文档视界 最新最全的文档下载
当前位置:文档视界 › 栅格、矢量结构在空间数据融合中的技术及应用

栅格、矢量结构在空间数据融合中的技术及应用

栅格、矢量结构在空间数据融合中的技术及应用
栅格、矢量结构在空间数据融合中的技术及应用

栅格、矢量结构在空间数据融合中的技术及应用1引言

由于GIS软件的多样性,每种软件都有自己特定的数据模型,造成数据存储格式和结构的不同。从数据结构上来说,矢量和栅格是地理信息系统中两种主要的空间数据结构。在数据的使用过程中,由于数据来源、结构和格式的不同,需要采用一定的技术方法,才能将他们合并在一起使用,这就产生了数据的融合问题。

2栅格、矢量数据结构的概念

基于栅格模型的数据结构简称为栅格数据结构,是指将空间分割成有规则的网格,在各个网格上给出相应的属性值来表示地理实体的一种数据组织形式;而矢量数据结构是基于矢量模型,利用欧几里得(EUCLID)几何学中的点、线、面及其组合体来表示地理实体的空间分布。

3栅格数据之间的融合

在数字制图中和GIS工程中,经常用到不同来源、不同精度、不同内容的栅格图像数据进行复合而生成新的栅格图像。目前使用的各种多源图像处理与分析系统为栅格型地理信息系统的实现开辟一条新的途径,可实现栅格数据的各种融合。而在数字制图中,多源栅格图像数据之间的融合已经非常普遍。

4矢量数据之间的融合

矢量数据是GIS和数字制图中最重要的数据源。目前很多GIS软件都有自己的数据格式,每种软件都有自己特定的数据模型,而正是这些软件的多样性,导致矢量数据存储格式和结构的不同。要进行各系统的数据共享,必须对多源数据进行融合。矢量数据之间的融合是应用最广泛的空间数据融合形式,也是空间数据融合研究的重点。目前对矢量数据的融合方法有多种,其中最主要的、应用最广泛的方法是先进行数据格式的转换即空间数据模型的融合,然后是几何位置纠正,最后是重新对地图数据各要素进行的重新分类组合、统一定义。

4.1数据模型的融合

由于各种数据格式各有自己的数据模型,格式转换就是把其他格式的数据经过专门的数据转换程序进行转换,变成本系统的数据格式,这是当前GIS软件系统共享数据的主要办法。如Arc/Info和MapInfo之间的融合,需要经过格式转换,统一到其中的一种空间数据模型。该方法一般要通过交换格式进行。许多GIS软件为了实现与其他软件交换数据,制订了明码的交换格式,如Arc/Info的E00格式、ArcView的Shape格式、MapInfo的Mif格式等。通过交换格式可以实现不同软件之间的数据转换。在这种模式下,其他数据格式经专门的数据转换

GIS矢量数据和栅格数据知识点

栅格数据和矢量数据 矢量数据 定义: ?矢量数据结构通过记录空间对象的坐标及空间关系来表达空间对象的位置。 ?点:空间的一个坐标点; ?线:多个点组成的弧段; ?面:多个弧段组成的封闭多边形; 获取方法 ?定位设备(全站仪、GPS、常规测量等) ?地图数字化 ?间接获取 ●栅格数据转换 ●空间分析(叠置、缓冲等操作产生的新的矢量数据) 矢量数据表达考虑内容 ?矢量数据自身的存储和管理 ?几何数据和属性数据的联系 ?空间对象的空间关系(拓扑关系) 矢量数据表达 ?简单数据结构 ?拓扑数据结构 ?属性数据组织 矢量数据结构编码方式 实体式 索引式 双重独立式 链状独立 栅格数据 定义 以规则像元阵列表示空间对象的数据结构,阵列中每个数据表示空间对象的属性特征。或者说,栅格数据结构就是像元阵列,每个像元的行列号确定位置,用像元值表示空间对象的类型、等级等特征。 每个栅格单元只能存在一个值。 对于栅格数据结构 ●点:为一个像元 ●线:在一定方向上连接成串的相邻像元集合。 ●面:聚集在一起的相邻像元集合。 获取方式: ●遥感数据 ●图片扫描数据 ●矢量数据转换 ●手工方式 栅格数据坐标系 栅格数据压缩编码方案 栅格数据的分层

栅格数据的组织方法 栅格数据特点 编码方式: 直接编码—无压缩编码 链式编码—便界编码 游程长度编码 块式编码 四叉树编码 矢量数据优点: ?表示地理数据的精度较高 ?严密的数据结构,数据量小 ?完整的描述空间关系 ?图形输出精确美观 ?图形数据和属性数据的恢复、更新、综合都能实现 ?面向目标,不仅能表达属性,而且能方便的记录每个目标的具体属性信息缺点: ?数据结构复杂 ?矢量叠置较为复杂 ?数学模拟比较困难 ?技术复杂,特别是软硬件 栅格数据优点: ?数据结构简单 ?空间数据的叠置和组合方便 ?各类空间分析很易于进行 ?数学模拟方便 缺点: ?图形数据量大 ?用大像元减少数据量时,精度和信息量受损 ?地图输出不美观 ?难以建立网络连接关系 ?投影变换比较费时 ?矢量数据结构是一种常见的图形数据结构,它用一系列有序的x、y坐标对表示地理实体的空间位置。 ?矢量结构的特点:属性隐含,定位明显 ?矢量型数据结构按其是否明确表示各地理实体的空间相互关系可分为实体型和拓扑型两大类。 实体型与拓扑型数据结构比较 ?两者都是目前最常用的数据结构模型 实体型代表软件为MapInfo 拓扑型代表软件为ARC/INFO ?它们各具特色 实体型虽然会产生数据冗余和歧异,但易于编辑。 拓扑型消除了数据的冗余和歧异,但操作复杂,甚至会产生新的数据冗余。

GIS矢量数据分析与栅格数据分析实验

G I S矢量数据分析与栅格 数据分析实验 This model paper was revised by the Standardization Office on December 10, 2020

