文档视界 最新最全的文档下载
当前位置:文档视界 › 碾压混凝土的主要技术性质

碾压混凝土的主要技术性质

碾压混凝土的主要技术性质
碾压混凝土的主要技术性质

碾压混凝土的主要技术性质

3.1 鼹压混凝土拌和物的性质

3.1.1 碾压混凝土拌和物的工作性

碾压混凝土拌和物的工作性包括工作度、可塑性、稳定性及易密性。工作性较好的碾压混凝土拌和物,应具有与施工设备及施工环境条件(气温、相对湿度等)相适应的工作度。较好的可塑性是指碾压混凝土拌和物在一定外力的作用下,能产生适当的塑性变形。较好的稳定性是指在施上过程中碾压混凝土拌和物不易发生分离。较好的和易性则是指碾压混凝土拌和物在振动碾等施工压实机械作用下易于密实并充满模板。

碾压混凝土的特定施工方法要求其拌和物必须具有适当的工作度,既能承受住振动碾在上行走不陷落,也不能拌和物因过于干硬使振动碾难以碾压密实。由于碾压混凝土拌和物是一种超干硬性拌和物,坍落度为零,因此无法用坍落度试验宋测定其工作度。用常规的VB试验也难以测定碾压混凝土拌和物的工作度。目前工程界多采用对Ⅷ试验改进后所形成的VC试验方法来测定碾压混凝土拌和物的工作度。

1.VC值的测定

VC试验的原理,就是在一定振动条件下,碾压混凝土拌和物的液化有一个临界时间,达到此临界时间后混凝土迅速液化,这个时间可间接表示碾压混凝土的工作度,工程上也称VC值。VC值用维勃稠度仪测定,图3-1为维勃稠度仪示意图。

第40页

用维勃稠度仪测vC值的操作过程为:先按照规定方法把碾压混凝土拌和物装入坍落度筒,提起坍落度筒后,再依次把透明圆盘、滑杆及配重砝码加到拌和物表面。再松动滑杆紧固螺栓,开动振动台同时记时,记下从振动开始到圆压板周边全部出现水泥浆所需的时间,并以两次测值的平均值作为拌和物的稠度(VC值),单位为s。

我国碾压混凝土施工规范规定VC的取值范围一般为5~15s,近年来不少工程为解决碾压混凝土施工过程中的层面结合问题,倾向于选择较低的VC值,甚至低于5s。

2.影响VC值的主要因素

(1)单位用水量

单位用水量是影响碾压混凝土拌和物VC值的决定性因素,VC值一般随着单位用水量的增大而减小,如图3-2所示。

碾压混凝土原材料骨料最大粒径和砂率一定时,如果单位用水量不变,则水胶比的变化对拌和物VC值的影响不大。

(2)粗骨料用量及特性

碾压混凝土拌和物是山砂浆和粗骨料组成的,在砂浆配合比一定的条件下,若粗骨料用量多,砂浆用量相对减少,则大颗粒骨料之间的接触面相对增大;在相同振动能量下,液化出浆困难,VC值增大。此外,在相同条件下,碎石碾压混凝土拌和物的vc值较卵石碾压混凝土拌和物的大:吸水性大的骨料VC值较大:粗骨科的最大粒径越大,则礁压混凝土拌和物颗粒移位和重新排列所需要的激振力越大,VC值也越大。

(3)砂串及砂的性质

试验表明,当用水量和胶凝材料用量不变时,在一定范围内,碾压混凝土拌和物的vc值将随着砂率的增加而减小;当砂率超过一定范围后,再继续增加砂率,则vc值反而增大,如图3-3所示。图中所示曲线的最低点所对应的砂率R1为最佳砂率。

(4)粉煤灰品种及掺量

粉煤灰的细度、烧失量、颗粒形态下的需水量及掺量对碾压混凝土的用水量和VC值均有较大影响。一般情况下,粉煤灰越细,碾压混凝土拌和物的VC值越小。若水胶比及胶凝材料用量一定,则在某一范围内,VC值随粉煤灰掺量的增大而增加;当粉煤灰范围超过一定值以后,随着粉煤灰掺量的增大,碾压混凝土拌和物的VC值反而降低。图3—4为某碾压混凝土坝工程的粉煤灰掺量与VC值关系曲线。

(5)外加剂

一般在碾压混凝土拌和物中加入减水剂或引气剂,可使其yc值降低。

什么是住宅的进深? 住宅的进深,在建筑上是指一间独立的房屋或一幢居住建筑从前墙皮到

后墙皮之间的实际长度。为了保证建成的住宅具有良好的自然采光和通风条件,住宅的进深

在设计上有一定的要求。在住宅的高度(层高)和宽度(开间),确定的前提下,设计的住宅进深过

大,就使住房成狭长型,距离门窗较远的室内空间自然光线不足。进深大的住宅可有效地节约

用地。什么是住宅的开间? 在住宅设计中,住宅的宽度是指一间房屋内一面墙皮到另一面墙

皮之间的实际距离。因为是就一自然间的宽度而言,故又称为开间。与住宅的进深一样,住宅

的开间在设计上也有严格的规定。就我国目前大量建造的砖混住宅来讲,住宅开间一般不得

超过3.3米。规定较小的开间尺度,可有效缩短楼板的空间跨度,增强住宅结构整体性、稳定性和抗震性。

第5章大体积混凝土

一、大体积混凝土的定义

在工程实践中常遇到大体积混凝土结构,如大型设备基础、高层建筑基础底板、构筑物基础、桥梁墩台、深梁、水电站坝等。由于这些结构体积大、整体行要求高,往往不宜留置施工缝。此外,水泥水化时放出大量热量,当结构体积大时,混凝土内部聚集的热量长期不易散失,混凝土内部和周围大气环境间形成较高温度差,由于温度应力常造成混凝土开裂。因此,美国混凝土学会曾强调指出:―任何就地浇筑的大体积混凝土,必须要求采取措施,解决水化热及随之引起的体积变形问题。以最大的限度减少开裂。‖综述所述,应十分慎重组织大体积混凝土的施工,以防止出现质量事故。

对于大体积混凝土的定义有不同的解释,日本建筑学会标准(JASS5)的定义:―结构断面最小尺寸在800mm以上,水化热引起混凝土内的最高温度与外界气温之差超过25°C的混凝土,称为大体积混凝土。‖ 我国某施工单位制定的―大体积混凝土工法‖中认为:凡结构断面最小尺寸大于3000mm的混凝土块体;或者单面散热的结构断面的最小尺寸在750mm以上,双面散热在1000mm以上,水化热引起的最高温度与外界气温之差预计超过25°C的混凝土,均可称为大体积混凝土。总之大体积混凝土还没有一个统一的定义。

但是用结构尺寸大小来定义大体积混凝土结构过于机械,有些结构的尺寸并不很大(如某些地铁隧道底板厚度仅0.5m)但受到外界约束很大,也避免不了出现裂缝。采用以上定义方法有可能对某些本应属于大体积的混凝土结构忽略了对施工的预控。至于用混凝土结构可能出现的最高温度于外界气温之差的某一规定值来定义大体积混凝土也不够严密。因为―温度差‖只有在约束条件下才起作用。当内外约束(限制)较小时,就可允许混凝土和外界温度差较大,反之较小。我国有关设计规范中曾规定,当基础混凝土28d龄期的极限拉伸值不低于0.85×10-4时,施工质量均匀、良好,短间歇均匀上升的浇筑块、基础的容许温度差一般按表5-1

该规定中考虑了约束条件及混凝土的抗拉能力,从而规定容许温差,是较科学的。

二、大体积混凝土的温度及湿度变形

温度变形产生的原因很多,在这里仅讨论由于温度和湿度变化而产生的混凝土的变形。当升温时或混凝土吸湿时体积膨胀,当降温时或混凝土失水时,体积收缩。随着有无限制条件,混凝土的膨胀及收缩变形产生不同的结果。

1.限制条件的影响

(1)限制条件

根据有无限制条件混凝土的收缩可分为自有收缩及限制收缩,膨胀可分为自由膨胀和限制膨胀。但是,可以认为任何混凝土变形都受到程度不同的限制,几乎没有不受限制的自由变形。大体积混凝土所受到的内外限制见下图

(2)限制条件的影响

自由收缩不会影响混凝土开裂,但限制收缩达到某种程度时可能引起开裂。反之自由膨胀引起开裂而限制膨胀不发生开裂。例如:1)小尺寸的板、块、杆当不配筋或只配少量钢筋又无其他限制时,收缩再大也不会开裂。

2)配有较多粗钢筋的梁、大尺寸板,基础嵌固很牢的底板或路面,大体积混凝土的表层等在干燥或剧烈降温时,产生较大的限制收缩,引起混凝土的开裂。

3)小尺寸的混凝土梁、板、块以及较小尺寸结构的钢筋保护层部分,变形不受限制,当受到某些因素作用产生过大膨胀变形时,有可能开裂或产生表面裂缝。

4)当大体积混凝土中配筋适度,或受到周围老混凝土有效限制,甚至有坚固模板的限制时,膨胀变形不但不会引起开裂,还能得到质地致密、抗渗性好、强度较高的混凝土。

(3)相向变形和背向变形

相向变形使混凝土质点的间距缩小,组织致密,自由收缩是相向变形。

背向变形使混凝土质点间距较大,组织变松,自由膨胀是背向变形,膨胀超过一定限度就会开裂。

而限制下的收缩和膨胀同时包含相向及背向两种变形(图5-2)。可将限制膨胀分解为两部分变形:一是假定未受到限制,质点间距从原长l1增加到不受限制时能达到的长度l2也就是自由膨胀的全部变形,这部分是背向变形;另一是因限制作用使质点间距从上面达到的长度l2减小到限制后实际达到的长度l3,这部分是相向变形。当限制程度足够大时,非但使混凝土避免开裂,并能起增强和密实的好作用。

限制收缩也可分两个部分的变形:一是假定未受到限制,质点间距从原长l1减小到不受限制时能达到的长度l2,即自由收缩的全部变形,这部分是相向变形;另一是因限制作用使质点间距从上面达到的长度l2加大到限制后实际达到的长度l3,这部分是背向变形。当限制程度很大时,这部分背向变形会引起开裂。

