文档视界 最新最全的文档下载
当前位置:文档视界 › 北师大版数学高二-选修4-5 第二节 不等式证明的基本方法例题

北师大版数学高二-选修4-5 第二节 不等式证明的基本方法例题

北师大版数学高二-选修4-5 第二节 不等式证明的基本方法例题
北师大版数学高二-选修4-5 第二节 不等式证明的基本方法例题

选修4-5 第二节 不等式证明的基本方法例题

1.已知a 、b 、x 、y 均为正实数,且1a >1

b

,x >y .

求证:

x

x +a >

y

y +b

.

证明:∵

x

x +a -

y

y +b

bx -ay

x +a y +b

又1a >1

b

,且a 、b 均为正实数,

∴b >a >0. 又x >y >0, ∴bx >ay . ∴

bx -ay x +a y +b >0,即x x +a >y

y +b

.

2.已知a ,b ,c 均为正数,证明:a 2+b 2+c 2

+(1a +1b +1c

)2≥63,并确定a ,b ,c 为何值时,等号成立.

证明:法一:因为a ,b ,c 均为正数,由平均值不等式得

a 2+

b 2+

c 2

≥3(abc )23

,①

1

a +1

b +1

c

≥3(abc )1

3-,②

所以(1

a +1

b +1c

)2

≥9(abc ) 2

3-.

故a 2

+b 2

+c 2

+(1a +1b +1

c

)2

≥3(abc ) 23

9(abc )

23

-

.

又3(abc ) 23

+9(abc ) 23

-≥227=63,③

所以原不等式成立.

当且仅当a =b =c 时,①式和②式等号成立.当且仅当3(abc ) 23

=9(abc )

23

-

时,③式

等号成立.

即当且仅当a =b =c =314

时,原式等号成立. 法二:因为a ,b ,c 均为正数,由基本不等式得

a2+b2≥2ab,b2+c2≥2bc,c2+a2≥2ac. 所以a2+b2+c2≥ab+bc+ac,①

同理1

a2+

1

b2

1

c2

1

ab

1

bc

1

ac

,②

故a2+b2+c2+(1

a

1

b

1

c

)2≥ab+bc+ac+

3

1

ab

+3

1

bc

+3

1

ac

≥6 3.③

所以原不等式成立.

当且仅当a=b=c时,①式和②式等号成立,当且仅当a=b=c,(ab)2=(bc)2=(ac)2=3时,③式等号成立.

即当且仅当a=b=c=31

4时,原式等号成立.

3.(2012·豫南九校联考)已知x,y均为正数,且x>y,求证:2x+1

x2-2xy+y2

≥2y +3.

解:因为x>0,y>0,x-y>0,

2x+

1

x2-2xy+y2

-2y=2(x-y)+

1

x-y2

=(x-y)+(x-y)+

1

x-y2

≥33

x-y2

1

x-y2

=3,

所以2x+

1

x2-2xy+y2

≥2y+3.

4.已知正实数a,b,c满足

1

a

2

b

3

c

=1,求证:a+

b

2

c

3

≥9.证明:因为a,b,c均为正实数,

所以

1

a

2

b

3

c

≥3

31

a

·

2

b

·

3

c

.同理可证:

a+

b

2

c

3

≥3

3

b

2

·

c

3

.

所以(a+

b

2

c

3

)(

1

a

2

b

3

c

)≥

3

3

b

2

·

c

3

·3

31

a

·

2

b

·

3

c

=9.

因为

1

a

2

b

3

c

=1,所以a+

b

2

c

3

≥9,

当且仅当a=3,b=6,c=9时,等号成立.

5.已知x 、y 、z ∈R, 且2x +3y +3z =1,求x 2+y 2+z 2

的最小值. 解:由柯西不等式得,

(2x +3y +3z )2

≤(22

+32

+32

)(x 2

+y 2

+z 2

). ∵2x +3y +3z =1,∴x 2

+y 2

+z 2

122

, 当且仅当x 2=y 3=z 3,即x =111,y =z =3

22

时,等号成立,

∴x 2+y 2+z 2

的最小值为122

.

6.设f (x )=2x 2

-2x +2 010,若实数a 满足|x -a |<1 ,求证:|f (x )-f (a )|<4(|a |+1).

证明:∵f (x )=2x 2-2x +2 010, ∴|f (x )-f (a )|=2|x 2

-x -a 2

+a | =2|x -a |·|x +a -1|<2|x +a -1|, 又∵2|x +a -1|=2|(x -a )+2a -1| ≤2(|x -a |+|2a -1|) <2(1+|2a |+1)=4(|a |+1). 7.求证:

1n +1+1n +2+…+13n >12

(n ≥2,n ∈N *

). 证明:法一:利用数学归纳法:

(1)当n =2时,左边=13+14+15+16>1

2,不等式成立.

(2)假设当n =k (k ≥2,k ∈N *

)时不等式成立. 即

1k +1+1k +2+…+13k >12

. 则当n =k +1时, 1k +1+1

1k +1

+2

+…+

13k +13k +1+13k +2+13k +3=1k +1+1k +2+ (13)

+(

13k +1+13k +2+13k +3-1k +1)>12+(3×13k +3-1k +1)=1

2. 所以当n =k +1时不等式也成立,

由(1),(2)知原不等式对一切n ≥2,n ∈N *

均成立. 法二:利用放缩法: ∵n ≥2,∴

1n +1+1n +2+…+13n >13n +13n +…+13n =23>12.即1n +1+1n +2+…+13n >1

2

(n ≥2,n ∈N *

).

