电路。

3、比较常用的温度传感器与常用的集成温度传感器的温度特性。

【实验原理】

集成温度传感器实质上是一种半导体集成电路,它是利用晶体管的b -e 结压降的不饱和值V BE 与热力学温度T 和通过发射极电流I 的下述关系实现对温度的检测:

I q

KIT

V BE ln =

式中,K —波尔兹常数;q —电子电荷绝对值。

集成温度传感器具有线性好、精度适中、灵敏度高、体积小、使用方便等优点,得到广泛应用。集成温度传感器的输出形式分为电压输出和电流输出两种。电压输出型的灵敏度一般10mV/K ,温度0℃时输出为0,温度25℃时输出2.982V 。电流输出型的灵敏度一般为1uA/K 。

一、集成温度传感器电流型AD590 1、AD590概述

AD590是美国模拟器件公司生产的单片集成两端感温电流源。它的主要特性如下: 1、流过器件的电流(uA )等于器件所处环境的热力学温度(开尔文)度数,即:

1=T

T τ

uA/K=C i (1) 式中:τT —流过器件(AD590)的电流,单位为uA ;T —热力学温度,单位为K 。

2、AD590的测温范围为-55℃~+150℃。

3、AD590的电源电压范围为4V ~30V 。电源电压可在4V~6V 范围变化,电流 变化1uA ,相当于温度变化1K 。AD590可以承受44V 正向电压和20V 反向电压,因而器件反接也不会被损坏。

4、输出阻抗﹥10M Ω。 图3-10

5、精度高。AD590共有I 、J 、K 、L 、M 五档,其中M 档精度最高, 在-55℃~+150℃范围内,非线性误差为±0.3℃。AD590测量热力学温度、摄氏温度、两点温度差、多点最低温度、多点平均温度的具体电路,广泛应用于不同的温度控制场合。由于AD590精度高、价格低、不需辅助电源、线性好,常用于测温和热电偶的冷端补偿。

2、AD590的应用电路 1)基本应用电路

图3-11是AD590用于测量热力学温度的基本应用电路。因为流过AD590的电流与热力学温度成正比,当电阻R 为1k 时,输出电压V 0随温度的变化为1mV/K 。但由于AD590的增益有偏差,电阻也有误差,因此应对电路进行调整。调整的方法为:把AD590放于

温度传感器实验

实验二(2)温度传感器实验 实验时间 2017.01.12 实验编号 无 同组同学 邓奡 一、实验目的 1、了解各种温度传感器(热电偶、铂热电阻、PN 结温敏二极管、半导体热敏电阻、集成温度传感器)的测温原理; 2、掌握热电偶的冷端补偿原理; 3、掌握热电偶的标定过程; 4、了解各种温度传感器的性能特点并比较上述几种传感器的性能。 二、实验原理 1、热电偶测温原理 由两根不同质的导体熔接而成的,其形成的闭合回路叫做热电回路,当 两端处于不同温度时回路产生一定的电流,这表明电路中有电势产生,此电势即为热电势。 试验中使用两种热电偶:镍铬—镍硅(K 分度)、镍铬—铜镍(E 分度)。图2.3.5所示为热电偶的工作原理,图中:T 为热端,0T 为冷端,热电势为)()(0T E T E E AB AB t -=。 热电偶冷端温度不为0℃时(下式中的1T ),需对所测热电势进行修正,修正公式为:),(),(),(0110T T E T T E T T E +=,即: 实际电动势+测量所得电动势+温度修正电势 对热电偶进行标定时,以K 分度热电偶作为标准热电偶来校准E 分度热 电偶。 2、铂热电阻 铂热电阻的阻值与温度的关系近似线性,当温度在C 650T C 0?≤≤?时,

)1(20BT AT R R T ++=, 式中:T R ——铂热电阻在T ℃时的电阻值 0R ——铂热电阻在0℃时的电阻值 A ——系数(=C ??/103.96847-31) B ——系数(= C ??/105.847--71) 3、PN 结温敏二极管 半导体PN 结具有良好的温度线性,PN 结特性表达公式为: γln be e kT U =?, 式中,γ为与PN 结结构相关的常数; k 为波尔兹曼常数,K J /1038.1k 23-?=; e 为电子电荷量,C 1910602.1e -?=; T 为被测物体的热力学温度(K )。 当一个PN 结制成后,当其正向电流保持不变时,PN 结正向压降随温度 的变化近似于线性,大约以2mV/℃的斜率随温度下降,利用PN 结的这一特性可以进行温度的测量。 4、热敏电阻 热敏电阻是利用半导体的电阻值随温度升高而急剧下降这一特性制成的 热敏元件,灵敏度高,可以测量小于0.01℃的温差变化。 热敏电阻分为正温度系数热敏电阻PTC 、负温度系数热敏电阻NTC 和在 某一特定温度下电阻值发生突然变化的临界温度电阻器CTR 。 实验中使用NTC ,热敏电阻的阻值与温度的关系近似符合指数规律,为:)11(00e T T B t R R -=。式中: T 为被测温度(K),16.273t +=T 0T 为参考温度(K),16.27300+=t T T R 为温度T 时热敏电阻的阻值 0R 为温度0T 时热敏电阻的阻值 B 为热敏电阻的材料常数,由实验获得,一般为2000~6000K 5、集成温度传感器 用集成工艺制成的双端电流型温度传感器,在一定温度范围内按1uA/K 的恒定比值输出与温度成正比的电流,通过对电流的测量即可知道温度值(K 氏温度),经K 氏-摄氏转换电路直接得到摄氏温度值。

DS18B20温度传感器实验

DS18B20温度传感器实验Proteus仿真原理图: DS18B20内部结构:

/************************* 源程序 ****************************/ #include #include #define uint unsigned int #define uchar unsigned char #define delayNOP() {_nop_();_nop_();_nop_();_nop_();} sbit DQ = P3^3; sbit LCD_RS = P2^0; sbit LCD_RW = P2^1; sbit LCD_EN = P2^2; uchar code Temp_Disp_Title[]={"Current Temp : "}; uchar Current_Temp_Display_Buffer[]={" TEMP: "}; uchar code Temperature_Char[8] = { 0x0c,0x12,0x12,0x0c,0x00,0x00,0x00,0x0 0 }; uchar code df_Table[]= { 0,1,1,2,3,3,4,4,5,6,6,7,8,8,9,9 }; uchar CurrentT = 0; uchar Temp_Value[]={0x00,0x00}; uchar Display_Digit[]={0,0,0,0}; bit DS18B20_IS_OK = 1; void DelayXus(uint x) { uchar i; while(x--) { for(i=0;i<200;i++); } } bit LCD_Busy_Check(){ bit result; LCD_RS = 0; LCD_RW = 1; LCD_EN = 1; delayNOP(); result = (bit)(P0&0x80); LCD_EN=0; return result; } void Write_LCD_Command(uchar cmd) { while(LCD_Busy_Check()); LCD_RS = 0; LCD_RW = 0; LCD_EN = 0; _nop_(); _nop_(); P0 = cmd; delayNOP(); LCD_EN = 1; delayNOP(); LCD_EN = 0; }

DS18B20温度传感器实验

DS18B20温度传感器实验 TEMP1 EQU 5AH ;符号位和百位公用的存放单元TEMP2 EQU 5BH ;十位存放单元 TEMP3 EQU 5CH ;个位存放单元 TEMP4 EQU 5DH ; TEMP5 EQU 5EH TEMP6 EQU 5FH ;数据临时存放单元 TEMP7 EQU 60H TEMP8 EQU 61H ORG 0000H AJMP MAIN ORG 0020H MAIN: MOV SP,#70H LCALL INT ;调用DS18B20初始化函数MAIN1: LCALL GET_TEMP ;调用温度转换函数 LCALL CHULI ;调用温度计算函数 LCALL DISP ;调用温度显示函数 AJMP MAIN1 ;循环 INT: L0:

SETB P3.7 ;先释放DQ总线 MOV R2,#250 ;给R2赋延时初值,同时可让DQ保持高电平2us L1: CLR P3.7 ;给DQ一个复位低电平 DJNZ R2,L1 ;保持低电平的时间至少为480us SETB P3.7 ;再次拉高DQ释放总线 MOV R2,#25 L2: DJNZ R2,L2 ;保持15us-60us CLR C ORL C,P3.7 ;判断是否收到低脉冲 JC L0 MOV R6,#100 L3: ORL C,P3.7 DJNZ R6,L3 ;存在低脉冲保持保持60us-240us ; JC L0 ;否则继续从头开始,继续判断 SETB P3.7 RET ;调用温度转换函数 GET_TEMP: CLR PSW.4 SETB PSW.3 ;设置工作寄存器当前所在的区域 CLR EA ;使用DS18B20前一定要禁止任何中断 LCALL INT ;初始化DS18B20 MOV A,#0CCH ;送入跳过ROM命令 LCALL WRITE MOV A,#44H ;送入温度转换命令 LCALL WRITE LCALL INT ;温度转换完成,再次初始化18b20 MOV A,#0CCH ;送入跳过ROM命令 LCALL WRITE MOV A,#0BEH ;送入读温度暂存器命令 LCALL WRITE LCALL READ MOV TEMP4,A ;读出温度的低字节存在TEMP4 LCALL READ MOV TEMP5,A ;读出温度的高字节存在TEMP5 SETB EA RET CHULI : MOV A,TEMP5 ;将温度的高字节取出 JNB ACC.7,ZHENG ;判断最高位是否为0,为0则表示温度为正,则转到ZHENG MOV A,TEMP4 ;否则温度为负,将温度的低字节取出

温度传感器实验设计概要

成都理工大学工程 技术学院 单片机课程设计报告 数字温度计设计

摘要 在这个信息化高速发展的时代,单片机作为一种最经典的微控制器,单片机技术已经普及到我们生活,工作,科研,各个领域,已经成为一种比较成熟的技术,作为自动化专业的学生,我们学习了单片机,就应该把它熟练应用到生活之中来。本文将介绍一种基于单片机控制的数字温度计,本温度计属于多功能温度计,可以设置上下报警温度,当温度不在设置范围内时,可以报警。本文设计的数字温度计具有读数方便,测温范围广,测温精确,数字显示,适用范围宽等特点。 关键词:单片机,数字控制,数码管显示,温度计,DS18B20,AT89S52。

目录 1概述 (4) 1.1设计目的 (4) 1.2设计原理 (4) 1.3设计难点 (4) 2 系统总体方案及硬件设计...................................................... 错误!未定义书签。 2.1数字温度计设计方案论证 (4) 2.2.1 主控制器 (5) 2.4 系统整体硬件电路设计 (7) 3系统软件设计 (8) 3.1初始化程序 (8) 3.2读出温度子程序 (9) 3.3读、写时序子程序 (10) 3.4 温度处理子程序 (11) 3.5 显示程序 (12) 4 Proteus软件仿真 (13) 5硬件实物 (14) 6课程设计体会 (15) 附录1: (14) 附录2: (21)

