文档视界 最新最全的文档下载
当前位置:文档视界 › 环氧树脂增韧研究进展_史孝群

环氧树脂增韧研究进展_史孝群

环氧树脂增韧研究进展_史孝群
环氧树脂增韧研究进展_史孝群

收稿日期:2001-12-25

作者简介:史孝群(1949-),男,高工,主要从事材料力学性能、结构及压力容器的安全测试;材料的残余应力测试与研究;材料组织与力学损伤及高分子纳米材料合成与力学性能等领域的研究。(Tel :010-********)

环氧树脂增韧研究进展

史孝群,肖久梅,龚春秀,马文江,刘建林

(北京科技大学应用科学学院,北京100083)

摘要:增韧环氧树脂是环氧树脂领域的研究热点,本文就环氧树脂增韧研究进行了概述,介绍了近年来环氧树脂增韧方法及相应的增韧机理研究进展,力求为环氧树脂在增韧领域的进一步研究提供新的思路和方法,以进一步扩展环氧树脂的应用领域。

关键词:环氧树脂;增韧;增韧机理

中图分类号:T M 216.3;T Q323.5 文献标识码:A 文章编号:1009-9239(2002)06-0031-04

Development of Research on Toughening Epoxy Resin

Shi Xiao -Qun ,Xiao J iu -M ei ,Go ng Chun -Xiu ,Ma Wen -J ang ,Liu Jian -Lin

(Department of Applied Science ,University of Science and Technology Beijing ,Beijing ,100083)Abstract

:To ug hening epo xy is v ery important in the field of epox y .Study o n toughening epox y resin a re rev iew ed,methods o f to ughening epox y recently a nd to ughening mechanism a re indroduced in this paper,which provides new ideas a nd rules fo r further study on toug hening epox y resin,in o rder to ex panding th e use of epo xy .

Keywords :epox y resin;toughening;to ughening mechanism

1 前 言

环氧树脂具有良好的介电性能、化学稳定性、粘接性、加工性,使其在胶粘剂、涂料、电子、电器和航空航天等领域发挥重要的作用。环氧树脂为交联度很高的热固性材料,裂纹扩展属于典型的脆性扩展,固化后存在韧性不足、耐冲击性较差和容易开裂等缺点,所以增韧环氧树脂是环氧树脂领域的研究热点。最初,用加入增塑剂、柔韧剂(增柔剂)的方法来提高韧性,但却降低了材料的耐热性、硬度、模量、介电性能。从六十年代中期开始,国内外相继开展了用反应性液态聚合物增韧环氧树脂的研究工作,在热性能、模量、介电性能等降低不太大的情况下提高了环氧树脂的韧性,改善了材料的综合性能,使得增韧环氧树脂的应用有了较大的进展。近年来,由于弹性体合金化技术、互穿网络材料、液晶及纳米材料等制备技术的成熟,在橡胶类弹性体,热塑性树脂,热致性液晶,纳米

材料增韧方面也获得了长足的进展。本文就环氧树脂的增韧及增韧机理进行了探讨。

2 弹性体增韧环氧树脂

用于增韧环氧树脂的橡胶需具备两个基本条件,其一为橡胶与环氧树脂在固化前具有相容性,并且分散性好;其二为环氧树脂固化时,橡胶能够顺利析出,呈两相结构。丁腈橡胶、丙烯酸酯橡胶、聚氨酯橡胶、聚硅氧烷等是增韧环氧树脂的首选弹性体材料,并且这些弹性体通常具有可以与环氧树脂中的环氧基反应形成嵌段的活性端基(如羟基、烃基、氨基等)。在环氧树脂固化过程中,这些橡胶类弹性体嵌段一般能从基体中析出,以分散相的形式分散于连续的环氧树脂体系中,形成“海岛”结构。在橡胶增韧环氧体系中,橡胶的第二种作用在于诱发基体的耗能过程,而其本身在被拉伸断裂过程中的耗能一般占次要地位。材料的断裂过程发生在基体树脂中,因此增韧的最根本潜力在于提高基体的屈服变形能力[1]。

有关弹性体增韧环氧树脂的研究很多

[2,3]

。常用

的增韧剂是液体端羟基丁腈橡胶(C TBN ),环氧树脂

能够与带有端羟基的液体丁腈橡胶相互反应使得CTBN达到高度分散,环氧树脂/CTBN增韧体系可以显著提高固化体系的力学性能。液体无规丁腈橡胶增韧效果也很好,基本上类似于CTBN,但价格昂贵;所以人们用廉价液体橡胶来增韧环氧树脂,结果表明此方法是可行的,端羟基丁二烯-丙烯腈共聚物(HTBN)就是其中一种。当HTBN加入量为20~50phr时,剪切强度提高6M Pa,冲击强度提高一倍以上[4]。赵峰俊、郭名钦等人[5]用一定比例的丙烯酸与环氧树脂反应,降低固化交联密度,以改善其韧性;饶秋华[6]用聚醚桐油和顺丁烯二酸酐为原料合成改性环氧树脂,冲击强度由未增韧改性前的 6.7k J/m2提高至增韧改性后的46.3k J/m2,其微观结构为聚醚两端引入的桐油酸酐溶于树脂基体中,使聚醚结合到树脂网络中,形成“嵌段交联聚合物”,在两相之间有强烈的化学作用,相界面粘接性好,相结构稳定,聚醚嵌段在树脂固化时因相容性差而形成分散的橡胶相而实现增韧。

3 热塑性塑料增韧环氧树脂

用橡胶改性环氧树脂固然能实现相当大的增韧幅度,但往往以弹性模量的降低为代价。所以,近来人们研究用耐热性高且具有一定延展性的热塑性树脂来改性环氧树脂,以期实现增韧的同时又不明显降低材料的弹性模量和其他力学性能。热塑性塑料增韧热固性树脂的机理主要是裂纹钉锚作用机理。热塑性树脂连续贯穿于热固性树脂之中,形成半互穿网络,刚性与基体相近的热塑性塑料作为第二相其本身具有一定的韧性和较高的断裂伸长率,当体积分数达到一定时,就可发生裂纹钉锚增韧作用。所以这种交联网络结构材料具备优良的韧性[7,8,9]。

高模量、高韧性和热稳定性能好的热塑性工程塑料,如聚碳酸酯,端羟基的脂肪族聚碳酸酯-聚六亚甲基碳酸酯二醇(PHM CD),聚砜(PES)和聚醚亚胺等可用于环氧树脂的增韧改性。当改性聚碳酸酯的用量为10%时,冲击韧性比纯环氧树脂提高了40%,且拉伸强度、拉伸模量、弯曲强度等均达到最大[10];用聚砜类树脂(PES)改性氨类固化的环氧树脂时,固化产物结构中可以观察到二相微观分布,这些分布抑制了龟裂的成长,提高了破坏能,所以改善了固化物的韧性,同时粘接强度也得到改善。用末端具有官能团的聚芳醚砜(PSF)也可以增加固化物相分离结构界面的粘接性、韧性。如在Epiko te828/DDM(二氨基二苯基甲烷)体系中,加入10w t%的PSF时,固化物的断裂韧性从0.6×106N/m3/2提高到1.0×106N/m3/2;用聚醚亚胺树脂(PEI)改性环氧树脂时,当PEI加入量为20w t%左右时,固化产物的破坏强度可增加3倍,分散在环氧树脂中的PEI呈延性破坏,起到良好的增韧效果。黄月文用酸作为催化剂均相聚合合成了糠叉丙酮树脂,由于糠叉丙酮树脂分子链中存在活泼羰基,利用胺固化剂可将其与环氧树脂结合成大分子结构,实现增韧改性环氧树脂的目的;同时采用糠醛树脂改性环氧树脂,制得的高渗透环氧树脂胶粘剂的冲击强度为0.8~ 2.8M Pa[11,12]。

热塑性塑料增韧环氧树脂增韧效果虽然比橡胶差,但引入环氧树脂体系中不影响整个体系的模量。因此选择热塑性树脂来增韧环氧树脂在要求高模量的应用方面有其优势,其改性规律及增韧机理有待于进一步深入研究。

4 环氧树脂互穿网络聚合物

互穿网络聚合物(IPN)通常以溶胀的方法把一种组份的单体引入另一种组份的交联聚合物中,然后进行交联,这样得到的聚合物中各组份可以达到分子水平的混合,并且聚合物两相均为连续相,是一种互相贯穿的网络结构,这种结构可以大大提高材料性能的协同效应,对环氧树脂起到明显的增韧效果。在此基础上,环氧树脂的增韧研究又有了新的进展[13]。