2.混凝土的湿度变形(干缩及湿胀)

混凝土中水分存在于孔隙中,这些孔隙分布在水泥石、骨料及骨料与水泥石之间和钢筋与水泥石之间的交界处。孔隙分胶孔、毛细孔、气孔。气孔(直径在1mm到0.01mm 之间)中存在自由水,其增减不引起混凝土体积变化。毛细孔尺寸比气孔小100倍,其中存在着受毛细管力作用的可蒸发水,此种水分蒸发将引起体积收缩,胶孔比毛细孔小1000倍,即约为10~40A(埃)(1A=10)约为水分子直径的5倍。胶孔中经常充满着水、不易蒸发。但胶孔水仍对混凝土大体积变化有重要影响。1)干缩机理T.C.Powers对干缩机理提出如下假设:当水分进入干燥的凝胶孔时,吸附水被均匀分布到固体颗粒全部表面。当相对湿度达到100%时或在水中时,固体颗粒表面吸附水层厚度可达5个水分子直径,即两个粒子间需有10个水分子直径的间距,但胶孔平均尺寸只约5个水分子直径,容纳不下10个水分子直径厚度的吸附水,因此产生吸附水对粒子的推力。此推力大小随环境湿度而变。当相对湿度达到100%时推力最大,体积膨胀,即湿胀现象。当湿度降低,推力减小,毛细孔水也开始蒸发,在毛细孔中产生拉应力,相应的在固体结构中产生压应力。随着推力减小与压应力增加,体积就收缩。毛细孔含量愈多,周围的压应力就愈大,收缩率也愈大。当环境相对湿度降低到40%以下时,固体颗粒表面吸附水膜的厚度不足两个水分子直径,胶孔中就不饱含水分,就不产

生推力,体积收缩就更加剧烈。

在砂浆和混凝土中骨料起着阻止水泥石收缩的作用,混凝土的收缩率只是水泥石的1/10。(2)影响干缩率的因素

1)骨料:骨料在混凝土中含量以及骨料的弹性模量对干缩率有重要影响。骨料尺寸及级配影响不大。

2)存放条件(环境湿度)对干缩率有重要影响。延长湿养时间可推迟干缩的发生与发展,但对最终的干缩率并无显著影响。

3)水灰比与加水量:水灰比及加水量大时干缩率大。

4)尺寸形状:试件(构件)尺寸增加,则干缩率减小。用体积与表面积的比值来表示试件的形状特征,比值小时则干缩率大。但有一定限度。

3.混凝土的温度组成

在绝热条件下,混凝土的最高温度是浇注温度与水泥水化热产生的绝热温升的总和。但实际上由于混凝土与外界环境之间存在温差,而结构物四周又不可能做到完全绝热,故新浇注的混凝土必然向外散热。结构物的模板、外界气候条件(温度、湿度、风速)和养护条件等因素都会促使混凝土的温度发生变化。因此混凝土内部温度实际上由以上两种温度组成部分再加上混凝土浇注后的散热温度所组成。

另外,混凝土从浇筑成型后,经历着初始温度发展为最高温度,最后达到稳定温度(或称最终温度)这样一个变化过程。大体积混凝土在进行温度控制和温度应力计算时,就必须了解它的温度组成及其变化规律。三、混凝土的温度应力

(一)混凝土的徐变及应力松弛

1.混凝土的徐变

在一定荷载长期作用下,混凝土将产生随着时间而增加的塑性变形,称为混凝土的徐变。徐变对混凝土的结构的应力及变形状态有较大影响。对于大体积混凝土来说,徐变变形与收缩(膨胀)变形同时存在、关系密切。

(1)徐变机理

一般认为混凝土产生徐变的机理是由于水泥石的粘弹性和水泥石与骨料之间塑性

性质的综合结果。具体来说主要由于持续荷载作用使凝胶体中水分缓慢压出,水泥石的粘性流动,微细空隙的闭合,结晶内部的滑动,微细裂缝的发生等因素的累加。

影响徐变的主要因素是:

1)加荷期间大气湿度越低,气温越高,徐变越大;

2)混凝土中水泥用量越多或水灰比越大,徐变越大;混凝土强度越高,弹性模量越大,徐变越小;

3)骨料的级配不良,空隙较多,徐变较大;

4)水泥活性低,结晶体形成慢而少,徐变较大;

5)加荷应力越大,徐变越大;6)加荷时混凝土龄期越短,徐变越大;持续加荷时间越长,徐变越大;

7)结构尺寸越小,徐变越大;

(2)徐变的表示方式

一般以徐变系数Φ来表示,Φ=f/ε(5-20)

式中f—混凝土的徐变变形;ε—混凝土的弹性变形;

对于普通混凝土如取徐变变形最终值f=76×10-5,弹性变形值ε=33×10-5;Φ=2.3。

(3)大体积混凝土的徐变

在大体积混凝土生温阶段,混凝土内部因膨胀而引起相向变形(属于限制条件下的膨胀),但此时结构发育得还不够,塑性还较大。这种相向变形大部分为塑性变形荷徐变所消耗。因此限制膨胀所引起的混凝土密实作用,由于徐变而大大削弱。

降温阶段由于限制收缩而在混凝土中出现一定的拉应力,拉力徐变随之产生,它能增加混凝土的拉伸变形能力,有时能使混凝土的极限延伸率提高1-2倍或更多,推迟或避免开裂。所以徐变对于防止大体积混凝土开裂有利。但是此时混凝土内部结构随断裂而发展,强度及弹性模量上升,而塑性减少,徐变也随之减少。因此,收缩所产生的拉应力发展到一定程度仍能引起混凝土开裂。2.应力松弛

混凝土结构载荷载作用下,如保持约束变形为常量,则结构约束应力将随时间逐渐减少,此现象称为应力松弛。它是由于混凝土的徐变特性引起的。在变形为常量的条件下,任意时刻应力与初始应力之比称为应力松弛系数。由于松弛实验较费事,一般根据在常荷载作用下的徐变资料得到应力松弛系数。

混凝土松弛程度与外加荷载时混凝土的龄期有关。时间越早,混凝土徐变引起的松弛可越大,其次同应力作用的长短时间有关,时间越长,则松弛也越大。

混凝土结构浇注20天后已够成熟,产生约束变形。此时龄期的影响很小,可忽略不计,应力松弛系数S(t)只与发生的约束变形后荷载持续时间t有关,可按表5-8取值。

考虑荷载持续时间影响的松弛系数S(t)表5-8

所以,考虑徐变的计算就简化为按常规算出的弹性应力再乘以应力松弛系数。这种计算方法对工民建中各种低配筋率的构筑物是可行的,计算是简便的。(二)大体积混凝土在温度应力作用下的两种不利情况

1.产生表面裂缝

大体积混凝土浇注后一段时间,内部水化热不易散失,外部混凝土散热较快,水化热温升随壁(板)厚度增加而加大,混凝土内外形成一定的温度梯度。无论温升阶段或温降阶段,混凝土中心温度总是高于混凝土表面温度。根据热胀冷缩原理,中心部分混凝土膨胀速率要比表面混凝土大。因此,混凝土中心与表面各质点间的内约束以及来自地基及其他外部边界约束的共同作用,使混凝土内部产生压应力,混凝土表面产生拉应力。当温度梯度大到一定程度时,表面拉应力σ(t)超过混凝土的极限抗拉强度R f(t)时,混凝土表面产生裂缝。在升温阶段,混凝土未充分硬化,弹性模量小,徐变影响较大。因此拉应力较小,只引起混凝土表面裂缝。

2.产生贯穿裂缝

随着水泥水化反应的结束及混凝土的不断散热,大体积混凝土由升温阶段过渡到降温阶段。温度降低,混凝土体积收缩。由于混凝土内部热量是通过表面向外散发,降温阶段混凝土中心部分与表面部分的冷缩程度不同,在混凝土内部产生较大的内约束,同时地基与边界条件也对收缩的混凝土产生较大外约束。内外约束的作用,使收缩的混凝土产生拉应力,随混凝土的龄期增长,抗拉强度R f(t)增大。弹性模量E(t)增高,徐变影响减小。因此降温收缩产生的拉应力σ(t)较大,易在混凝土中心部位形成较高

拉应力区,若此时的混凝土拉应力σ(t)大于混凝土此龄期的抗拉强度R f(t),则大体积混凝土产生贯穿裂缝。

大体积混凝土从浇筑到达到设计强度R(通常取R28)为止,混凝土的抗拉强度R f 与引起混凝土开裂的温度应力σ2是以时间t为自变量的函数,即R f (t)、σ2(t)。当温度应力σ2(t)大于混凝土此龄期的抗拉强度R f (t),则混凝土产生裂缝,裂缝出现在σ2(t)> R f(t)的受拉混凝土处。

如果通过合理措施控制混凝土拉应力σ1(t)一直小于混凝土该龄期抗拉强度R f(t),就能保证混凝土不会产生温度裂缝。见图5-3 4.按裂缝宽度划分:

分为微观裂缝和宏观裂缝。微观裂缝也称为―肉眼看不见的裂缝‖。裂缝宽度在

0.02~0.05mm以内,所以取0.05mm为宏观裂缝的起始宽度,裂缝宽度指一条裂缝中较宽区段地平均值。

宏观裂缝可以避免,但不是所有的宏观裂缝都是有害的。从国内外试验资料分析,结构物裂缝宽度一般控制在如下范围:

(1)无侵蚀介质,无抗渗要求0.3mm

(2)轻微侵蚀介质,无抗渗要求0.2mm

(3)严重侵蚀介质,有抗渗要求0.1mm

四、大体积混凝土结构裂缝控制的综合措施

(一)降低浇注温度及硬化过程中的混凝土温度

1.混凝土原材料的预冷却

混凝土原材料的预冷却,不仅可以降低混凝土的浇注温度,而且还可削减混凝土内部的最高温度,并减少最高温度与稳定温度之间的差值,从而把混凝土内的温度变化控制在允许范围之内,以防止裂缝的产生。