本科学生实验报告姓名尹永义学号 专业地理科学班级 2014B _ 实验课程名称地理信息系统概论(实验) 实验名称矢量数据分析与栅格数据分析 指导教师及职称速绍华(讲师) 开课学期 2014 _至_ 2015_学年_下学期云南师范大学旅游与地理科学学院编印

3、实验理论依据或知识背景: 矢量数据分析矢量数据以点、线和面空间要素为输入数据。 分析结果的准确性取决于空间特征的位置及形状的准确性。 拓扑关系是一些矢量数据分析(如建立缓冲区和叠置分析)的一个因素。 基于邻近(Proximity)概念,建立缓冲区可把地图分为两个区域:一个区域位于所选地图要素的指定距离之内,另一个区域在指定距离之外。 在指定距离之内的区域称为缓冲区。 围绕点建立缓冲区产生圆形缓冲区。围绕线建立缓冲区形成一系列围绕每条线段的长条形缓冲带。围绕多边形建立缓冲区则生成由该多边形边 界向外延伸的缓冲区。 对线要素建立缓冲区未必在线两侧都有缓冲区,可以只在线的左侧或右 侧建立缓冲区。 缓冲距离(又叫缓冲大小)未必为常数,可以根据给定字段取值而变 化。 缓冲区边界也可以被融合掉,使得缓冲区之间没有叠置区。 地图叠置操作是将两个要素图层的几何形状和属性组合在一起,生成新 的输出图层。 输出图层的几何形状代表来自各输入图层的要素的几何交集。 输出图层的每个要素包含所有输入图层的属性组合,而这种组合不同于 其邻域。 所有叠置方法都是基于布尔连接符的运算,即AND、OR 和 XOR。 若使用 AND 连接符,则此叠置操作为求交(Intersect)。 若使用 OR 连接符,则此叠置操作称为联合(Union)。 若使用 XOR 连接符,则此叠置操作称为对称差异(Symmetrical Difference)或差异(Difference)。 若使用以下表达式 [(Input Layer)AND(Identity Layer)] OR (Input Layer),则该叠置操作称为识别(Identity)或减去 (Minus)。 模式分析是关于二维空间点要素空间分配的研究。 在整体水平上,模式分析可以揭示某分布模式是随机、离散还是集聚 的。 在局部水平上,模式分析可以检测出分布模式中是否含有高值或低值的局部集聚。 模式分析包括点模式分析、量测空间自相关的莫兰指数(Moran’s I)和量测高/低聚集度的G 统计量。 栅格数据分析 栅格数据分析是基于栅格像元和栅格的。 栅格数据分析能在独立像元、像元组或整个栅格全部像元的不同层次上进行。 一些栅格数据运算使用单一栅格,而另一些则使用两个或更多栅格数 据。 栅格数据分析也应考虑像元数值类型(数字型数值,类别型数值)。

ArcGIS栅格数据矢量化和编辑

实验三 ArcGIS栅格数据矢量化和编辑 一、主要内容 1、掌握ArcMap中地图、数据框架、组图层、数据层等基本概念及相互关系; 2、掌握利用ArcMap进行地图屏幕扫描数字化的主要流程及具体操作; 二、ArcMap基础知识 基本概念 1) 地图—Map (ArcMap document) 在ArcGIS中,一个地图存储了数据源的表达方式(地图,图表, 表格) 以及空间参考。在ArcMap中保存一个地图时,ArcMap将创建与数据的链接,并把这些链接与具体的表达方式保存起来。当打开一个地图时,它会检查数据链接,并且用存储的表达方式显示数据。一个保存的地图并不真正存储显示的空间数据! 2) 数据框架—Data Frame 在“新建地图”操作中,系统自动创建了一个名称为“Layers”的数据框架。在ArcMap中,一个数据框架显示统一地理区域的多层信息。一个地图中可以包含多个数据框架,同时一个数据框架中可以包含多个图层。例如,一个数据框架包含中国的行政区域等信息,另一个数据框架表示中国在世界的位置。但在数据操作时,只能有一个数据框架处于活动状态。在Data View只能显示当前活动的数据框架,而在Layout View可以同时显示多个数据框架,而且它们在版面布局也是可以任意调整的。 3)组图层-- New Group Layer 有时需要把一组数据源组织到一个图层中,把它们看作Contents窗口中的一个实体。例如,有时需要把一个地图中的所有图层放在一起或者把与交通相关的图层(如道路、铁路和站点等)放在一起,以方便管理。 4)数据层 ArcMap可以将多种数据类型作为数据层进行加载,诸如AutoCAD 矢量数据DWG,ArcGIS的矢量数据Coverage、GeoDatabase、TIN 和栅格数据GRID,ArcView的矢量数据ShapeFile,ERDAS的栅格数据ImageFile,USDS的栅格数据DEM等。注意Coverage不能直接编辑,要编辑需要将Coverage转换成ShapeFile。

ArcGis数据结构转换

ArcGis数据结构转换 地理信息系统的空间数据结构主要有栅格结构和矢量结构,它们是表示地理信息的两种不同方式。栅格结构是最简单最直观的空间数据结构,又称为网格结构(raster或grid cell)或象元结构(pixel),是指将地球表面划分为大小均匀紧密相邻的网格阵列,每个网格作为一个象元或象素,由行、列号定义,并包含一个代码,表示该象素的属性类型或量值,或仅仅包含指向其属性记录的指针。因此,栅格结构是以规则的阵列来表示空间地物或现象分布的数据组织,组织中的每个数据表示地物或现象的非几何属性特征。矢量结构是通过记录坐标的方式尽可能精确地表示点、线、多边形等地理实体。在地理信息系统中栅格数据与矢量数据各具特点与适用性,为了在一个系统中可以兼容这两种数据,以便有利于进一步的分析处理,常常需要实现两种结构的转换。 1.栅格数据向矢量数据的转换 栅格向矢量转换处理的目的,是为了将栅格数据分析的结果,通过矢量绘图装置输出,或者为了数据压缩的需要,将大量的面状栅格数据转换为由少量数据表示的多边形边界,但是主要目的是为了能将自动扫描仪获取的栅格数据加入矢量形式的数据库。 由栅格数据可以转换为3种不同的矢量数据,分为点状、线状和面状的矢量数据。下面以栅格数据转换为面状矢量数据为例进行说明,其他两种转换操作大同小异,这里不再具体说明。 (1)展开Conversion Tools工具箱,打开From Raster 工具集,双击Raster to Polygon,打开Raster to Polygon对话框(图1)。 图1 Raster to Polygon对话框 (2)在Input raster文本框中选择输入需要转换的栅格数据。 (3)在Output Polygon Features文本框键入输出的面状矢量数据的路径与名称。 (4)选择Simplify Polygons按钮(默认状态是选择),可以简化面状矢量数据的边界形状。(5)单击OK按钮,执行转换操作。