8.已知a ,b ,c 为实数,且a +b +c +2-2m =0,a 2

+14b 2+19c 2+m -1=0.

(1)求证:a 2

+14b 2+19

c 2

a +

b +c

2

14

(2)求实数m 的取值范围.

解:(1)由柯西不等式得[a 2+(12b )2+(13c )2]()12+22+32≥(a +b +c )2

即(a 2+14b 2+19c 2)×14≥(a +b +c )2

.

∴a 2

+14b 2+19

c 2

a +

b +c

2

14

.

当且仅当|a |=14|b |=1

9|c |取得等号.

(2)由已知得a +b +c =2m -2,

a 2+14

b 2+19

c 2=1-m ,

∴14(1-m )≥(2m -2)2

. 即2m 2

+3m -5≤0.∴-52≤m ≤1.

又∵a 2

+14b 2+19c 2=1-m ≥0,

∴m ≤1, ∴-5

2≤m ≤1.

利用放缩法证明数列型不等式压轴题

利用放缩法证明数列型不等式压轴题 惠州市华罗庚中学 欧阳勇 摘要:纵观近几年高考数学卷,压轴题很多是数列型不等式,其中通常需要证明数列型不等式,它不但可以考查证明不等式和数列的各种方法,而且还可以综合考查其它多种数学思想方法,充分体现了能力立意的高考命题原则。处理数列型不等式最重要要的方法为放缩法。放缩法的本质是基于最初等的四则运算,利用不等式的传递性,其优点是能迅速地化繁为简,化难为易,达到事半功倍的效果;其难点是变形灵活,技巧性强,放缩尺度很难把握。对大部分学生来说,在面对这类考题时,往往无从下笔.本文以数列型不等式压轴题的证明为例,探究放缩法在其中的应用,希望能抛砖引玉,给在黑暗是摸索的学生带来一盏明灯。 关键词:放缩法、不等式、数列、数列型不等式、压轴题 主体: 一、常用的放缩法在数列型不等式证明中的应用 1、裂项放缩法:放缩法与裂项求和的结合,用放缩法构造裂项求和,用于解决和式 问题。裂项放缩法主要有两种类型: (1)先放缩通项,然后将其裂成某个数列的相邻两项的差,在求和时消去中间的项。 例1设数列{}n a 的前n 项的和1412 2333n n n S a +=-?+,1,2,3, n =。设2n n n T S =, 1,2,3, n =,证明: 1 32 n i i T =< ∑。 证明:易得12(21)(21),3 n n n S +=--1132311()2(21)(21)22121n n n n n n T ++= =-----, 11223 111 31131111 11 ()()221212212121212121 n n i i i n n i i T ++===-=-+-++ ---------∑∑ = 113113()221212 n +-<-- 点评: 此题的关键是将12(21)(21)n n n +--裂项成1 11 2121 n n +---,然后再求和,即可达到目标。 (2)先放缩通项,然后将其裂成(3)n n ≥项之和,然后再结合其余条件进行二次放缩。 例2 已知数列{}n a 和{}n b 满足112,1(1)n n n a a a a +=-=-,1n n b a =-,数列{}n b 的

不等式典型例题之基本不等式的证明

5.3、不等式典型例题之基本不等式的证明——(6例题) 雪慕冰 一、知识导学 1.比较法:比较法是证明不等式的最基本、最重要的方法之一,它是两个实数大小顺序和运算性质的直接应用,比较法可分为差值比较法(简称为求差法)和商值比较法(简称为求商法). (1)差值比较法的理论依据是不等式的基本性质:“a-b≥0a≥b;a-b≤0a≤b”.其一般步骤为:①作差:考察不等式左右两边构成的差式,将其看作一个整体;②变形:把不等式两边的差进行变形,或变形为一个常数,或变形为若干个因式的积,或变形为一个或几个平方的和等等,其中变形是求差法的关键,配方和因式分解是经常使用的变形手段;③判断:根据已知条件与上述变形结果,判断不等式两边差的正负号,最后肯定所求证不等式成立的结论.应用范围:当被证的不等式两端是多项式、分式或对数式时一般使用差值比较法. (2)商值比较法的理论依据是:“若a,b∈R + ,a/b≥1a≥b;a/b≤1a≤b”.其一般步骤为:①作商:将左右两端作商;②变形:化简商式到最简形式;③判断商与1的大小关系,就是判定商大于1或小于1.应用范围:当被证的不等式两端含有幂、指数式时,一般使用商值比较法. 2.综合法:利用已知事实(已知条件、重要不等式或已证明的不等式)作为基础,借助不等式的性质和有关定理,经过逐步的逻辑推理,最后推出所要证明的不等式,其特点和思路是“由因导果”,从“已知”看“需知”,逐步推出“结论”.即从已知A逐步推演不等式成立的必要条件从而得出结论B. 3.分析法:是指从需证的不等式出发,分析这个不等式成立的充分条件,进而转化为判定那个条件是否具备,其特点和思路是“执果索因”,即从“未知”看“需知”,逐步靠拢“已知”.用分析法证明书写的模式是:为了证明命题B成立,只需证明命题B1为真,从而有…,这只需证明B2为真,从而又有…,……这只需证明A为真,而已知A为真,故B必为真.这种证题模式告诉我们,分析法证题是步步寻求上一步成立的充分条件. 4.反证法:有些不等式的证明,从正面证不好说清楚,可以从正难则反的角度考虑,即要证明不等式A>B,先假设A≤B,由题设及其它性质,推出矛盾,从而肯定A>B.凡涉及到的证明不等式为否定命题、惟一性命题或含有“至多”、“至少”、“不存在”、“不可能”等词语时,可以考虑用反证法. 5.换元法:换元法是对一些结构比较复杂,变量较多,变量之间的关系不甚明了的不等式可引入一个或多个变量进行代换,以便简化原有的结构或实现某种转化与变通,给证明带来新????

