文档视界 最新最全的文档下载
当前位置:文档视界 › [精美版]2014年广东高考文科数学(逐题详解)

[精美版]2014年广东高考文科数学(逐题详解)

[精美版]2014年广东高考文科数学(逐题详解)
[精美版]2014年广东高考文科数学(逐题详解)

O x

y

A B

C

D

2014 年广东高考文科数学逐题详解

详解提供: 广东佛山市南海中学 钱耀周

参考公式:椎体的体积公式 1

3

V Sh = ,其中S 为椎体的底面积,h 为椎体的高.

一组数据 12 ,,, n

x x x L 的方差 ( ) ( ) ( )

2

2

2

2

12

1 n

s x x x

x

x

x n é

ù =-+-++- ê

ú ??

L ,其中x 表示这组数据的平

均数.

一、选择题:本大题共 10 小题,每小题 5 分,满分 50 分,在每小题给出的四个选项中,只有一 项是符合题目要求的.

1.已知集合 { } 2,3,4 M = , { } 0,2,3,5 N = ,则M N = I ( )

A .{ }

0,2 B .{ }

2,3 C .{ }

3,4 D .{ }

3,5 【解析】B ;M N = I { } 2,3 ,选 B .

2.已知复数z 满足( ) 34i 25 z -= ,则z =( )

A . 34i --

B . 34i

-+ C .34i

- D .34i

+ 【解析】D ; ( ) ( )( )

2534i 25

34i 34i 34i 34i z + =

==+ --+ ,选 D . 3.已知向量 ( ) 1,2 = a , ( ) 3,1 = b ,则 -= b a ( )

A .( )

2,1 - B .( )

2,1 - C .( )

2,0 D .( )

4,3 【解析】B ; ( ) ( ) ( ) 3,11,22,1 -=-=- b a ,选 B .

4.若变量 , x y 满足约束条件 28 04 03 x y x y +£ ì ?

££ í ? ££ ?

,且 2 z x y =+ 的最大值等于( )

A .7

B .8

C .10

D .11

【解析】C ;画出可行域如图所示,为一个五边形OABCD 及其内部区域,当直线 2 y x z =-+ 过点 ( )

4,2 B 时,z 取得最大值 24210 z =′+= ,选 C . 5.下列函数为奇函数的是( )

A . 1

2 2

x x y =-

B . 3 sin y x x =

C . 2cos 1 y x =+

D . 2 2

x

y x =+ 【解析】A ;设 ( ) 1 2 2 x

x f x =-

,则 ( ) f x 的定义域为R ,且 ( ) ( ) 11 22 22

x x

x x f x f x - - -=-=-=- ,所以 ( ) 1

2 2

x x f x =- 为奇函数,选A .

6.为了解1000名学生的学习情况,采用系统抽样的方法,从中抽取容量为40的样本,则分段间隔为( )

A .50

B .40

C .25

D .20

【解析】C ;分段间隔为 1000

25 40

= ,选 C .

7.在 ABC D 中,角 ,, A B C 所对应的边分别为 ,, a b c ,则“a b £ ”是“sin sin A B £ ”的( )

A .充分必要条件

B .充分不必要条件

C .必要不充分条件

D .既不充分也不必要条件

1

l 2

l 3

l 4 l 4

l 【解析】A ;结合正弦定理知sin sin 2sin 2sin A B R A R B a b £?£?£ ,选 A .

8.若实数k 满足05 k << ,则曲线 22 1 165 x y k -= - 与曲线 22

1 165

x y k -= - 的( )

A .实半轴长相等

B .虚半轴长相等

C .离心率相等

D .焦距相等

【解析】D ;因为05 k << ,所以两条曲线均为双曲线,且 2

c 均为21 k - ,故选 D .

9.若空间中四条两两不同的直线 1 l , 2 l , 3 l , 4 l ,满足 12 l l ^ , 23 // l l , 34 l l ^ ,则则下列结论一定正确的是

(

)

A . 14

l l ^ B . 14

// l l C . 1 l 与 4 l 既不垂直也不平行 D . 1 l 与 4 l 的位置关系不确定 【解析】D ;弄个正方体一目了然!

10. 对任意复数 1 w , 2 w 定义 1212 w w w w *= ,其中 2 w 是 2 w 的共轭复数,对任意复数 123 ,, z z z ,有如下四个命

题:

① ( ) ( ) ( ) 1231323 z z z z z z z +*=*+* ; ② ( ) ( ) ( ) 1231213 z z z z z z z *+=*+* ; ③ ( ) ( ) 123123 z z z z z z **=** ; ④ 1221 z z z z *=* ;

则真命题的个数是( ) A .1

B .2

C .3

D .4

【解析】B ;①( ) ( ) ( ) ( ) 12312313231323 z z z z z z z z z z z z z z +*=+=+=*+* ,故①为真命题;

② ( ) ( )

( ) ( ) 12312312312131213 z z z z z z z z z z z z z z z z z *+=+=+=+=*+* ,故②为真命题; ③左边 123 z z z = ,右边 ( )

( ) ( )

123123123 * z z z z z z z z z === ,左边1 右边,故③为假命题; ④左边 12 z z = ,右边 21

z z = ,左边1 右边,故④为假命题.故只有①②为真命题,选B . 二、填空题:本大共 5 小题,考生作答 4 小题,每小题 5 分,满分 20 分) (一)必做题(11~13 题)

11.曲线 53 x

y e =-+ 在点( ) 0,2 - 处的切线方程为

【解析】520 x y ++= ;由 5 x

y e ¢=- 得 0 5 x y = ¢ =- ,故切线方程为 25 y x +=- ,即520 x y ++= .

12. 从字母 ,,,, a b c d e 中任取两个不同的字母,则取到字母a 的概率为_______.

【解析】 2 5 ; 1

4

2 5 42 105

C P C === .

13. 等比数列{ } n a 的各项均为正数,且 15 4 a a = ,则 2122232425

log log log log log a a a a a ++++=______. (二)选做题(14~15 题,考生只需从中选做一题)

14.(坐标系与参数方程选做题)在极坐标系中,曲线 1 C 和 2 C 的方程分别为 2

2cos sin

r q q = 和 cos 1 r q = . 以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,则曲线 1 C 和 2 C 交点的直 角坐标为______.

【解析】( ) 1,1 ;由 2 2cos sin r q q = ,可得 ( ) 2

2cos sin r q r q = ,即 2 2 y x = .由 cos 1 r q = ,可得 1 x = .

曲线 1 C 和 2 C 交点的直角坐标为(

) 1,2 . 15.(几何证明选讲选做题)如图 1,在平行四边形ABCD 中,点E 在 AB 上且

2 EB AE = , AC 与DE 交于F ,则

CDF AEF D =

D 的面积

的面积

.