实验三、ArcMap栅格数据矢量化

实验三、ArcMap栅格数据矢量化 一、主要内容 1、掌握ArcMap中地图、数据框架、组图层、数据层等基本概念及相互关系; 2、掌握利用ArcMap进行地图屏幕扫描数字化的主要流程及具体操作; 二、ArcMap基础知识 基本概念 1) 地图—Map (arcMap document) 在ArcGIS中,一个地图存储了数据源的表达方式(地图,图表, 表格) 以及空间参考。在ArcMap中保存一个地图时,ArcMap将创建与数据的链接,并把这些链接与具体的表达方式保存起来。当打开一个地图时,它会检查数据链接,并且用存储的表达方式显示数据。一个保存的地图并不真正存储显示的空间数据! 2) 数据框架—Data Frame 在“新建地图”操作中,系统自动创建了一个名称为“Layers”的数据框架。在ArcMap 中,一个数据框架显示统一地理区域的多层信息。一个地图中可以包含多个数据框架,同时一个数据框架中可以包含多个图层。例如,一个数据框架包含中国的行政区域等信息,另一个数据框架表示中国在世界的位置。但在数据操作时,只能有一个数据框架处于活动状态。在Data View只能显示当前活动的数据框架,而在Layout View可以同时显示多个数据框架,而且它们在版面布局也是可以任意调整的。 3)组图层-- New Group Layer 有时需要把一组数据源组织到一个图层中,把它们看作Contents窗口中的一个实体。例如,有时需要把一个地图中的所有图层放在一起或者把与交通相关的图层(如道路、铁路和站点等)放在一起,以方便管理。 4)数据层 ArcMap可以将多种数据类型作为数据层进行加载,诸如AutoCAD矢量数据DWG,ArcGIS的矢量数据Coverage、GeoDatabase、TIN和栅格数据GRID,ArcView的矢量数据ShapeFile,ERDAS的栅格数据ImageFile,USDS的栅格数据DEM等。注意Coverage 不能直接编辑,要编辑需要将Coverage转换成ShapeFile。 5)shape的要素类型 point、polyline、Polygon、Multipoint、MultiPatch. 三、ArcScan矢量化具体内容及操作 ArcScan ARCSCAN是ARC/INFO的扫描图预处理及矢量化模块,具有噪音消除、斑点剔除、交互式线状要素跟踪、栅格到矢量的批处理、栅格与矢量数据的一体化编辑功能。ArcScan是ArcGIS中一个把扫描栅格转化为矢量GIS图层的工具,这个过程可以交互式或自动进行。 ArcScan工具使用的几个前提是: 1, ArcScan扩展模块必须激活 2, ArcMap中添加了至少一个栅格数据层(TIF IMG图象等)和至少一个矢量数据层(可以是点线面等) 3, 栅格数据必须进行过二值化处理(变为黑白图片) 4, Editor必须启动 练习1:栅格跟踪 ArcScan使得从扫描栅格上建立新要素变得简单,这个过程可以减少在矢量数据库中一体化栅格数据的时间。

(完整word版)栅格数据结构和矢量数据结构空间分析

一、矢量、栅格数据结构的优缺点 矢量数据结构可具体分为点、线、面,可以构成现实世界中各种复杂的实体,当问题可描述成线或边界时,特别有效。矢量数据的结构紧凑,冗余度低,并具有空间实体的拓扑信息,容易定义和操作单个空间实体,便于网络分析。矢量数据的输出质量好、精度高。 矢量数据结构的复杂性,导致了操作和算法的复杂化,作为一种基于线和边界的编码方法,不能有效地支持影像代数运算,如不能有效地进行点集的集合运算(如叠加),运算效率低而复杂。由于矢量数据结构的存贮比较复杂,导致空间实体的查询十分费时,需要逐点、逐线、逐面地查询。矢量数据和栅格表示的影像数据不能直接运算(如联合查询和空间分析),交互时必须进行矢量和栅格转换。矢量数据与DEM(数字高程模型)的交互是通过等高线来实现的,不能与DEM 直接进行联合空间分析。 栅格数据结构是通过空间点的密集而规则的排列表示整体的空间现象的。其数据结构简单,定位存取性能好,可以与影像和DEM数据进行联合空间分析,数据共享容易实现,对栅格数据的操作比较容易。 栅格数据的数据量与格网间距的平方成反比,较高的几何精度的代价是数据量的极大增加。因为只使用行和列来作为空间实体的位置标识,故难以获取空间实体的拓扑信息,难以进行网络分析等操作。栅格数据结构不是面向实体的,各种实体往往是叠加在一起反映出来的,因而难以识别和分离。对点实体的识别需要采用匹配技术,对线实体的识别需采用边缘检测技术,对面实体的识别则需采用影像分类技术,这些技术不仅费时,而且不能保证完全正确。

通过以上的分析可以看出,矢量数据结构和栅格数据结构的优缺点是互补的(图2-4-1),为了有效地实现GIS中的各项功能(如与遥感数据的结合,有效的空间分析等)需要同时使用两种数据结构,并在GIS中实现两种数据结构的高效转换。 在GIS建立过程中,应根据应用目的和应用特点、可能获得的数据精度以及地理信息系统软件和硬件配置情况,选择合适的数据结构。一般来讲,栅格结构可用于大范围小比例尺的自然资源、环境、农林业等