2021年典型例题:用放缩法证明不等式

用放缩法证明不等式 欧阳光明(2021.03.07) 所谓放缩法就是利用不等式的传递性,对照证题目标进行合情合理的放大和缩小的过程,在使用放缩法证题时要注意放和缩的“度”,否则就不能同向传递了,此法既可以单独用来证明不等式,也可以是其他方法证题时的一个重要步骤。下面举例谈谈运用放缩法证题的常见题型。 一. “添舍”放缩 通过对不等式的一边进行添项或减项以达到解题目的,这是常规思路。 例1. 设a ,b 为不相等的两正数,且a 3-b 3=a 2-b 2,求证 143 <+<a b 。 证明:由题设得a 2+ab +b 2=a +b ,于是(a +b )2>a 2+ab + b 2=a +b ,又a +b >0,得a +b >1,又ab <14 (a +b )2,而(a +b )2=a +b +ab <a +b +14 (a +b )2,即34(a +b )2<a +b ,所以a +b <43,故有1<a +b <43 。 例2. 已知a 、b 、c 不全为零,求证: 证明:因为 a a b b a b b a b a b a b 22222 2342 22++= +++=++()>()≥,同理b bc c b c 222 +++>,c ac a c a 222+++>。

所以 a a b b b b c c c ac a a b c 22222232 ++++++++++>() 二. 分式放缩 一个分式若分子变大则分式值变大,若分母变大则分式值变小,一个真分式,分子、分母同时加上同一个正数则分式值变大,利用这些性质,可达到证题目的。 例3. 已知a 、b 、c 为三角形的三边,求证: 12<++<a b c b a c c a b +++。 证明:由于a 、b 、c 为正数,所以a b c a a b c +++> ,b a c b a b c +++>,c a b c a b c +++>,所以 a b c b a c c a b a a b c b a b c c a b c +++++>++++++++=1,又a ,b ,c 为三角 形的边,故b +c >a ,则a b c +为真分数,则a b c a a b c +++<2,同理b a c b a b c +++<2,c a b c a b c +++<2, 故a b c b a c c a b a a b c b a b c c a b c +++++++++=++<++2222. 综合得12<++<a b c b a c c a b +++。 三. 裂项放缩 若欲证不等式含有与自然数n 有关的n 项和,可采用数列中裂项求和等方法来解题。 例4. 已知n ∈N*,求n 2n 131211<…+ +++。 证明:因为,则11213+ ++

用“放缩法”证明不等式的基本方法

2 3、先放缩,后裂项(或先裂项再放 缩) n a =n ,求证:k=1 例3、已知 a k n 证明:苕 1 V (k — 1)k(k + 1) _________ 二[+£莖壬匹 ^/(k — 1)(k + 1) ( >/k + 1 +寸 k — 1 ) k z2 (二 学习必备 欢迎下载 用放缩法”证明不等式的基本方法 近年来在高考解答题中,常渗透不等式证明的内容,而不等式的证明是高中数学中的一个难点,它可以考察学生 逻辑思维能力以及分析问题和解决问题的能力。特别值得一提 的是,高考中可以用 放缩法”证明不等式的频率很高, ,对它的运用往往能体现出创造性。 放缩法”它可以和很 而且要恰到好处,目标往往要从证明的结论考察, 例谈 若多项式中加上一些正的值,多项式的值变大,多项式中加上一些负的值,多项式的值变小。由于证明不等式的 需要,有时需要舍去或添加一些项,使不等式一边放大或缩小,利用不等式的传递性,达到证明的目的。本题在放缩 k 时就舍去了 2 -2,从而是使和式得到化简. 2、先放缩再求和(或先求和再放缩) 例 2、函数 f (x )= 一,求证:f (1) +f (2) + …+f (n ) 1 +4x f(n)=二=1--^A 1-丄 1 +4n 1+4 2 *2 1 1 1 +f (2) + …+f (n ) >1—+1屮"+1— 2 21 2 22 2 2n +1 +1 +…=n + 丄一1 (n 迂 N *). 2 4 2n 2n '1 2 此题不等式左边不易求和,此时根据不等式右边特征,先将分子变为常数, 再对分母进行放缩,从而对左边可以进行 求和.若分子,分母如果同时存在变量时,要设法使其中之一变为常量,分式的放缩对于分子分母均取正值的分式。女口 它是思考不等关系的朴素思想和基本出发点 ,有极大的迁移性 多知识内容结合,对应变能力有较高的要求。因为放缩必须有目标, 放缩时要注意适度,否则就不能同向传递。下面结合一些高考试题, 1、添加或舍弃一些正项(或负项) 放缩”的基本策略,期望对读者能有所帮助。 例1、已知 a n =2“ -1(n 亡 N ).求证: n 1 2—3 a 2 a 3 + a n 证明:,— a k + 2k -1 =2^ 1 2 "2(22-1) _ 1 "2"3.2k +2k -2 >1-1.l^,k=1,2,..., n, 2 3 2k 玉+更+ +旦 a 2 a 3 「-1(1 +-+...+丄)」-丄(1二)「-1 , 2 3 2 22 2n 2 3 2n 2 3 2 3 a 2 a 3 + <-(n 迂 N *). a n + 2 证明:由 需放大,则只要把分子放大或分母缩小即可; 如需缩小,则只要把分子缩小或分母放大即可。