1概述 1.1设计目的 随着人们生活水平的不断提高,单片机控制无疑是人们追求的目标之一,它所给人带来的方便也是不可否定的,其中数字温度计就是一个典型的例子,但人们对它的要求越来越高,要为现代人工作、科研、生活、提供更好的更方便的设施就需要从数单片机技术入手,一切向着数字化控制,智能化控制方向发展。 本设计所介绍的数字温度计与传统的温度计相比,具有读数方便,测温范围广,测温准确,其输出温度采用数字显示,主要用于对测温比较准确的场所,或科研实验室使用,可广泛用于食品库、冷库、粮库、温室大棚等需要控制温度的地方。目前,该产品已在温控系统中得到广泛的应用。 1.2设计原理 本系统是一个基于单片机AT89S52的数字温度计的设计,用来测量环境温度,测量范围为-50℃—110℃度。整个设计系统分为4部分:单片机控制、温度传感器、数码显示以及键盘控制电路。整个设计是以AT89S52为核心,通过数字温度传感器DS18B20来实现环境温度的采集和A/D转换,同时因其输出为数字形式,且为串行输出,这就方便了单片机进行数据处理,但同时也对编程提出了更高的要求。单片机把采集到的温度进行相应的转换后,使之能够方便地在数码管上输出。LED采用三位一体共阳的数码管。 1.3设计难点此设计的重点在于编程,程序要实现温度的采集、转换、显示和上下限温度报警,其外围电路所用器件较少,相对简单,实现容易。 2 系统总体方案及硬件设计 2.1数字温度计设计方案论证 由于本设计是测温电路,可以使用热敏电阻之类的器件利用其感温效应,在将随被测温度变化的电压或电流采集过来,进行A/D转换后,就可以用单片机进行数据的处理,在显示电路上,就可以将被测温度显示出来,这种设计需要用到A/D 转换电路,感温电路比较麻烦。进而考虑到用温度传感器,在单片机电路设计中,大多都是使用传感器,所以这是非常容易想到的,所以可以采用一只温度传感器DS18B20,此传感器,可以很容易直接读取被测温度值,进行转换,就可以满足设计要求。 2.2总体设计框图 温度计电路设计总体设计方框图如图1所示,控制器采用单片机AT89S52,温度传感器采用DS18B20,用3位共阴LED数码管以串口传送数据实现温度显示。

大学物理实验-温度传感器实验报告

关于温度传感器特性的实验研究 摘要:温度传感器在人们的生活中有重要应用,是现代社会必不可少的东西。本文通过控制变量法,具体研究了三种温度传感器关于温度的特性,发现NTC电阻随温度升高而减小;PTC电阻随温度升高而增大;但两者的线性性都不好。热电偶的温差电动势关于温度有很好的线性性质。PN节作为常用的测温元件,线性性质也较好。本实验还利用PN节测出了波 尔兹曼常量和禁带宽度,与标准值符合的较好。 关键词:定标转化拟合数学软件 EXPERIMENTAL RESEARCH ON THE NATURE OF TEMPERATURE SENSOR 1.引言 温度是一个历史很长的物理量,为了测量它,人们发明了许多方法。温度传感器通过测温元件将温度转化为电学量进行测量,具有反应时间快、可连续测量等优点,因此有必要对其进行一定的研究。作者对三类测温元件进行了研究,分别得出了电阻率、电动势、正向压降随温度变化的关系。 2.热电阻的特性 2.1实验原理 2.1.1Pt100铂电阻的测温原理 和其他金属一样,铂(Pt)的电阻值随温度变化而变化,并且具有很好的重现性和稳定性。利用铂的此种物理特性制成的传感器称为铂电阻温度传感器,通常使用的铂电阻温度传感器零度阻值为100Ω(即Pt100)。铂电阻温度传感器精度高,应用温度范围广,是中低温区(-200℃~650℃)最常用的一种温度检测器,本实验即采用这种铂电阻作为标准测温器件来定标其他温度传感器的温度特性曲线,为此,首先要对铂电阻本身进行定标。 按IEC751国际标准,铂电阻温度系数TCR定义如下: TCR=(R100-R0)/(R0×100) (1.1) 其中R100和R0分别是100℃和0℃时标准电阻值(R100=138.51Ω,R0=100.00Ω),代入上式可得到Pt100的TCR为0.003851。 Pt100铂电阻的阻值随温度变化的计算公式如下: Rt=R0[1+At+B t2+C(t-100)t3] (-200℃