矢量数据与栅格数据

矢量数据与栅格数据 1.矢量数据 矢量数据主要是指城市大比例尺地形图。此系统中图层主要分为底图层、道路层、单位 层,合理的分层便于进行叠加分析、图形的无逢拼接以实现系统图形的大范围漫游。矢量数据一般通过记录坐标的方式来尽可能将地理实体的空间位置表现的准确无误,显示的图形一般分为矢量图和位图。 矢量数据是计算机中以矢量结构存贮的内部数据。是跟踪式数字化仪的直接产物。在矢量数据结构中,点数据可直接用坐标值描述;线数据可用均匀或不均匀间隔的顺序坐标链来描述;面状数据(或多边形数据)可用边界线来描述。矢量数据的组织形式较为复杂,以弧段为基本逻辑单元,而每一弧段以两个或两个以上相交结点所限制,并为两个相邻多边形属性所描述。在计算机中,使用矢量数据具有存储量小,数据项之间拓扑关系可从点坐标链中提取某些特征而获得的优点。主要缺点是数据编辑、更新和处理软件较复杂。 2..栅格数据 栅格数据是按网格单元的行与列排列、具有不同灰度或颜色的阵列数据。每一个单元(象素)的位置由它的行列号定义,所表示的实体位置隐含在栅格行列位置中,数据组织中的每个数据表示地物或现象的非几何属性或指向其属性的指针。一个优秀的压缩数据编码方案 是:在最大限度减少计算机运算时间的基点上进行最大幅度的压缩。 栅格数据是按网格单元的行与列排列、具有不同灰度或颜色的阵列数据。栅格结构是大小相等分布均匀、紧密相连的像元(网格单元)阵列来表示空间地物或现象分布的数据组织。是最简单、最直观的空间数据结构,它将地球表面划分为大小、均匀、紧密相邻的网格阵列。每一个单元(象素)的位置由它的行列号定义,所表示的实体位置隐含在栅格行列位置中,数据组织中的每个数据表示地物或现象的非几何属性或指向其属性的指针。对于栅格结构:点实体由一个栅格像元来表示;线实体由一定方向上连接成串的相邻栅格像元表示;面实体(区域)由具有相同属性的相邻栅格像元的块集合来表示。

基于ArcGIS Engine的栅格数据转换矢量数据

基于ArcGIS Engine的栅格数据转换矢量数据 摘要:ArcGIS提供了栅格数据向矢量数据转换函数,但是有特定的要求。同时,在ArcGIS Engine中提供了操作栅格数据的函数,可以对栅格数据进行编辑,从而可以到达栅格数据转矢量数据的要求。 关键词:ArcGIS Engine ;栅格数据;矢量数据 Abstract: The ArcGIS provides raster data to vector data conversion function, but it has the specific requirements. At the same time, providing the operating raster data function in the ArcGIS Engine, can edit the raster data, to reach the raster data to the vector data requirements. Key words: ArcGIS Engine, raster data, vector data 在日常地理信息数据处理中,会对栅格数据进行各种要求处理,并且最终要求将其转换成矢量数据[1][2][3][4][5]。我们可以采用ArcGIS Engine中提供的操作栅格数据的函数,对栅格数据进行各种编辑,满足对栅格数据的各种操作,同时可以将栅格数据转换成矢量数据。 ArcGIS栅格转矢量工具 在ArcGIS桌面版中打开ArcToolbox找到转换工具->由栅格转出,可以找到具体的栅格转矢量的工具。比较常用的是转点、转线、转面。查看帮助文档可以看到栅格转面矢量的函数是RasterToPolygon_conversion (in_raster, out_polygon_features, {simplify}, {raster_field}),其用法要求为:输入栅格的栅格单元大小可以任意,但必须属于有效的整数型栅格数据集。对栅格数据集要求必须是整数型(指栅格数据中格网像素的数据类型)。然而,在实际数据中大部分栅格数据采用浮点型。在ArcGIS中可以通过查看栅格数据的文件属性来查看栅格数据的像素数据类型,如图1。 由于ArcGIS中栅格转矢量工具的具体要求,所有必须对栅格数据进行像素类型转换;同时,要满足数据转出的其它要求,比如某一个栅格数据中,只要求像素值在某个特定范围的数据转出为矢量数据等各种具体的实际操作要求,有必须对栅格数据进行改写等的操作。在ArcGIS Engine中提供了操作栅格数据的函数,可以对栅格数据进行编辑,所有,有必要运用ArcGIS Engine对栅格数据进行编辑,从而满足栅格转矢量等各种具体要求。

矢量、栅格数据结构的优缺点

§2.4 矢量栅格一体化数据结构 一、矢量、栅格数据结构的优缺点 矢量数据结构可具体分为点、线、面,可以构成现实世界中各种复杂的实体,当问题可描述成线或边界时,特别有效。矢量数据的结构紧凑,冗余度低,并具有空间实体的拓扑信息,容易定义和操作单个空间实体,便于网络分析。矢量数据的输出质量好、精度高。 矢量数据结构的复杂性,导致了操作和算法的复杂化,作为一种基于线和边界的编码方法,不能有效地支持影像代数运算,如不能有效地进行点集的集合运算(如叠加),运算效率低而复杂。由于矢量数据结构的存贮比较复杂,导致空间实体的查询十分费时,需要逐点、逐线、逐面地查询。矢量数据和栅格表示的影像数据不能直接运算(如联合查询和空间分析),交互时必须进行矢量和栅格转换。矢量数据与DEM(数字高程模型)的交互是通过等高线来实现的,不能与DEM 直接进行联合空间分析。 栅格数据结构是通过空间点的密集而规则的排列表示整体的空间现象的。其数据结构简单,定位存取性能好,可以与影像和DEM数据进行联合空间分析,数据共享容易实现,对栅格数据的操作比较容易。 栅格数据的数据量与格网间距的平方成反比,较高的几何精度的代价是数据量的极大增加。因为只使用行和列来作为空间实体的位置标识,故难以获取空间实体的拓扑信息,难以进行网络分析等操作。栅格数据结构不是面向实体的,各种实体往往是叠加在一起反映出来的,因而难以识别和分离。对点实体的识别需