放缩法证明不等式的基本策略

放缩法”证明不等式的基本策略 近年来在高考解答题中, 常渗透不等式证明的内容, 而不等式的证明是高中数学中的一个难点, 以考察学生逻辑思维能力以及分析问题和解决问题的能力。特别值得一 提的是,高考中可以用 证明不等式的频率很高,它是思考不等关系的朴素思想和基本出发点 能体现出创造性。 放缩法”它可以和很多知识内容结合, 而且要恰到好处,目标往往要从证明的结论考察,放缩时要注意适度, 些高考试题,例谈 放缩”的基本策略,期望对读者能有所帮助。 1、添加或舍弃一些正项(或负项) 2、先放缩再求和(或先求和再放缩) 子分母均取正值的分式。如需放大,则只要把分子放大或分母缩小即可;如需缩小,则只要把分子缩小或 分母放大即可。 3、先放缩,后裂项(或先裂项再放缩) n J k 例 3、已知 a n =n ,求证:k=1 a k V 3- 它可 放缩法” ,有极大的迁移性,对它的运 用往往 对应变能力有较高的要求。 因为放缩必须有目标, 否则就不能同向传递。下面结合一 例1、已知 a n 2n 1(n N ).求证: a 1 a ^ a 2 a 3 丑(n N a n 1 ). 证明:Q 皀 a k 1 2k 1 2k 1 2(2k1 1) 1 3.2k 2k 2 1,2,..., n. a_ a 2 a 2 a 3 a n a n 1 1 ( 1 1 二(二 二 1 a_ 3 a 2 a 2 a 3 多项式的值变小。由于证 若多项式中加上一些正的值,多项式的值变大, 多项式中加上一些负的值, 明不等式的需要,有时需要舍去或添加一些项,使不等式一边放大或缩小,利用不等式的传递性,达到证 明的目的。本题在放缩时就舍去了 2k 2,从而是使和式得到化简 例2、函数f (x ) =±- 1 4x ,求证: (1)+f ( 2) +…+f (n ) 证明:由 f(n)= 羊7=1-- 1 4n 1 得 f (1) +f (2) + …+f (n ) n 2(1 4 1 1 丄 2 21 2 22 1 1 * 芦 >1 此题不等式左边不易求和 ,此时根据不等式右边特征 ,先将分子变为常数,再对分母进行放缩,从而对 左边可以进行求和.若分子, 分母如果同时存在变量时 ,要设法使其中之一变为常量,分式的放缩对于分

用放缩法证明不等式的方法与技巧

用放缩法证明不等式的方法与技巧 一.常用公式 1.)1(11)1(12-<<+k k k k k 2.12 112-+<<++k k k k k 3.22k k ≥()4≥k 4.1232k k ???????≥(2≥k ) 5. ?? ????--≤!!(!k k k 1)11211(待学) 6.b a b a +≤+ (待学) 二.放缩技巧 所谓放缩的技巧:即欲证A B ≤,欲寻找一个(或多个)中间变量C ,使A C B ≤≤, 由A 到C 叫做“放”,由B 到C 叫做“缩”. 常用的放缩技巧 (1)若0,,t a t a a t a >+>-< (2) < > 11> ,n >= (3)21111111 (1)1(1)(1)1n n n n n n n n n n - =<<=->++-- (4 )= <=<= (5)若,,a b m R + ∈,则,a a a a m b b m b b +>< + (6)21111111 112!3!!222 n n -+++???+<+++???+ (7)22211111111 11(1)()()232231n n n +++???+<+-+-+???+--(因为211(1)n n n < -) (7)1111111112321111n n n n n n n n n +++???+≤++???+=<+++++++ 或11111111123222222 n n n n n n n n n +++???+≥++???+==+++ (8 )1+???+>???+== 三.常见题型 (一).先求和再放缩: 1.设1111 2612 (1) n S n n = ++++ +,求证:1n S < 2.设1n b n = (n N * ∈),数列2{}n n b b +的前n 项和为n T ,求证:34n T < (二).先放缩再求和: 3.证明不等式:111 12112123 123n ++++

(完整版)放缩法典型例题

放缩法典型例题 数列与不等式的综合问题常常出现在高考的压轴题中,是历年高考命题的热点,这类问题能有效地考查学生综合运用数列与不等式知识解决问题的能力.本文介绍一类与数列和有关的不等式问题,解决这类问题常常用到放缩法,而求解途径一般有两条:一是先求和再放缩,二是先放缩再求和. 一.先求和后放缩 例1.正数数列的前项的和,满足,试求: (1)数列的通项公式; (2)设,数列的前项的和为,求证: 解:(1)由已知得,时,,作差得: ,所以,又因为为正数数列,所以,即是公差为2的等差数列,由,得,所以 (2),所以 注:一般先分析数列的通项公式.如果此数列的前项和能直接求和或者通过变形后求和,则采用先求和再放缩的方法来证明不等式.求和的方式一般要用到等差、等比、差比数列(这 里所谓的差比数列,即指数列满足条件)求和或者利用分组、裂项、倒序相加等方法来求和. 二.先放缩再求和 1.放缩后成等差数列,再求和 例2.已知各项均为正数的数列的前项和为,且. (1) 求证:; (2)求证:

解:(1)在条件中,令,得,,又由条件有,上述两式相减,注意到得 ∴ 所以,, 所以 (2)因为,所以,所以 ; 2.放缩后成等比数列,再求和 例3.(1)设a,n∈N*,a≥2,证明:; (2)等比数列{a n}中,,前n项的和为A n,且A7,A9,A8成等差数列.设,数列{b n}前n项的和为B n,证明:B n<. 解:(1)当n为奇数时,a n≥a,于是,. 当n为偶数时,a-1≥1,且a n≥a2,于是 .(2)∵,,,∴公比. ∴..