温度传感器实验

DH-SJ5温度传感器设计性实验装置 使 用 说 明 书 杭州大华科教仪器研究所 杭州大华仪器制造有限公司

一、温度传感器概述 温度是表征物体冷热程度的物理量。温度只能通过物体随温度变化的某些特性来间接测量。测温传感器就是将温度信息转换成易于传递和处理的电信号的传感器。 一、测温传感器的分类 1.1电阻式传感器 热电阻式传感器是利用导电物体的电阻率随温度而变化的效应制成的传感器。热电阻是中低温区最常用的一种温度检测器。它的主要特点是测量精度高,性能稳定。它分为金属热电阻和半导体热电阻两大类。金属热电阻的电阻值和温度一般可以用以下的近似关系式表示,即 R t =R t0[1+α (t-t 0)] 式中,R t 为温度t 时的阻值;R t0为温度t 0(通常t 0=0℃)时对应电阻值;α为温度系数。 半导体热敏电阻的阻值和温度关系为 t B t Ae R = 式中R t 为温度为t 时的阻值;A 、B 取决于半导体材料的结构的常数。 常用的热电阻有铂热电阻、热敏电阻和铜热电阻。其中铂电阻的测量精确度是最高的,它不仅广泛应用于工业测温,而且被制成标准的基准仪。 金属铂具有电阻温度系数大,感应灵敏;电阻率高,元件尺寸小;电阻值随温度变化而变化基本呈线性关系;在测温范围内,物理、化学性能稳定,长期复现性好,测量精度高,是目前公认制造热电阻的最好材料。但铂在高温下,易受还原性介质的污染,使铂丝变脆并改变电阻与温度之间的线性关系,因此使用时应装在保护套管中。用铂的此种物理特性制成的传感器称为铂电阻温度传感器,利用铂的此种物理特性制成的传感器称为铂电阻温度传感器,通常使用的铂电阻温度传感器零度阻值为100Ω,电阻变化率为0.3851Ω/℃,TCR=(R 100-R 0)/(R 0×100) ,R 0为0℃的阻值,R 100为100℃的阻值,按IEC751国际标准,温度系数TCR=0.003851,Pt100(R 0=100Ω)、Pt1000(R 0=1000Ω)为统一设计型铂电阻。铂热电阻的特点是物理化学性能稳定。尤其是耐氧化能力强、测量精度高、应用温度范围广,有很好的重现性,是中低温区(-200℃~650℃)最常用的一种温度检测器。 热敏电阻(Thermally Sensitive Resistor,简称为Thermistor),是对温度敏感的电阻的总称,是一种电阻元件,即电阻值随温度变化的电阻。一般分为两种基本类型:负温度系数热敏电阻NTC (Negative Temperature Coefficient )和正温度系数热敏电阻PTC (Positive Temperature Coefficient )。NTC 热敏电阻表现为随温度的上升,其电阻值下降;而PTC 热敏电阻正好相反。 NTC 热敏热电阻大多数是由Mn(锰)、Ni(镍)、Co(钴)、Fe(铁)、Cu(铜)等金属的氧化物经过烧结而成的半导体材料制成。因此,不能在太高的温度场合下使用。不竟然,其使用范围有的也可以达到了-200℃~700℃,但一般的情况下,其通常的使用范围在-100℃~300℃。 NTC 热敏热电阻热响应时间一般跟封装形式、阻值、材料常数(热敏指数)、热时间常数有关。材料常数(热敏指数)B 值反映了两个温度之间的电阻变化,热敏电阻的特性就是由它的大小决定的,B 值(K )被定义为:2 12 1212111lg lg 3026.211ln ln T T R R T T R R B --?=--= ; R T1:温度 T 1(K )时的零功率电阻值;R T2 :温度 T 2(K )时的零功率电阻值;T 1,T 2 :

温度传感器实验

温度传感器实验 传感器是将非电信号转换为电信号的装置,因为电信号容易传递和处理。温度是物体冷热程度的标志,温度传感器就是将温度转换成电信号的传感器。 一.测温传感器的分类 电阻式传感器。常用的有铂热电阻、热敏电阻和铜热电阻。其中铂电阻(Pt100)精确度最高,重现性和稳定性很好,不仅应用广泛,而且被制成标准的基准仪。热敏电阻(Thermally Sensitive Resistor,简称Thermistor),是温度敏感的电阻的总称,是属于热电阻的一部分,一般分为负温度系数热敏电阻NTC(Negative Temperature Coefficient)和正温度系数热敏电阻PTC(Positive Temperature Coefficient)。NTC的电阻值随温度的上升而下降;PTC正好相反。 其它传感器。半导体PN结温度传感器,晶体温度传感器,非接触型温度传感器,热电偶温度传感器,光纤温度传感器,液压温度传感器,智能温度传感器。 二.DH-SJ5温度传感器实验装置 DH-SJ5型温度传感实验装置以九孔板为实验平台,包括铂电阻Pt100、热敏电阻(NTC 和PTC)、铜电阻Cu50、铜-康铜热电偶、PN结、AD590和LM35等分离的温度传感器探头,各种电子元件。能提供了多种测温电路和方法。 本装置采用Pt100铂电阻测温,智能温度控制器控温,控温精度高、范围广、可自由设定所需的温度,数字显示;用低电压恒流加热、安全可靠、无污染,加热电流连续可调;分离的温度传感器,形象直观,组合方便,可比较不同传感器的温度特性;降温实验可采用风扇快速降温;整体结构设计新颖,紧凑合理,外型美观大方。 主要技术指标:电源:AC220V±10%(50/60Hz),工作温度0~40℃,相对湿度<80%,无腐蚀性场合,控温范围:室温~120℃,控温精度:±0.2℃,分辨率:0.1℃。 温控仪与恒温炉的连线如图1,Pt100的插头与温控仪上的插座颜色应当对应连接。 图1DH-SJ5温度传感器实验装置 恒温炉上方有六个插孔,可以插一个测温的Pt100和五个待测量的温度传感器。 警告:在做实验中或做完实验后,禁止手触传感器的钢护套,防止烫伤!

MSP430内部温度传感器测试程序

MSP430内部温度传感器测试程序 //MSP430基础实验开发组件 - ADC12内部模块演示程序之内部温度传感器 //时钟设置: ////ACLK = n/a, MCLK = SMCLK = default DCO ~ 800kHz, ADC12CLK = ADC12OSC //当前演示程序功能描述: ////利用MSP430F14X内部的温度传感器,通过ADC12的通道10进行AD转换 ////计算取得摄氏温度和华氏温度,通过断点在View->Watch中观察温度值 ////由于定标问题, 可能会存在温度的误差 #include unsigned int long temp; unsigned int long TemperF; //华氏温度 unsigned int long TemperC; //摄氏温度 void main(void) { WDTCTL = WDTPW + WDTHOLD; //关闭系统看门狗 ADC12CTL0 = SHT0_8 + REFON + ADC12ON; //内部1.5V参考电压,打开ADC12模块,设置采样保持定时器 ADC12CTL1 = SHP; //采使用采样定时器 ADC12MCTL0 = SREF_1 + INCH_10; //参考电压和通道选择 ADC12IE = BIT0; //ADC12MEM0 ADC12CTL0 |= ENC; //允许转换 _BIS_SR(GIE); //开启系统中断 while(1) { ADC12CTL0 |= ADC12SC; //开始采样并AD转换 //oF = ((x/4096)*1500mV)-923mV)*1/1.97mV = x*761/4096 - 468 //IntDegF = (ADC12MEM0 - 2519)* 761/4096 TemperF = (temp - 2519) * 761; TemperF = TemperF / 4096; //简化的华氏温度转换公式