【解析】9;考查相似三角形性质的应用.由题易知 CDF D ∽ AEF D 所以相似比为

3:1 CD AE = ,故 CDF AEF D D 的面积

的面积

为相似比的平方,即为9. 三、解答题:本大题共 6 小题,满分 80 分,解答须写出文字说明、证明过程或演算步骤.

16.(本题满分 12分)

已知函数 ( ) sin 3 f x A x p ?

?

=+ ?÷ è

? ,x ?R ,且 532

122

f p ?? =

?

÷ è? . (1) 求A 的值; (2) 若 ( ) ( ) 3,0, 2 f

f p q q q ?? --=

? ?÷ è? ,求 6 f p q ?? - ?÷ è?

.

【解析】(1) 依题意 553232 sin sin 12123422 f A A A p

p p p ????

=+=== ?

÷?÷

è?è? ,解得 3 A = ; (2) 由(1)知, ( ) 3sin 3 f x x p ?

?

=+ ?÷ è

?

,

又 ( ) ( ) 3 f

f q q --=

,所以3sin 3sin 3 33 p p q q ???

? +--+= ?÷?÷ è?è

? ,展开化简得 3 sin 3 q = ,

又 0, 2 p q ?? ? ?÷ è?

,所以 2

6

cos 1sin 3

q q =-= , 所以 3sin 3sin 3cos 6632 f p p p p q q q q ??????

-=-+=-= ?

÷?÷?÷ è?è?è?

6 = .

17.(本题满分 13分)

某车间20名工人年龄数据如下表:

年龄(岁)

工人数(人)

19

1 28 3 29 3 30 5 31 4 3

2

3 40

1 合计

20

(1) 求这20名工人年龄的众数与极差;

(2) 以十位数为茎,个位数为叶,作出这20名工人年龄的茎叶图; (3) 求这20名工人年龄的方差.

【解析】(1) 这20名工人年龄的众数为30,极差为401921 -= ;

(2) 作出这20名工人年龄的茎叶图如下:

D A

B

C

E

F 图 1

1 9

2 8 8 8 9 9 9

3 0 0 0 0 0 1 1 1 1 2 2 2 4

(3) 这20名工人年龄的平均数 1928329330531432340

30 20

x +′+′+′+′+′+ = = ,

方差 2222222

2

1 (11)3(2)3(1)50413210 20 s éù -+′-+′-+′+′+ =

+′ ?? 1 (121123412100) 20 =+++++ 1 252 20

=′ 12.6 = . 18.(本题满分 13分)

如图 2 ,四边形 ABCD 为矩形, PD ^ 平面 ABCD , 1 AB = , 2 BC PC == ,作如图3 折叠,折痕

// EF DC ,其中点 , E F 分别在线段 , PD PC 上,沿 EF 折叠后点 P 落在线段 AD 上的点记为M ,并且 MF CF ^ .

(1) 证明:CF ^ 平面MDF ; (2) 求三棱锥M CDE - 的体积.

【解析】(1) 因为PD ^平面 ABCD ,PD ì 平面PCD ,所以平面PCD ^平面ABCD ,

又平面PCD I 平面ABCD CD = ,MD ì平面 ABCD ,MD CD ^ ,所以MD ^ 平面PCD , 又CF ì平面PCD ,所以CF MD ^ ,又CF MF ^ ,MD MF M = I ,所以CF ^ 平面MDF . (2) 因为CF ^ 平面MDF ,DF ì 平面MDF ,所以CF DF ^ , 又易知 0

60 PCD D= ,所以 0

30 CDF D= ,从而 11 22 CF CD =

= ,因为 // EF DC ,所以 DE CF

DP CP

= , 即 1

2 = 2 3

DE ,所以 3 4 DE = ,所以 334 PE = , 13 28 CDE S CD DE D =×= ,

222222 3336

(

)() 442

MD ME DE PE DE =-=-=-= , 所以 11362

338216

M CDE CDE V S MD - D =

×=××= . 19.(本题满分 14分)

设各项均为正数的数列{ } n a 的前n 项和为 n S ,且 n S 满足 ( ) ( )

222 330 n n S n n S n n -+--+= , *

n ?N .

(1) 求 1 a 的值;

(2) 求数列{ }

n a 的通项公式; A

B

C

D

P

图 2

P

C

B

A D

E

F M 图 3

(3) 证明:对一切正整数n ,有

( ) ( ) ( ) 1122 1111

1113

n n a a a a a a +++< +++ L .

【解析】(1) 令 1 n = 得 2

11 60 S S +-= ,因为 1 0 S > ,所以 1 2 S = ,即 1 2 a = .

(2) 由 (

) (

)

2

2

2

330 n n S n n S n n -+--+= 得 2

(3)()0 n n S S n n éù +-+= ?? ,

因为 0 n a > ,所以 0 n S > ,从而 30 n S +> ,所以 2

n S n n =+ ,

当 2 n 3 时, 2

2

1 (1)(1)

2 n n n a S S n n n n n - éù =-=+--+-= ?? , 又 1 221 a ==′ ,所以 2 n a n = ,即数列{ } n a 的通项公式为 2 n a n = . (3) 当 2 n 3 时,

( ) ( ) ( )( ) 111111 1221212122121 n n a a n n n n n n ??

=<=-

?÷ ++-+-+ è?

所以

( ) ( ) ( ) 1122 111 111 n n a a a a a a +++ +++ L 11111111 23235572121 n n ?? <+-+-++- ?÷

′-+ è?

L 11111111 623216233

n ?? =

+-<+′=

?÷ + è? 当 1 n = 时,

( ) 11 11 13 a a < + ,故对一切正整数n ,有 ( ) ( ) ( ) 1122 1111

1113 n n a a a a a a +++< +++

L .

20.(本题满分 14分)

已知椭圆C : 22 22 1 x y a b += ( 0 a b >> )的一个焦点为 ( )

5,0 ,离心率为 5

3

.

(1) 求椭圆C 的标准方程;

(2) 若动点 ( ) 00 , P x y 为椭圆C 外一点,且点P 到椭圆C 的两条切线相互垂直,求点P 的轨迹方程.

【解析】(1)由 5 c = 及 5 3 c e a == ,可得 3,952 a b ==-= ,故椭圆C 的标准方程为 22 1 94

x y += .

(2) 不妨设点P 引椭圆C 的两条切线对应的切点分别是 , A B ,且

( ) ( ) ( ) ( ) ( ) { } 00 ,3,2,3,2,3,2,3,2 x y ?---- ,

设直线PA 为 ( ) 00 y y k x x -=- ,则PB 为 ( ) 00 1

y y x x k

-=-

- . 由 ( ) 00 22 1 94

y y k x x x x ì-=- ? í +

= ? ? 消去 y 整理得( ) ( ) ( ) 2 22

0000 49189360 k x k y kx x y kx ++-+--= , 则 (

)

2

2

0000 9240

x k x y k y D =-++-= 同理可得( )

2

2 0000 11 9240 x x y y k k ???? --+-+-= ?÷?÷ è?è?

.