∴.3.放缩后为差比数列,再求和 例4.已知数列满足:,.求证: 证明:因为,所以与同号,又因为,所以,即,即.所以数列为递增数列,所以,即,累加得:. 令,所以,两式相减得: ,所以,所以, 故得. 4.放缩后为裂项相消,再求和 例5.在m(m≥2)个不同数的排列P1P2…P n中,若1≤i<j≤m时P i>P(即前面某数大于后面某数),则称P i与P j构成一个逆序.一个排列的全部逆序的总数称为该排列的逆序数. 记排列的逆序数为a n,如排列21的逆序数,排列321的逆序数.j (1)求a4、a5,并写出a n的表达式; (2)令,证明,n=1,2,…. (2)因为,

放缩法证明数列不等式经典例题

放缩法证明数列不等式 主要放缩技能: 1.211111111(1)(n 1)1n n n n n n n n -=<<=-++-- 2221144112()141(21)(21)21214 n n n n n n n <===--+--+- ==>= ==<= =<= == =< = = 5. 121122211(21)(21)(22)(21)(21)2121 n n n n n n n n n n ---<==-------- 6. 111 22(1)11(1)2(1)22(1)2n n n n n n n n n n n n n +++++-==-+?+??+?

例1.设函数2*2()1x x n y n N x -+=∈+的最小值为n a ,最大值为n b , 且n c =(1)求n c ;(2)证明: 4444123111174n c c c c ++++ < 例2.证明:1611780<+ ++< 例3.已知正项数列{}n a 的前n 项的和为n s ,且12n n n a s a + =,*n N ∈; (1)求证:数列{} 2n s 是等差数列; (2)解关于数列n 的不等式:11()48n n n a s s n ++?+>- (3)记312311112,n n n n b s T b b b b = = ++++,证明:312n T <<

例4. 已知数列{}n a 满足:n a n ?????? 是公差为1的等差数列,且121n n n a a n ++=+; (1) 求n a ;(2 12n na +++< 例5.在数列{}n a 中,已知1112,2n n n n a a a a a ++==-; (1)求n a ;(2)证明:112233(1)(1)(1)(1)3n n a a a a a a a a -+-+-++-< 例6. 数列{}n a 满足:11122,1()22 n n n n n a a a n a ++==++; (1)设2n n n b a =,求n b ;(2)记11(1)n n c n n a +=+,求证:12351162 n c c c c ≤++++<

典型例题:用放缩法证明不等式

用放缩法证明不等式 所谓放缩法就是利用不等式的传递性,对照证题目标进行合情合理的放大和缩小的过程,在使用放缩法证题时要注意放和缩的“度”,否则就不能同向传递了,此法既可以单独用来证明不等式,也可以是其他方法证题时的一个重要步骤。下面举例谈谈运用放缩法证题的常见题型。 一. “添舍”放缩 通过对不等式的一边进行添项或减项以达到解题目的,这是常规思路。 例1. 设a ,b 为不相等的两正数,且a 3-b 3=a 2-b 2,求证143 <+<a b 。 证明:由题设得a 2+ab +b 2=a +b ,于是(a +b )2>a 2+ab +b 2=a +b ,又a +b >0,得a +b >1,又ab <14(a +b )2,而(a +b )2=a +b +ab <a +b +14(a +b )2,即34(a +b )2<a +b ,所以 a + b <43,故有1<a +b <43 。 例2. 已知a 、b 、c 不全为零,求证: a a b b b b c c c ac a a b c 22222232 ++++++++++>() 证明:因为a ab b a b b a b a b a b 222 22 234 2 22++=+++=++()>()≥,同理b bc c b c 222 +++>,c ac a c a 222+++>。 所以a ab b b bc c c ac a a b c 22222232 ++++++++++>() 二. 分式放缩 一个分式若分子变大则分式值变大,若分母变大则分式值变小,一个真分式,分子、分母同时加上同一个正数则分式值变大,利用这些性质,可达到证题目的。 例3. 已知a 、b 、c 为三角形的三边,求证:12<++<a b c b a c c a b +++。 证明:由于a 、b 、c 为正数,所以a b c a a b c +++>,b a c b a b c +++>,c a b c a b c +++>,所以