蓖麻油来源广泛,价格低廉,分子链中含有羟基,用蓖麻油型环氧树脂制备互穿网络聚合物可以提高环氧树脂的韧性,并且经试验证实,当N CO/O H= 1. 1/1时,其IPN力学性能最好,因为过量的氰基可与环氧树脂反应,产生一定程度的网间交联,这种网络间交联可以提高两个组份的互溶性,有利于网络间互穿和缠结的产生,所以IPN轻微的网络间交联有利于性能提高;而采用同步法合成的环氧树脂/聚丙烯酸丁酯互穿网络聚合物也大大提高环氧树脂的耐冲击性能,冲击性能由未改性时的 5.11k J/m2增加到改性后的13.52k J/m2[14];杨亚辉[15]以聚酯和二异氰酸酯为聚合单体,合成了端异氰酸基聚酯,采用原位多相聚合技术,与E-51形成IPN。对N,N-二甲基苄胺固化体系,加入12.0份聚氨酯脲,冲击强度提高35%左右;对于4,4’,-二氨基二苯甲烷固化体系,加入12.0份聚氨酯脲,冲击强度提高92%左右。

5 热致性液晶增韧环氧树脂

热致性液晶聚合物是一种高度分子有序、深度分子交联的聚合物网络,它融合了液晶有序与网络交联

的优点,即刚性结晶单元和一定量的柔性间隔段。液晶聚合物的断裂强度很高,这主要是由于材料本身的多相性和液晶结构的各向异性。取向的液晶有序区被各向同性的无序区域所包围,此结构类似于纤维增强的复合材料,当外力作用时,液晶微纤在树脂基体中的作用与宏观纤维一样,起着分枝裂纹、终止裂纹、增强增韧的作用。

二十世纪90年代以来,液晶增韧环氧树脂受到广泛的研究。利用热致性液晶改性环氧树脂除加入液晶改性剂外,采用直接合成热致性液晶环氧树脂的增韧效果很理想,其液晶基元包括酯类、联苯类、甲基苯乙烯类、亚甲胺类等[16,17,18]。钟文斌,王霞瑜[19]在此方面研究有所突破。他们采用环氧氯丙烷、氢氧化钾、水、正四丁基氯化铵、联苯二酚和三苯基膦为原料合成了一种液晶环氧树脂(LCPE)。由于LCPE与E-44个分子结构相似,其溶度参数也相近,因而二者相容性好,二者都参与固化反应,形成分子水平的互穿网络结构。少量的LC PE在环氧树脂中均匀分布,在其周围存在许多环氧网络分子链,而液晶分子较长的柔软链段能够吸收一部分冲击能而改善固化体系的韧性。当LCPE含量小于3%时,拉伸强度和冲击强度都随LCPE含量的增大而增大。值得注意的是,与强韧的热塑性塑料相比,在不降低材料刚度的情况下达到相同的增韧效果,加入环氧树脂中的液晶聚合物的重量分数只相当于热塑性塑料的25%~30%。

6 纳米无机填料增韧环氧树脂

纳米材料是近年来受到广泛重视的一种新型功能材料。纳米微粒是指尺寸介于1~100纳米间的细小物质微粒,属于原子簇与宏观物体交界的过渡状态,它既非典型的微观体系,又非典型的宏观体系,具有一系列新奇的物理化学特性。纳米复合材料是指由2种或2种以上的固相至少在一维方向上以纳米量级复合而成的材料[20]。纳米复合材料因其独特的尺寸效应、局域场效应、量子效应而表现出常规材料所不具备的优异性能和特殊性能。纳米复合材料的研制已成为当今材料学科的一大研究热点[21~25]。当纳米微粒均匀地分散于基体中时,无论粒子与基体树脂是否有良好的界面结合,都会产生明显的增韧效果。要获得分散均匀的复合材料,就要求无机粒子和树脂的表面自由能及极性要匹配,它们之间的相互作用要强,树脂粘度也要小。纳米无机刚性粒子吸收基体树脂中一定的形变功,银纹在树脂中扩展时受到刚性纳米粒子的阻碍和钝化而最终停止,制止了破坏性开裂,实现了增韧。

无机纳米粒子比表面积大,表面活性高,当环氧树脂自身粘度较大时很难分散。通常将无机纳米粉末的表面采用表面活性剂或偶联剂预处理,然后与环氧树脂进行混合。通常环氧树脂与纳米粉末采用混合法及插层复合法进行混合。混合法包括物理方法与化学方法,物理方法是指物理粉碎法、溶液混合法、蒸发冷凝法等;化学方法是指气相沉积法、沉淀法、模板反应法、微乳液法、胶态化学法及水热合成法等。对于环氧树脂而言,采用溶液混合法将环氧树脂与无机纳米粉末混合最有效。它是先将无机纳米粉末进行预处理,然后将环氧树脂溶于适当的溶剂中,再将处理后的无机纳米粉末加入,充分搅拌,使二者充分混合均匀,除掉溶剂后即得预定材料。常用的纳米无机填料包括:二氧化钛、氧化铝、氧化锌、碳酸钙、硅酸盐等[26~29]。插层复合法是将聚合物或其单体首先插入具有层状结构的无机填料中,当聚合物溶液渗透入无机填料层状结构中(熔体插层)或单体在其中聚合成高分子(插层聚合)时,有效地破坏了无机填料的层状结构,使之粉碎而均匀分散于聚合物基体中,达到聚合物与无机纳米粒子在纳米尺度上的混合,从而制备出聚合物无机纳米复合材料。使用最多的具有层状结构的无机填料有层状云母硅酸盐类化合物、磷酸盐类、石墨、金属化合物和二硫化钼等[30]。

环氧树脂基无机纳米复合材料与环氧树脂非纳米无机复合材料相比,其强度、韧性、刚性等性能均有大幅度提高[31,32]。李小兵[33]采用溶液混合法将纳米SiO2均匀分散于环氧树脂(E-44)中制备出环氧树脂基SiO2纳米复合材料。当纳米SiO2的分数为3w t%时,复合材料的冲击强度由8.52k J/m2(E-44环氧树脂)增大到19.04k J/m2,拉伸强度由38.95M Pa提高到50.78M Pa;董元彭,孟卫等[34]制得环氧树脂基TiO2纳米复合材料,当纳米TiO2分数为3w t%时,材料的弹性模量提高了370%,冲击强度提高了878%,拉伸强度提高了44%,具有显著地既增韧又增强的效果;张楷亮,王立新[36]采用插层化技术合成环氧树脂蒙脱石纳米复合材料,因纳米尺寸效应,所制得的纳米复合环氧树脂冲击强度和拉伸强度分别达到 6.7k J/m和46.5M Pa,而纯树脂分别为 4. 17k J/m和41.6M Pa;王立新,袁金凤,彭会茹[38]采用十六胺处理的粘土作为环氧树脂增强剂,以低分子量聚酰胺为固化剂制得环氧树脂/蒙脱土纳米复合材料,经X射线衍射(X RD)结果证明,环氧树脂进入蒙脱土层间固化过程中,将片层进一步撑开,从而制备

出了环氧树脂-蒙脱土层离型纳米复合材料。当有机粘土含量为3%时,复合材料的抗冲击强度比纯树脂提高193%。

7 结束语

目前,环氧树脂增韧技术已进入多种技术共同发展,并且相互渗透的阶段,近年来发展的主要的增韧技术有以下特点:

(1)弹性体增韧环氧树脂时,增韧效果明显,但以弹性模量,耐热性等降低为代价。

(2)热塑性树脂增韧环氧树脂时,其弹性模量,耐热性等下降不大,甚至会有提高,但增韧效果不如弹性体增韧效果显著。

(3)环氧树脂互穿网络聚合物的内部两相结构可以达到分子水平混合,从而大大提高材料性能的协同效应,对环氧树脂起到明显的增韧效果。

(4)热致性液晶聚合物增韧环氧树脂时,在不降低材料刚度的情况下,达到相同增韧效果时,所需液晶聚合物的重量分数只相当于热塑性塑料的25%~30%。

(5)纳米材料因其特殊的尺寸效应使其增韧效果显著而具有很大的发展潜力。

参考文献

[1] M anz ione L M,G illh aam J K.J.Appl Poly Sci.1981,26:906.

[2] 华峰君,吴美芳.接枝环氧树脂的合成、表征、形态及其对环氧树

脂的增韧效应[J].应用化学,1998,15(3):10~14.

[3] 王洪学,赵淑援,钟亚军.J-139常温固化结构胶的研制[J].中国

胶粘剂,1999,9(2):14~15.

[4] 吴培熙,张留城.聚合物共混改性.中国工业出版社,311~323.

[5] 赵峰俊,郭名钦,陈根妹,许书林.电器用环氧灌封胶粘剂的研

制.中国胶粘剂,1998,9(1):32~33.

[6] 饶秋华,姚树人,张玉真.改性聚醚增韧环氧树脂的研究[J].高

分子材料科学与工程,1997,13(1):96~100.

[7] 增汉民,章名秋.M ak romol Ch em.,1986,187:1787.

[8] 王颖,韩笑族,范世霞等,高分子学报,1991,(4):405.

[9] Zh eng H.Die Angew andte.M akromol Ch em.,1986,143:25.

[10] 陈同惠,白耀文,孙仁慧等.聚六亚甲基碳酸酯二醇增韧环氧树

脂的结构与性能[J],高分子科学与工程,1998,14(5):53~56.