可知k 和 1 k

- 是方程(

)

2

2

0000 9240 x x x y x y -++-= 的两个实数根,则有

2

0 4 1 1 9 y k k x - ?? ×-=-= ?÷ - è?

,整理得 22 00 13 x y += , 易知( )

( ) ( ) ( ) ( ) { } 00 ,3,2,3,2,3,2,3,2 x y ?---- 也符合,故点P 的轨迹方程为 2

2 00 13

x

y += .

21.(本题满分 14分)

已知函数 ( ) 3

2 1 1 3

f x x x ax =

+++ ,其中a ?R . (1) 求函数 ( ) f x 的单调区间;

(2) 当 0 a < 时,试讨论是否存在 0 11 0,,1 22 x ?

??? ? ?÷?÷ è?è?

U ,使得 ( ) 0 1 2 f x f ?? = ?

÷ è?

. 【解析】(1)求导得 2

()2 f x x x a ¢ =++ ,方程 2

20 x x a ++= 的判别式 44a D =- ,

当 0 D £ 即 1 a 3 时, ()0 f x ¢ 3 ,此时 ( ) f x 在( ) , -¥+¥ 上递增;

当 1 a < 时,方程 2

20 x x a ++= 的两不等实根分别为 1 11 x a =--- , 2 11 x a =-+- , 由 ()0 f x ¢ > 得 11 x a <--- 或 11 x a >-+- ; 由 ()0 f x ¢ < 得 1 1 1 1 a x a ---< -+- < . 综上,当 1 a 3 时, ( ) f x 的递增区间为( ) , -¥+¥ ;

当 1 a < 时, ( ) f x 的递增区间为 ( ) ( )

,11,11, a a -¥----+-+¥ , 递减区间为 ( )

11,11 a a ----+- . (2) ( ) 3232 0000 1111

11 1()()()1 233222 f x f x x ax a ??

éù -=

+++-+++ ?÷ êú è???

3322 000 1111

()()() 3222

x x a x éùéù =-+-+- êúêú ???? 2 0 00000 111111 ()()()()() 3224222

x x x x x a x éù =-+++-++- êú ?? 2 00 00 111 ()() 236122 x x x x a =-+++++ 2 000 11 ()(414712) 122 x x x a =-+++ ,

若存在 0 11 0,,1 22 x ???? ? ?÷?÷ è?è? U ,使得 ( ) 0 1 2 f x f ??

= ?÷ è?

,

必须 2

00 4147120 x x a +++= 在 11 0,

,1 22 ?

??? ?÷?÷ è?è?

U 上有解, 因为 0 a < ,所以 2

1416(712)4(2148)0 a a D =-+=-> , 方程 2

00 4147120 x x a +++= 的两根为 142214872148 84

a a

-±--±- = ,

又 0 0 x > ,所以 0 72148 4 a x -+- =

,依题意 7+2148 01 4

a

-- << ,即7214811 a <-< ,

所以492148121 a <-< ,即 257 1212 a -<<- ,又由 7+21481 42 a -- = ,得 5

4

a =- , 综上,当 257 1212 a -<<- 且 5 4 a 1- 时,存在唯一的 0 11 0,,1 22 x ???? ? ?÷?÷ è?è? U ,使得 ( ) 0 1 2 f x f ??

= ?÷ è?

, 当 2512 a <-

或 7 12 a >- 或 5 4 a =- 时,不存在 0 11 0,,1 22 x ???? ? ?÷?÷ è?è? U ,使得 ( ) 0 1 2 f x f ?? = ?÷ è?

.

2013年广东高考文科数学试题与答案解析

侧视图 正视图 2013年普通高等学校招生全国统一考试(广东卷) 数学(文科A 卷)解析 从今以后,高考数学不再愁~ 本试卷共4页,21小题,满分150分.考试用时120分钟. 锥体的体积公式:1 3 V Sh = .其中S 表示锥体的底面积,h 表示锥体的高. 一、选择题:本大题共10小题,每小题5分,满分50分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设集合2{|20,}S x x x x R =+=∈,2{|20,}T x x x x R =-=∈,则S T = A .{0} B .{0,2} C .{2,0}- D .{2,0,2}- 【解析】:先解两个一元二次方程,再取交集,选A 2(1,)+∞ D .[1,1)(1, - :对数真数大于零,分母不等于零,取交集,选C 3x yi +的模是 5 【解析】:复数相等用对比系数法得4,3x y ==-再开方,得5,选D. 4.已知51 sin( )25πα+=,那么cos α= A .25- B .15- C .15 D .25 【 解 析 】: 奇 变 偶 不 变 , 符 号 看 象 限 , 51sin( )sin(2+)sin cos 2225πππαπααα?? +=+=+== ??? ,选C. 5.执行如图1所示的程序框图,若输入n 的值为3,则输出s 的值是 A .1 B .2 C .4 D .7 【解析】注意临界点,选C. 6.某三棱锥的三视图如图2所示,则该三棱锥的体积是 图 1

A . 16 B .13 C .2 3 D .1 【解析】由三视图判断底面为等腰直角三角形,三棱锥的高为2,则111 =112=323 V ????,选B.注意公式,别记错! 7.垂直于直线1y x =+且与圆221x y +=相切于第一象限的直线方程是 A .0x y += B .10x y ++= C .10x y +-= D .0x y ++= 【解析】数形结合法,把图画出来,圆心到直线的距离等于1r =,直接法可设所求的直线 方程为:()0y x k k =-+>,再利用圆心到直线的距离等于1r =,求得k =选A. 8.设l 为直线,,αβ是两个不同的平面,下列命题中正确的是 A .若//l α,//l β C .若l α⊥,//l β 【解析】画出一个正方体,关注面内面外,关注相交线,选9.已知中心在原点的椭圆A .14322=+y x 1 .24 1 【解析】记好离心率公式,1,2,c a b === D. 10.设 a 是已知的平面向量且≠0 a ,关于向量 a 的分解,有如下四个命题: ①给定向量 b ,总存在向量 c ,使=+ a b c ; ②给定向量 b 和 c ,总存在实数λ和μ,使λμ=+ a b c ; ③给定单位向量 b 和正数μ,总存在单位向量 c 和实数λ,使λμ=+ a b c ; ④给定正数λ和μ,总存在单位向量 b 和单位向量 c ,使λμ=+ a b c ; 上述命题中的向量 b , c 和 a 在同一平面内且两两不共线,则真命题的个数是 A .1 B .2 C .3 D .4 【解析】法一: 利用向量加法的三角形法则,易的①是对的;利用平面向量的基本定理,易的②是对的;以 a 的终点作长度为μ的圆,这个圆必须和向量λ b 有交点,这个不一定能满足,③是错的;