用放缩法证明不等式word版本

利用放缩法证明数列型不等式 一、常用的放缩法在数列型不等式证明中的应用 1、裂项放缩法:放缩法与裂项求和的结合,用放缩法构造裂项求和,用于解决和式问题。裂项放缩法 主要有两种类型: (1)先放缩通项,然后将其裂成某个数列的相邻两项的差,在求和时消去中间的项。 例1设数列{}n a 的前n 项的和1412 2333n n n S a +=-?+,1,2,3,n =L 。设2n n n T S =,1,2,3,n =L ,证明: 1 3 2 n i i T =< ∑。 证明:易得12(21)(21),3 n n n S +=--11 32311()2(21)(21)22121n n n n n n T ++==-----, 112231 11 3113111111 ()()221212212121212121n n i i i n n i i T ++===-=-+-++---------∑∑L = 113113()221212 n +-<-- 点评: 此题的关键是将12(21)(21)n n n +--裂项成1 11 2121 n n +---,然后再求和,即可达到目标。 (2)先放缩通项,然后将其裂成(3)n n ≥项之和,然后再结合其余条件进行二次放缩。 例 2 已知数列{}n a 和{}n b 满足112,1(1)n n n a a a a +=-=-,1n n b a =-,数列{}n b 的前n 和为n S , 2n n n T S S =-; (I )求证:1n n T T +>; (II )求证:当2n ≥时,2n S 711 12 n +≥ 。 证明:(I )1111111 ()2322122n n T T n n n n n n +-=+++-++++++++L L 11121221n n n = +- +++10(21)(22) n n =>++ ∴1n n T T +>. (II )112211222222,n n n n n n S S S S S S S S ---≥∴=-+-++-+Q L 1221122n n T T T T S --=+++++L 由(I )可知n T 递增,从而12222n n T T T --≥≥≥L ,又11217,1,212T S T = ==, 12211222n n n S T T T T S --∴=+++++L 21171711 (1)(1)112212 n n T T S n +≥-++=-++= 即当2n ≥时,2n S 711 12 n +≥。 点评:此题(II )充分利用(I )的结论,n T 递增,将2n S 裂成1122112222n n n n S S S S S S S ----+-++-+L 的

用用放缩法证明与数列和有关的不等式

用放缩法证明与数列和有关的不等 数列与不等式的综合问题常常出现在高考的压轴题中,是历年高考命题的热点,这类问题能有效地考查学生综合运用数列与不等式知识解决问题的能力.本文介绍一类与数列和有关的不等式问题,解决这类问题常常用到放缩法,而求解途径一般有两条:一是先求和再放缩,二是先放缩再求和. 一.先求和后放缩 例1.正数数列{}n a 的前n 项的和n S ,满足12+=n n a S ,试求: (1)数列{}n a 的通项公式; (2)设11+= n n n a a b ,数列{}n b 的前n 项的和为n B ,求证:2 1 a a ,又由条

不等式的证明方法习题精选精讲

不等式性质的应用 不等式的性质是解不等式、证明不等式的基础和依据。教材中列举了不等式的性质,由这些性质是可以继续推导出其它有关性质。教材中所列举的性质是最基本、最重要的,对此,不仅要掌握性质的内容,还要掌握性质的证明方法,理解掌握性质成立的条件,把握性质之间的关联。只有理解好,才能牢固记忆及正确运用。 1.不等式性质成立的条件 运用不等式的基本性质解答不等式问题,要注意不等式成立的条件,否则将会出现一些错误。对表达不等式性质的各不等式,要注意“箭头”是单向的还是双向的,也就是说每条性质是否具有可逆性。 例1:若0< B .a b a 11>- C .||||b a > D .22b a > 解:∵0<->-b a 。 由b a -< -11,b a 11>,∴(A )成立。 由0<< b a ,||||b a >,∴(C )成立。 由0>->-b a ,2 2 )()(b a ->-,2 2b a >,∴(D )成立。 ∵0<->-a b a , )(11b a a --<-,b a a ->11,∴(B )不成立。 故应选B 。 例2:判断下列命题是否正确,并说明理由。 (1)若0<c ,在2 2c b c a >两边同乘以2 c ,不等式方向不变。∴b a >。 (3)错误。b a b a 1 1,成立条件是0>ab 。 (4)错误。b a >,bd ac d c >?>,当a ,b ,c ,d 均为正数时成立。 2.不等式性质在不等式等价问题中的应用 例3:下列不等式中不等价的是( ) (1)2232 >-+x x 与0432 >-+x x (2)13 8112++ >++ x x x 与82>x (3)35 7354-+>-+x x x 与74>x (4) 023 >-+x x 与0)2)(3(>-+x x A .(2) B .(3) C .(4) D .(2)(3) 解:(1)0432232 2 >-+?>-+x x x x 。 (2)482>?>x x ,44,11 3 8112>?>-≠?++>++ x x x x x x 。

不等式放缩法

利用放缩法证明数列型不等式 一、常用的放缩法在数列型不等式证明中的应用 1、裂项放缩法:放缩法与裂项求和的结合,用放缩法构造裂项求和,用于解决和式 问题。裂项放缩法主要有两种类型: (1)先放缩通项,然后将其裂成某个数列的相邻两项的差,在求和时消去中间的项。 例1设数列{}n a 的前n 项的和1412 2333n n n S a +=-?+,1,2,3, n =。设2n n n T S =, 1,2,3, n =,证明: 1 32 n i i T =< ∑。 点评: 关键是将12(21)(21) n n n +--裂项成111 2121n n +---,然后再求和,即可达到目标。

(2)先放缩通项,然后将其裂成(3)n n ≥项之和,然后再结合其余条件进行二次放缩。 例2 已知数列{}n a 和{}n b 满足112,1(1)n n n a a a a +=-=-,1n n b a =-,数列{}n b 的前n 和为n S ,2n n n T S S =-; (I )求证:1n n T T +>; (II )求证:当2n ≥时,2n S 711 12 n +≥。 点评:此题(II )充分利用(I )的结论,n T 递增,将2n S 裂成 1122 112222n n n n S S S S S S S ----+-+ +-+的和,从而找到了解题的突破口。