要采用匹配技术,对线实体的识别需采用边缘检测技术,对面实体的识别则需采用影像分类技术,这些技术不仅费时,而且不能保证完全正确。 通过以上的分析可以看出,矢量数据结构和栅格数据结构的优缺点是互补的(图2-4-1),为了有效地实现GIS中的各项功能(如与遥感数据的结合,有效的空间分析等)需要同时使用两种数据结构,并在GIS中实现两种数据结构的高效转换。 在GIS建立过程中,应根据应用目的和应用特点、可能获得的数据精度以及地理信息系统软件和硬件配置情况,选择合适的数据结构。一般来讲,栅格结构可用于大范围小比例尺的自然资源、环境、农林业等区域问题的研究。矢量结构用于城市分区或详细规划、土地管理、公用事业管理等方面的应用。 完

栅格矢量数据的相互转换

栅格、矢量数据的相互转换 地理信息系统空间数据类型主要有矢量和栅格结构。矢量结构包含有拓扑信息,通常应用于空间关系的分析;栅格数据则易于表示面状要素,主要应用于空间分析和图象处理。由于栅格和矢量数据在GIS应用过程中各有其优缺点,所以,一般情况下,同一个GIS系统能够处理、存储栅格和矢量数据。对同一研究区域而言,有时为了分析处理问题的方便,需要实现栅格和矢量数据间的转换(如扫描图象的矢量化,地形图的栅格化)。 矢量向栅格的转换 图3-37 栅格单元属性值的确定 从矢量向栅格转换过程中,应尽量保持矢量图形的精度。在决定属性值时尽可能保持空间变量的真实性和最大信息量。在图3-37中,格网单元对应几种不同的属性值,而每一单元只能取一个值。在这种情况下,有如下一些取值方法。 (1)中心点法:用处于格网单元0处的地物类型或空间特征决定属性值。此时,该单元属性值为C。此法常用于连续分布的地理要素,如降雨量分布、大气污染等; (2)面积占优法:以占单元面积最大的地物类型和空间特征决定格网单元的属性值。此时,栅格单元的属性值为B。面积占优法适合分类较细、地物类别斑块较小的情况; (3)重要性法:根据格网单元内不同地物的重要性,选取最重要的地物类型代表相应的格网单元的属性值。这种方法对于特别重要的地理实体,尽管其面积很小或不在格网的中心,也采取保留的原则。重要性法常用于具有特殊意义而面积较小的地理要素,特别是具有点、线状分布的地理要素,如城镇、交通枢纽、河流水系等。 在进行弧段或多边形的矢量化时,可以利用上述三种方法确定格网的属性值。 为了逼近原图或原始数据精度,除了采用上述几种取值方法外,还可以采用提

GIS栅格数据与矢量数据

1.空间实体选择网络,那个点既没有长宽,也没有方向,只能反应一个位置吧,不能反应其它的。线的话有长短,但是只有一边不能知道大小,我们土管只有线状地物是用一条线来表示的,其它的地类什么的都不能只有一条线的。区的话虽然有了一个形状和大小,但是不能知道这个区域的坐标和其它信息的。面也只能知道这一片区域的面积大小和位置,但是地类、权属什么的都不能知道,网络的话这一系列信息就可以都清楚了。 2.我的话应该会选择栅格数据模型吧,从那个它们的互相比较来看,虽然它的的精度比矢量数据要低的多,但是它的数据结构比较简单,那么处理数据的人就理解容易一点,我们使用的人也容易看懂,太复杂的数据像那个矢量数据就不是那么好理解的。虽然它的数据量会多一些,但是我们用电脑来处理的话就很方便了,量大而不是量复杂对于电脑是最好的。而那个栅格数据的空间分析和数学建模都容易的多,分析和数据的运用是有关联的,数学模型建立也容易,那么它的运用会广泛的多。我们土地资源管理要用上遥感影像图和什么卫星航片的吧,我知道矢量数据是不管放大或者缩小多少倍它都是不会变形的,就是不管分辨率多少精度是很高的,而遥感影像图那些它们的精度和分辨率是有关系的,而栅格数据它放大缩小就会变形的。那遥感影像图什么的用的应该是栅格数据吧,那么我们的土地管理与遥感影像图离不开的肯定要用栅格数据了。而那个图形输出后是不是美观的话我们土地管理就不会太注重这个,只要能够真实的反应土地的情况就好了。还有栅格数据的取值类型很多,课件上面列举了很多,而且图片不美观的话我们可以将图片进行处理呀,像我们每次都会对遥感影像图有个图像的预处理,校正、将低分辨率和多光谱融合之类的,这样也能够使图像美观一点。所以我选择栅格数据模型。 3.那个空间数据结构我选择栅格数据结构,因为栅格数据的编码方法多而且更简单,矢量结构的编码方法都比较复杂,处理起来麻烦那么花费的时间长,明显不利于我们土地管理要求信息的现势性,信息的共享性。栅格结构的属性明显,定位隐含,矢量结构的定位明显,属性隐含,矢量数据侧重于表示长度和面积。我们土地管理虽然要知道土地的面积与大小,但是其他方面的信息更重要,而不是仅仅大小面积,我们更侧重于其他的一些信息。我觉得栅格结构转为矢量结构比矢量结构转化为为栅格结构更容易一点吧。不过网络的定义上建立模型好像矢量结构更好一点的样子,应该这二种数据都要一起用上最好,不过要我选择一种我只有选择栅格结构了,这个我个人觉得优势更多,我比较有话写。 参考老师的课件和自己的了解来写的,有些也凭自己感觉写的不知道对不对。

GIS矢量数据分析与栅格数据分析实验完整版

G I S矢量数据分析与栅 格数据分析实验 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

本科学生实验报告 姓名尹永义学号 专业地理科学班级 2014B _ 实验课程名称地理信息系统概论(实验) 实验名称矢量数据分析与栅格数据分析 指导教师及职称速绍华(讲师) 开课学期 2014 _至_ 2015_学年_下学期云南师范大学旅游与地理科学学院编印