2015广东高考文科数学试题及答案

绝密★启用前 试卷类型:B 2015年普通高等学校招生全国统一考试(广东卷) 数学(文科) 一、选择题(本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1、若集合{}1,1M =-,{}2,1,0N =-,则M N =( ) A .{}0,1- B .{}0 C .{}1 D .{}1,1- 2、已知i 是虚数单位,则复数()2 1i +=( ) A .2- B .2 C .2i - D .2i 3、下列函数中,既不是奇函数,也不是偶函数的是( ) A .2sin y x x =+ B .2cos y x x =- C .1 22 x x y =+ D .sin 2y x x =+ 4、若变量x ,y 满足约束条件2204x y x y x +≤?? +≥??≤? ,则23z x y =+的最大值为( ) A .10 B .8 C .5 D .2 5、设C ?AB 的内角A ,B ,C 的对边分别为a ,b ,c .若2a =,23c =,3cos 2 A =,且b c <,则b =( ) A .3 B .2 C .22 D .3 6、若直线1l 和2l 是异面直线,1l 在平面α内,2l 在平面β内,l 是平面α与平面β的交线,则下列命题正确的是( ) A .l 至少与1l ,2l 中的一条相交 B .l 与1l ,2l 都相交 C .l 至多与1l ,2l 中的一条相交 D .l 与1l ,2l 都不相交 7、已知5件产品中有2件次品,其余为合格品.现从这5件产品中任取2件,恰有一件次品的概率为( )

A .0.4 B .0.6 C .0.8 D . 1 8、已知椭圆22 2125x y m +=(0m >)的左焦点为()1F 4,0-,则m =( ) A .9 B .4 C .3 D .2 9、在平面直角坐标系x y O 中,已知四边形CD AB 是平行四边形,()1,2AB =-,()D 2,1A =,则D C A ?A =( ) A .2 B .3 C .4 D . 5 10、若集合(){},,,04,04,04,,,p q r s p s q s r s p q r s E =≤<≤≤<≤≤<≤∈N 且, (){}F ,,,04,04,,,t u v w t u v w t u v w =≤<≤≤<≤∈N 且,用()card X 表示集合X 中的元素个 数,则()()card card F E +=( ) A .50 B .100 C .150 D .200 二、填空题(本大题共5小题,考生作答4小题,每小题5分,满分20分.) (一)必做题(11~13题) 11、不等式2340x x --+>的解集为 .(用区间表示) 12、已知样本数据1x ,2x ,???,n x 的均值5x =,则样本数据121x +,221x +,???,21n x +的均值为 . 13、若三个正数a ,b ,c 成等比数列,其中526a =+,526c =-,则b = . (二)选做题(14、15题,考生只能从中选作一题) 14、(坐标系与参数方程选做题)在平面直角坐标系x y O 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.曲线1C 的极坐标方程为()cos sin 2ρθθ+=-,曲线2C 的参数 方程为2 22x t y t ?=??=??(t 为参数),则1C 与2C 交点的直角坐标为 . 15、(几何证明选讲选做题)如图1,AB 为圆O 的直径,E 为AB 的延长线上一点,过E 作圆O 的切线,切点为C ,过A 作直线C E 的垂线,垂足为D . 若

广东省高考文科数学知识点汇总

广东高考高中数学考点归纳 第一部分 集合 1. 自然数集:N 有理数集:Q 整数集:Z 实数集:R 2 . φ是任何集合的子集,是任何非空集合的真子集. 3.集合12{,,,}n a a a L 的子集个数共有2n 个;真子集有2n –1个; 非空子集有2n –1个;非空真子集有2n –2个. 第二部分 函数与导数 1.映射:注意: ①第一个集合中的元素必须有象;②一对一或多对一. 2.函数值域的求法(即求最大(小)值):①利用函数单调性 ;②导数法 ③利用均值不等式 2 22 2b a b a ab +≤ +≤ 3.函数的定义域求法: ① 偶次方根,被开方数0≥ ②分式,分母0≠ ③对数,真数0>,底数0>且1≠ ④0次方,底数0≠⑤实际问题根据题目求 复合函数的定义域求法: ① 若f(x)的定义域为[a ,b ],则复合函数f[g(x)]的定义域由不等式a ≤ g(x) ≤ b 解出 ② 若f[g(x)]的定义域为[a,b],求 f(x)的定义域,相当于x ∈[a,b]时,求g(x)的值域. 4.分段函数:值域(最值)、单调性、图象等问题,先分段解决,再综合各段情况下结论。 5.函数的奇偶性: ⑴函数的定义域关于原点对称是函数具有奇偶性的必要条件.... ⑵)(x f 是奇函数)()(x f x f -=-??图象关于原点对称; )(x f 是偶函数)()(x f x f =-??图象关于y 轴对称. ⑶奇函数)(x f 在0处有定义,则0)0(=f ⑷在关于原点对称的单调区间内:奇函数有相同的单调性,偶函数有相反的单调性 6.函数的单调性: ⑴单调性的定义: ①)(x f 在区间M 上是增函数,,21M x x ∈??当21x x <时有12()()f x f x <; ②)(x f 在区间M 上是减函数,,21M x x ∈??当21x x <时有12()()f x f x >; (记忆方法:同不等号为增,不同为减,即同增异减) ⑵单调性的判定:①定义法:一般要将式子)()(21x f x f -化为几个因式作积或作商的形式,以利于判断符号(五步:设元,作差,变形,定号,单调性);②导数法(三步:求导,解不等式 ()0,()0,f x f x ''><单调性)

2014年四川高考文科数学试题及答案(Word版)

2014年普通高等学校招生全国统一考试(四川卷) 数 学(文史类) 本试题卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)。第Ⅰ卷1至2页,第Ⅱ卷3至4页,共4页。满分150分。考试时间120分钟。考生作答时,须将答案答在答题卡上,在本试题卷、草稿纸上答题无效。考试结束后,将本试题卷和答题卡一并交回。 第Ⅰ卷 (选择题 共50分) 注意事项: 必须使用2B 铅笔在答题卡上将所选答案对应的标号涂黑。 第Ⅰ卷共10小题。 一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一个是符合题目要求的。 1、已知集合{|(1)(2)0}A x x x =+-≤,集合B 为整数集,则A B =( ) A 、{1,0}- B 、{0,1} C 、{2,1,0,1}-- D 、{1,0,1,2}- 2、在“世界读书日”前夕,为了了解某地5000名居民某天的阅读时间,从中抽取了200名居民的阅读时间进行统计分析。在这个问题中,5000名居民的阅读时间的全体是( ) A 、总体 B 、个体 C 、样本的容量 D 、从总体中抽取的一个样本 3、为了得到函数sin(1)y x =+的图象,只需把函数sin y x =的图象上所有的点( ) A 、向左平行移动1个单位长度 B 、向右平行移动1个单位长度 C 、向左平行移动π个单位长度 D 、向右平行移动π个单位长度 4、某三棱锥的侧视图、俯视图如图所示,则该三棱锥的体积是( )(锥体体积公式:1 3 V Sh = ,其中S 为底面面积,h 为高) A 、3 B 、2 C D 、1 5、若0a b >>,0c d <<,则一定有( ) A 、 a b d c > B 、a b d c < C 、a b c d > D 、a b c d < 6、执行如图的程序框图,如果输入的,x y R ∈,那么输出的S 的最大值为( ) A 、0 B 、1 C 、2 D 、3 7、已知0b >,5log b a =,lg b c =,510d =,则下列等式一定成立的是( ) A 、d ac = B 、a cd = C 、c ad = D 、d a c =+ 侧视图 俯视图112 2 2 21 1