实验三 热电阻、热点偶测温特性实验

实验三热电阻、热电偶测温特性实验 一、实验目的:了解热电阻的特性与应用,了解热电偶测量温度的性能与应用范围。。 二、基本原理: 1、热电阻: 利用导体电阻随温度变化的特性,热电阻用于测量时,要求其材料电阻温度系数大,稳定性好,电阻率高,电阻与温度之间最好有线性关系。常用铂电阻和铜电阻在0-630.74℃以内,电阻Rt与温度t的关系为: R t=R0(1+A t+B t2) R0系温度为0℃时的电阻。本实验R0=100℃,A t=3.9684×10-2/℃,B t=-5.847×10-7/℃2,铂电阻现是三线连接,其中一端接二根引线主要为消除引线电阻对测量的影响。 2、热电偶 当两种不同的金属组成回路,如二个接点有温度差,就会产生热电势,这就是热电效应。温度高的接点称工作端,将其置于被测温度场,以相应电路就可间接测得被测温度值,温度低的接点就称冷端(也称自由端),冷端可以是室温值或经补偿后的0℃、25℃。 三、需用器件与单元:加热源、K型热电偶(红+,黑-)、P t100热电阻、温度控制单元、温度传感器实验模板、数显单元、万用表,热电偶K型、E 型、加热源。 四、实验步骤: (一)热电阻: 1、注意:首先根据实验台型号,仔细阅读“温控仪表操作说”,学会基 本参数设定。 2、将热电偶插入台面三源板加热源的一个传感器安置孔中。将K型热电偶自由端引线插入主控面板上的热电偶EK插孔中,红线为正极,黑色为负极,注意热电偶护套中已安置了二支热电偶,K型和E型,它们热电势值不同,从热电偶分度表中可以判别K型和E型(E型热电势大)热电偶。E型(蓝+,绿-);k型(红+,黑-) 3、将加热器的220V电源插头插入主控箱面板上的220V控制电源插座上。

温度传感器报告

温度传感器是指能感受温度并能转换成可用输出信号的传感器。温度是和人类生活环境有着密切关系的一个物理量,是工业过程三大参量(流量、压力、温度)之一,也是国际单位制(SI)中七个基本物理量之一。温度测量是一个经典而又古老的话题,很久以来,这方面己有多种测温元件和传感器得到普及,但是直到今天,为了适应各工业部门、科学研究、医疗、家用电器等方面的广泛要求,仍在不断研发新型测温元件和传感器、新的测温方法、新的测温材料、新的市场应用。要准确地测量温度也非易事,如测温元件选择不当、测量方法不宜,均不能得到满意结果。 据有关部门统计,2009年我国传感器的销售额为327亿元人民币,其中温度传感器占整个传感器市场的14%,主要应用于通信电子产品、家用电器、楼宇自动化、医疗设备、仪器仪表、汽车电子等领域。 温度传感器的特点 作为一个理想的温度传感器,应该具备以下要求:测量围广、精度高、可靠性好、时漂小、重量轻、响应快、价格低、能批量生产等。但同时满足上述条件的温度传感器是不存在的,应根据应用现场灵活使用各种温度传感器。这是因为不同的温度传感器具有不同的特点。 ● 不同的温度传感器测量围和特点是不同的。 几种重要类型的温度传感器的温度测量围和特点,如表1所示。 ● 测温的准确度与测量方法有关。 根据温度传感器的使用方法,通常分为接触测量和非接触测量两类,两种测量方法的特点如 ● 不同的测温元件应采用不同的测量电路。 通常采用的测量电路有三种。“电阻式测温元件测量电路”,该测量电路要考虑消除非线性误差和热电阻导线对测量准确度的影响。“电势型测温元件测量电路”,该电路需考虑线性化和冷端补偿,信号处理电路较热电阻的复杂。“电流型测温元件测量电路”,半导体集成温度传感器是最典型的电流型温度测量元件,当电源电压变化、外接导线变化时,该电路输出电流基本不受影响,非常适合远距离测温。 温度测量的最新进展 ● 研制适应各种工业应用的测温元件和温度传感器。 铂薄膜温度传感器膜厚1μm,可置于极小的测量空间,作温度场分布测量,响应时间不超过1ms,偶丝最小直径25μm,热偶体积小于1×10-4mm3,质量小于1μg。 多色比色温度传感器能实时求出被测物体发射率的近似值,提高辐射测温的精

实验十一 LM35温度传感器特性实验

实验十一 LM35温度传感器特性实验 【实验目的】 1、了解LM35温度传感器的基本原理和温度特性的测量方法; 2、测量LM35温度传感器输出电压与温度的特性曲线; 【实验仪器】 电磁学综合实验平台、LM35温度传感器、加热井、温度传感器特性实验模板 【实验原理】 1.电压型集成温度传感器(LM35) LM35温度传感器,标准T0-92工业封装,其准确度一般为±0.5℃。(有几种级别)由于其输出为电压,且线性极好,故只要配上电压源,数字式电压表就可以构成一个精密数字测温系统。内部的激光校准保证了极高的准确度及一致性,且无须校准。输出电压的温度系数K V=10.0mV/℃,利用下式可计算出被测温度t(℃): U O=K V*t=(10mV/℃)*t 即: t(℃)= U O/10mV (11-1)LM35温度传感器的电路符号见图11-1,V o为输出端实验测量时只要直接测量其输出端电压U o,即可知待测量的温度。 图11-1