(1)冷却搅和水或掺冰屑

在暑期施工中,一般采用冷却拌和水或掺冰屑的办法,达到降低混凝土拌和温度的目的。

在拌和水中加冰,必须使冰在拌和过程中完全融化,否则,待混凝土浇筑后冰屑融化,在混凝土中形成空洞,影响混凝土的质量。

(2)预冷骨料

当混凝土体积特大或气温很高时,单靠冷却拌和水法往往满足不了要求,故还需与预冷骨料配合使用,预冷骨料通常有湿法、干法与真空气法三种。1)浸水法粗骨料的预冷最常用的是浸水法,既把骨料放在1~2℃的冷水中进行冷却。故其方法是建一些大容积的料仓(称为冷却塔),内装约1/3的冷冻水,用进料皮带机将骨料送入仓内,直到装满为止,然后不断通入冷冻水,循环至预定时间内停止进水,排去仓内水,最后将骨料卸入出料皮带机,运送至搅拌站的石子料仓内。这种方法冷却效果好,工艺流程简单,但需要大量的冷却设备。

2)喷水法骨料在运输过程中,在指定地点装设喷水管,沿途喷洒冷水。这种方法冷却效果不好,耗水多,经济效益差。

干法冷却是用冷空气对骨料进行吹风冷却,亦有两种方式:一种方式是在搅拌楼的骨料仓内进行冷却。此时需将料仓封闭,由通风系统通入冷风。为了达到预定冷却效果,骨料需在仓内滞留一定的时间。另一种方式是在运送过程中用冷风使骨料冷却。此时,沿输送骨料的皮带机应设冷风道、冷气供风管及回风管。冷风还需有足够的长度。

3)真空气法是利用在骨料中水分蒸发、吸热而冷却骨料。冷却时,将骨料装满在封闭的料仓中,抽出几乎所有的空气。然后将真空保持一定的时间。2.低水泥水化热(1)水泥的选用

应优先采用水化热低的矿渣水泥配制大体积混凝土,当混凝土的强度等级为C15时,可采用325号矿渣硅酸盐水泥,当混凝土强度等级为C20或C20以上时,宜采用425号的矿渣硅酸盐水泥;也可用525号水泥,但注意用量。

对大体积混凝土所用的水泥,应进行水化热测定,水泥水化热的测定按现行国家标准《水泥水化热试验方法(直接法)》进行,配制混凝土所用水泥7天的水化热宜不大于250kj/kg。

(2)混凝土强度选用

避免用高强混凝土,尽可能选用中低强度混凝土,基础混凝土的强度等级宜在

C25~C35的范围选用,利用后期强度R60。

(3)大体积混凝土配合比的选择(优化配合比)

在满足设计要求及施工工艺要求的前提下,应尽量减少水泥用量,以降低混凝土的绝热温升。

1)采用减水剂、减少用水量及水泥用量;

2)合理选择骨料粒径及级配、沙率,以在保证混合物和易性的原则下尽可能减少用水量以降低水泥用量。

3)采用优质粉煤灰等活性掺和料取代水泥用量;改善混合物和易性,可减少用水量,提高混凝土结构的后期强度及耐久性。

3.降低核心部分混凝土温度

浇注混凝土时预埋钢管,混凝土硬化过程中向钢管内通入冷水,以降低核心部分混凝土温度。

(二)提高混凝土极限抗拉强度

1.选择良好级配的粗骨料,严格控制其含泥量不大于1.5%。

2.加强混凝土的振捣,采用二次投料法及二次振捣法,加强早期养护,并在浇注后及时排除表面积水以提高混凝土湿度和早期龄期抗拉强度,减少收缩变形。

3.在大体积混凝土内设置必要的温度配筋(采用小直径、密间距)。在应力集中处如界面突变或转折处,底板(顶板)与墙转折处,孔洞转角及周边,增加斜向构造配筋,以防止出现裂缝。

三)改善约束条件,削减温度应力

1.采取分层或分块浇筑大体积混凝土,合理设置水平或垂直施工缝,或在适当的位置设置施工后浇带,以放松约束程度,并减少每次浇筑长度的蓄热量,以防止水化热的积聚,减少温度应力。

2.对大体积混凝土基础与岩石地基,或基础与厚大的混凝土垫层之间设置滑动层,如采用平面浇沥青胶铺砂或刷热沥青或铺卷材。在垂直面、键槽部位设置缓冲层,可用铺设30~50mm厚沥青木丝板或聚苯乙烯泡沫塑料,以消除嵌固作用,释放约束应力。

3.采用合理的平面和里面设计。避免截面突变,从而减小约束应力。

(四)加强施工中的温度控制

1.在大体积混凝土工程施工前,应对施工阶段大体积混凝土浇注的温度、温度应

力及收缩应力进行验算,确定施工阶段大体积浇注块体的升温峰值、里外温差及降温速度的控制指标及制定温控施工技术措施。温度控制应围绕如何防止因温度变形而引起的结构物开裂为核心。

温度控制的目的,就是要对混凝土的初始温度(浇筑温度),和混凝土内部的最高温度进行人为的控制。温度控制措施必须建立在严密的科学基础上。不但要有温度控制的要求,而且还应计算出各龄期混凝土内的温度应力。只有采取温度及应力―双控制‖的方法,才能最大限度地避免结构物出现开裂的情况。

2.合理安排施工程序,控制混凝土浇注面在浇筑过程中均匀上升,避免混凝土拌合物堆积高差过大。在结构完成后及时间回填土,避免其侧面长期暴露。

3.加强测温和温度监测与管理,实行信息化控制,随时控制混凝土内的温度变化,混凝土的中心温度与表面温度之间的差值(T max– T b),基底面温差以及混凝土表面温度与室外空气中最低温度之间的差值(T b– T q),均应小于20°C;经过计算确认结构物混凝土具有足够的抗裂能力时,允许不大于25~30°C。及时调整保温及养护措施,使混凝土的温度梯度和温度不至过大,以有效控制有害裂缝的出现。

4.规定合理的拆模时间,拆模时间应考虑气温环境等情况,必须有利于温度控制,即拆模后混凝土的温差不能太大,拆模后及时回填土。5.混凝土浇筑后,做好表面的长时间保温保湿养护,延缓降温时间和速度,以充分发挥混凝土的―应力松弛效应‖,以减低温度应力。夏季及常温应在浇筑后及时洒水养护,以保持混凝土表面经常湿润为原则,模板上亦应经常洒水。夏季应避免曝晒,注意保温。冬季应采取措施保温覆盖,以免发生急剧的温度梯度。当气温骤降,为防止表面散热过快,内外温差过大,可用碘钨灯或其他加热装置加热表面。

混凝土的养护时间,应根据水泥品种而定(见表5-10)。利用后期强度的混凝土,以及在干燥、炎热气候条件下,应延长养护时间,至少养护28天,对裂缝有严格要求时,应再适当延长。

大体积混凝土养护时间表5-10

(五)混凝土混合物中掺入膨胀剂

混凝土混合物中掺入膨胀剂,为大体积混凝土的施工开辟了一个崭新的领域。膨胀剂在混凝土内部产生的膨胀受到内部限制(包括混凝土本身及钢筋的限制)。因此是限制膨胀。在正确使用膨胀剂及掺量正确的前提下,膨胀剂的微膨胀作用可部分地抵消大体积混凝土的限制收缩,从而防止或减少收缩裂缝。因此掺膨胀剂的混凝土称为补偿收缩混凝土。

采用掺入膨胀剂的措施来防止大体积混凝土的开裂,相对来说比其他措施较简便、较经济。在二十世纪八十年代邯郸钢铁厂中柱四辊主轧机基础是长27.2M宽16.9M深10.15~12.15M的大体积混凝土结构,混凝土体积约4500M3。在研究防止大体积混凝土施工时开裂措施方案时,技术经济分析表明掺膨胀剂并保温的方案的费用为73万元,

冰水搅拌混凝土并埋钢管通水及保温的方案需费用210万元。

五、大体积混凝土施工

有关大体积混凝土施工的主要问题已在上节阐明。本节仅补充说明两个问题。

(一)保证大体积混凝土连续浇筑的措施

大体积混凝土施工的另一特点是整体性要求高,不允许留设施工缝。因此在施工中应当采取措施保证混凝土浇筑工作能连续进行。

首先应按下式计算每小时需要浇筑混凝土的数量,即

(5-35)

式中V—每小时混凝土浇筑量(m3/h);

B、L、H—分别为浇筑层的宽度、长度、厚度(m);

t1—混凝土的初凝时间(h);

t2—混凝土的运输时间(h)。

根据混凝土的浇筑量,即可计算所需搅拌机、运输工具和振动器的数量,并据此拟定浇筑方案和进行劳动组织。

常用的浇筑方案是采用分段分层的方法,有以下几种(见图5-4)(a)全面分层在整个模板内全面分层,浇筑区面积即为基础平面面积,第一层全部浇筑完毕后,再回头浇筑第二层,第二层要在第一层混凝土初凝之前,全部浇筑振捣完毕。采用这种方案,结构的平面尺寸一般不宜太大。

(b)分段分层混凝土从底层开始浇筑,进行一定距离后就回头浇第二层,如此向前呈阶梯形推进。当结构的厚度不大,分层较少时,混凝土浇筑到顶后,第一层末端的混凝土还未初凝,又可从第二层依次分层浇筑。适于在结构平面面积较大时采用。

(c)斜面分层当结构的长度大大超过厚度三倍时,可采用本方案。振捣工作从浇筑层斜面的下端开始,逐渐上移,以保证混凝土的浇筑质量。(二)大体积混凝土施工的温度监测

大体积混凝土施工中加强温度监测,实行信息化控制。随时掌握混凝土内的温度变化对于防止开裂有决定性意义。

1.温度监测要求

(1)要求

1)大体积混凝土的温控施工中,除应进行水泥水化热的测试外,在混凝土浇筑过程中还应进行混凝土浇筑温度的监测,在养护过程中还进行混凝土浇筑块升降温、里外温差、降温速度及环境温度等监测。图5-5 是对质点温测曲线。