最新广东省高考理科数学试题含答案汇总

2012年广东省高考理科数学试题含答案

2012年普通高等学校招生全国统一考试(广东卷)A 一、选择题:本大题共8小题,每小题5分,满分40分 1.设i为虚数单位,则复数?Skip Record If...?= A. ?Skip Record If...? B.?Skip Record If...?C.?Skip Record If...?D.?Skip Record If...? 2.设集合U={1,2,3,4,5,6}, M={1,2,4 } 则?Skip Record If...? A.U B.{1,3,5} C.{3,5,6} D.{2,4,6} 3.若向量?Skip Record If...?=(2,3),?Skip Record If...?=(4,7),则?Skip Record If...?= A.(-2,-4)B.(2,4) C.(6,10) D.(-6,-10) 4.下列函数中,在区间(0,+∞)上为增函数的是 A.?Skip Record If...? B.?Skip Record If...? C.y=?Skip Record If...? D.?Skip Record If...? 5.已知变量x,y满足约束条件?Skip Record If...?,则z=3x+y的最大值为 A.12 B.11 C.3 D.?Skip Record If...? 6.某几何体的三视图如图1所示,它的体积为 A.12π B.45π C.57π D.81π 7.从个位数与十位数之和为奇数的两位数中任取一个,其个位数为0的概率是 A. ?Skip Record If...?B. ?Skip Record If...?C. ?Skip Record If...?D. ?Skip Record If...? 8.对任意两个非零的平面向量?Skip Record If...?和?Skip Record If...?,定义?Skip Record If...?.若平面向量?Skip Record If...?满足?Skip Record If...?,?Skip Record If...?与?Skip Record If...?的夹角?Skip Record If...?,且?Skip Record If...?和?Skip Record If...?都在集合 ?Skip Record If...?中,则?Skip Record If...?=

2014高考广东卷文科数学真题与答案解析

一.选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的。 (1)已知集合{}{}5,3,2,0,4,3,2==N M ,则N M ( ) A. {}2,0 B. {}3,2 C. {}4,3 D. {}5,3 (2)已知复数z 满足25)43(=-z i ,则=z ( ) A.i 43-- B. i 43+- C. i 43- D. i 43+ (3)已知向量)1,3(),2,1(==b a ,则=-a b ( ) A. )1,2(- B. )1,2(- C. )0,2( D. )3,4( (4)若变量y x ,满足约束条件?? ? ??≤≤≤≤≤+304082y x y x 则y x z +=2的最大值等于( ) A. 7 B. 8 C. 10 D. 11 5.下列函数为奇函数的是( ) A.x x 2 12- B.x x sin 3 C.1cos 2+x D.x x 22+ 6.为了解1000名学生的学习情况,采用系统抽样的方法,从中抽取容量为40的样本,则分段的间隔为( ) A.50 B.40 C.25 D.20 7.在ABC ?中,角A,B,C 所对应的边分别为,,,c b a 则“b a ≤”是“B A sin sin ≤”的( ) A.充分必要条件 B.充分非必要条件 C.必要非充分条件 D.非充分非必要条件 8.若实数k 满足05k <<,则曲线 221165x y k -=-与曲线22 1165 x y k -=-的( ) A.实半轴长相等 B.虚半轴长相等 C.离心率相等 D.焦距相等 9.若空间中四条两两不同的直线1234,,,l l l l ,满足122334,,,l l l l l l ⊥⊥∥则下列结论一定正确的是( ) A .14l l ⊥ B.14l l ∥ C.1l 与4l 既不垂直也不平行 D.1l 与4l 的位置关系不确定 10.对任意复数12,,w w 定义1212,ωωωω*=其中2ω是2ω的共轭复数,对任意复数123,,z z z 有如下四个命题: ①1231323()()();z z z z z z z +*=*+*②1231213()()()z z z z z z z *+=*+*; ③123123()();z z z z z z **=**④1221z z z z *=*; 则真命题的个数是( ) A.1 B.2 C.3 D.4 二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分. (一)必做题(11—13题) 11.曲线53x y e =-+在点()0,2-处的切线方程为________. 12.从字母,,,,a b c d e 中任取两个不同字母,则取字母a 的概率为________.

2014年全国高考文科数学试题及答案-新课标1

2014年普通高等学校招生全国统一考试数学(文科)(课标I ) 一.选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的。 (1)已知集合M={x|-1<x <3},N={x|-2<x <1}则M ∩N=( ) A. )1,2(- B. )1,1(- C. )3,1( D. )3,2(- (2)若0tan >α,则 A. 0sin >α B. 0cos >α C. 02sin >α D. 02cos >α (3)设i i z ++=11,则=||z A. 21 B. 22 C. 2 3 D. 2 (4)已知双曲线)0(13 2 22>=-a y a x 的离心率为2,则=a A. 2 B. 26 C. 2 5 D. 1 (5)设函数)(),(x g x f 的定义域都为R ,且)(x f 是奇函数,)(x g 是偶函数,则下列结论中正确的是 A. )()(x g x f 是偶函数 B. )(|)(|x g x f 是奇函数 C. |)(|)(x g x f 是奇函数 D. |)()(|x g x f 是奇函数 (6)设F E D ,,分别为ABC ?的三边AB CA BC ,,的中点,则=+ A. AD B. AD 21 C. BC D. BC 21 (7)在函数①|2|cos x y =,②|cos |x y = ,③)62cos(π+=x y ,④)42tan(π -=x y 中,最小正周期为π的所有函数为 A.①②③ B. ①③④ C. ②④ D. ①③ (8)如图,网格纸的各小格都是正方形,粗实线画出的事一个几何体 的三视图,则这个几何体是( ) A.三棱锥 B.三棱柱 C.四棱锥 D.四棱柱

2013年广东省高考数学试卷(理科)附送答案

2013年广东省高考数学试卷(理科) 一、选择题:本大题共8小题,每小题5分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.(5分)设集合M={x|x2+2x=0,x∈R},N={x|x2﹣2x=0,x∈R},则M∪N=()A.{0}B.{0,2}C.{﹣2,0}D.{﹣2,0,2} 2.(5分)定义域为R的四个函数y=x3,y=2x,y=x2+1,y=2sinx中,奇函数的个数是() A.4 B.3 C.2 D.1 3.(5分)若复数z满足iz=2+4i,则在复平面内,z对应的点的坐标是()A.(2,4) B.(2,﹣4)C.(4,﹣2)D.(4,2) 4.(5分)已知离散型随机变量X的分布列为 X123 P 则X的数学期望E(X)=() A.B.2 C.D.3 5.(5分)某四棱台的三视图如图所示,则该四棱台的体积是() A.4 B.C.D.6 6.(5分)设m,n是两条不同的直线,α,β是两个不同的平面,下列命题中正确的是()