[11] 黄月文,电器用环氧胶粘剂的研制,粘接,2000,(6):25~27.

[12] 黄月文,高渗透环氧胶粘剂GIC的研究及其性能.化学与粘

合,2001,(6):242~244.

[13] 何曼君,陈维孝,董西侠编,高分子物理.复旦大学出版社,

1990,106~113.

[14] 马蕊然,苏浩志等.热固性树脂,1989,(1):54.

[15] 许鑫华,方洞浦,陈贻瑞等.纤维增强环氧发泡复合材料的研究

[J].化学工业与工程,1997,14(1):36~40.

[16] 韦春,钟文斌,刘敏娜,王霞瑜.一种新型的热致性液晶固化剂

的合成研究,化学与粘合,2001,(5):193~194.

[17] Barclay G G,Oeer GC K,Papathomas K I,et al.Liquid Crys-

tallin e Epoxy Thermosets Bas ed on Dihyd rox ymethylstilbens:

Synthesis and Characterization[J].J.Polym er Sci,.Part A:

Poly Ch em,1992,30:1831~1843.

[18] Bao-Long Zhang,S.W.Liao,K.Y.Shi,et al.M odification of

Epox y Resins by Acrylic Copolymers with Sid e-Chained M eso-genic Units[J].J.Appl Polym Sci.,1999,73:1787~1792. [19] 钟文斌,王霞瑜.液晶环氧树脂改性普通环氧树脂的研究.粘

结,2000,21(1):17~20.

[20] Roy R,Komameni S,Roy D.M,M ater,Res.,Symp.Proc.,

1984,32:347.

[21] Giannels E.P.Polymer Layered Silicate Nanocomposites[J].

Advances M aterials,1996,8(1):29.

[22] Car rado K.A,Xu Langqiu.In Situ Synthesis of Polymer-clay

Nanocom posites from Silicate Gels[J].Chem.M ater,1998,10

(5):1440.

[23] 张立德.纳米材料的主要应用领域.中国科技,2001,(1):7~9.

[24] 文玉华,周富信,刘曰武.纳米材料研究进展.力学进展,2001,

31(1):47~61

[25] Gleiter H.Nanostructu red M aterials:State of th e Art and Per-

s pectives.Nanostructured M aterials,1995,16:3~ 4.

[26] Xiong Yuqing,Liu Liming,Lu W eigang,Yang Dequan.Da

Daoan.Atomic fo rce M icros oopy and X-ray Photoelectron

Spectroscopy S tudy on Nanos tructured Silver Thin Film s Irra-diated by Atomic Ox ygen.M aterials Scierials Science and Engi-neering,2001,79(8):68~70.

[27] A.M.Tonejc,I.Djerdj,A.Tonejc.Evidence from HRTEM Im-

age Processing,X RD and EDS on Nanocrys talline Iron-doped

Titanium Oxid e Pow ders.M aterials Science and Engineering,

2001,(85):55~63.

[28] 洪伟良,刘剑洪,田德金,罗仲宽.有机-无机纳米复合材料的制

备方法.化学研究与应用,2000,12(2):132~135.

[29] 王洪祚,王颖.环氧树脂基无机纳米复合材料的开拓,粘接,

2001,22(2).

[30] 黄丽,孙正滨,张金生.复合材料领域中的纳米技术进展.工程

塑料应用,29(12):47~49.

[31] 王寿泰.纳米绝缘材料.绝缘材料,2001,(3):13~17.

[32] 潘金龙,容敏智,章明秋.碳酸钙填充聚合物复合材料的研究进

展.工程塑料应用,29(12):47~49.

[33] 李小兵.环氧树脂-SiO2纳米复合材料.热固性树脂,1999,

(2):19~21.

[34] 董元彭,孟卫等.环氧树脂/二氧化钛纳米复合材料的制备及性

能.塑料工业,1999,27(6):37~38.

[35] 张楷亮,王立新.改性蒙脱土增强增韧环氧树脂纳米复合材料

的性能研究.中国塑料,2001,5(3):37~39.

[36] 王立新,袁金凤,彭会茹.环氧树脂-蒙脱土纳米复合材料的制

备与表征.首届留日中国学者21世纪材料科学技术研讨会论文集(材料科学技术进展卷2),2000,321~233.

环氧树脂增韧研究进展_史孝群

收稿日期:2001-12-25 作者简介:史孝群(1949-),男,高工,主要从事材料力学性能、结构及压力容器的安全测试;材料的残余应力测试与研究;材料组织与力学损伤及高分子纳米材料合成与力学性能等领域的研究。(Tel :010-********) 环氧树脂增韧研究进展 史孝群,肖久梅,龚春秀,马文江,刘建林 (北京科技大学应用科学学院,北京100083) 摘要:增韧环氧树脂是环氧树脂领域的研究热点,本文就环氧树脂增韧研究进行了概述,介绍了近年来环氧树脂增韧方法及相应的增韧机理研究进展,力求为环氧树脂在增韧领域的进一步研究提供新的思路和方法,以进一步扩展环氧树脂的应用领域。 关键词:环氧树脂;增韧;增韧机理 中图分类号:T M 216.3;T Q323.5 文献标识码:A 文章编号:1009-9239(2002)06-0031-04 Development of Research on Toughening Epoxy Resin Shi Xiao -Qun ,Xiao J iu -M ei ,Go ng Chun -Xiu ,Ma Wen -J ang ,Liu Jian -Lin (Department of Applied Science ,University of Science and Technology Beijing ,Beijing ,100083)Abstract :To ug hening epo xy is v ery important in the field of epox y .Study o n toughening epox y resin a re rev iew ed,methods o f to ughening epox y recently a nd to ughening mechanism a re indroduced in this paper,which provides new ideas a nd rules fo r further study on toug hening epox y resin,in o rder to ex panding th e use of epo xy . Keywords :epox y resin;toughening;to ughening mechanism 1 前 言 环氧树脂具有良好的介电性能、化学稳定性、粘接性、加工性,使其在胶粘剂、涂料、电子、电器和航空航天等领域发挥重要的作用。环氧树脂为交联度很高的热固性材料,裂纹扩展属于典型的脆性扩展,固化后存在韧性不足、耐冲击性较差和容易开裂等缺点,所以增韧环氧树脂是环氧树脂领域的研究热点。最初,用加入增塑剂、柔韧剂(增柔剂)的方法来提高韧性,但却降低了材料的耐热性、硬度、模量、介电性能。从六十年代中期开始,国内外相继开展了用反应性液态聚合物增韧环氧树脂的研究工作,在热性能、模量、介电性能等降低不太大的情况下提高了环氧树脂的韧性,改善了材料的综合性能,使得增韧环氧树脂的应用有了较大的进展。近年来,由于弹性体合金化技术、互穿网络材料、液晶及纳米材料等制备技术的成熟,在橡胶类弹性体,热塑性树脂,热致性液晶,纳米 材料增韧方面也获得了长足的进展。本文就环氧树脂的增韧及增韧机理进行了探讨。 2 弹性体增韧环氧树脂 用于增韧环氧树脂的橡胶需具备两个基本条件,其一为橡胶与环氧树脂在固化前具有相容性,并且分散性好;其二为环氧树脂固化时,橡胶能够顺利析出,呈两相结构。丁腈橡胶、丙烯酸酯橡胶、聚氨酯橡胶、聚硅氧烷等是增韧环氧树脂的首选弹性体材料,并且这些弹性体通常具有可以与环氧树脂中的环氧基反应形成嵌段的活性端基(如羟基、烃基、氨基等)。在环氧树脂固化过程中,这些橡胶类弹性体嵌段一般能从基体中析出,以分散相的形式分散于连续的环氧树脂体系中,形成“海岛”结构。在橡胶增韧环氧体系中,橡胶的第二种作用在于诱发基体的耗能过程,而其本身在被拉伸断裂过程中的耗能一般占次要地位。材料的断裂过程发生在基体树脂中,因此增韧的最根本潜力在于提高基体的屈服变形能力[1]。 有关弹性体增韧环氧树脂的研究很多 [2,3] 。常用 的增韧剂是液体端羟基丁腈橡胶(C TBN ),环氧树脂