图11-2LM35传感器特性实验连接图 【实验步骤】 1、按图11-2,将实验平台加热输出与加热井(加热接口)连接,实验台风扇接口与加热井(风扇接口)连接。 2、调节PID控温表,设置SV:在表面板上按一下(SET)按键,SV表头的温度显示个位将会闪烁;按面板上的“▲”或“▼”键调整设置个位的温度;在按面板上按一下(SET)按键即可,SV表头的温度显示个位将会闪烁,再按“<”键使表头的温度显示十位闪烁,按面板上的“▲”或“▼”键调整设置十位的温度;用同样方法还可设置百位的温度。调好SV所需设定的温度后,再按一下(SET)按键即可完成设置。将加热开关选择(快)档加热,待30秒后,仪器开始加热,控温表即可自动控制温度。调节不同温度,设定参照步骤2进行调节。 3、根据不同的实验连接不同的连接线,可参照上图。 【实验数据】 1、LM35传感器(工作电压5V)(直流电压表2V档测量) 表11-1 t(℃) 30 40 50 60 70 80 90 100 U 2、描绘.LM35传感器曲线,求出.LM35随温度变化的灵敏度S(mV/℃), 【注意事项】 1、加热器温度不能加热到120℃以上,否则将可能损坏加热器。

DS1621温度传感器实验

/*************** writer:shopping.w ******************/ #include #include #define uint unsigned int #define uchar unsigned char bit I2C_Busy, NO_Ack,Bus_Fault,point; uchar bdata a; sbit LSB = a^0; sbit MSB = a^7; sbit SDA = P3^3; sbit SCL = P3^2; uchar Array[] = {'0','1','2','3','4','5','6','7','8','9'}; uchar command_data[]= { 0xac,0x00,0xee,0xa1,0x00,0x00,0xa2,0x00,0x00,0xaa }; uchar Prompt[]="Waiting for a while...\r"; uchar i; void DelayMS(uint ms) { uchar i; while(ms--) { for(i=0;i<120;i++); } } void SendStop() { SDA = 0; SCL = 1; _nop_(); SDA = 1; I2C_Busy = 0; } void SendByte(uchar wd) { uchar i; a = wd; for(i=0;i<8;i++) { SCL = 0; _nop_(); _nop_(); SDA = MSB;

温度传感器报告

温度传感器报告

温度传感器是指能感受温度并能转换成可用输出信号的传感器。温度是和人类生活环境有着密切关系的一个物理量,是工业过程三大参量(流量、压力、温度)之一,也是国际单位制(SI)中七个基本物理量之一。温度测量是一个经典而又古老的话题,很久以来,这方面己有多种测温元件和传感器得到普及,但是直到今天,为了适应各工业部门、科学研究、医疗、家用电器等方面的广泛要求,仍在不断研发新型测温元件和传感器、新的测温方法、新的测温材料、新的市场应用。要准确地测量温度也非易事,如测温元件选择不当、测量方法不宜,均不能得到满意结果。 据有关部门统计,2009年我国传感器的销售额为327亿元人民币,其中温度传感器占整个传感器市场的14%,主要应用于通信电子产品、家用电器、楼宇自动化、医疗设备、仪器仪表、汽车电子等领域。 温度传感器的特点 作为一个理想的温度传感器,应该具备以下要求:测量范围广、精度高、可靠性好、时漂小、重量轻、响应快、价格低、能批量生产等。但同时满足上述条件的温度传感器是不存在的,应根据应用现场灵活使用各种温度传感器。这是因为不同的温度传感器具有不同的特点。 ● 不同的温度传感器测量范围和特点是不同的。 几种重要类型的温度传感器的温度测量范围和特点,如表1所示。 ● 测温的准确度与测量方法有关。 根据温度传感器的使用方法,通常分为接触测量和非接触测量两类,两种测量方法的特点如 ● 不同的测温元件应采用不同的测量电路。 通常采用的测量电路有三种。“电阻式测温元件测量电路”,该测量电路要考虑消除非线性误差和热电阻导线对测量准确度的影响。“电势型测温元件测量电路”,该电路需考虑线性化和冷端补偿,信号处理电路较热电阻的复杂。“电流型测温元件测量电路”,半导体集成温度传感器是最典型的电流型温度测量元件,当电源电压变化、外接导线变化时,该电路输出电流基本不受影响,非常适合远距离测温。 温度测量的最新进展 ● 研制适应各种工业应用的测温元件和温度传感器。 铂薄膜温度传感器膜厚1μm,可置于极小的测量空间,作温度场分布测量,响应时间不超过1ms,偶丝最小直径25μm,热偶体积小于1×10-4mm3,质量小于1μg。 多色比色温度传感器能实时求出被测物体发射率的近似值,提高辐射测温的精

温度传感器实验

实验二(2)温度传感器实验 实验时间 实验编号 无 同组同学 邓奡 一、实验目的 1、了解各种温度传感器(热电偶、铂热电阻、PN 结温敏二极管、半导体热敏电阻、集成温度传感器)的测温原理; 2、掌握热电偶的冷端补偿原理; 3、掌握热电偶的标定过程; 4、了解各种温度传感器的性能特点并比较上述几种传感器的性能。 二、实验原理 1、热电偶测温原理 由两根不同质的导体熔接而成的,其形成的闭合回路叫做热电回路,当两端处于不同温度时回路产生一定的电流,这表明电路中有电势产生,此电势即为热电势。 试验中使用两种热电偶:镍铬—镍硅(K 分度)、镍铬—铜镍(E 分度)。图所示为热电偶的工作原理,图中:T 为热端,0T 为冷端,热电势为 )()(0T E T E E AB AB t -=。

热电偶冷端温度不为0℃时(下式中的1T ),需对所测热电势进行修正,修正公式为:),(),(),(0110T T E T T E T T E +=,即: 实际电动势+测量所得电动势+温度修正电势 对热电偶进行标定时,以K 分度热电偶作为标准热电偶来校准E 分度热电偶。 2、铂热电阻 铂热电阻的阻值与温度的关系近似线性,当温度在C 650T C 0?≤≤?时, )1(20BT AT R R T ++=, 式中:T R ——铂热电阻在T ℃时的电阻值 0R ——铂热电阻在0℃时的电阻值 A ——系数(=C ??/103.96847-31) B ——系数(=C ??/105.847--71) 3、PN 结温敏二极管