2)混凝土浇筑温度系指混凝土振捣后,位于混凝土上表面以下50~100mm深处的温度。混凝土浇筑温度的测试每工作班(8h)应不少于2次。

3)大体积混凝土浇筑块体里外温差、降温速度及环境温度的测试,每层夜应不少于2次。

(2)大体积混凝土浇筑块体温度监测点的布置,以真实地反映出混凝土块体的里外温差、降温速度及环境温度为原则。如图5-6 为施工现场温度检测平面图。2.对测温元件及检测仪表的要求

(1)测温元件及检测仪表选择

主要要求是保证具有足够的精度及可靠性以满足施工过程中温控要求。

1)测温元件选择:(1)元件的测温误差不大于0.3℃;(2)元件安装前必须经过浸水24h后,按上一条款要求进行筛选。

2)监测仪表选择:应保证温度记录的误差不大于±1℃。

(2)测温元件的安装及保证要求:

1)安装位置准确,固定牢固,并与结构钢筋及固定架金属体绝热;

2)引出线应集中布置并加以保护。

3)混凝土浇筑过程中,下料时不得直接冲击测温元件及其引出线;振捣时,振捣器不得触及测温元件及其引出线。

碾压混凝土性能

第三章碾压混凝土性能 碾压混凝土作为干硬性混凝土通常是由未水化的水泥熟料颗粒、水化水泥、水和少量的空气以及水和空气占有的孔隙网组成。因此,它是一个固-液-气三相组成的多孔体。 3.1 力学性能 3.1.1 抗压强度 碾压混凝土的抗压强度与水泥的标号与用量、水灰比、矿物掺和料的种类与掺量及骨料种类与用量等密切相关。由于我国碾压混凝土筑坝特点是少水泥用量、高粉煤灰掺量,因此,我们认为碾压混凝土的抗压强度主要是由水灰比和粉煤灰掺量决定的。 3.1.2 抗拉强度 综合我国碾压混凝土筑坝技术,碾压混凝土在配合比设计上已经形成少水泥 用量、高粉煤灰掺量的特点。碾压混凝土的抗拉强度与常态混凝土一样,随着水胶比的增大而降低,随抗压强度的增加而增加。因此,影响碾压混凝土抗压强度的因素同样是影响抗拉强度的因素。 3.2 变形性能 3.2.1 弹性模量 碾压混凝土的抗压弹性模量的主要影响因素是骨料的弹性模量、混凝土的配合比、抗压强度及龄期等。混凝土所用骨料的弹性模量越高、混凝土配合比种所含骨料(特别是粗骨料)比例越大、混凝土抗压强度越高、龄期越长,则弹性模量越高.此外,碾压混凝土早期强度( 14 d以内)较低,发展较慢,因此早期弹性模量更低. 3.2.2 极限拉伸值 3.2.3 徐变 在大体积混凝土结构如混凝土坝中, 徐变能降低温度应力, 减少裂缝。所以, 应在保持强度不变的条件下, 设法提高混凝土的徐变, 从而提高其抗裂性。 碾压混凝土的徐变受诸多因素的影响。它们是:混凝土的灰浆率、水泥的性质、骨料的矿物成分与级配、混凝土配合比、加荷龄期、力与持荷时间、构件尺寸等。

在不同龄期加荷条件下, 徐变变形都随粉煤灰掺量的增大而减小。在原材料相同的情况下, 混凝土的徐变变形与混凝土的灰浆率成正比。我国目前常用的高粉煤灰掺量碾压混凝土的灰浆率低于常态混凝土, 因此总的徐变变形似乎应低于常态混凝土。然而碾压混凝土特别是高粉煤灰含量的碾压混凝土的早期强度较低, 早期强度增长率较小, 因此早期持荷的徐变变形必然大于常态混凝土。碾压混凝土的砂率一般比常态混凝土大, 因此砂浆体积比常态混凝土多, 相应粗骨料所占比例较小, 这有可能弥补碾压混凝土灰浆比例较小造成徐变小的问题。 3.2.4 干缩 干缩是混凝土硬化后干燥失水产生的收缩。碾压混凝土的干缩是碾压混凝土开裂的原因之一,其干缩裂缝将引入对混凝土具有破坏作用的物质或元素,会对碾压混凝土产生化学腐蚀并降低其抗渗性,从而降低或破坏混凝土的耐久性。 3.2.5 自生体积变形 碾压混凝土的自生体积变形多表现为收缩,且随龄期而逐步趋于稳定.我国部分碾压混凝土自生体积变形随龄期的变化关系为 ε a = - 4196L n ( t) - 2122, R2 = 01991 3.3 热学性能 3.3.1 胶凝材料的水化热 由于混凝土的热导率低,水泥水化时放出的热量不易散失,容易使内部的温度高达60℃以上。由于内外温差所产生的内应力易使混凝土形成许多微裂缝而降低其耐久性。因此,合理地使用低热或中热水泥,在大坝工程中,就显的非常重要。降低水泥水化热和放热速率的措施主要是选择适宜的熟料矿物组成和粉磨细度,或在掺入适量的混合材。 水泥的矿物组成是决定水化热与放热速率的首要因素。其中以C 3 A的水化热 和放热速率最大,C 3S与C 4 AF次之,C 2 S 的水化热最小,放热速率也最慢。因此, 降低熟料中C 3A和C 3 S的含量,相应提高C 4 AF和C 2 S的含量,均能降低水泥的水 化热。但是,C 2 S的早期强度很低,故不宜增加的太多,否则水泥强度发展过慢。 增加水泥的粉磨细度,水化热亦增加,尤其是在早期,但是水泥磨得过粗,强度下降,每方混凝土中水泥的用量要增加,水泥的水化热虽然降低,但混凝土的放热量反而增加。所以,中热水泥和低热水泥的细度一般与普通硅酸盐水泥的

碾压混凝土施工规范

水工碾压混凝土施工规范 SL53-94 条文说明 目录 前言 1总则 2材料 3配合比设计 4施工 5质量管理和评定 前言 《水工碾压混凝土施工暂行规定》SDJS14一86系原水利电力部水利水电建设总局标准,自颁发执行以来,对推动我国碾压混凝土筑坝技术的发展起到了积极的作用,但限于当时的条件,在起草该规范过程中,比较多地参考了《水工混凝土施工规范》SDJ207-82和国外有关技术标准。随着我国碾压混凝土筑坝技术的迅猛发展及其应用范围的不断扩大。碾压混凝土施工技术也有了很大进步,形成了具有中国特色的碾压混凝土筑坝技术.因此有必要也有条件对《水工碾压混凝土施工暂行规定》SDJS14—86进行修订,以确保碾压混凝土工程质量,进一步推动碾压混凝上筑坝技术的应用与发展。 1989年5月,水利部建设开发司委托中国水利水电工程总公司负责组织对《水工碾压混凝土施工暂行规定》SDJS14-86进行修订。1989年8月提出了修订大纲、总体框架及原则,同年10月提出初稿,征求有关单位意见,并于同年11月在岩滩水电站工地组织专家对初稿进行了讨论。在此基础上,于 1990年3月提出了征求意见槁,发送至国内有关勘测设计、施工、科研及高等院校等单位广泛征求意见,根据征求意见修改整理后,1990年6月提出了送审稿。 1990年8月21日至24日,水利部建设开发司和能源部水电开发司组织专家在天津杨村对送审稿进行了审查,认为该规范(送审稿)内容基本可行,可按审查意见进一步修改整理后报主管部门审批颁布,并建议该规范为水利水电行业强 制性标准。 由于该规范报批过程较长,历时三年,正式发布前,水利部建设司又组织有关专家在北京对一些重要的参数、指标重新进行了核定,以保证该规范能较好地 反映当前的施工技术水平。 本规范(送审稿)审查委员会主任为林伯诜同志,参加送审稿和报批稿的修改及审定工作的有王圣培、李丰、李允中、许红波、张严明等同志。 鉴于碾压混凝土试验技术尚处于不断发展和完善阶段,该规范有待于在实践中不断补充和修订,为此,希望各有关单位和使用者继续提出意见和建议。 1总则 1.0.1本条阐明本规范的适用范围。 1.0.2本条阐明本规范与现行有关国家及行业标准的关系。这些标准主要包括:《水工混凝土施工规范》SDJ207-82,《水工混凝土试验规程》SD105-82,《水工混凝土外加剂技术标准》SD108-83,《水电站基本建设工程验收规程》SDJ 275-88及有关材料方面的国家标准等。 1.0.3本条强调现场碾压试验的重要性,通过现场碾压试验可以验证混凝土配合比的合理性;检验施工过程中原材料生产系统、混凝土制备系统、运输系