3、实验理论依据或知识背景: 矢量数据分析矢量数据以点、线和面空间要素为输入数据。 分析结果的准确性取决于空间特征的位置及形状的准确性。 拓扑关系是一些矢量数据分析(如建立缓冲区和叠置分析)的一个因素。 基于邻近(Proximity)概念,建立缓冲区可把地图分为两个区域:一个区域位于所选地图要素的指定距离之内,另一个区域在指定距离之外。 在指定距离之内的区域称为缓冲区。 围绕点建立缓冲区产生圆形缓冲区。围绕线建立缓冲区形成一系列围绕每条线段的长条形缓冲带。围绕多边形建立缓冲区则生成由该多边形边 界向外延伸的缓冲区。 对线要素建立缓冲区未必在线两侧都有缓冲区,可以只在线的左侧或右 侧建立缓冲区。 缓冲距离(又叫缓冲大小)未必为常数,可以根据给定字段取值而变 化。 缓冲区边界也可以被融合掉,使得缓冲区之间没有叠置区。 地图叠置操作是将两个要素图层的几何形状和属性组合在一起,生成新 的输出图层。 输出图层的几何形状代表来自各输入图层的要素的几何交集。 输出图层的每个要素包含所有输入图层的属性组合,而这种组合不同于 其邻域。 所有叠置方法都是基于布尔连接符的运算,即AND、OR 和 XOR。 若使用 AND 连接符,则此叠置操作为求交(Intersect)。 若使用 OR 连接符,则此叠置操作称为联合(Union)。 若使用 XOR 连接符,则此叠置操作称为对称差异(Symmetrical Difference)或差异(Difference)。 若使用以下表达式 [(Input Layer)AND(Identity Layer)] OR (Input Layer),则该叠置操作称为识别(Identity)或减去 (Minus)。 模式分析是关于二维空间点要素空间分配的研究。 在整体水平上,模式分析可以揭示某分布模式是随机、离散还是集聚 的。 在局部水平上,模式分析可以检测出分布模式中是否含有高值或低值的局部集聚。 模式分析包括点模式分析、量测空间自相关的莫兰指数(Moran’s I)和量测高/低聚集度的G 统计量。 栅格数据分析 栅格数据分析是基于栅格像元和栅格的。 栅格数据分析能在独立像元、像元组或整个栅格全部像元的不同层次上进行。 一些栅格数据运算使用单一栅格,而另一些则使用两个或更多栅格数 据。

矢量数据的获取与处理

第3章矢量数据与栅格数据的获取及处理 导读:GIS项目中费用最大的部分是数据库建设,即基础地理信息的获取与处理,这其中就包括矢量数据和栅格数据的获取与处理,例如遥感影像数据现已作为地理信息系统的重要数据来源。本章分别介绍了矢量数据的获取与处理以及栅格数据的获取与处理,以及他们的应用。并在最后一节介绍了矢栅一体化数据结构的基本概念。 3.1矢量数据的获取与处理方法 3.1.1矢量数据的概念 矢量数据(Vector Data)即在直角坐标系中,用X、Y坐标表示地图图形或地理实体的位置的数据。矢量数据一般通过记录坐标的方式来尽可能将地理实体的空间位置表现的准确无误。 在计算机地图制图中,各地图图形元素在二维平面上的矢量数据表示为:点——用一对(x,y)坐标表示; 线——用一串有序的(x,y)坐标对表示; 面——用一串有序的但首尾坐标相同的(x,y)坐标对表示其轮廓范围。 地图数据与其他大多数由计算机处理的科学数据是极其不同的。大部分地图数据都是反映制图现象的地理分布,故具有定位的性质,也称这类地图数据为空间数据(或几何数据)。空间数据可反映点、线和面状物体的定位特性。还有一部分地图数据是用来描述制图现象的质量和数量特征,如哪是河流,哪是道路,哪是居民点以及它们的名称和其他有关的特征描述等,这类数据通常称之为属性数据。任何地图数据都有时间性,即现势性,这是显而易见的。 3.1.2几何数据的获取 几何数据是根据给定各要素相对位置或绝对位置的坐标来描述的。其获取的方法主要有:

1)由外业测量获得,如数字测图。野外实地测量等获取的数据可转换后直接进入GIS的地理数据库,以便于进行实时的分析和进一步的应用。GPS所获取的数据也是GIS的重要数据源。 2)由栅格形式的空间数据转换获得。栅格数据结构向矢量数据结构的转换又称为矢量化。如卫星测地、扫描数字化仪扫描、航摄像片等。可以用此类数据转化为矢量数据。 基于图像数据的矢量化方法: ①二值化:线画图形扫描后产生图像栅格数据,这些数据是按0~255的不同灰度值量度的,将这种256级不同的灰度压缩到2个灰度形成二值图,即0和1两级灰度图。 ②细化:细化是消除线画横断面栅格数的差异,使得每一条线只保留代表其轴线或周围轮廓线位置的单个栅格的宽度。对于栅格线画的细化方法,可分为“剥皮法”和“骨架法”。 ③跟踪:跟踪的目的是将细化处理后的栅格数据转化为从节点出发的线段或闭合的线条,并以矢量形式存储线段的坐标。跟踪时,从起始点开始,根据八个邻域进行搜索下一个相邻点的位置,记录坐标,直到完成全部栅格数据的矢量化。 3)对现有地图跟踪数字化获得,将现有的地图图形离散化为数据。 跟踪数字化是目前应用最广泛的一种地图数字化方式,是通过记录数字化板上点的平面坐标来获取矢量数据的。其基本过程是:将需数字化的图件(地图、航片等)固定在数字化板上,然后设定数字化范围、输入有关参数、设置特征码清单、选择数字化方式(点方式和流方式等),就可以按地图要素的类别分别实施图形数字化了。 由于跟踪数字化本身几乎不需要GIS的其它计算功能,所以跟踪数字化软件往往可以与整个GIS系统脱离开,因而可单独使用。