半导体PN 结具有良好的温度线性,PN 结特性表达公式为: γln be e kT U = ?, 式中,γ为与PN 结结构相关的常数; k 为波尔兹曼常数,K J /1038.1k 23-?=; e 为电子电荷量,C 1910602.1e -?=; T 为被测物体的热力学温度(K )。 当一个PN 结制成后,当其正向电流保持不变时,PN 结正向压降随温度的变化近似于线性,大约以2mV/℃的斜率随温度下降,利用PN 结的这一特性可以进行温度的测量。 4、热敏电阻 热敏电阻是利用半导体的电阻值随温度升高而急剧下降这一特性制成的热敏元件,灵敏度高,可以测量小于℃的温差变化。 热敏电阻分为正温度系数热敏电阻PTC 、负温度系数热敏电阻NTC 和在某一特定温度下电阻值发生突然变化的临界温度电阻器CTR 。 实验中使用NTC ,热敏电阻的阻值与温度的关系近似符合指数规律,为: )11(00 e T T B t R R -=。式中: T 为被测温度(K),16.273t +=T 0T 为参考温度(K),16.27300+=t T T R 为温度T 时热敏电阻的阻值 0R 为温度0T 时热敏电阻的阻值

实验十二集成电路温度传感器特性测量全解

实验十二集成电路温度传感器特性测量一.概述 温度传感器的特性测量和定标是大学普通物理热学实验和电磁学实验中的一个基本内容,是新的全国理工科物理实验教学大纲中一个重要实验。为开设好此实验,由复旦大学物理实验教学中心和上海复旦天欣科教仪器有限公司协作,联合研制了采用DS18B20单线数字温度传感器为测量元件的新一代恒温控制仪。新仪器与同类其它仪器相比,有以下四个优点:1)传感器体积小;2)控温精度高;3)无污染及噪声(无水银污染且不用继电器);4)设定温度和测量温度均用数字显示。本实验仪器可用于各种温度传感器的特性测量和各种材料的电阻与温度关系特性测量实验,本仪器也可用于物理化学实验做恒温仪用,它是理工科大学普通物理实验必备重要实验装置之一。 二.用途 1.电流型集成温度传感器AD590的特性测量和应用: (1)测量AD590输出电流和温度的关系,计算传感器灵敏度及C 0时传感器输出电流 值。 (2)用AD590传感器,电阻箱,数字电压表和直流电源等设计并安装数字式摄氏温度计。 (3)测量集成温度传感器AD590在某恒定温度时的伏安特性曲线,求出AD590线性 使用范围的最小电压 U。 r 三.仪器组成与技术指标 1.仪器组成 如图1所示,本机为有单片控制的智能式数字恒温控制仪、量程为0-19.999V四位半数字电压表、直流1.5V-12V稳压输出电源、可调式磁性搅拌器以及2000ml烧杯、加热器、玻璃管(内放变压器油和被测集成温度传感器)等组成。

图1 2.技术指标: A.温控仪 (1)温度计显示工作温度:0℃-100℃ (2)恒温控制温度:室温-80o C (3)控制恒温显示分辨精度:≤±0.1℃ B.直流数字电压表 (1)量程:0-19.999V (2)读数准确度:量程0.03%±5个字 (3)输出电阻:20Ω(为了防止长时间短路内接电阻) C.温度传感器DS18B20的结构与技术特性(控温及测温用): (1)温度测量范围:-55℃-125℃ (2)测温分辨率:0.0625℃ (3)引脚排列(如图2所示):

温度传感器实验报告

温度传感器实验 姓名学号 一、目的 1、了解各种温度传感器(热电偶、铂热电阻、PN 结温敏二极管、半导体热敏电阻、集成温度传感器)的测温原理; 2、掌握热电偶的冷端补偿原理; 3、掌握热电偶的标定过程; 4、了解各种温度传感器的性能特点并比较上述几种传感器的性能。 二、仪器 温度传感器实验模块 热电偶(K 型、E 型) CSY2001B 型传感器系统综合实验台(以下简称主机) 温控电加热炉 连接电缆 万用表:VC9804A,附表笔及测温探头 万用表:VC9806,附表笔 三、原理 (1)热电偶测温原理 由两根不同质的导体熔接而成的闭合回路叫做热电回路,当其两端处于不同温度时则回路中产生一定的电流,这表明电路中有电势产生,此电势即为热电势。

图1中T 为热端,To 为冷端,热电势 本实验中选用两种热电偶镍铬—镍硅(K 分度)和镍铬—铜镍(E 分度)。 (2)热电偶标定 以K 分度热电偶作为标准热电偶来校准E 分度热电偶,被校热电偶热电势与标准热电偶热电势的误差为 式中:——被校热电偶在标定点温度下测得的热电势平均值。 ——标准热电偶在标定点温度下测得的热电势平均值。 ——标准热电偶分度表上标定温度的热电势值。

——被校热电偶标定温度下分度表上的热电势值。 ——标准热电偶的微分热电势。 (3)热电偶冷端补偿 热电偶冷端温度不为0℃时,需对所测热电势值进行修正,修正公式为: E(T,To)=E(T,t1)+E(T1,T0) 即:实际电动势=测量所得电势+温度修正电势 (4)铂热电阻 铂热电阻的阻值与温度的关系近似线性,当温度在0℃≤T≤650℃时, 式中:——铂热电阻T℃时的电阻值 ——铂热电阻在0℃时的电阻值 A——系数(=3.96847×10-31/℃) B——系数(=-5.847×10-71/℃2) 将铂热电阻作为桥路中的一部分在温度变化时电桥失衡便可测得相应电路的输出电压变化值。 (5)PN结温敏二极管 半导体PN 结具有良好的温度线性,根据PN 结特性表达公式 可知,当一个PN 结制成后,其反向饱和电流基本上只与温度有关,温度每升高一度,PN 结正向压降就下降2mv,利用PN 结的这一特性可以测得温度的变化。 (6)热敏电阻 热敏电阻是利用半导体的电阻值随温度升高而急剧下降这一特性制成的热敏元件。它呈负温度特性,灵敏度高,可以测量小于0.01℃的温差变化。图2为金属铂热电阻与热敏电阻温度曲线的比较。