混凝土国标大全

一、普通混凝土的主要技术性能 1、新拌混凝土的和易性新拌混凝土是指将水泥、砂、石和水按一定比例拌合但尚未凝结硬化时的拌合物。和易性是一项综合技术性质,包括流动性、粘聚性和保水性三方面含义。流动性是指新拌混凝土在自重或机械振捣作用下,能产生流动,并均匀密实地填充模板各个角落的性能。粘凝性是指混凝土拌合物在施工过程中其组成材料之间有一定的粘聚力,不致发生分层和离析的现象,能保持整体均匀的性质。保水性是指新拌混凝土在施工过程中,保持水分不易析出的能力。影响和易性的主要因素:(1)水泥浆的数量和水灰比;(2)砂率;(3)组成材料的性质;(4)时间和温度。 2、混凝土强度混凝土立方体抗压强度(简称抗压强度)是指按标准方法制作的边长为150mm 的立方体试件,在标准养护条件(温度20±3℃,相对湿度大于90%或置于水中)下,养护至28天龄期,经标准方法测试、计算得到的抗压强度值。用fcu表示。非标准试件的立方体试件,其测定结果应乘以换算系数,换成标准试件强度值:边长100mm的立方体试件,应乘以0.95;边长200mm的立方体试件应乘以1.05。普通混凝土划分为C7.5、C10、C15、C20、C25、C30、C35、C40、C45、C50、C55等11个等级。强度等级表示中的“C”表示混凝土强度,“C”后边的数值为抗压强度标准值。影响抗压强度的主要因素:(1)水泥强度等级和水灰比;(2)骨料的影响;(3)龄期与强度的关系;(4)养护温度和湿度的影响。 3、混凝土的变形性(1)化学收缩:混凝土硬化过程中,水化形起的体积收缩。收缩量随混凝土硬化龄期的延长而增加,但收缩率很小,一般在40d后渐趋稳定。(2)温度变形:温度变化形起的。对大体积混凝土极为不利。(3)干缩湿胀:处在空气中的混凝土当水分散失时会引起体积收缩,称为干缩;在受潮时体积又会膨胀,称为湿胀。(4)荷载作用下的变形短期荷载作用下的变形—弹塑性变形和弹性模量:混凝土是一种非匀质材料,属弹塑性体。弹性模量反映了混凝土应力—应变曲线的变化。徐变:混凝土在持续荷载作用下,随时间增长的变形。徐变有有利一面,也有不利一面。影响混凝土徐变的主要因素是水泥用量多少和水灰比大小。 4、混凝土的耐久性即保证混凝土在长期自然环境及使用条件下保持其使用性能。常见的耐久性问题有:抗渗性、抗冻性、抗侵蚀性、碳化、碱—骨料反应等。 二、混凝土的质量控制与强度评定 1、混凝土的质量控制原材料及施工方面的影响因素:(1)水泥、骨料及外加剂等原材料的质量和计量的波动;(2)用水量或骨料含水量的变化所引起水灰比的波动;(3)搅拌、运输、浇筑、振捣、养护条件的波动以及气温变化等。试验条件方面的影响因素:取样方法、试件成型及养护条件的差异、试验机的误差和试验人员的操作熟练程度等。 2、强度评定混凝土配制强度:设计要求的混凝土强度保证率为95%时,配制强度fcu,o≥fcu,k+1.645σ。σ取值:设计强度等级低于C20时,取4.0;强度等级为C20~C35时,取 5.0;强度等级高于C35时,取 6.0。 三、普通混凝土的配合比设计混凝土配合比是指混凝土中各组成材料数量之间的比例关系。 1、设计基本要点(1)设计的基本要求:A、满足混凝土结构设计要求的强度等级;B、满足施工所要求的混凝土拌合物的和易性;C、满足与使用环境相适应的耐久性;D、在满足以上三项技术性质的前提下,尽量做到节约水泥和降低混凝土成本,符合经济性原则。(2)、三个重要参数:水灰比、单位用水量和砂率。 2、普通混凝土配合比设计的方法和步骤分三步进行:(1)初步配合比计算A、确定配制强度(fcu,o)fcu,o≥fcu,k+1.645σB、初步确定水灰比值(W/C)fcu,o=αafce(C/W-αb)变为:W/C=αafce/(fcu,o+αaαb fce)当计算所得的水灰比大于规定的最大水灰比值(表5.14)时,应取规定的最大水灰比值。C、确定1m3混凝土的用水量(mwo)根据施工要求的坍落度值和已知的粗骨料种类及最大粒径,查表5.15,选取单位用水量。根据已

碾压混凝土的主要技术性质

碾压混凝土的主要技术性质 3.1 鼹压混凝土拌和物的性质 3.1.1 碾压混凝土拌和物的工作性 碾压混凝土拌和物的工作性包括工作度、可塑性、稳定性及易密性。工作性较好的碾压混凝土拌和物,应具有与施工设备及施工环境条件(气温、相对湿度等)相适应的工作度。较好的可塑性是指碾压混凝土拌和物在一定外力的作用下,能产生适当的塑性变形。较好的稳定性是指在施上过程中碾压混凝土拌和物不易发生分离。较好的和易性则是指碾压混凝土拌和物在振动碾等施工压实机械作用下易于密实并充满模板。 碾压混凝土的特定施工方法要求其拌和物必须具有适当的工作度,既能承受住振动碾在上行走不陷落,也不能拌和物因过于干硬使振动碾难以碾压密实。由于碾压混凝土拌和物是一种超干硬性拌和物,坍落度为零,因此无法用坍落度试验宋测定其工作度。用常规的VB试验也难以测定碾压混凝土拌和物的工作度。目前工程界多采用对Ⅷ试验改进后所形成的VC试验方法来测定碾压混凝土拌和物的工作度。 1.VC值的测定 VC试验的原理,就是在一定振动条件下,碾压混凝土拌和物的液化有一个临界时间,达到此临界时间后混凝土迅速液化,这个时间可间接表示碾压混凝土的工作度,工程上也称VC值。VC值用维勃稠度仪测定,图3-1为维勃稠度仪示意图。 第40页 用维勃稠度仪测vC值的操作过程为:先按照规定方法把碾压混凝土拌和物装入坍落度筒,提起坍落度筒后,再依次把透明圆盘、滑杆及配重砝码加到拌和物表面。再松动滑杆紧固螺栓,开动振动台同时记时,记下从振动开始到圆压板周边全部出现水泥浆所需的时间,并以两次测值的平均值作为拌和物的稠度(VC值),单位为s。 我国碾压混凝土施工规范规定VC的取值范围一般为5~15s,近年来不少工程为解决碾压混凝土施工过程中的层面结合问题,倾向于选择较低的VC值,甚至低于5s。 2.影响VC值的主要因素 (1)单位用水量 单位用水量是影响碾压混凝土拌和物VC值的决定性因素,VC值一般随着单位用水量的增大而减小,如图3-2所示。 碾压混凝土原材料骨料最大粒径和砂率一定时,如果单位用水量不变,则水胶比的变化对拌和物VC值的影响不大。

相关高性能混凝土方面的问题

高性能混凝土 简介 高性能混凝土(High performance concrete,简称HPC)是一种新型高技术混凝土,是在大幅度提高普通混凝土性能的基础上采用现代混凝土技术制作的混凝土。它以耐久性作为设计的主要指标,针对不同用途要求,对下列性能重点予以保证:耐久性、工作性、适用性、强度、体积稳定性和经济性。为此,高性能混凝土在配置上的特点是采用低水胶比,选用优质原材料,且必须掺加足够数量的矿物细掺料和高效外加剂。 定义 1950年5月美国国家标准与技术研究院(NIST)和美国混凝土协会(ACI)首次提出高性能混凝土的概念。但是到目前为止,各国对高性能混凝土提出的要求和涵义完全不同。 美国的工程技术人员认为:高性能混凝土是一种易于浇注、捣实、不离析,能长期保持高强、韧性与体积稳定性,在严酷环境下使用寿命长的混凝土。美国混凝土协会认为:此种混凝土并不一定需要很高的混凝土抗压强度,但仍需达到55MPa以上,需要具有很高的抗化学腐蚀性或其他一些性能。 日本工程技术人员则认为,高性能混凝土是一种具有高填充能力的的混凝土,在新拌阶段不需要振捣就能完善浇注;在水化、硬化的早期阶段很少产生有水化热或干缩等因素而形成的裂缝;在硬化后具有足够的强度和耐久性。 加拿大的工程技术人员认为,高性能混凝土是一种具有高弹性模量、高密度、低渗透性和高抗腐蚀能力的混凝土。 综合各国对高性能混凝土的要求,可以认为,高性能混凝土具有高抗渗性(高耐久性的关键性能);高体积稳定性(低干缩、低徐变、低温度变形和高弹性模量);适当的高抗压强度;良好的施工性(高流动性、高粘聚性、自密实性)。 中国在《高性能混凝土应用技术规程》(CECS207-2006)对高性能混凝土定义为:采用常规材料和工艺生产,具有混凝土结构所要求各项力学性能,具有高耐久性、高工作性和高体积稳定性的混凝土。 高性能混凝土的技术路线 高性能混凝土是由高强混凝土发展而来的,但高性能混凝土对混凝土技术性能的要求比高强混凝土更多、更广乏,高性能混凝土的发展一般可分为三个阶段:

碾压混凝土是指什么

碾压混凝土是指什么 碾压混凝土与传统的浇筑方法不同,是采用干贫混凝土分层连续进行浇筑的,浇筑层厚度为30~75cm。混凝土采用卡车直接运至浇筑现场,倒入仓内后,采 用机械平仓,然后用振动碾进行碾压。横向收缩缝采用振动切缝机切缝。切缝工作在初凝前进行,切缝后填人Imm厚的聚氯乙烯,并在切面的周围再进行振碾。一般切缝机的刀片宽约1. 8m,厚约16mm,起振力4.9t,切入力为0.5MPa。水平工作缝一般采取下列处理措施:清除浇筑面上的浮浆,并用风砂枪进行清扫;铺砂浆层厚1~2cm;在浇筑面上留有键槽以提高抗剪强度。 与传统的施工方法相比较,碾压混凝土筑坝有不少优点:①可以快速连续进行大规模施工,因而可大大缩短工期;②重型施工机械,如推土机、振动碾等可与土石方工程通用,充分发挥机械的效率,容易实现机械化施工;③还可大大降低水泥用量;④减少水化热,甚至不需要冷却设备,从而可以大大降低混凝土的造价;⑤施工中不需要纵横模板,既省木料,又可以加快施工进度;⑥有可能向自动化方向发展,节省大量劳动力。 由于碾压混凝土具有上述优点,已经得到了很大的发展,引起了世界坝工界的极大注意。英、美、日、意等国在这方面进行了不少研究,从1964年建成的意大利阿尔卑惹拉坝得到启示,20世纪70年代日本在大川坝上游围堰首次采用了碾压混凝土施工。这是世界上第一个在大坝主体工程上正式采用碾压法施工的工程。此后,相继有不少大坝采用了这种施工方法。我国起步也比较早,1979 年在铜街子工程中就开始采用这一新的筑坝技术。 随着研究的深入,在美国、日本和英国形成了三种不同的关于碾压混凝土坝的概念。 (l)贫碾压混凝土坝。胶凝材料用量低,水泥掺粉煤灰小于120kg/m3,分层厚度为30cm,坝上游设防渗层。这是美国研制的一种配合比设计。