环氧树脂增韧改性新技术

Vol 134No 18 ?14?化工新型材料 N EW CH EMICAL MA TERIAL S 第34卷第8期2006年8月 作者简介:宣兆龙,男,博士,从事兵器防护材料与技术的教学与科研工作,已发表论文40余篇。 环氧树脂增韧改性新技术 宣兆龙 易建政 (军械工程学院三系,石家庄050003) 摘 要 综述了环氧树脂的增韧改性研究,着重讨论了热塑性树脂、热致液晶聚合物和互穿网络结构等环氧树脂增韧改性新技术。 关键词 环氧树脂,增韧,改性 N e w technology of modif ication toughening epoxy resin Xuan Zhaolong Yi Jianzheng (Depart ment 3of Ordnance Engineering College ,Shijiazhuang 050003) Abstract Study of modification methods and mechanism for epoxy toughened is reviewed with 46references. More effective technologies ,such as toughening modification with thermoplastics ,thermotropic liquid crystalline poly 2mer (TL CP )and interpenetrating polymer network (IPN )are also discussed in briefly. K ey w ords epoxy resin ,toughening ,modification 环氧树脂(EP )具有高强度和优良的粘接性能。但因其固化物质脆,易产生裂纹等缺陷,在材料的耐 疲劳性能和抗横向开裂性能方面难以满足工程技术的要求,使其应用受到了一定的限制。为此国内外学者对EP 进行了大量的改性研究工作,以改善其韧性。 目前EP 的增韧途径主要有3种:①在环氧基体中加入橡胶弹性体、热塑性树脂或液晶聚合物等分散相来增韧。②用热固性树脂连续贯穿于EP 网络中形成互穿、半互穿网络结构来增韧。③用含有“柔性链段”的固化剂固化环氧,在交联网络中引入柔性链段,提高网链分子的柔顺性,达到增韧的目的。本文主要综述了热塑性树脂、液晶聚合物、互穿聚合物网络改性EP 的研究进展。 1 热塑性树脂增韧EP 在EP 基体中加入一定量的高性能热塑性树脂,不仅能改进EP 的韧性,而且不降低其刚度和耐热性。热塑性树脂增韧EP 一般采用剪切屈服理论或颗粒撕裂吸收能量及分散相颗粒引发裂纹钉铆机 理来解释[1,2]。用于增韧EP 的热塑性树脂主要有聚酰亚胺(PI )、聚醚酰亚胺(PEI )、聚醚砜(PES )、聚砜(PSF )等。 1.1 聚酰亚胺(PI)增韧EP EP 与PI 共混是通过PI 与环氧预聚体混合然 后反应而得到的。这类树脂最初制备时是均相的,在一定转化率时树脂发生液2液相分离,从而在最终固化的材料内部产生一系列形态结构,这些主要依赖于热塑性塑料的原始质量和临界组成的对比关系[3,4]。 Biolley 等[5]用具有相当高T g 的二苯酮四酸二 酐(B TDA )和4,4’2(9氢292亚芴基)二苯胺(FBPA )合成的可溶性PI 改性四缩水甘油基二苯甲烷2二氨基二苯砜EP 体系(T GDDM /DDS/PEI )。固化后的树脂用扫描电镜观察没有发现相分离,并且动态力学分析表明共混组分间能完全相容。Li 等[6]通过用4种不同的二氢化物和2种不同二元胺[1,32二(32氨基苯氧基)苯,即A PB ;2,2’2(42(42氨基苯氧基)苯基)丙烷,即BA PP ]合成一系列有机溶性的芳香族聚亚胺酯来增韧EP (Epon828),DSC 发现

环氧树脂水性化技术的研究进展

环氧树脂水性化技术的研究进展 黄燕 (茂名学院化工与环境工程学院,广东茂名525000) 摘要:系统地介绍了环氧树脂水性化的技术,包括机械法、相反转法、化学改性法及乳化法,对不同的水性化技术进行了评论。综述了目前国内外环氧树脂水性化技术的研究进展及其发展趋势,并总结了环氧树脂水性化体系的应用。 关键词:环氧树脂;水性化技术;研究进展 中图分类号:TQ630.4 文献标识码:A文章编号:1671-6590(2010)01-0008-04 环氧树脂是一个分子中含有两个或两个以上环氧基,且在适当的化学试剂存在下形成三维交联网状固化物的化合物的总称。环氧树脂具有优异的附着性、热稳定性、耐化学品性、绝缘性及机械强度等,广泛用于涂料、粘合剂及复合材料等领域[1]。但是,常用的环氧树脂为非水溶性,只溶于芳烃类、酮类及醇类等有机溶剂。有机溶剂不但价格较贵,而且具有挥发性,对环境造成污染,这限制了环氧树脂在涂料、胶粘剂行业中的大规模使用。 随着对环境保护的要求日益严格,不含挥发性有机化合物VOC、低VOC、不含有害空气污染物的体系已成为新型材料的研究方向。与溶剂型涂料相比,水性环氧涂料具有诸多优点,如VOC低、气味小、使用安全、可用水直接清洗等,在工业和商业上具有很大的吸引力,正在被不断推广。因此,环氧树脂的水性化研究成为国内外研究的热点[2]。 1环氧树脂水性化技术 环氧树脂本身不溶于水,不能直接加水进行乳化,故要制备稳定的水性环氧树脂乳液,通常须使环氧基料带一定数量的亲水基团,如羧基、羟基、氨基和酰胺基等。根据环氧树脂制备方法的不同,环氧树脂的水性化方法主要有机械法、相反转法、化学改性法和固化剂乳化法。 1.1机械法 机械法即直接法,可用球磨机、胶体磨、均质器等将环氧树脂磨碎,再加入乳化剂水溶液,然后通过机械搅拌将粒子分散于水中;或将环氧树脂和乳化剂混合,加热到适当的温度,在激烈的搅拌下逐渐加入水而形成乳液[3]。可采用的乳化剂有聚氧乙烯烷芳基醚、聚氧乙烯烷基醚、聚氧乙烯烷基酯等,另外也可自制活性乳化剂。专利[4]报道,采用聚乙二酸,双酚A环氧树脂在路易斯酸的催化作用下也可制得环氧树脂乳化剂。此方法的特点是工艺简单,成本低廉,乳化剂用量较少,但环氧树脂在乳液分散相中微粒较大,约50μm左右。粒子形状不规则且尺寸分布较宽,导致乳液稳定性差,涂料成膜性能也欠佳。而且由于非离

国外环氧树脂应用研究技术进展_1

---------------------------------------------------------------最新资料推荐------------------------------------------------------ 国外环氧树脂应用研究技术进展 国外环氧树脂应用研究技术进展吴良义陈德萍近年来,环氧树脂新产品开发和应用技术进展迅速,特别是复合材料、涂料、粘合剂、固化剂、韧性环氧树脂、液体环氧树脂以及催化剂、促进剂等产品,这是新型材料发展的需要,我们应予以重视。 一、复合材料 1、玻璃微珠环氧树脂复合材料用硅烷偶联剂(SA) 处理玻璃微珠(GB) 表面,以双酚 A 型环氧树脂(E828) 和乙烯二胺(EDA)固化剂作为复合材料基体,胺丙基三甲氧基硅烷(APS) 、胺丙基三乙氧基硅烷(AES)和 2氢基乙基苯硅烷(AAPS) 用作处理剂,对其处理条件与机械性能关系进行了研究。 结果表明: ①复合材料的玻璃化温度(Tg) 、弯曲模量和弯曲强度达到最大值的 SA 水溶液的最佳浓度序列是 AASAESAAPS。 ②复合材料机械性能达到最大值时, SA 水溶液的水解时间依赖于 SA的无机基团,乙氧基比甲氧基需要更长的时间。 ③在基体固化程度确立的工艺条件下,对 SA和 E828 的反应性进行研究。 表面处理后的 LB 在80150℃下与 E828 混合后,再加 EDA 固化剂,以增加 SA 和 E828 反应程度。 结果为150℃比80℃混料的复合材料 Tg 高。 2、硅充填环氧树脂复合材料使用环氧树脂作为基 1 / 12

体树脂的复合材料,具有优良的机械性能,但在高温下长时间使用就会出现时间和温度的特性。 用静态抗弯和疲劳试验检验时间、温度对抗弯强度的影响。 结果表明,时间温度叠加原理适用于静态弯曲强度。 与纯基体树脂和复合材料相比,纯树脂是影响复合材料静态强度和温度特性的主要因素。 疲劳测试表明,时间、温度叠加原理适用于最初的基体树脂的弹性强度,当温度、应力 LLt 助 D 时,塑性形变影响存在,抗弯强度和模量也有所增加。 3、镶嵌减振材料的石墨环氧树脂复合层压板复合材料中共固化弹性减震材料的减振性能有效的提高了材料的减振性能,然而,当减振材料没有达到层压固化的周期时,减振性能常常不如二次粘接的复合材料高。 共固化和二次粘接样品之间,减振性不同的原因是树脂渗入到减振材料所至。 在减振材料和环氧树脂之间有隔层的样品的比没有隔层共固化FasTapell25 有效的损失系数(视频率而定) 要高 15. 7%92. 3%,而比没有隔层的共固化 ISDll2 样品至少要高 168%。 这样的减振值,接近于二次粘接所达到的值。 研究结果表明,对减振材料粘弹性大多数都受固化期温度的影响。 4、炭纤维环氧树脂复合材料研究表明,杂质对碳