A.若α⊥β,m?α,n?β,则m⊥n B.若α∥β,m?α,n?β,则m∥n C.若m⊥n,m?α,n?β,则α⊥βD.若m⊥α,m∥n,n∥β,则α⊥β7.(5分)已知中心在原点的双曲线C的右焦点为F(3,0),离心率等于,则C的方程是() A.B.C.D. 8.(5分)设整数n≥4,集合X={1,2,3,…,n}.令集合S={(x,y,z)|x,y,z∈X,且三条件x<y<z,y<z<x,z<x<y恰有一个成立}.若(x,y,z)和(z,w,x)都在S中,则下列选项正确的是() A.(y,z,w)∈S,(x,y,w)?S B.(y,z,w)∈S,(x,y,w)∈S C.(y,z,w)?S,(x,y,w)∈S D.(y,z,w)?S,(x,y,w)?S 二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分.9.(5分)不等式x2+x﹣2<0的解集为. 10.(5分)若曲线y=kx+lnx在点(1,k)处的切线平行于x轴,则k=.11.(5分)执行如图所示的程序框图,若输入n的值为4,则输出s的值为. 12.(5分)在等差数列{a n}中,已知a3+a8=10,则3a5+a7=. 13.(5分)给定区域D:.令点集T={(x0,y0)∈D|x0,y0∈Z,(x0, y0)是z=x+y在D上取得最大值或最小值的点},则T中的点共确定条不同的直线.

2014年高考全国1卷文科数学试题及答案(详细解析版,精校版)

2014年普通高等学校招生全国统一考试(全国I 卷) 文科数学 一、选择题,本大题共12小题,每小题5分,共60分.在每小题给出的四个选 项中,只有一项是符合题目要求的. 1.已知集合M ={x |-10,则( ) A .sin α>0 B .cos α>0 C .sin2α>0 D .cos2α>0 3.设i i z ++=11 ,则|z |=( ) A .21 B .22 C .2 3 D .2 4.已知双曲线)0(13 2 22>=- a y a x 的离心率为2,则a=( ) A .2 B .26 C .2 5 D .1 5.设函数f (x ),g (x )的定义域为R ,且f (x )是奇函数,g (x )是偶函数,则下列结论 中正确的是( ) A .f (x )g (x )是偶函数 B .|f (x )|g (x )是奇函数 C .f (x )|g (x )|是奇函数 D .|f (x )g (x )|是奇函数 6. 设D ,E ,F 分别为ΔABC 的三边BC ,CA ,AB 的中点,则=+( ) A . B .21 C .2 1 D . 7.在函数① y=cos|2x|,②y=|cos x |,③)62cos(π+=x y ,④)4 2tan(π -=x y 中, 最小正周期为π的所有函数为( ) A .①②③ B .①③④ C .②④ D .①③ 8.如图,网格纸的各小格都是正方形,粗实线画出的 一个几何体的三视图,则这个几何体是( ) A .三棱锥 B .三棱柱 C .四棱锥 D .四棱柱 9.执行下面的程序框图,若输入的a ,b ,k 分别为1,2,3,则输出的M =( ) A .203 B .72 C .165 D .158

2013年全国高中数学联赛广东省赛区预赛试题及答案

一、填空题(每小题8分,满分64分) 1、已知sin cos ,cos sin 2αβαβ==,则22sin cos βα+=_______. 解:0或3.2 已知两式平方相加,得2 sin 0β=或21cos .4 β= 222sin cos 2sin βαβ+==0或3 .2 2、不等式632(2)(2)x x x x -+>+-的解集为_________. 解:(,1)(2,).-∞-?+∞ 原不等式等价于623(2)(2).x x x x +>+++ 设3 ()f x x x =+,则()f x 在R 上单调增. 所以,原不等式等价于2 2 ()(2)21 2.f x f x x x x x >+?>+?<->或 3、已知 ( 表示不超过x 的最大整数),设方程 1 2012{}2013 x x -=的两个不同实数解为12,x x ,则2122013()x x ?+=__________. 解:2011-. 由于1{}[0,1), (0,1)2013x ∈∈,所以112012(1,1).20122012 x x ∈-?-<< 当102012x -<<时,原方程即21120121201320122013 x x x -=+?=-; 当102012x ≤<时,原方程即221 2012201312013 x x x -=?=. 4、在平面直角坐标系中,设点* (,)(,)A x y x y N ∈,一只虫子从原点O 出发,沿x 轴正方向或y 轴正方向爬行(该虫子只能在整点处改变爬行方向),到达终点A 的不同路线数目记为(,)f x y . 则(,2)f n =_______. 解: 1 (1)(2).2 n n ++ 111 (1,2)323,(2,2)634,(3,2)104 5.222 f f f ==??==??==?? 猜测1 (,2)(1)(2)2 f n n n = ++,可归纳证明. 5、将一只小球放入一个长方体容器内,且与共点的三个面相接触.若小球上一点P 到这三个面的距离分别为4、5、5,则这只小球的半径为___________. 解:3或11. 分别以三个面两两的交线为x 轴、y 轴、z 轴,建立空间直角坐标系. 设点P 坐标为(4,5,5),小球圆心O 坐标为(,,).r r r

2014-2015年广东省高考文科数学试题及答案

绝密★启用前 2014-2015年广东卷高考数学试题 数学(文科) 本试卷共4页,21小题,满分150分。考试用时120分钟。 注意事项:1. 答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、考场 号、座位号填写在答题卡上。用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。将条形码横贴在答题卡右上角“条形码粘贴处”。 2. 选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点 涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。 3. 非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指 定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。不按以上要求作答的答案无效。 4. 作答选做题时,请先用2B 铅笔填涂选做题的题号对应的信息点,再作答。漏 涂、错涂、多涂的,答案无效。 5. 考生必须保持答题卡的整洁。考试结束后,将试卷和答题卡一并交回。 参考公式:锥体的体积公式13 V sh = ,其中s 为锥体的底面积,h 为锥体的高. 一组数据12,,,n x x x L 的方差2222121[()()()],n s x x x x x x n =-+-++-L 其中x 表示这组数据的平均数. 一、选择题:本大题共10小题,每小题5分,满分50分,在每小题给出的四个选项中, 只有一项是符合题目要求的. 1. 已知集合{}2,3,4M =,{}0,2,3,5N =,则M N =I {}A.0,2 {}B.2,3 {}C.3,4 {}D.3,5 2. 已知复数z 满足(34)25i z -=,则z = A.34i -- B.34i -+ .34C i - D.34i + 3. 已知向量(1,2)a =r ,(3,1)b =r ,则b a -=r r A.(2,1)- B.(2,1)- C.(2,0) D.(4,3) 4. 若变量x ,y 满足约束条件280403x y x y +≤??≤≤??≤≤? ,则2z x y =+的最大值等于