2、迭乘放缩法:放缩法与迭乘法的结合,用放缩法构造迭乘形式,相乘时消去中间项。用于解决积式问题。 例3 已知数列{}n a 的首项为13,a =点()1,+n n a a 在直线)(03*N n y x ∈=-上。 若 3 *3log 2(),n n c a n N =-∈证明对任意的* n ∈N ,不等 式 12111 (1)(1+)(1+)n c c c +??>恒成立. 点评:此题是证明积式大于根式,由于左边没有根式,右边是三次根式,立方后比较更容易处理。33 131(1+ )()32 n n c n -=-可以看成是三个假分式的乘积,保持其中一项不变,另两项假分数分子分母同时加1,加2,则积变小,3313133131 ()323231332 n n n n n n n n n n --++>??=----,而通项式为31 { }32 n n +-的数列在迭乘时刚好相消,从而达到目标。

2020年高考数学一轮经典例题 不等式证明 理

2020年高考数学(理)一轮经典例题——不等式证明 典型例题一 例1 若10<-(0>a 且1≠a ). 分析1 用作差法来证明.需分为1>a 和10<a 时, 因为 11,110>+<---=x a . (2)当10<+<--=x a . 综合(1)(2)知 ) 1(log )1(log x x a a +>-. 分析2 直接作差,然后用对数的性质来去绝对值符号. 解法2 作差比较法. 因为 )1(log )1(log x x a a +-- a x a x lg ) 1lg(lg )1lg(+--= [])1lg()1lg(lg 1 x x a +--= [])1lg()1lg(lg 1 x x a +---=

0)1lg(lg 1 2>--= x a , 所以 ) 1(log )1(log x x a a +>-. 说明:解法一用分类相当于增设了已知条件,便于在变形中脱去绝对值符号;解法二用对数性质(换底公式)也能达到同样的目的,且不必分而治之,其解法自然简捷、明快. 典型例题二 例2 设0>>b a ,求证:.a b b a b a b a > 分析:发现作差后变形、判断符号较为困难.考虑到两边都是正数,可以作商,判断比值与1的大小关系,从而证明不等式. 证明:b a a b b a a b b a b a b a b a b a ---=?=)( ∵0>>b a ,∴. 0,1>->b a b a ∴1)(>-b a b a . ∴a b b a b a b a .1> 又∵0>a b b a , ∴.a b b a b a b a >. 说明:本题考查不等式的证明方法——比较法(作商比较法).作商比较法证明不等式的步骤是:判断符号、作商、变形、判断与1的大小. 典型例题三 例3 对于任意实数a 、b ,求证444 () 22a b a b ++≥(当且仅当a b =时取等号) 分析 这个题若使用比较法来证明,将会很麻烦,因为,所要证明的不等式中有4 ( ) 2a b +,展 开后很复杂。若使用综合法,从重要不等式:22 2a b ab +≥出发,再恰当地利用不等式的有关性质及“配方”的技巧可得到证明。 证明:∵ 222a b ab +≥(当且仅当22 a b =时取等号) 两边同加 4444222 ():2()()a b a b a b ++≥+,

证明数列不等式的常用放缩方法技巧(含答案)

证明数列不等式的常用放缩方法技巧 证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种: ⑴添加或舍去一些项,如: a a >+12; n n n >+)1( ⑵将分子或分母放大(或缩小) ⑶利用基本不等式,如:4lg 16lg 15lg )2 5lg 3lg ( 5lg 3lg 2 =<=+n n n n (5)利用常用结论: Ⅰ. 的放缩 Ⅱ. 2 1k 的放缩(1) : 2111(1)(1) k k k k k <<+-(程度大) Ⅲ. 21k 的放缩(2):2 2 111111()1(1)(1)211 k k k k k k < ==+-+--+(程度小) Ⅳ. 2 1k 的放缩(3):2214112()412121k k k k <=+--+(程度更小) Ⅴ. 分式放缩还可利用真(假)分数的性质:)0,0(>>>++>m a b m a m b a b 和)0,0(>>>++

不等式证明方法专项+典型例题

不等式证明方法专项+典型例题 不等式的证明是数学证题中的难点,其原因是证明无固定的程序可循,方法多样,技巧性强。 1、比较法(作差法) 在比较两个实数a 和b 的大小时,可借助b a -的符号来判断。步骤一般为:作差——变形——判断(正号、负号、零)。变形时常用的方法有:配方、通分、因式分解、和差化积、应用已知定理、公式等。 例1、已知:0>a ,0>b ,求证:ab b a ≥+。 2、分析法(逆推法) 从要证明的结论出发,一步一步地推导,最后达到命题的已知条件(可明显成立的不等式、已知不等式等),其每一步的推导过程都必须可逆。 例2、求证:15175+>+。 3、综合法 证题时,从已知条件入手,经过逐步的逻辑推导,运用已知的定义、定理、公式等,最终达到要证结论,这是一种常用的方法。 例3、已知:a ,b 同号,求证:2≥+b a 。 4、作商法(作比法) 在证题时,一般在a ,b 均为正数时,借助 1>b a 或1> b a ,求证:a b b a b a b a >。