实验五 温度传感器实验

实验五:温度传感器实验 一、实验目的 1.熟练掌握proteus,keil等软件的使用。 2.掌握单片机下载程序的使用。 3.熟悉单片机开发板原理图,了解各接口的作用。 4.掌握DS18B20读写时序的编程方法。 二、实验器材 单片机开发板 1块 电脑 1台 温度传感芯片ds18b20 1块 串口数据线 1根 三、实验原理 1.DS18B20 一线总线温度传感器 工作原理:本实验通过DS18B20采集环境温度,当单片 机检测到DSl820的存在便可以发出ROM操作命令之一, Read ROM(读ROM) Match ROM(匹配ROM) Skip ROM(跳过ROM) Search ROM(搜索ROM) Alarm search(告警搜索) 然后对发存储器操作命令对 DS18B20进行读写数据转换等操作。单片机使用时间隙 (time slots)来读写DSl820的数据位和写命令字的位,然后将读到的数据转换BCD码在数码管显示出来。 本实验通过DS18B20采集环境温度,当单片机检测到DSl820的存在便可以发出ROM 操作命令,然后存储器操作命令对DS18B20进行读写数据、转换等操作。单片机使用时间隙(time slots)来读写DSl820的数据位和写命令字的位,然后将读到的数据转换为BCD码在数码管显示出来,于是我们就可以在数码管上读取环境的温度了。 四实验过程 1.打开keil,直接在keil的环境下编写C源代码(或者汇编代码),编译无错误后,然后生成hex文件。如下图所示:

2.然后用proteus 打开仿真图,双击单片机,再点击文件样式的小图标,将生成的hex 文件加载到单片机,如下图所示:

实验3 温度传感器特性实验

实验3 温度传感器特性实验 【实验目的】 1、研究Pt100铂电阻、Cu50铜电阻的温度特性及其测温原理。 2、研究比较不同温度传感器的温度特性及其测温原理。 3、掌握单臂电桥及非平衡电桥的原理,及其应用。 4.研究热电偶的温差电动势。 5.、学习热电偶测温的原理及其方法。 【实验仪器】 九孔板,DH-VC1直流恒压源恒流源,DH-SJ5型温度传感器实验装置,数字万用表,电阻箱。 【实验原理】 1、Pt100铂电阻的测温原理 金属铂(Pt)的电阻值随温度变化而变化,并且具有很好的重现性和稳定性,利用铂的此种物理特性制成的传感器称为铂电阻温度传感器,通常使用的铂电阻温度传感器零度阻值为100Ω,电阻变化率为0.3851Ω/℃。铂电阻温度传感器精度高,稳定性好,应用温度范围广,是中低温区(-200~650℃)最常用的一种温度检测器,不仅广泛应用于工业测温,而且被制成各种标准温度计(涵盖国家和世界基准温度)供计量和校准使用。 2、Cu50铜电阻温度特性原理 铜电阻是利用物质在温度变化时本身电阻也随着发 生变化的特性来测量温度的。铜电阻的受热部分(感温元件)是用细金属丝均匀地双绕在绝缘材料制成的骨架上,当被测介质中有温度梯度 存在时,所测得的温度是感温元件所在范围内介质层中的平 均温度。 3.热电偶测温原理 热电偶亦称温差电偶,是由A、B两种不同材料的金属丝

的端点彼此紧密接触而组成的。当两个接点处于不同温度时,在回路中就有直流电动势产生,该电动势称为温差电动势或热电动势。当组成热电偶的材料一定时,温差电动势Ex 仅与两接点处的温度有关,并且两接点的温差在一定的温度范围内有如下近似关系式: E X ≈α( t-t 0 ) (1) 式中α称为温差电系数,对于不同金属组成的热电偶,α是不同的,其数值上等于两接点温度差为1℃时所产生的电动势。t 为工作端 的温度,t 0为冷端的温度。 为了测量温差电动势,就需要在图中的回 路中接入电位差计,但测量仪器的引入不能影 响热电偶原来的性质,例如不影响它在一定的 温差t-t 0下应有的电动势E X 值。要做到这一点, 实验时应保证一定的条件。根据伏打定律,即 在A 、B 两种金属之间插入第三种金属C 时,若 它与A 、B 的两连接点处于同一温度t 0,则该闭合回路的温差电动势与上述只有 A 、 B 两种金属组成回路 时的数值完全相同。 所以,我们把A 、B 两根不同化学成份的金属丝的一端焊在一起,构成热电偶的热端(工作端)。将另两端各与铜引线(即第三种金属C)焊接,构成两个同温度(t 0)的冷端(自由端)。铜引线与电 位差计相连,这样就组成一个热电偶温度计。如图所示。通常将冷端置于冰水混合物中,保持t 0 = 0℃,将热端置于待测温度处,即可测得相应的温差电动势, 再根据事先校正好的曲线或数据来求出温度t 。热电偶温度计的优点是热容量小,灵敏度高,反应迅速,测温范围广,还能直接把非电学量温度转换成电学量。因此,在自动测温、自动控温等系统中得到广泛应用。 在本实验的热电偶为铜-康铜热电偶,属于T 型热电偶。其测温范围-270~400℃;优点有:热电动势的直线性好;低温特性良好;再现性好,精度高;但是(+)端的铜易氧化。 【实验内容与步骤】

相关文档
相关文档 最新文档