》《2014年高考文科数学真题答案全国卷1

1 2014年高考文科数学真题及答案全国卷1 一、选择题(题型注释) 1.已知集合{}{}|13,|21M x x N x x =-<<=-<<,则M N =( ) A. )1,2(- B. )1,1(- C. )3,1( D. )3,2(- 【答案】B 【解析】 试题分析:根据集合的运算法则可得:{}|11M N x x =-<<,即选B . 考点:集合的运算 2.若0tan >α,则 A. 0sin >α B. 0cos >α C. 02sin >α D. 02cos >α 【答案】C 【解析】 试题分析:由sin tan 0cos α αα =>,可得:sin ,cos αα同正或同负,即可排除A 和B ,又由sin 22sin cos ααα=?,故sin 20α>. 考点:同角三角函数的关系 3.设i i z ++= 11 ,则=||z A. 21 B. 22 C. 2 3 D. 2 【答案】B 【解析】 试题分析:根据复数运算法则可得:11111 1(1)(1)222 i i z i i i i i i i --= +=+=+=-++-, 由模的运算可得:||z == 考点:复数的运算 4.已知双曲线)0(13 2 22>=- a y a x 的离心率为2,则=a A. 2 B. 26 C. 2 5 D. 1 【答案】D 【解析】 试题分析:由离心率c e a =可得:222 2 32a e a +==,解得:1a =. 考点:复数的运算 5.设函数)(),(x g x f 的定义域为R ,且)(x f 是奇函数,)(x g 是偶函数,则下列结论

中正确的是 A.)()(x g x f 是偶函数 B. )(|)(|x g x f 是奇函数 C. |)(|)(x g x f 是奇函数 D. |)()(|x g x f 是奇函数 【答案】C 【解析】 试题分析:由函数)(),(x g x f 的定义域为R ,且)(x f 是奇函数,)(x g 是偶函数,可得:|()|f x 和|()|g x 均为偶函数,根据一奇一偶函数相乘为奇函数和两偶函数相乘为偶函数的规律可知选C . 考点:函数的奇偶性 6.设F E D ,,分别为ABC ?的三边AB CA BC ,,的中点,则=+FC EB A.AD B. 21 C. 2 1 D. 【答案】A 【解析】 试题分析:根据平面向量基本定理和向量的加减运算可得:在BEF ?中, 1 2E B E F F B E F A B =+=+,同理 12 F C F E E C F E A C =+=+,则11 1 11()()()()22 2 22E B F C E F A B F E A C A B A C A B +=+++ =+=+= . 考点:向量的运算 7.在函数①|2|cos x y =,②|cos |x y = ,③)6 2cos(π +=x y ,④)4 2tan(π - =x y 中, 最小正周期为π的所有函数为 A.①②③ B. ①③④ C. ②④ D. ①③ 【答案】A 【解析】 试题分析:①中函数是一个偶函数,其周期与cos 2y x =相同,22 T π π==;②中函数|cos |x y =的周期是函数cos y x =周期的一半, 即T π=; ③22T ππ==; ④2 T π=,则选A . 考点:三角函数的图象和性质 8.如图,网格纸的各小格都是正方形,粗实线画出的事一个几何体的三视图,则这个几何体是( )

2014年广东高考文科数学

2014年普通高等学校招生全国统一考试(广东卷) 数学(文科) 参考公式:锥体的体积公式13V Sh =,其中S 为锥体的底面面积,h 为锥体的高。 一组数据12,,,n x x x 的方差2222 121()()()n s x x x x x x n ??=-+-++-? ?,其中x 表示这组数据的平均数。 一、选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1、已知集合{}2,3,4M =,{}0,2,3,5N =,则M N =( ) A.{}0,2 B.{}2,3 C.{}3,4 D.{}3,5 2、已知复数z 满足()3425i z -=,则z =( ) A.34i -- B.34+i - C.34i - D. 34i + 3、已知向量()()1,2,3,1==a b ,则-=b a ( ) A.()2,1- B.()2,1- C.()2,0 D.()4,3 4、若变量,x y 满足约束条件280403x y x y +≤?? ≤≤??≤≤? ,则2z x y =+的最大值等于( ) A.7 B.8 C.10 D.11 5、下列函数为奇函数的是( ) A.1 22 x x - B.2sin x x C.2cos 1x + D.22x x + 6、为了了解1000名学生的学习情况,采用系统抽样的方法,从中抽取容量为40的样本,则分段的间隔为( ) A.50 B.40 C.25 D.20 7、在ABC ?中,角,,A B C 所对应的变分别为,,a b c ,则a b ≤“”是sin sin A B ≤“”的( ) A.充分必要条件 B.充分非必要条件 C.必要非充分条件 D.非充分非必要条件 8、若实数k 满足05k <<,则曲线 221165x y k -=-与曲线22 1165 x k y --=的( ) A.实半轴长相等 B.虚半轴长相等 C.离心率相等 D.焦距相等 9、若空间中四条两两不相同的直线1234,,,l l l l 满足122334,//,l l l l l l ⊥⊥,则下列结论一定正确的是( ) A.14l l ⊥ B. 14//l l C. 14l l 与既不平行也不垂直 D. 14l l 与位置关系不确定

2014年江西省高考文科数学试卷及答案解析(word版)

2014年普通高等学校招生全国统一考试(江西卷) 数学(文科) 一.选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的。 1.若复数z 满足(1)2z i i +=(i 为虚数单位),则||z =( ) .1A .2B C D 【答案】C 【解析】:设Z=a+bi 则(a+bi)( 1+i)=2i | (a-b)( a+b)i=2i a-b=0 a+b=2 解得 a=1 b=1 Z=1+1i Z =i 11+=2 2.设全集为R ,集合2 {|90},{|15}A x x B x x =-<=-<≤,则()R A C B =( ) .(3,0)A - .(3,1)B -- .(3,1]C -- .(3,3 )D - 【答案】C 【解析】 {|33},{|15}A x x B x x =-<<=-<≤,所以{}()31R A C B x x =-<<- 3.掷两颗均匀的骰子,则点数之和为5的概率等于( ) 1. 18A 1.9B 1.6C 1 .12 D 【答案】B 【解析】点数之和为5的基本事件有:(1,4)(4,1)(2,3)(3,2),所以概率为 364 =9 1

4. 已知函数2,0 ()()2,0 x x a x f x a R x -??≥=∈?的充要条件是""a c > .C 命题“对任意x R ∈,有20x ≥”的否定是“存在x R ∈,有20x ≥” .D l 是一条直线,,αβ是两个不同的平面,若,l l αβ⊥⊥,则//αβ 【答案】D 【解析】当0a ≠时,A 是正确的;当0b =时,B 是错误的;命题“对任意x R ∈,有2 0x ≥”的否定是“存在x R ∈,有2 0x <”,所以C 是错误的。所以选择D 。 7.某人研究中学生的性别与成绩、学科 网视力、智商、阅读量这4个变量之间的关系,随机抽查52名中学生,得到统计数据如表1至表4,泽宇性别有关联的可能性最大的变量是( )