矢量数据与栅格数据分析

一、实验目的与要求 目的: 1.从这个实验中掌握如何合理利用空间分析中的缓冲区分析和叠置分析解决实际问题。 2.学会用 ArcGIS9 进行各种类型的最短路径分析,了解内在的运算机理。 要求: 练习1:所寻求的市区是噪声要小,距离商业中心要近,要和各大名牌高中离的近以便小孩容易上学,离名胜古迹较近环境优雅。 练习2:给出到达指定目的地的路径选择方案,根据不同的权重要求得到不同的最佳路径,并给出路径的长度;根据需求找出最近的设施的路径。 二、实验准备 实验1:城市市区交通网络图(network.shp ),商业中心分布图(Marketplace.shp),名牌高中分布图(school.shp),名胜古迹分布图(famous place.shp ),区域边框(frame.shp ),这些文件综合在一起是city.mxd 。 实验2:一个GeoDatabase 地理数据库:City.mdb ,内含有城市交通网、超市分布图,家址以及网络关系。 三、实验内容与主要过程 练习1:市区择房分析 打开 ArcMap,将文件加入到窗口中,注意设置单位,否则接下来的操作会受影响。 图1 设置单位为M (1)主干道噪音缓冲区的建立 1)选择交通网络图层(network.shp),打开图层的属性表,在右下角的打开 option 选项中,在菜单中选择 select by attributes,在 select by attributes 对话框中进行设置,就将市区的主要道路选择出来了。 图2 选择市区主要道路 2)点击缓冲区按钮对选择的主干道进行缓冲区的建立,首先在缓冲区对象图层,选择交

通网络图层(network),然后将下面的 Use Only the Selected Feature(仅对选择的要素进行分析)选中,单击 next; 3)确定尺寸单位,选择第一种缓冲区建立方法(At a specified distance),指定缓冲区半径为 200 米,单击 next; 图3 确定尺寸单位 4)由于不是分别考虑一个图层的各个不同的要素的目的,所以我们在这里选择的是第一种边界设定类型(Dissolve barriers between),然后指定好缓冲区文件的存放路径和文件名后,单击 OK,完成主干道噪音污染缓冲区的建立。 图4 道路缓冲区 (2)商业中心影响范围建立 1)建立大型商业中心的影响范围。首先点击缓冲区按钮,在缓冲区对象图层选择商业中心分布图层,单击 next; 2)确定尺寸单位,选择第一种缓冲区建立方法,以其属性字段 YUZHI 为缓冲区半径,单击 next; 3)选择的是第一种边界设定类型,然后指定好缓冲区文件的存放路径和文件名后,单击OK,完成商业中心影响范围缓冲区的建立。 图5 商业中心缓冲区 (3)名牌高中的影响范围建立

矢量及栅格数据分析实验报告

. 信息工程学院资源环境学院《GIS原理》实验报告 实验名称矢量及栅格数据分析 实验时间2015.4.22 实验地点资环楼229 姓名 学号 班级遥感科学与技术131

《GIS原理》实验报告 一、实验目的及要求 1)掌握矢量数据插值分析、栅格数据重分类、叠加分析的基本原理; 2)熟悉ArcGis 中离散点数据插值分析的基本方法; 3)熟悉ArcGis 中栅格数据重分类、栅格计算器的基本操作; 4)熟悉ArcGis 中栅格数据分区统计的基本方法; 5)了解ArcGis 中缓冲区分析、按掩膜提取的基本方法。 二、实验设备及软件平台 ArcCatalog 10、ArcMap 10.2 三、实验原理 1)数据插值分析 2)栅格数据重分类原理 3)叠加分析的基本原理 四、实验容与步骤 1 空间插值分析 1)打开ArcMap中,将数据框更名为“任务1”,加入省边界图层。

2)将2011 年02 月27 日08 时观测资料.xls、2011 年02 月27日14 时.xls 通过Add Xy Data 功能,生成点图层。导出数据,分别命名为Obs2708.shp 和Obs2714.shp。 3)对Obs2708.shp 中的属性“温度”在四川围进行插值分析。可以通过“Arctoolbox->Spatial Analyst(空间分析)工具中的Interpolate to Raster(插值)工具选择。(本实验采用反距离权重法IDW),点插值成栅格表面。

4)通过属性中的符号系统,修改显示样式。

2 多栅格局域运算 1)启动ArcMap,添加数据框,并更名为“任务2”,将温度栅格数据IDW2708、IDW2714 加入。 2)确认是否选择扩展模块的许可。“自定义菜单(Customize)”中的“扩展模块Extensions”功能对话框中的Spatial Analyst 均已打钩。