双组分水性环氧树脂研究进展

双组分水性环氧树脂研究进展(一) 2009/2/18/08:32 来源:中国环氧网 环氧树脂涂料附着力高、耐化学品和溶剂性优异、硬度高、耐磨性好,在工业上已获得了广泛的应用。传统的环氧树脂涂料通常为溶剂型。随着人们对环境保护的要求日益迫切和严格,开发水性环氧体系,即不含VOC(挥发性有机化合物,VolatileOrganicCompound)或不含HAP(有害空气污染物,HazardousAirPollutants)的体系成为新的研究方向,水性环氧涂料具有无空气污染、安全无毒、施工工具易于清洗等优点,可替代目前广泛使用的溶剂型涂料,具有很大的经济效益和社会效益。 一、水性环氧树脂的分类 根据制备方法的不同,水性环氧树脂还可分为外乳化型和内(自)乳化型2大类。就是:外乳化法水性环氧体系由于存在较多的乳化剂,其耐水性和耐溶剂等性能比溶剂型的差,而且适用期短且制得粒子粒径较大,现在多不采用。 1、自乳化型水性环氧树脂(化学法) 通过化学改性,可以将一些亲水性的基团引入到环氧树脂分子链上,使环氧树脂获得自乳化的性质,这是自乳化型水性环氧树脂制备的基本原理。根据所引入的亲水性基团的性质不同,自乳化环氧树脂分为阴离子型、阳离子型和非离子型等几类。 (1)阴离子型 通过适当的方法在环氧聚合物分子链上引入羧酸、磺酸等功能性基团、中和成盐以后,环氧树脂就具备了水分散的性质,常用的方法有功能性单体扩链法和自由基接技改性法。前者是利用环氧基团与一些低分子的扩链剂如氨基酸、氨基苯甲酸、氨基苯磺酸(盐)等化合物上的胺基反应,在链上引人羧酸、磺酸基团,中和成盐后可分散于水中。 中国科学院广州化学研究所用对氨基苯甲酸改性环氧树脂,使其具有亲水亲油两种性质,以改性产物及其与纯环氧树脂的混合物制成水性涂料,涂膜性能优良,保持了溶剂型环氧涂料在抗冲击强度、光泽度和硬度等方面的优点,而且附着力提高,柔韧性大为改善,涂膜耐水性和耐化学药品性能优良。 自由基接技改性方法是利用双酚A型环氧分子上的亚甲基在过氧化物作用下易于形成自由基并与乙烯基单体共聚的性质,将(甲基)丙烯酸、马来酸(酐)等单体接枝到环氧树脂上,从而得到自乳化环氧树脂,这也是采用苯乙烯、丙烯酸类单体对环氧树脂接枝改性的一个重要依据。

环氧树脂及其胶粘剂的增韧改性研究进展_杨卫朋

环氧树脂及其胶粘剂的增韧改性研究进展 杨卫朋,郝 壮,明 璐 (西北工业大学理学院应用化学系,陕西西安 710129) 摘 要:综述了环氧树脂(EP )及其胶粘剂的增韧改性研究进展。介绍了EP 增韧方法[包括橡胶类弹 性体增韧改性EP 、互穿聚合物网络(IPN )增韧改性EP 、聚硅氧烷(PDMS )增韧改性EP 、纳米粒子增韧改性EP 和超支化聚合物(HBP )增韧改性EP 等]及相关增韧机制。展望了今后EP 及其胶粘剂的增韧改性发展方向。 关键词:环氧树脂;胶粘剂;增韧;改性中图分类号:TQ433.437:TQ323.5 文献标志码:A 文章编号:1004-2849(2011)10-0058-05 收稿日期:2011-05-26;修回日期:2011-06-24。 作者简介:杨卫朋(1987—),陕西咸阳人,在读硕士,主要从事环氧树脂增韧改性等方面的研究。E-mail :yangweipeng.883245@https://www.docsj.com/doc/1f4854550.html, 0前言 环氧树脂(EP )是指其分子结构中至少含有两个环氧基团的高分子材料。EP 具有良好的综合性能,能以各种形式(如增强塑料、胶接材料、密封剂和涂料等)广泛应用于诸多领域。未改性EP 固化物脆性大、耐冲击强度低且易开裂(韧性不足),从而极大限制了其在某些重点技术领域的应用空间。本研究重点综述了近年来各种改性EP 的增韧方法,其中绝大部分增韧方法可用于EP 胶粘剂的增韧改性。 1 增韧改性EP 及其胶粘剂 1.1 橡胶类弹性体增韧改性EP 1.1.1 有关橡胶类弹性体增韧EP 的理论 橡胶类弹性体是较早用于增韧EP 的方法之 一。早期的增韧理论有Merz 等[1]提出的能量直接吸收理论和Newman 等[2]提出的屈服膨胀理论。早期的理论虽能解释某些试验现象,但不能普遍获得人们的认可。随着科学技术的不断发展,在早期理论基础上,建立了初步的橡胶增韧理论体系。目前被人们普遍接受的增韧理论有Bucknall 等[3-4]提出的银纹-剪切带理论。该理论认为橡胶颗料在增韧体系中发挥两个重要的作用:一是作为应力集中中心诱发大量银纹和剪切带;二是控制银纹的发展,并使银纹终止而不致发展成破坏性裂纹。银纹尖端的应 力场可诱发剪切带的产生,而剪切带也可阻止银纹的进一步发展;大量银纹或剪切带的产生和发展要消耗大量能量,故材料的冲击强度显著提高。另外,影响较大的是Kinloch 等[5]建立的孔洞剪切屈服理论认为:裂纹前段的三向应力场与颗粒相固化残余应力的叠加作用,使颗粒内部或颗粒/基体界面处破裂而产生孔洞;这些孔洞一方面产生体膨胀,另一方面又由于颗粒赤道上的应力集中而诱发相邻颗粒间基体的局部剪切屈服;这种屈服会导致裂纹尖端钝化,进一步达到减少应力集中和阻止断裂的目的。 1.1.2橡胶弹性体的类型 目前用于增韧EP 的反应性橡胶及弹性体主要包 括端羧基丁腈橡胶(CTPB )、端羟基丁腈橡胶(HTBN )、端环氧基丁腈橡胶和聚硫橡胶等。Chikhi [6]等用端氨基丁腈橡胶(ATBN )改善EP 的韧性,并对其热力学性能和玻璃化转变温度(T g )等进行了表征。研究结果表明:ATBN 的引入能显著改善EP 体系的韧性,其缺口处的冲击强度从0.85kJ/m 2增至2.86kJ/m 2,无缺口处的冲击强度从4.19kJ/m 2增至14.26kJ/m 2;其增韧机制是局部塑性剪切变形、T g 降低所致。赵祺等[7]以内亚甲基四氢邻苯二甲酸酐为固化剂,用聚硫橡胶增韧EP 。研究结果表明:加入20%聚硫橡胶后,EP 胶粘剂的拉伸弹性模量、拉伸强度、断裂伸长率、断裂能量和冲击强度分别增加了27%、34%、 22%、48%和330%;聚硫橡胶增韧EP 胶粘剂的综合力学性能明显提高,但其动态模量降低、T g 下降。 中国胶粘剂 CHINA ADHESIVES 2011年10月第20卷第10期 Vol.20No .10,Oct.2011 58--642() DOI:10.13416/j.ca.2011.10.015