13年广东高考理科数学试题及答案OK

正视图 俯视图 侧视图 图1 绝密★启用前 试卷类型:A 2013年普通高等学校招生全国统一考试(广东卷) 数学(理科) 本试卷共4页,21题,满分150分。考试用时120分钟。 注意事项:1、答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、考场号、座位号填写在答 题卡上。用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。将条形码横贴在答题卡右上角“条形码粘贴处”。 2、选择题每小题选出答案后,用2B 铅笔把答题卡对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。 3、非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔盒涂改液。不按以上要求作答的答案无效。 4、作答选做题时,请先用2B 铅笔填涂选做题的题号对应的信息点,再作答。漏涂、错涂、多涂的,答案无效。 5、考生必须保持答题卡的整洁。考试结束后,将试卷和答题卡一并交回。 参考公式: 台体的体积公式121 (3 V S S h = ++,其中1S ,2S 分别表示台体的上、下底面积,h 表示台体的高。 一、选择题:本大题共8小题,每小题5分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1、设集合{}R x x x x M ∈=+=,022 {} R x x x x N ∈=-=,022 ,则M N = ( ) A 、{}0 B 、{}2,0 C 、{}0,2- D 、{}2,0,2- 2、定义域为R 的四个函数3x y =,x y 2=,12 +=x y ,x y sin 2=中,奇函数的个数是( ) A 、4 B 、3 C 、2 D 、1 3、若复数z 满足i iz 42+=,则在复平面内,z 对应的点的坐标是( ) A 、)4,2( B 、)4,2(- C 、)2,4(- D 、)2,4( 4、已知离散型随机变量X 的分布列为 则X 的数学期望=)(X E ( ) 5 ) A 、4 B 、 314 C 、3 16 D 、6

2015年广东高考理科数学试题及答案(完整版)

2015年普通高等学校招生全国统一考试(广东卷) 数学(理科) 一、选择题(本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1、若集合()(){}410M x x x =++=,()(){}410N x x x =--=,则M N =( ) A .{}1,4 B .{}1,4-- C .{}0 D .? 2、若复数()32z i i =-(i 是虚数单位),则z =( ) A .23i - B .23i + C .32i + D .32i - 3、下列函数中,既不是奇函数,也不是偶函数的是( ) A .21y x =+ B .1y x x =+ C .122 x x y =+ D .x y x e =+ 4、袋中共有15个除了颜色外完全相同的球,其中有10个白球,5个红球.从袋中任取2个球,所取的2个球中恰有1个白球,1个红球的概率为( ) A .521 B .1021 C .1121 D .1 5、平行于直线210x y ++=且与圆225x y +=相切的直线的方程是( ) A .250x y ++=或250x y +-= B .250x y ++=或250x y +-= C .250x y -+=或250x y --= D .250x y -+=或250x y --= 6、若变量x ,y 满足约束条件4581302x y x y +≥??≤≤??≤≤? ,则32z x y =+的最小值为( ) A .4 B .235 C .6 D .315 7、已知双曲线C:22221x y a b -=的离心率54 e =,且其右焦点为()2F 5,0,则双曲线C 的方程为( ) A .22143x y -= B .221916x y -= C .221169x y -= D .22 134 x y -= 8、若空间中n 个不同的点两两距离都相等,则正整数n 的取值( ) A .至多等于3 B .至多等于4 C .等于5 D .大于5 二、填空题(本大题共7小题,考生作答6小题,每小题5分,满分30分.) (一)必做题(11~13题) 9、在()4 1x -的展开式中,x 的系数为 . 10、在等差数列{}n a 中,若3456725a a a a a ++++=,则28a a += .

[精美版]2014年广东高考文科数学(逐题详解)

O x y A B C D 2014 年广东高考文科数学逐题详解 详解提供: 广东佛山市南海中学 钱耀周 参考公式:椎体的体积公式 1 3 V Sh = ,其中S 为椎体的底面积,h 为椎体的高. 一组数据 12 ,,, n x x x L 的方差 ( ) ( ) ( ) 2 2 2 2 12 1 n s x x x x x x n é ù =-+-++- ê ú ?? L ,其中x 表示这组数据的平 均数. 一、选择题:本大题共 10 小题,每小题 5 分,满分 50 分,在每小题给出的四个选项中,只有一 项是符合题目要求的. 1.已知集合 { } 2,3,4 M = , { } 0,2,3,5 N = ,则M N = I ( ) A .{ } 0,2 B .{ } 2,3 C .{ } 3,4 D .{ } 3,5 【解析】B ;M N = I { } 2,3 ,选 B . 2.已知复数z 满足( ) 34i 25 z -= ,则z =( ) A . 34i -- B . 34i -+ C .34i - D .34i + 【解析】D ; ( ) ( )( ) 2534i 25 34i 34i 34i 34i z + = ==+ --+ ,选 D . 3.已知向量 ( ) 1,2 = a , ( ) 3,1 = b ,则 -= b a ( ) A .( ) 2,1 - B .( ) 2,1 - C .( ) 2,0 D .( ) 4,3 【解析】B ; ( ) ( ) ( ) 3,11,22,1 -=-=- b a ,选 B . 4.若变量 , x y 满足约束条件 28 04 03 x y x y +£ ì ? ££ í ? ££ ? ,且 2 z x y =+ 的最大值等于( ) A .7 B .8 C .10 D .11 【解析】C ;画出可行域如图所示,为一个五边形OABCD 及其内部区域,当直线 2 y x z =-+ 过点 ( ) 4,2 B 时,z 取得最大值 24210 z =′+= ,选 C . 5.下列函数为奇函数的是( ) A . 1 2 2 x x y =- B . 3 sin y x x = C . 2cos 1 y x =+ D . 2 2 x y x =+ 【解析】A ;设 ( ) 1 2 2 x x f x =- ,则 ( ) f x 的定义域为R ,且 ( ) ( ) 11 22 22 x x x x f x f x - - -=-=-=- ,所以 ( ) 1 2 2 x x f x =- 为奇函数,选A . 6.为了解1000名学生的学习情况,采用系统抽样的方法,从中抽取容量为40的样本,则分段间隔为( ) A .50 B .40 C .25 D .20 【解析】C ;分段间隔为 1000 25 40 = ,选 C . 7.在 ABC D 中,角 ,, A B C 所对应的边分别为 ,, a b c ,则“a b £ ”是“sin sin A B £ ”的( ) A .充分必要条件 B .充分不必要条件 C .必要不充分条件 D .既不充分也不必要条件

相关文档
相关文档 最新文档