浅论碾压混凝土施工过程

谈水工碾压混凝土施工控制过程 淮源工程建设监理 罗小刚 摘要:碾压混凝土是一种用硅酸盐水泥、火山灰质掺和料、水、外加剂、砂和分级控制的粗料拌制而成的无塌落度的干硬性混凝土。本文通过科学的方法来确定工程的施工工艺及方案,其核心问题就是施工中存在的问题如何根据实际情况来解决,以此来提高工程的质量,保证工程的顺利进行。 关键字:碾压混凝土;施工工程;入仓方式;卸料;平仓;配合比设计 一、 碾压混凝土施工工序 骨料筛分配 料混凝土拌和楼混凝土运输 平 仓 碾 压检测密实度造 缝 是否上升间歇期 冲 洗 人工铺砂浆 工作面卸料铺料 冲洗 碾压混凝土施工工艺流程图 二、碾压混凝土的施工 碾压混凝土现场试验 为了确定合理的施工参数,在坝体碾压混凝土施工前,必须进行碾压混凝土试验,通过施工现场对水泥、砂石骨料、外加剂、粉煤灰、水等材料性

能检测。其组成材料用量选取、性能成果对比、现场碾压施工工艺等综合数据分析,最终确定最优的混凝土施工配合比,用于施工现场。 水泥标号的高低可通过调整每立方米混凝土中的水泥用量和掺合料比例满足混凝土性能的设计要求。故当工程附近有充足优质的掺合料时,可优选用硅酸盐水泥或普通硅酸盐水泥,同时掺用较大比例的掺合料。反之,可选用掺混合材料的水泥,相应减少掺合料比例。水泥的选取不仅是技术决策,尚应包括经济比较。碾压混凝土施工对掺合料与外加剂的选择均较严格。碾压混凝土用水量少,所以,对砂石料的含水量极为敏感,故严格规定不使用刚筛洗的骨料拌制混凝土。目的在于让砂子有一定的脱水时间。 1、碾压混凝土配合比设计的目标 碾压混凝土配合比设计的目标。首先是满足混凝土的物理性能指标要求,主要的物理指标有:混凝土的设计龄期的抗压强度、强度保证率、抗渗标号、抗冻标号。其次,还要满足碾压混凝土的施工工艺要求,如抗分离能力,以及比较容易碾压密实度和充分泛浆的性能。 2、拌合站投料的顺序 按照干料和湿料两种方式进行拌合站投料,即干拌合投料顺序为:大石 中石小石水泥粉煤灰砂水;湿料顺序为:水大石中石小石水泥粉煤灰砂。 3、拌合时间选定 不同级配的混凝土最佳拌和时间不同,通过实验确定:二级配碾压混凝土为90S;三级配碾压混凝土120S。 4、工作度(VC)确定

2016继续教育-混凝土力学性能检测

千分表的精度不低于()mm A.0.01 B.0.001 C.0.0001 D.0.1 答案:B 您的答案:B 题目分数:9 此题得分:9.0 批注: 第2题 加荷至基准应力为0.5MPa对应的初始荷载值F0,保持恒载60s并在以后的()s内记录两侧变形量测仪的读数ε左0,ε右0。 A.20 B.30 C.40 D.60 答案:B 您的答案:B 题目分数:9 此题得分:9.0 批注: 第3题 由1kN起以()kN/s~()kN/s的速度加荷3kN刻度处稳压,保持约30s A.0.15~0.25 B.0.15~0.30 C.0.15~0.35 D.0.25~0.35 答案:A 您的答案:A 题目分数:9 此题得分:9.0 批注: 第4题 结果计算精确至()MPa。 A.0.1 B.1 C.10 D.100

您的答案:D 题目分数:9 此题得分:9.0 批注: 第5题 下面关于抗压弹性模量试验说法正确的是哪几个选项 A.试验应在23℃±2℃条件下进行 B.水泥混凝土的受压弹性模量取轴心抗压强度1/3时对应的弹性模量 C.在试件长向中部l/3区段内表面不得有直径超过5mm、深度超过1mm的孔洞 D.结果计算精确至100MPa。 E.以三根试件试验结果的算术平均值作为测定值。如果其循环后任一根与循环前轴心抗压与之差超过后者的10%,则弹性模量值按另两根试件试验结果的算术平均值计算,如有两根试件试验结果超出上述规定,则试验结果无效。 答案:B,D 您的答案:B,D 题目分数:12 此题得分:12.0 批注: 第6题 下面关于混凝土抗弯拉弹性模量试验说法正确的是哪几个选项 A.试验应在23℃±2℃条件下进行 B.每组6根同龄期同条件制作的试件,3根用于测定抗弯拉强度,3根则用作抗弯拉弹性模量试验。 C.在试件长向中部l/3区段内表面不得有直径超过5mm、深度超过2mm的孔洞 D.结果计算精确至100MPa。 E.将试件安放在抗弯拉试验装置中,使成型时的侧面朝上,压头及支座线垂直于试件中线且无偏心加载情况,而后缓缓加上约1kN压力,停机检查支座等各接缝处有无空隙(必要时需加木垫片) 答案:B,C,D 您的答案:B,C,D 题目分数:13 此题得分:13.0 批注: 第7题 对中状态下,读数应和它们的平均值相差在20%以内,否则应重新对中试件后重复6.6中的步骤。如果无法使差值降到20%以内,则此次试验无效。 答案:正确 您的答案:正确

碾压混凝土配合比设计试验

碾压混凝土实验室配合比设计试验 1 试验目的 测定碾压混凝土配合比设计试验所用原材料的物理力学性能指标,然后进行碾压混凝土实验室的配合比设计。 2 试验方案 本试验根据配合比设计所需的技术资料,首先对选定的材料进行物理力学性能指标的测定试验,再依据配合比设计规程及原则来进行配合比的设计,对于碾压混凝土,设计时主要考虑其三大参数的要求。本试验流程图如图2.1所示。

图2.1 试验流程图 3 试验方法 3.1 原材料的物理力学性能试验 本试验配合比设计所用的原材料主要有:水泥、粉煤灰、石灰、粗细集料、

水及外加剂等。 3.1.1水泥试验 水泥试验主要包括:水泥细度试验、水泥标准稠度用水量试验、水泥凝结时间试验、水泥体积安定性试验、水泥胶砂强度试验等。 水泥细度试验采用手工干筛法来检验水泥细度;水泥标准稠度用水量试验、水泥凝结时间试验及水泥体积安定性试验(雷氏夹法)按GB/T 1346-1989《水泥标准稠度用水量、凝结时间、安定性检验方法》,用沸煮法,对该水泥进行了安定性试验;水泥胶砂强度试验通过ISO法来测定水泥的强度等级。 通过试验,得到本试验所用水泥的物理性能见表1.1。 表1.1 水泥的物理性能表 水泥品种 初凝 (h:min) 终凝 (h:min) 安定性 (mm) 筛余量 (%) 标准稠 度(%) 抗压 (Mpa) 抗折 (Mpa) 3d 28d 3d 28d P.C32.5R 2.1 3.1.2 粉煤灰试验 根据《用于水泥和混凝土中的粉煤灰》GB1596—91以及国家标准GB175—1999,GB1344—1999,GB12958—1999中的规定,需对粉煤灰的细度、密度、凝结时间、体积安定性和强度及强度等级等主要技术性质经行测定。 通过试验,该粉煤灰的物理性能见表1.2。 表1.2 粉煤灰的物理性能表 粉煤灰等级 密度 (g/cm3) 堆积密度 (g/cm3) 细度 (%) 比表面积 (g/cm2) 需水量 (%) 28d抗压 强度比 (%) Ⅱ级 2.302 26 3.1.3集料试验 集料试验主要包括测定砂、石的近似密度试验、砂、石的堆积密度试验、砂、石的空隙率计算和砂、石的筛分析试验等。 通过试验,测得所用砂子、石子的物理性能见表1.3、表1.4。 表1.3 砂子的物理性能表

混凝土的技术性能

混凝土的技术性能 1)混凝土拌合物的和易性 2)混凝土的强度 3)混凝土的变形性能 4)混凝土的耐久性 影响混凝土强度的因素主要有原材料及生产工艺方面的因素。 原材料方面的因素包括: 1)水泥强度与水灰比 2)骨料的种类、质量和数量 3)外加剂 4)掺合料 生产工艺方面的因素包括: 1)搅拌与振捣 2)养护的温度和湿度 3)龄期 混凝土的耐久性 1)抗渗性 2)抗冻性 3)抗侵蚀性 4)混凝土的碳化(中性化) 5)碱骨料反应 混凝土外加剂的主要功能包括: 1)改善混凝土或砂浆拌合物施工时的和易性; 2)提高混凝土或砂浆的强度及其他物理力学性能; 3)节约水泥或代替特种水泥; 4)加速混凝土或砂浆的早期强度发展; 5)调节混凝土或砂浆的凝结硬化速度; 6)调节混凝土或砂浆的含气量; 7)降低水泥初期水化热或延缓水化放热; 8)改善拌合物的泌水性; 9)提高混凝土或砂浆耐各种侵蚀性盐类的腐蚀性; 10)减弱碱骨料反应; 11)改善混凝土或砂浆的毛细孔结构; 12)改善混凝土的泵送性; 13)提高钢筋的抗锈蚀能力; 14)提高骨料与砂浆界面的粘结力,提高钢筋与混凝土的 握裹力; 15)提高新老混凝土界面的粘结力等。 按外加剂的主要使用功能分为以下四类: 1)改善混凝土拌合物流变性能的外加剂。包括各种减 水剂、引气剂和泵送剂等。 2)调节混凝土凝结时间、硬化性能的外加剂。包括混凝 剂、早强剂和速凝剂等 3)改善混凝土耐久性的外加剂。包括引气剂、防水剂和 阻锈剂等。 4)改善混凝土其他性能的外加剂。包括膨胀剂、防冻剂、 着色剂等。 外加剂的适用范围 1)混凝土中掺入减水剂,若不减少拌合用水量,能显 著提高拌合物的流动性;当减少水而不减少水泥时,可提高混凝土强度;若减水的同时适当减少水泥用 量,则可节约水泥。同时,混凝土的耐久性也能得到显著改善。 2)早强剂可加速混凝土硬化和早期强度发展,缩短养 护周期,加快施工进度,提高模板周转率。多用于冬 期施工或紧急抢修工程。 3)缓凝剂主要用于高温季节混凝土、大体积混凝土、 泵送与滑模方法施工以及远距离运输的商品混凝土 等,不宜用于日最低气温5℃以下施工的混凝土,也 不宜用于有早强要求的混凝土和蒸汽养护的混凝 土。缓凝剂的水泥品种适应性十分明显,不同品种水 泥的缓凝效果不相同,甚至会出现相反的效果。因此,使用前必须进行试验,检测其混凝效果。 4)引气剂是在搅拌混凝土过程中能引入大量均匀分 布、稳定而封闭的微小气泡的外加剂。引气剂可改善 混凝土拌合物的和易性,减少泌水离析,并能提高混 凝土的抗渗性和抗冻性。同时,含气量的增加,混凝 土弹性模量降低,对提高混凝土的抗裂性有利。由于 大量微气泡的存在,混凝土的抗压强度会有所降低。 引气剂适用于抗冻、防渗、抗硫酸盐、泌水严重的混 凝土等。 5)膨胀剂能使混凝土在硬化过程中产生微量体积膨 胀。膨胀剂主要有硫铝酸钙类、氧化钙类、金属类等。 膨胀剂适用于补偿收缩混凝土、填充用膨胀混凝土、灌浆用膨胀砂浆、自应力混凝土等。含硫铝酸钙类、硫铝酸钙──氧化钙类膨胀剂的混凝土(砂浆)不得用于长期环境温度为80℃以上的工程;含氧化钙类 膨胀剂配制的混凝土(砂浆)不得用于海水或有侵蚀 性水的工程。 6)防冻剂在规定的温度下,能显著降低混凝土的冰点, 使混凝土液相不冻结或仅部分冻结,从而保证水泥的水化作用,并在一定时间内获得预期强度。含亚硝酸 盐、碳酸盐的防冻剂严禁用于预应力混凝土结构;含 有六价铬盐、亚硝酸盐等有害成分的防冻剂,严禁用 于饮水工程及与食品相接触的工程,严禁食用;含有硝铵、尿素等产生刺激性气味的防冻剂,严禁用于办 公、居住等建筑工程。 7)泵送剂是用于改善混凝土泵送性能的外加剂。它由 减水剂、调凝剂、引气剂、润滑剂等多种组分复合而成。泵送剂适用于工业与民用建筑及其他构筑物的泵送施工的混凝土;特别适用于大体积混凝土、高层建 筑和超高层建筑;适用于滑模施工等;也适用于水下 灌注桩混凝土。