实验四矢量数据与栅格数据分析2

测绘工程学院 GIS软件应用 实验报告书 实验名称:实验四、矢量数据与栅格数据分析2专业班级: 姓名: 学号: 实验地点: 实验时间: 实验成绩: 地理信息系

一、实验目的与要求 通过练习,熟悉ArcGIS栅格数据距离制图、成本距离加权、数据重分类、多层面合并等空间分析功能,熟练掌握利用ArcGIS上述空间分析功能分析和结果类似学校选址的实际应用问题的基本流程和操作过程。 练习一 1、新学校选址需注意如下几点: 1)新学校应位于地势较平坦处; 2)新学校的建立应结合现有土地利用类型综合考虑,选择成本不高的区域; 3)新学校应该与现有娱乐设施相配套,学校距离这些设施愈近愈好; 4)新学校应避开现有学校,合理分布。 2、各数据层权重比为:距离娱乐设施占0.5,距离学校占0.25,土地利用类型和地势位置因素各占0.125。 3、实现过程运用ArcGIS的扩展模块(Extension)中的空间分析(Spatial Analyst)部分功能,具体包括:坡度计算、直线距离制图功能、重分类及栅格计算器等功能完成。 4、最后必须给出适合新建学校的适宜地区图,并对其简要进行分析。 练习二 1、新建路径成本较少; 2、新建路径为较短路径; 3、新建路径的选择应该避开主干河流,以减少成本; 4、新建路径的成本数据计算时,考虑到河流成本(Reclass_river)是路径成本中较关键因素,先将坡度数据(reclass_slope)和起伏度数据(reclass_QFD)按照0.6:0.4权重合并,然后与河流成本作等权重的加和合并,公式描述如下: cost = Reclass_river + ( reclass_slope*0.6+reclass_QFD*0.4) 5、寻找最短路径的实现需要运用ArcGIS的空间分析(Spatial Analyst)中距离制图中的成本路径及最短路径、表面分析中的坡度计算及起伏度计算、重分类及栅格计算器等功能完成; 6、最后提交寻找到的最短路径路线图。 练习三 1、熊猫活动具有一定的槽域范围,一个槽域范围只有一个或一对熊猫,在此练习中,假设熊猫槽域半径为5km。 2、虽然一个采样点代表一个熊猫,但由于熊猫的生存具有确定槽域特征,不同的采样点具有不同的空间控制面积。假定熊猫活动范围分布满足以采样点为中心的泰森多边形,如何将这一信息加入密度分布图是本练习的重点。 3、在野外实采的熊猫活动足迹数据的基础上,以每个熊猫槽域范围为权重,运用ArcGIS 中的区域分配功能制作该地区熊猫分布密度图。 练习四 1、经济的发展具有一定的连带效应和辐射作用。以该地区各区域年GDP数据为依据, 采用IDW和Spline内插方法创建该地区GDP空间分异栅格图。 2、分析每种插值方法中主要参数的变化对内插结果的影响。 3、分析两种内插方法生成的GDP空间分布图的差异性,简单说明形成差异的主要原因。 4、通过该练习,熟练掌握两种插值方法的适用条件。 练习五 1、应用栅格数据空间分析模块中的等高线提取功能,分别提取等高距为15米和75米的等高线图,并按标准地形图绘制等高线方法绘制等高线,作为山顶点、凹陷点空间分布的

矢量数据栅格化

矢量数据栅格化 矢量数据栅格化,就是求点、线、面对象所经过或覆盖的网格单元,这在矢量数据转栅格数据、地图标注、空间拓扑分析、网格索引中有着广泛的应用,下面就点、线、面三种类型对象的栅格化分别进行讨论。 一、点的栅格化 点的栅格化,就是求一个点(xi,yi)位于在哪个网格单元内。 二、线段的栅格化 线段的栅格化,就是求线段所经过的网格单元集合。有多种情况,下面分别介绍。

至于|GridB.gridx-GridA.gridx|=|GridB.gridy-GridA.gridy|这种情况,可以任意选择横向或者纵向来进行循环。不管哪种情况,都是划归为求点的网格位置(求端点、交点的网格位置)。熟悉了线段的栅格化,那折线(多段线polyline)的栅格化,在线段栅格化的基础上for循环,同时考虑线段端点的顺序方向就可以了。这个留给大家思考吧,呵呵… 三、面的栅格化 面的栅格化,就是求面所占据的网格单元集合。面对象就是首尾相连的折线所围成区域,起点坐标和终点坐标是一样的。面的栅格化有多种方法,这些介绍一种,首先按坐标顺序,对面的边界折线进行栅格化同时赋予不同的值,可约定,处于上升处的网格被赋值”L”,处于下降处的网格被赋值”R”(或者相反,都无所谓),处于平坦处或者升降不变的的网格被赋值”N”(见图)。然后,确定了面对象的MBR所占据的网格范围,进行逐行扫描,从左往右,将每行中的”L”和”R”配对,并在每对”L”” R”之间(包括”L”” R”所在的边界网格)都是面对象所占据的网格,并可以把这些网格赋值为特定的值,便于下面的分析处理。在配对时,可以不顾”N”的存在,但在配对之后,应包括进面对象占据网格的集合中,同时赋上特定的值。

在ArcGIS中栅格大数据矢量化

在ArcGIS中(TIF、JPEG)栅格图像矢量化 一、图像加载。 启动ArcMap,【开始】→【程序】→【ArcGIS】→【ArcMap】,选择A existing map,单击Browse for maps。 跳出文件选择对话框。选择所要打开的地图文件出现如下界面。 二、点状符号矢量化 2.1 新建点状地理要素图层 单击ArcMap工具条上的ArcCatalog按钮打开ArcCatalog程序(ArcGIS 的地理信息资源都这里完成创建、删除、复制等管理工作),出现如下对话框。 在Catalog树下找到地图存储所在位置,鼠标右键菜单中选择New子菜单的Shapefile…新建一个Shape格式的地理要素文件(地理要素可存储为其他格

式)。输入文件名称和符号类型,Name: 城市,Feature Type: Point(点状符号)。 设置地图投影,在Spatial Reference下选择Edit,跳出空间参考属性对话框。 选择Select…,提出地图投影选择对话框Browse for Coordnate Systems。 选择Geographic Coordinate Systems/Asia/Xian 1980.prj,单击Add,并【确定】,则完成了新建一个点状Shape格式的地理要素文件【城市】图层。2.2 添加图层 单击ArcMap工具条上的添加图层工具,找到前面新建【城市】图层所在目录,选择城市.shp文件,单击Add,中地图中添加城市图层。

2.3 设置符号格式 对准ArcMap界面中,左边layers/城市下面的点状符号双击,跳出符号选项对话框,设置点状符号样式。选择符号类型Circle 20,符号设置选 项Options中,Color下拉表中选择白色,Size设置为20,Angle设置为0。 2.4 点状符号定位 在ArcMap工具条上点击Editor下拉菜单,选择Starting Editing,进入 编辑状态。使用“Edit Tool”工具可选择要素,右键菜单中有复制、删除、粘 贴等操作。 选择Editor工具条的Sketch Tool工具,移动鼠标到地图区,按住“Z”键放大地图,按住“X”键缩小地图,按住“C”键移动地图,找到合适位置时单击一下鼠标,一个点要素创建成功。依次把江苏省十三个地级城市用点状符号标出来。并点击Editor下拉菜单,选择Stop Editing。跳出是否保存所做的编辑 对话框。

相关文档
相关文档 最新文档