环氧树脂的改性研究发展

环氧树脂的改性研究发展 付东升 1 朱光明 1 韩娟妮2 (1西北工业大学化工系,2西北核技术研究所) 1、前言 近年来,科研工作者对环氧树脂进行了大量的改性研究,以克服其性脆,冲击性、耐热性差等缺点并取得了丰硕的成果。过去,人们对环氧树脂的改性一直局限于橡胶方面,如端羧基丁脂橡胶、端羟基丁腊橡胶、聚琉橡胶等[1—4]。近年来,对环氧树脂的改性不断深入,改性方法日新月异,如互穿网络法、化学共聚法等,尤其是液晶增韧法和纳米粒子增韧法更是近年来研究的热点。综述了近年来国内外对环氧树脂的改性研究进展。2、丙烯酸增韧改性环氧树脂 利用丙烯酸类物质增韧环氧树脂可以在丙烯酸酯共聚物上引入活性基团,利用活性基团与环氧树脂的环氧基团或经基反应,形成接技共聚物,增加两相间的相容性。另一种方法是利用丙烯酸酯弹性粒子作增韧剂来降低环氧树脂的内应力。还可以将丙烯酸酯交联成网络结构后与环氧树脂组成互穿网络(IPN)结构来达到增韧的目的。张海燕[5]等人利用环氧树脂与甲基丙烯酸加成聚合得到环氧-甲基丙烯酸树脂(EAM),其工艺性与不饱和聚酯相似,化学结构又与环氧树脂相似,得到的改性树脂体系经固化后不仅具有优异的粘合性和化学稳定性,而且具有耐热性好、较高的延伸率,固化工艺简单等优点。同时由于共聚链段甲基丙烯酸酯的引入,体系固化时的交联密度降低,侧基的引入又为主链分子的运动提供更多的自由体积,因此改性体系的冲击性能得以提高。 韦亚兵[6]利用IPN法研究了聚丙烯酸酯对环氧树脂的增韧改性。他将线性聚丙烯丁酯交联成网状结构后与环氧树脂及固化剂固化,形成互穿网络结构。该方法增加了丙烯酸丁酯与环氧树脂的相容性。该互穿网络体系具有较高的粘接强度和优异的抗湿热老化能力。 李已明[7]通过乳液聚合法首先制备出丙烯酸丁酯(PBA)种子乳液,在引发剂作用下合成出核乳液,然后在该种子上引入聚甲基丙烯酸甲酯壳层得到核壳粒子。利用该粒子来增韧环氧村脂时,由于聚甲基丙烯酸甲酯的溶解度参数与环氧树脂的溶解度参数相近,因此两者的界面相容性非常好。用SEM对其进行观察时可发现核壳粒子的壳层与环氧树脂溶为一体,而核芯PBA则在环氧基体中呈颗粒状的分散相。M.Okut[8]对PBA/PMMA核壳粒子增韧环氧基体体系进行了动态力学分析,在动态力学图谱上高温区可以发现没有与PMMA对应的玻璃化转化峰,只有与环氧树脂对应的玻璃化转变峰,这同时也证明了环氧树脂与PM MA的相容性。改性体系的缺口冲击强度显著提高,断口特征形貌由环氧树脂的脆性断裂转化为韧性断裂。 3、聚氨酯增韧环氧树脂 利用聚氨酯改性环氧树脂主要是为了改善其脆性,提高其柔韧性,增加剥离强度。聚氨酯粘接性能好,分子链柔顺,在常温下表现出高弹性。施利毅等[9]利用高分子合金的思想,采用熔体共混法制备出了PU/EP共混体系。他以异氰酸根封端的聚氨酯预聚体与环氧树脂在熔融条件下加入固化剂固化后得到共混改性体系:由于异氰酸根本身能与环氧基团反应,因此得到的改性体系两相间有良好的相容性,利用DMA分析,可发现其谱图上在m(PU):m(EP)=20:80时只有单一的宽的玻璃化转变蜂,这进一步证明了两相间的相容性。改性体系比环氧树脂的冲击强度有了大幅度提高。 目前研究最多的聚氨酯增韧环氧树脂体系是以聚氨酯与环氧树脂形成SIPN和IPN结构,这两种结构可起“强迫互容”和“协同效应”作用,使聚氨酯的高弹性与环氧树脂的良好的耐热性、粘接性有机地结合在一起,取得满意的增韧效果。 Y.Li[10]等利用双酚A环氧树脂与末端为异氰酸酯的聚醚聚氨酯低聚物进行改性接枝,二者在四氢呋喃溶液中形成均相溶液,然后在DDM固化剂作用下形成线性聚氨酯贯穿于环氧网络的半互穿网络结构。两者在用量比为

环氧树脂的增韧改性方法

环氧树脂的增韧改性方法 摘要:环氧树脂(EP)是聚合物基复合材料应用最广泛的基体树脂。EP是一种热固性树脂,具有优异的粘接性、耐磨性、力学性能、电绝缘性能、化学稳定性、耐高低温性,以及收缩率低、易加工成型、较好的应力传递和成本低廉等优点,在胶粘剂、电子仪表、轻工、建筑、机械、航天航空、涂料、粘接以及电子电气绝缘材料、先进复合材料基体等领域得到广泛应用[1-3]。因此,对EP增韧增强一直是人们改性EP的重要研究课题之一。一般的EP填充剂和增韧剂都存在增强相与树脂基体间的界面粘接性较差的问题,韧性的改善是以牺牲材料强度、模量及耐热性为代价的,使其物理、力学和热性能的提高受到限制。笔者对国内EP增韧增强改性方法的最新进展做了简单的综述。 关键词:环氧树脂增韧改性 1环氧树脂的增韧改性 1.1橡胶弹性体改性 利用橡胶弹性体增韧EP的实践始于上世纪60年代,主要通过调节两者的溶解度参数,控制胶化过程中相分离所形成的海岛结构,以分散相存在的橡胶粒子就可以起到中止裂纹、分枝裂纹、诱导剪切变形的作用,从而提高EP的韧性.用于EP增韧的橡胶和弹性体必须具备2个基本条件:首先,所用的橡胶在固化前必须能与EP相容,这就要求橡胶的相对分子质量不能太大;而EP固化时,橡胶又要能顺利地析出来,形成两相结构,因此橡胶分子中两反应点之间的相对分子质量又不能太小[4]。其次,橡胶应能与EP 发生化学反应,才可产生牢固的化学交联点。因此EP增韧用的橡胶一般都是RLP (反应性液态聚合物)型的,相对分子质量在1000~10000,且在端基或侧基上带有可与环氧基反应的官能团[5]。 近年来,随着高分子相容性理论的发展和增容技术的进步,环氧树脂与热塑性树脂的合金化增韧改性获得了长足的发展,有效地克服了橡胶弹性体改性环氧树脂体系的不足。用于环氧树脂增韧改性的热塑性树脂主要有聚砜(PSF)、聚醚砜(PES)、聚醚酮(PEK)、聚醚醚酮(PEEK)、聚醚酰亚胺(PEI)、聚苯醚(PPO)、聚碳酸酯(PC)等。这些聚合物一般是耐热性及力学性能都比较好的工程塑料,它们或者以热熔化的方式,或者以溶液的方式掺混入环氧树脂[6]。 韩静等[7]制备了以丙烯酸丁酯、丙烯酸乙酯、丙烯酸缩水甘油酯为主链的带环氧基团的液体橡胶,用来增韧EP/间苯二甲胺体系。结果表明,随着丙烯酸酯液体橡胶用量的增加,改性EP体系的弯曲强度和冲击强度呈先升高后降低趋势,并在10%和15%出现峰值,与纯EP体系相比,强度可分别提高10.5%和151.8%。 范宏等对比了就地聚合PBA2P(BA2IG)0.2~1μm的橡胶粒子分散体以及用种子乳液

环氧树脂的增韧改性研究

环氧树脂的增韧改性研究 环氧树脂是由具有环氧基的化合物与多元羟基化合物(双酚A、多元醇、多元酸、多元胺) 进行缩聚反应而制得的产品。环氧树脂具有高强度和优良的粘接性能,可用作涂料、电绝缘材料、增强材料和胶粘剂等。但因其固化物质脆,耐开裂性能、抗冲击性能较低,而且耐热性差,使其应用受到了一定的限制。为此国内外学者对环氧树脂进行了大量的改性研究工作,以改善环氧树脂的韧性。 目前环氧树脂的增韧研究已取得了显著的成果,其增韧途径主要有三种: ①在环氧基体中加入橡胶弹性体、热塑性树脂或液晶聚合物等分散相来增韧。②用热固性树脂连续贯穿于环氧树脂网络中形成互穿、半互穿网络结构来增韧。③用含有“柔性链段”的固化剂固化环氧,在交联网络中引入柔性链段,提高网链分子的柔顺性,达到增韧的目的。 1 橡胶弹性体增韧环氧树脂 橡胶弹性体通过其活性端基(如羧基、羟基、氨基) 与环氧树脂中的活性基团(如环氧基、羟基等)反应形成嵌段;正确控制反应性橡胶在环氧树脂体系中的相分离过程是增韧成功的关键。自Mc Garry发现端羧基丁腈橡胶(CTBN) 能使环氧树脂显著提高断裂韧性后的几十年间,人们在这一领域进行了大量基聚醚、聚氨酯液体橡胶、聚的研究。据文献报道,已经研究过的或应用的对环氧树脂增韧改性的橡胶有端羧硫橡胶、含氟弹性体、氯丁橡胶、丁腈橡胶、丙烯酸丁酯橡胶等。通过调节橡胶和环氧树脂的溶解度参数,控制凝胶化过程中相分离形成的海岛结构,以分散相存在的橡胶粒子中止裂纹、分枝裂纹、诱导剪切变形,从而提高环氧树脂的断裂韧性。 目前用液体橡胶增韧环氧树脂的研究有两种趋势。一种是继续采用CTBN 增韧环氧树脂体系,重点放在增韧机理的深入探讨;另一种是采用其它的合适的液体橡胶,如硅橡胶、聚丁二烯橡胶等。D1 Verchere[1 ] 等研究端环氧基丁腈橡胶(ETBN) 对双酚A 型环氧树脂的增韧效果, 当ETBN 含量为20wt %时, 树脂的断裂韧性GIC 由01163kJ / m2 提高到01588kJ / m2 ,比增韧前提高了3倍多。韩孝族[2 ]等用端羟基丁腈橡胶(HTBN) 增韧环氧/ 六氢邻苯二甲酸酐体系, 当HTBN 含量达20phr 时,增韧树脂的冲击强度达900kJ / cm2 ,较改性前(340kJ / cm2) 提高了2 倍多。孙军[3 ]等利用高 分子设计方法及控制反应工艺,制备出具有氨基封端的硅橡胶改性体,分析其红外光谱,证实其产物具有预想结构,即改性后的硅橡胶为氨基封端。用改性硅橡胶对环氧树脂进行增韧改性,通过对增韧体的冲击强度测试结果表明,在改性硅橡胶加入量为0~15 份的范围内,增 韧体的冲击强度有了大幅度提高,加入量超过15 份以后,增韧体的冲击强度增势缓慢,实验证明改性硅橡胶对环氧树脂具有良好的增韧效果。此外,还有活性端基液体橡胶增韧环氧树脂、聚硫橡胶改性环氧树脂等方面的研究也有很大进展。如王德武[4 ]等人研制的聚硫橡胶改性环氧防水防腐防霉涂料,是由聚硫橡胶改性环氧溶液为成膜物质,加入金属氧化物填料,添加有机胺固化剂所组成的双组分涂料。该涂料对金属、非金属的附着力强(对钢铁附着力为3~4MPa ,对混凝土附着力为4~5MPa) 、涂膜坚硬、光滑、丰满,不吸附污浊和藻类,具有韧性好、高弹性、耐候、耐霉菌、耐磨、耐酸碱和耐多种溶剂等特点。 近年来,核2壳乳液胶粒增容技术的应用使橡胶弹性体改性环氧树脂又有了新进展。核壳粒子大小及其环氧树脂的界面性能可以用乳液聚合技术来设计和改变。Lin K F[5 ]等研究了以丙烯酸丁酯为核、甲基丙烯酸甲酯和缩水甘油醚基丙烯酸甲酯共聚物为壳的核壳粒子增韧双酚A 型环氧树脂体系,并探讨了增韧机理。 Ashida Tadashi[6 ]等研究了在环氧树脂中分别加入聚丙烯酸丁酯橡胶粒子和PBA/ PMMA (聚丙烯酸丁酯/ 聚甲基丙烯酸甲酯) 核壳胶粒,以双氰胺为固化剂所得固化物的结构形态和性能。结果表明,用丙烯酸橡胶粒子可提高环氧树脂的断裂韧性,但远远低于核壳粒子(PBA/ PMMA) 的增韧效果;在环氧树脂固化过程中,由于PMMA 与环氧树脂的相容性好,环氧