碾压混凝土路面施工技术

碾压混凝土路面施工技术 碾压混凝土路面施工技术 目前,碾压混凝土路面在实际应用中与其他路面相比较少.但因自身有许多技术经济上的优势.值得我们 在今后工作中不断进行施工,总结,完 善和推广. 碾压混凝土路面及其主要 特点 碾压混凝土简称RCC,是一种含 水率低,通过振动碾压施工工艺达到高 密度,高强度的水泥混凝土.其特干硬 性的材料特点和碾压成型的施工工艺特 点.使碾压混凝土路面具有节约水泥, 收缩小,施工速度快,强度高开放交 通早等技术经济上的优势. 碾压混凝土路面与普通水泥混凝 土路面所用材料基本相同,均为水泥 砂,碎石,水及外掺剂,不同之处是碾 压混凝土为用水量很少的特干硬性混凝 土.比同强度普通水泥混凝土节约水泥 1O%一20%左右.碾压混凝土配合比

设计是按正交设计试验法和简捷设计试度(Mpa) 试验结果及分析 冻融循环试验结果如表8和图2所示. 分析可知: .四种材料的冻稳系数均超过了 0.9,且冻融稳定系数随水泥剂量的增 大而增大.因为水泥剂量越大,粗集料 的空隙填充越满,从而保证了材料的骨架密实结构.这时材料的空隙更小由 水结冰引起的体积膨胀对空壁所产生的应力也变小,故水泥掺量越多,其抗冻 稳定性越好. 验法设计,以半出浆改进VC值"稠 度指标和小梁抗折强度指标作为设计指标.小梁抗折强度试件按95%压实度计算试件质量,采用上振式振动成型机振动成型. 碾压混凝土路面施工包括拌和,运 输摊铺,碾压切缝,养生等工序组 成.混凝土拌和可采用间歇式或连续式强制搅拌机拌和(配合比中添加缓凝剂时需采用间歇式搅拌机拌和):碾压混凝土路面摊铺采用强夯高密度摊铺机摊铺;而对平整度要求不高的碾压混凝土基层可以人工配合其他机械进行摊铺.碾压混凝土路面碾压作业分初压,复压和终压三个阶段组成,碾压是碾压混凝土密度成型的关键工序,碾压后的路面表面应平整,均

碾压混凝土双曲拱坝混凝土施工施工组织设计

目录 、工程概况 (3) 1.1概况 (3) 1.2水文气象及大坝地质 (3) 1.3大坝混凝土工程主要工程量 (5) 二、编制依据 6 2.1主要施工图及文件 (6) 2.2施工采用规范及标准 (6) 三、大坝混凝土施工总体目标 7 3.1大坝混凝土施工管理目标 (7) 3.2混凝土施工中存在的重难点 (8) 3.2.1常态混凝土施工 (8) 3.2.2碾压混凝土施工 (8) 四、......................................................................................... 大坝混凝土施工进度计划 (9) 4.1混凝土施工工期控制目标 (9) 4.2大坝混凝土施工配套临建设施工程工期控制目标 (9) 4.3主体工程分项工期控制目标 (9) 五、......................................................................................... 施工总平面布置.. (9) 5.1施工道路布置 (9) 5.2施工供水、供电、供风 (10) 5.3主要混凝土施工设备布置 (11) 5.4制浆站布置 (12) 5.5施工照明布置、基坑排水布置 (12) 5.6现场施工通讯 (12) 5.7混凝土生产系统布置 (12) 5.8主要临建设施布置 (13) 六、大坝混凝土施工 13 6.1、大坝常态混凝土浇筑施工 (13) 6.1.1、常态混凝土浇筑施工工艺流程 (13) 6.1.2大坝常态混凝土施工方法 (13) 6.1.3护坦护坡混凝土浇筑施工 (23) 6.1.4 导流洞封堵混凝土 (27) 6.2、碾压混凝土施工 (28) 6.2.1碾压混凝土工艺流程 (28) 6.2.2入仓方式 (29) 6.2.3分区分层 (29) 6.2.4铺料方式 (29)

碾压混凝土试验

亭子口电站碾压混凝土施工试验技术成果【摘要】:为给大坝主体碾压混凝土施工提供各项技术资料和施工参数,按照设计要求要进行碾压混凝土试验块施工试验,因此对碾压混凝土的原材料进行检测、筛选、配合比设计、试验、施工及取芯试验,选择出最优单位用水量、水胶比、砂率及力学性能指标满足设计要求的优化配合比,此优化配合比具有用水量小、胶凝材料用量少、耐久性良好等特点。同时,在原材料检测过程中,首次检测出假冒的I级粉煤灰,对于在水利工程中如何打假提供了范例。 关键词:亭子口碾压混凝土施工试验技术成果 1、概述 亭子口水利枢纽位于四川省广元市苍溪县境内,是嘉陵江干流开发中唯一的控制性工程,是以防洪、灌溉及城乡供水、发电为主,兼顾航运,并具有拦沙减淤等效益的综合利用工程。工程坝轴线全长995.4m,坝顶高程465m,最大坝高115m;工程等别为Ⅰ等,工程规模为大(1)型,水库总库容40.67亿m3,电站装机1100MW,通航建筑物为2×500t级;大坝Ⅱ标混凝土约102万m3,其中常态混凝土约25 m3,碾压及变态混凝土约77 m3。 试验采用甲供的水泥、粉煤灰,左岸砂石系统生产的砂石骨料,碾压混凝土专用特殊配方的江苏博特JM-Ⅱ(C)缓凝高效减水剂、JM2000引气剂,进行其品质和适应性检测,通过室内试拌、调整,获取拌合物性能、抗压强度、劈拉强度、极限拉伸、弹模、抗冻及抗渗性能等试验成果,确定满足设计技术要求、现场施工要求和确保工程质量的碾压混凝土最优施工配合比。 碾压混凝土强的等级及主要设计指标见表1。 表1 碾压混凝土主要强度等级及设计指标

2.1水泥 试验水泥采用四川华蓥山广能集团蓥峰特种水泥有限责任公司蓥峰42.5中热硅酸盐水泥,水泥物理力学性能及水化热的试验结果见表2.1。 表2.1水泥物理力学性能试验结果 检测结果表明:蓥峰42.5中热硅酸盐水泥各项性能指标均符合《中热硅酸盐水泥、低热硅酸盐水泥、低热矿渣硅酸盐水泥》(GB200-2003)标准的技术要求。 2.2粉煤灰 2.2.1粉煤灰玻璃微珠球体检验 粉煤灰玻璃微珠球体的作用是减少混凝土用水量、改善和易性,降低混凝土的水化热温升,粉煤灰与水泥混合加水得到的扩散水泥颗粒和致密水泥浆体有利于提高混凝土的密实性、强度和耐久性;粉煤灰在胶凝材料与水的二次反应和水化过程中提升了混凝土的性能。 Ⅰ级粉煤灰烧失量低、颗粒细、球形颗粒含量高,10um左右的玻璃微珠球体含量在90%左右。使形态效应、微集料效应和火山灰效应得以充分发挥,具有1+1>2的效果。重庆珞璜Ⅰ级粉煤灰玻璃微珠球体成分比例分析见图1、图2。