a b b a b a b a >。 5、反证法 先假设要证明的结论不对,由此经过合理的逻辑推导得出矛盾,从而否定假设,导出结论的正确性,达到证题的目的。 例5、已知0>>b a ,n 是大于1的整数,求证:n n b a >。 6、迭合法(降元法) 把所要证明的结论先分解为几个较简单部分,分别证明其各部分成立,再利用同向不等式相加或相乘的性质,使原不等式获证。 例6、已知:122221=+++n a a a ,12 2221=+++n b b b ,求证:12211≤+++n n b a b a b a 。 证明:因为122221=+++n a a a ,12 2221=+++n b b b , 所以原不等式获证。 7、放缩法(增减法、加强不等式法) 在证题过程中,根据不等式的传递性,常采用舍去一些正项(或负项)而使不等式的各项之和变小(或变大),或把和(或积)里的各项换以较大(或较小)的数,或在分式中扩大(或缩小)分式中的分子(或分母),从而达到证明的目的。值得注意的是“放”、“缩”得当,不要过头。常用方法为:改变分子(分母)放缩法、拆补放缩法、编组放缩法、寻找“中介量”放缩法。 例7、求证:01.09999531

用放缩法证明不等式

用放缩法证明不等式 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT

利用放缩法证明数列型不等式 一、常用的放缩法在数列型不等式证明中的应用 1、裂项放缩法:放缩法与裂项求和的结合,用放缩法构造裂项求和,用于解决和式问题。裂项放缩法主要有两种类型: (1)先放缩通项,然后将其裂成某个数列的相邻两项的差,在求和时消去中间的项。 例1设数列{}n a 的前n 项的和1412 2333n n n S a +=-?+,1,2,3, n =。设2n n n T S =, 1,2,3, n =,证明:1 32 n i i T =< ∑。 证明:易得12(21)(21),3 n n n S +=--11 32311()2(21)(21)22121n n n n n n T ++==-----, 11223 111 31131111 11 ()()221212212121212121 n n i i i n n i i T ++===-=-+-++ ---------∑∑ =113113()221212 n +-<-- 点评: 此题的关键是将12(21)(21)n n n +--裂项成1 11 2121 n n +---,然后再求和,即可达到目标。 (2)先放缩通项,然后将其裂成(3)n n ≥项之和,然后再结合其余条件进行二次放缩。 例2 已知数列{}n a 和{}n b 满足112,1(1)n n n a a a a +=-=-,1n n b a =-,数列{}n b 的前n 和为 n S ,2n n n T S S =-; (I )求证:1n n T T +>; (II )求证:当2n ≥时,2n S 711 12 n +≥ 。 证明:(I )111111 1()23 2212 2n n T T n n n n n n +-= +++ -+++ +++++ 111 21221n n n = +- +++10(21)(22) n n =>++ ∴1n n T T +>. (II )112211222222,n n n n n n S S S S S S S S ---≥∴=-+-+ +-+1221122n n T T T T S --=++ +++

不等式证明的常用基本方法(自己整理)

证明不等式的基本方法 导学目标:1.了解证明不等式的基本方法:比较法、综合法、分析法、反证法、放缩法.2.会用比较法、综合法、分析法、反证法、放缩法证明比较简单的不等式. [自主梳理] 1.三个正数的算术—几何平均不等式:如果a ,b ,c>0,那么_________________________,当且仅当a =b =c 时等号成立. 2.基本不等式(基本不等式的推广):对于n 个正数a 1,a 2,…,a n ,它们的算术平均不小于它们的几何平均,即a 1+a 2+…+a n n ≥n a 1·a 2·…·a n ,当且仅当__________________时等 号成立. 3.证明不等式的常用五种方法 (1)比较法:比较法是证明不等式最基本的方法,具体有作差比较和作商比较两种,其基本思想是______与0比较大小或______与1比较大小. (2)综合法:从已知条件出发,利用定义、______、______、性质等,经过一系列的推理、论证而得出命题成立,这种证明方法叫综合法.也叫顺推证法或由因导果法. (3)分析法:从要证明的结论出发,逐步寻求使它成立的________条件,直至所需条件为已知条件或一个明显成立的事实(定义 、公理或已证明的定理、性质等),从而得出要证的命题成立为止,这种证明方法叫分析法.也叫逆推证法或执果索因法. (4)反证法 ①反证法的定义 先假设要证的命题不成立,以此为出发点,结合已知条件,应用公理、定义、定理、性质等,进行正确的推理,得到和命题的条件(或已证明的定理、性质、明显成立的事实等)矛盾的结论,以说明假设不正确,从而证明原命题成立,我们把它称为反证法. ②反证法的特点 先假设原命题不成立,再在正确的推理下得出矛盾,这个矛盾可以是与已知条件矛盾,或与假设矛盾,或与定义、公理、定理、事实等矛盾. (5)放缩法 ①定义:证明不等式时,通过把不等式中的某些部分的值________或________,简化不等式,从而达到证明的目的,我们把这种方法称为放缩法. ②思路:分析观察证明式的特点,适当放大或缩小是证题关键. 题型一 用比差法与比商法证明不等式 1.设t =a +2b ,s =a +b 2 +1,则s 与t 的大小关系是( A ) A.s≥t B.s>t C.s≤t D.s0;②a 2+b 2≥2(a-b-1);③a 2+3ab>2b 2;④,其中所有恒成立的不等式序号是 ② . ②【解析】①a=0时不成立;②∵a 2 +b 2 -2(a-b-1)=(a-1)2 +(b+1)2 ≥0,成立;③a=b=0时不成立;④a=2,b=1时不成立,故恒成立的只有②.

相关文档 最新文档