环氧树脂增韧改性技术研究进展和新方法及其机理_刘野

综术与专论 S UMMAR I Z ATION AND SPEC IAL COMMENT 收稿日期:2007-01-03 作者简介:刘野(1979-),男,黑龙江巴彦人,研实员,研究方向胶黏剂测试。 环氧树脂增韧改性技术研究进展和新方法 及其机理 刘 野, 杜 明 (黑龙江省石油化学研究院,黑龙江哈尔滨150040) 摘要:简单介绍了环氧树脂技术的研究进展和近期的主要应用,并概述了环氧树脂的改性技术。主要介绍了增韧改性的一些新方法,包括热塑性树脂增韧、互穿网络增韧、热致性液晶增韧、原位聚合增韧、核壳结构聚合物增韧等,主要介绍了用橡胶弹性体、热塑性树脂、刚性粒子、核壳型结构聚合物来增韧环氧树脂,以及环氧树脂绝缘性、耐湿热性和阻燃性等的改进方法,并对其中的增韧机理作了总结分析。最后本文综述了环氧树脂增韧改性技术发展及其未来展望。 关键词:环氧树脂;增韧;改性 中图分类号:T Q 433.437 文献标识码:A 文章编号:1001-0017(2007)03-0197-05 Research Pr ogress in Modificati on Techniques,Ne w Methods and Mechanis m of T oughening Epoxy Resins L I U Ye and DU M ing (Heilongjiang Institute of Petroche m istry,Harbin 150040,China ) Abstract:Research p r ogress and recent app licati on of epoxy resin are summarized aswell as the modificati on techniques .The ne w methods of t ough 2ening epoxy resins,such as ther mop lastic resin,for m ing inter penetrating net w orks poly mer,in -situ poly merizati on,ther motr op ic liquid crystalline poly 2mer and core -shell latex poly mer are intr oduced .Novel methods of t oughening epoxy resin with rubbers,elast omers,ther mop lastic resins,rigid particles and core -shell structure poly mers are detailed .And the methods of i m p r oving insulati on,resistance t o wet heat and fla me retardati on of epoxy resin are als o intr oduced as well as their mechanis m s .The devel opment and p r os pect of modificati on techniques of epoxy resin are p resented at the end of this pa 2per . Key words:Epoxy resin;t oughening;modificati on 前 言 环氧树脂是一类重要的热固性树脂,是聚合物 复合材料中应用最广泛的基体树脂。环氧树脂具有优异的粘接性能、耐磨性能、机械性能、电绝缘性能、化学稳定性能、耐高低温性能,以及收缩率低、易加工成型和成本低廉等优点,在胶黏剂、电子仪表、轻工、建筑、机械、航天航空、涂料、电子电气绝缘材料 及先进复合材料等领域得到广泛应用[1] 。常见的环氧树脂主要有2种类型,一种是双酚A 缩水甘油醚型环氧树脂。通常被称为双酚A 环氧树脂,占环氧树脂总产量的90%,可由2,2’-双对羟基苯基丙烷(双酚A )与环氧氯丙烷在碱存在下聚合而得;另一种是高官能度环氧树脂(分子中具有2个以上环氧基)。它可由线型酚醛树脂和环氧氯丙烷聚合得 到,也可由4,4′-二氨基二苯甲烷或4,4′-二胺基二苯醚与环氧氯丙烷缩合得到。由于纯环氧树脂具有高的交联结构,因而存在质脆,耐疲劳性、耐热性、抗冲击韧性差等缺点,难以满足工程技术的要求,使其应用受到一定限制,因此对环氧树脂的改性工作一直是中外研究的热门课题。 传统的增韧方法,如用端羧基丁腈橡胶等橡胶弹性体来改性环氧树脂,在基础研究和应用开发方面都取得了较大成果,但是,这种改性的结果常常是冲击强度得到显著提高,而相应固化物的耐热性和模量随之下降,因而往往不尽人意。近年来国内外学者致力于研究一些新的改性方法,如用耐热的热塑性工程塑料和环氧树脂共混;使弹性体和环氧树脂形成互穿网络聚合物(I P N )体系;用热致液晶聚合物对环氧树脂增韧改性;用刚性高分子原位聚合

环氧树脂增韧途径与机理

环氧树脂增韧途径与机理 环氧树脂(EP)是一种热固性树脂,因其具有优异的粘结性、机械强度、电绝缘性等特性,而广泛应用于电子材料的浇注、封装以及涂料、胶粘剂、复合材料基体等方面。由于纯环氧树脂具有高的交联结构,因而存在质脆、耐疲劳性、耐热性、抗冲击韧性差等缺点,难以满足工程技术的要求,使其应用受到一定限制。因此对环氧树脂的共聚共混改性一直是国内外研究的热门课题。 一、序言 目前环氧树脂增韧途径,据中国环氧树脂行业协会专家介绍,主要有以下几种:用弹性体、热塑性树脂或刚性颗粒等第二相来增韧改性; 用热塑性树脂连续地爨穿于热固性树脂中形成互穿网络米增韧改性; 通过改变交联网络的化学结构以提高网链分子的活动能力来增韧; 控制分子交联状态的不均匀性形成有利于塑性变形的非均匀结构来实现增韧。 近年来国内外学者致力于研究一些新的改性方法,如用耐热的热塑性工程塑料和环氧树脂共混;使弹性体和环氧树脂形成互穿网络聚合物(I PN)体系;用热致液晶聚合物对环氧树脂增韧改性;用刚性高分子原位聚合增韧环氧树脂等。这些方法既可使环氧捌脂的韧性得到提高,同时又使其耐热性、模量不降低,甚至还略有升高。 随着电气、电子材料及其复合材料的飞速发展,环氧树脂正由通用型产品向着高功能性、高附加值产品系列的方向转化。中国环氧树脂行业协会专家表示,这种发展趋势使得对其增韧机理的研究H益深入,增韧机理的研究对于寻找新的增韧方法提供了理论依据,因此可以预测新的增韧方法及增韧剂将会不断出现。 采用热塑性树脂改性环氧树脂,其研究始于20世纪80年代。使用较多的有聚醚砜(P ES)、聚砜(P S F)、聚醚酰亚胺(P EI)、聚醚醚酮(PE EK)等热塑性工程塑料,人们发现它们对环氧树脂的改性效果显著。据中国环氧树脂行业协会专家介绍,这些热塑性树脂不仪具有较好的韧性,而且模量和耐热性较高,作为增韧剂加入到环氧树脂中同样能形成颗粒分散相,它们的加入使环氧树脂的韧性得到提高,而且不影响环氧固化物的模量和耐热性。 二、热塑性树脂增韧环氧树脂 1、热塑性树脂增韧方法 未改性的PE S对环氧的增韧效果不明显,后来实验发现两端带有活性反应基团的P ES 对环氧树脂改性效果显著。如苯酚、羟基封端的P E S可使韧性提高100%;双氨基封端、双羟基封端的P E S也是有效的改性剂;环氧基封端的PE S由于环氧基能促进相互渗透,因而也提高了双酚A型环氧树脂的韧性。以二氨基二苯砜为固化剂,P E S增韧的环氧树脂