普通混凝土的组成及性能

模块5 普通混凝土的组成及性能 一、教学要求 1.知识要求 (1)混凝土的含义、分类; (2)混凝土组成材料的作用; (3)水泥强度等级的选择; (4)粗、细集料的含义和种类; (5)集料粗细程度和颗粒级配的含义和表示方法; (6)针、片状颗粒对混凝土质量的影响; (7)粗集料强度的表示方法; (8)混凝土拌合用水的基本要求; (9)混凝土外加剂的含义和分类,减水剂的含义、作用机理和常用品种,早强剂的含义和种类,泵送剂的含义和特点; (10)普通混凝土的和易性(流动性、黏聚性、保水性)的含义、测定方法和影响因素,恒定用水量法则的含义; (11)混凝土抗压强度试验方法、强度等级和影响因素; (12)混凝土耐久性的含义和内容,碱-集料反应产生的条件与防止措施。 2.技能要求 (1)能根据筛分结果,正确评定细集料的粗细程度和颗粒级配; (2)能合理选择粗集料的最大粒径; (3)能对普通混凝土拌合物的坍落度进行选择和调整; (4)会混凝土非标试件强度值的换算,能正确运用混凝土强度公式,能采用合理措施提高混凝土的强度; (5)能合理采用提高混凝土耐久性的具体措施。 3.素质要求 (1)培养学生严谨科学的工作和学习态度; (2)培养学生的安全和团队意识。 二、重点难点 1.教学重点 (1)砂的筛分与细度模数; (2)普通混凝土的和易性、强度、耐久性等性质; (3)混凝土强度的影响因素 (4)减水剂的含义与应用。

2.教学难点 (1)集料级配; (2)砂的筛分试验与细度模数的计算和级配评定; (3)减水剂的作用机理。 三、教学设计 【参见:学习情境教学设计(模块5)】 四、教学评价 通过理论考试和校内实验操作、企业实践见习、在线学习记录、课堂学习状态等考查,采取学生讨论和教师评价相结合的方式对学生进行考核,重点评价学生对建筑材料基础知识的掌握情况和对建筑材料综合应用的相关技能。 五、教学内容 第1讲普通混凝土用的水泥和集料 混凝土,过去简称“砼”,是指由胶凝材料将集料胶结成整体的工程复合材料。 普通混凝土是指用水泥作胶凝材料,砂、石作集料,与水(可选择添加剂和矿物掺合料)按一定比例配合,经搅拌、成型、养护而成的人造石材。 混凝土原料丰富、价格低廉、生产工艺简单、抗压强度高、耐久性能好、强度等级范围宽,在土木工程中广为使用。但也存在自重大、养护周期长、抗拉强度低、导热系数大、生产周期长、变形能力差、易出现裂缝等缺点。 ◆混凝土的分类: 按胶结材料分:水泥混凝土、沥青混凝土、石膏混凝土、聚合物混凝土等。 按体积密度分:重混凝土(ρ0>2800kg/m3)、普通混凝土(ρ0=2000-2800kg/m3)、轻混凝土(ρ0<1950kg/m3) 。 按强度等级分:普通混凝土(f c<60MPa)、高强混凝土(f c=60-100MPa)、超高强混凝土(f c >100MPa)。 按用途分:结构混凝土、水工混凝土、特种混凝土(耐热、耐酸、耐碱、防水、防辐射等)。 按施工方法分:预拌混凝土、泵送混凝土、碾压混凝土、喷射混凝土等。 ◆普通混凝土的基本组成材料是胶凝材料、粗集料(石子)、细集料(砂)和水。胶凝材料是混凝土中水泥和掺合料的总称。 砂、石在混凝土中起骨架作用,称为集料(骨料)。 胶凝材料和水形成灰浆,包裹在粗细集料表面并填充集料间的空隙。

碾压式贫混凝土基层施工质量控制指南

碾压式贫混凝土基层施工质量控制指南 1、使用范围 在已完成并经过监理工程师验收合格的底基层上,铺筑碾压式贫混凝土基层。质量检测包括施工准备、所需设备、劳动力和材料,以及施工、试验、养护等全部作业。 2、材料 2.1水泥 (1)可使用各种硅酸盐水泥,不采用粉煤灰时,宜采用强度等级32.5的水泥.掺用粉煤灰时,只能使用道路硅酸盐水泥、普通硅酸盐水泥,水泥应使用缓凝水泥,其抗压强度、合格强度、安定性和凝结时间必须检验合格。 (2)采用机械拌和时,宜采用散装水泥,散装水泥的夏季出厂温度不宜高于65℃,混凝土搅拌时的水泥温度不宜超过60℃,且不宜低于10℃。 (3)水泥进场时每批量应附有化学成分,物理、化学指标合格的检验证明。其化学成分、物理性能等路用品质应符合《公路水泥混凝土路面施工技术规范》(JTG F30-2003)的相关规定,见表1。

(4)选用水泥除满足上述的规定外,还应通过碾压式贫混凝土基层配合比试验,根据其配置弯拉强度、耐久性和工作性优先选用适宜的品种和强度等级。 2.2粗集料 (1)粗集料应选用质地坚硬、耐久、洁净的碎石、碎卵石和卵石,碾压式贫混凝土基层可使用III级粗集料。粗集料的技术指标应符合表1的规定。 碎石、碎卵石和卵石技术标准表1

应按公称最大粒径的不同采用不少于2个粒级的集料进行掺配,并应表2的合成连续级配的要求。碾压式贫混凝土土基层粗集料的碎石最大粒径不应大于31.5mm, 公称粒径不应大于26.5mm.碎石中粒径小于0.075mm的石粉含量不宜大于1%。 粗集料级配范围表2

2.3细集料 (1)细集料应采用质地坚硬、耐久、洁净的天然砂(河砂和沉积砂)、机制砂(宜采用石灰岩、玄武岩、辉绿岩等破碎的机制砂)或混合砂,细集料的技术要求应符合表3的规定,碾压式贫混凝土基层用砂标准见表3。 (2)细集料的级配要求应符合表4的规定。碾压式贫混凝土基层宜采用中砂,如果砂较粗,可使用干净的机制砂与粗砂掺

混凝土主要技术指标性能及工艺

混凝土主要技术指标性能及工艺 一、混凝土主要技术指标是28天强度合格率为100%。 二、混凝土的各种性能 (一)混凝土拌合物具有良好的和易性(流动性、粘聚性、保水性),为了提高和改善混凝土的和易性,在混凝土中添加了外加剂和矿物掺合料。 (二)混凝土硬化后具有足够的强度和耐久性。混凝土的强度有立方体抗压强度、抗拉强度和抗折强度等。 (三)抗压强度是评定混凝土质量的主要指标。主要有C15、C20、C25、C30、C35、C40、C45、C50、C55、C60等。抗压强度检测龄期是28天。 (四)混凝土耐久性指混凝土在实际使用条件下抵抗各种破坏因素作用,长期保持强度和外观完整性的能力。要求主要包括以下几项:混凝土抗渗性能等级:P6、P8、P10、P12。 混凝土抗冻性能等级:F50、F100、F150、F200、F250。 混凝土抗侵蚀性通过电通量法和快速氯离子迁移系数法进行 检测。 三、混凝土工艺 原材料进厂 (一)所有原材料进厂时,材料员对原材料进行称重,填写进厂送货单,并通知试验员验收取样。

(二)粉料进厂时,应按不同厂家、不同品种分别存储在专用仓罐内,做好明显标识,严防混装,并应防止受潮,及时上锁。砂石进厂时根据标识分类堆放,严防有混料现象。 (三)取样批次有以下要求 1、水泥取样批量:按同一生产厂家生产的同期、同品种、同强度等级,以一次进厂的同一出厂编号的水泥500吨为一批,每批抽样不得少于一次。 2、砂石取样批量:同一产地、同一规格、同一进厂时间,每600吨为一验收批,不足600吨亦为一验收批。 3、外加剂取样批量:同品种外加剂每一编号为50吨;不足50吨的,可按一个验收批量计;同一编号的产品应混合均匀。 4、矿物掺合料取样批量:粉煤灰以连续供应商的200吨相同等级的粉煤灰为一批;磨细矿渣粉按同级别、同一出厂编号以200吨为一个取样单位。 5、粉料留样数量不低于3kg,留样时间为不少于3个月,外加剂数量1.5kg,留样时间不少于6个月。所有留样粉料及外加剂由专人验收、保管、发放、登记,入库时分类保管,设明显标牌,不得混放。液体外加剂在使用时必须配备搅拌装置使液体浓度均匀,同时不得混入杂物和遭受污染。 (四)原材料检验项目 水泥:3d和28d抗折、抗压强度、安定性、凝结时间。 粉煤灰:细度、烧失量、需水量比、安定性。

碾压混凝土施工工法

碾压混凝土施工工法 审批: 审核: 编写:

前言 ***水电站工程位于红河下游段,属热带季风雨林区,气候酷热,年平均气温约24O C左右,极端最高气温达42O C,极端最低气温为2O C,历年有霜日数为0d,平均日照时数为1694h。该区年平均降水量为1500mm~2000mm,属红河流域的多雨区。 大坝左岸重力坝段碾压混凝土顶高程220 m、进水口坝段碾压混凝土顶高程220.0 m,大坝连接坝段碾压混凝土顶高程220 m、冲沙孔坝段碾压混凝土顶高程163.0m、低孔坝段碾压混凝土顶高程195.0m、表孔坝段碾压混凝土顶高程194.0m、右岸门库坝段碾压混凝土顶高程210.0m、右岸重力坝段碾压混凝土顶高程220.0m。 内部RCC强度等级C180d150,防渗层RCC强度等级为C180d200。**混凝土总量为100万m3,RCC总量约60万m3,常态混凝土约40万m3。高峰期RCC月平均强度为7万m3/月。 **水电站工程设置了:2*4m3强制式拌和楼一座,产能200~300 m3/h,2*1.5m3自落式拌和楼2座,产能80~ 120m3/h。其中大值为常态混凝土产能,小值为碾压混凝土产能。 为使**水电站工程碾压混凝土施工管理达到规范化、制度化,在**电

站碾压混凝土施工经验与教训的基础上,为促使质量水平、管理水平的显著提升,推动施工技术进步,特制定本工法。 本工法共有十四章。包括:总则、碾压混凝土施工流程管理、碾压混凝土原材料控制与管理、碾压混凝土配合比选定与施工配料单签发、碾压混凝土施工前检查与验收、碾压混凝土拌和与管理、碾压混凝土运输、仓面施工与管理、变态混凝土施工、斜层平推法施工、特殊气候条件下的施工、碾压混凝土温度控制、质量控制管理、施工安全与文明施工等。

相关文档