双组分水性环氧树脂分析研究进展

双组分水性环氧树脂研究进展(一> 2009/2/18/08:32 来源:中国环氧网 环氧树脂涂料附着力高、耐化学品和溶剂性优异、硬度高、耐磨性好,在工业上已获得了广泛的应用。传统的环氧树脂涂料通 常为溶剂型。随着人们对环境保护的要求日益迫切和严格,开发水 性环氧体系,即不含VOC(挥发性有机化合物,VolatileOrganicCompound>或不含HAP(有害空气污染物,HazardousAirPollutants>的体系成为新的研究方向,水性环氧涂料 具有无空气污染、安全无毒、施工工具易于清洗等优点,可替代目 前广泛使用的溶剂型涂料,具有很大的经济效益和社会效 益。b5E2RGbCAP 一、水性环氧树脂的分类 根据制备方法的不同,水性环氧树脂还可分为外乳化型和 内(自>乳化型2大类。就是:外乳化法水性环氧体系由于存在较多 的乳化剂,其耐水性和耐溶剂等性能比溶剂型的差,而且适用期短 且制得粒子粒径较大,现在多不采用。p1EanqFDPw 1、自乳化型水性环氧树脂(化学法> 通过化学改性,可以将一些亲水性的基团引入到环氧树脂 分子链上,使环氧树脂获得自乳化的性质,这是自乳化型水性环氧

树脂制备的基本原理。根据所引入的亲水性基团的性质不同,自乳 化环氧树脂分为阴离子型、阳离子型和非离子型等几 类。DXDiTa9E3d (1>阴离子型 通过适当的方法在环氧聚合物分子链上引入羧酸、磺酸等 功能性基团、中和成盐以后,环氧树脂就具备了水分散的性质,常 用的方法有功能性单体扩链法和自由基接技改性法。前者是利用环 氧基团与一些低分子的扩链剂如氨基酸、氨基苯甲酸、氨基苯磺酸(盐>等化合物上的胺基反应,在链上引人羧酸、磺酸基团,中和成 盐后可分散于水中。RTCrpUDGiT 中国科学院广州化学研究所用对氨基苯甲酸改性环氧树脂,使其具有亲水亲油两种性质,以改性产物及其与纯环氧树脂的混合 物制成水性涂料,涂膜性能优良,保持了溶剂型环氧涂料在抗冲击 强度、光泽度和硬度等方面的优点,而且附着力提高,柔韧性大为 改善,涂膜耐水性和耐化学药品性能优良。5PCzVD7HxA 自由基接技改性方法是利用双酚A型环氧分子上的亚甲基 在过氧化物作用下易于形成自由基并与乙烯基单体共聚的性质,将(甲基>丙烯酸、马来酸(酐>等单体接枝到环氧树脂上,从而得到自 乳化环氧树脂,这也是采用苯乙烯、丙烯酸类单体对环氧树脂接枝 改性的一个重要依据。jLBHrnAILg

环 氧 树 脂 应 用 转载

[应用技术] 环氧树脂在模具上的应用 一、概况 环氧树脂模具又称树脂模具,它具有制造周期短、成本低、特别适合形状复杂的制品和产品更新换代快速的工业领域;因此,在国外先进国家已得到广泛的应用,特别在汽车制造业、玩具制造业、家电制造业、五金行业和塑料制品等工业系统使用得更为普及。环氧树脂模具按不同的结构和用途,采用各种性能的环氧树脂、固化剂、增韧剂和填料(铁粉、铝粉、硅微粉、重晶石粉等)等配制成模具树脂,同时以玻璃纤维布和碳纤维布作增强材料而制成的。 环氧树脂模具按不同用途和技术要求,能设计出不同的环氧模具树脂配方组份。从国内、外环氧树脂模具实际应用统计,环氧树脂适合于制作以下几种类型的模具,在冷压模具方面有:弯曲模、拉延模、落锤模、铸造模等;在热压模具方面有:塑料注射模、注腊模、吹塑模、吸塑模、泡沫成型模、皮塑制品成型模等。环氧树脂模具的制造特点,是制造简易,快速,成本低;例如一些外形复杂、难成形的金属模具,用环氧树脂制造,采用浇注法或低压成形法,就能一次成形,无需大型精密切削机床,也可不用高级钳工。有些金属模具制造的周期要几个月至半年,采用环氧树脂模具一般只要3~5天就可完成,其成本仅仅是钢模的15~20%左右,而且树脂模具使用寿命很长,磨损了还可以很快修补好,继续使用。因此,环氧树脂模具的制造是一项打破传统机械加工工艺的新技术、新材料和新工艺。环氧树脂模具,在国外都是大型工厂设立的专门研制中心制造的,而在国内仅在于国防工业单位研制了一些,一般工厂企业都缺乏这方面的制造工艺技术和配方,所以在我国环树脂模具的应用、普及和发展的速度很缓慢。今后随着新材料、新技术的发展,环氧树脂应用技术的推广,环氧树脂模具的综合性能和制造技术被广泛了介和认识,环氧树脂复合材料性能的提高,树脂模具的制作工艺和应用工艺的简化,环氧树脂模具必然会得到飞跃的发展,成为新的高效率的低成本的先进模具。 二、环氧树脂模具的种类 1、环氧树脂冷压类型的模具 (1)弯曲模、成形模、拉延模、切口模等。 环氧树脂的复合材科主要用来制造凹凸模,可以浇注成形,也可以低压模压法成形,它可以冲压或拉延0.8毫米钢板2毫米以下的铝板,寿命在万次以上不磨损。对于大型拉延模具,如汽车驾驶室顶盖件,用环氧树脂制造模具显示出更大的优越性,无需大型切削机床。切口模用来制造结构复杂的大型零件,在凹凸模刃口部嵌以钢带。用环氧树脂制造的弯曲成形模具,冲压的另件有吊扇的风叶等,风叶型面尺寸要求很高,因关系到风量和使用效果等,环氧树脂模具固定在l O O吨冲床上冲压成形,冲压次数巳达三十余万次,树脂模具还在使用。 (2)落锤模

水性环氧树脂固化剂的研究进展

龙源期刊网 https://www.docsj.com/doc/1f4854550.html, 水性环氧树脂固化剂的研究进展 作者:高念潘恒管蓉 来源:《粘接》2016年第09期 摘要:概述了水性环氧固化剂改性的原理,介绍了水性环氧固化剂改性的3种方法,同时综述了第Ⅰ代、第Ⅱ代水性环氧固化剂的国内外研究进展,并对水性环氧固化剂的发展趋势进行了展望。 关键词:环氧树脂;水性环氧固化剂;改性;研究进展 中图分类号:TQ323.5 文献标识码:A 文章编号:1001-5922(2016)09-0062-04 水性环氧涂料体系在保留传统环氧体系所具有的优异附着性、热稳定性、耐化学品性、绝缘性等特性的基础上,以水为分散介质,不含或只含有少量有机溶剂,是一类环境友好的高分子材料。随着对环境保护的要求日益严格,不含挥发性有机溶剂(voc)或低挥发性有机溶剂、不含有害空气污染物(NHAP)的水性环氧体系已成为当前研究的热点。在环氧树脂固化剂中,胺类固化剂种类多、用量大、用途广,但是一般的胺类固化剂在常温下挥发快、毒性大、固化速度较快、配比要求严格、甚至会吸收二氧化碳降低固化效果。而水性环氧固化剂是经过对传统的胺类固化剂改性而得,它克服了未改性胺类固化剂的缺点,不影响涂膜的物理和化学性能,且以水为溶剂,VOC含量符合环保要求。本文概述了水性环氧固化剂的改性原理,并介绍了水性环氧固化剂改性的几种方法,同时介绍国内外水性环氧树脂固化剂的研究现状。 1 水性环氧固化剂的改性原理 要使环氧树脂与固化剂之间能充分混合、固化,就要使2者的溶解度参数相匹配。溶解度参数大的固化剂与疏水性的环氧树脂间的溶解度参数差异较大,得到的涂膜的综合性能不好;而溶解度参数小的固化剂与环氧树脂溶解度参数匹配,但它难溶于水,不能稳定地分散在水中,因此,需对其进行改性。水性环氧固化剂改性的原理是对多元胺进行改性,使其成为具有亲环氧树脂结构的水性环氧固化剂,同时该固化剂又作为阳离子型乳化剂完成对环氧树脂的乳化。用该方法制备的水性环氧树脂乳液具有良好的稳定性,并且由于环氧树脂组分不需进行亲水改性,可以保证涂膜的耐化学药品性能良好。 2 水性环氧固化剂改性方法 常用的水性环氧固化剂大多为多元胺或其改性产物。其中,改性产物主要利用其分子中胺基上的活泼氢与环氧树脂分子中的环氧基发生反应进行改性。多元胺常用的改性方法有以下3种:(1)由多元胺与单脂肪酸反应制得的酰胺化的多胺;(2)由二聚酸与多元胺进行缩合而成的聚酰胺;(3)由多元胺与环氧树脂加成得到的多胺一环氧加成物。这3种方法均采用在

相关文档