文档视界 最新最全的文档下载
当前位置:文档视界 › 激光准直计算及准直透镜选型

激光准直计算及准直透镜选型

激光准直计算及准直透镜选型
激光准直计算及准直透镜选型

为您的激光二极管选择准直透镜

由于我们的中红外激光器具有高发散特性,因此需要使用准直光学元件。非球面透镜不会引入球差,常用于所需光束直径在1 - 5毫米的应用。下方给出的简单例子说明了在针对给定应用选择正确透镜时应考虑的关键规格。

举例:

所用激光二极管:L780P010

所需准直光束直径:?3毫米(主轴)

L780P010激光二极管的规格表明其典型水平和垂直方向上的发散角分别为10°和30°。因此,当光束传播时,将会出现椭圆形的光束。为了在准直过程中尽量收集光线,因此在计算时应选用其中较大的发散角(即,在该情况下选用30°发散角)。如果您希望将这种椭圆形的光束转换为圆形光束,我们建议使用变形棱镜对,它可以只在一个轴方向对光束进行扩束。

LD = 激光二极管

? = 光束直径

Θ = 发散角

根据上述信息,获得所需光束直径的透镜焦距可以由下式计算:

根据上述信息,这时就可以开始选择合适的准直透镜。Thorlabs公司提供大量非球面透镜供用户选择。对于上述情况,最理想的透镜是焦距在5.6毫米附近的-B增透膜模压玻璃非球面透镜。C170TME-B(易安装)或352170-B

(未安装)非球面透镜的焦距为6.16毫米,通过它们可以得到直径为3.3毫米的准直光束(主轴)。下一步,检查激光二极管的数值孔径(NA)是否会小于透镜,如果小于透镜,激光二极管发出的光束将会被透镜遮挡::

0.30 = NA Lens > NA Diode ~ sin(15) = 0.26

激光准直技术

激光准直技术在工业生产生活中的应用 摘要: 激光由于具有亮度高、方向性强、单色性好、相干性强等特点,在工程、医疗等方面得到了广泛的应用。因此,对激光准直技术的研究具有重要意义与广泛的前景。这里就激光准直技术的工作原理及其在基本建设工程施工测量中的应用做简单介绍。 关键词:激光、准直仪、准直基线 1、引言 随着世界工业技术的迅猛发展,对各项几何参数的测量精度要求越来越高。直线度测量是集合计量领域里最基本的计量项目之一,直接影响仪器精度、性能、质量,也是机械加工中常见又重要的测量项目。在精密仪器制造与检测、大尺寸测量、大型仪器安装与定位、军工产品制造等领域中有着广泛应用。 2、原理 激光准直的原理如图1所示,由激光器L发出一束单横模的激光(一般为可见光,通常采用氦氖激光器的0.633μm波长的光),利用倒置的望远镜系统S,将光束形成直径很细的(约为几毫米)的平行光束,或者将光束在不同距离上聚焦成圆形小光斑。此平行光束中心的轨迹为一条直线,即可作为准直和测量的基准线。在需要准直的位置处用光电探测器接受准直光束。该光电探测器为四象限光电探测器D(即由4块光电池组成),激光束照射到光电探测器上时,每块光电池会产生电压V1,V2,V3,V4。当激光束中心照射在光电探测器中心处,由于4块光电池收到相同的光能量,产生的电压值相等;而当激光束中心偏离光电探测器中心时,将有偏差电压信号Vx和Vy;Vx= V1 -V3,Vy= V2 - V4 由此偏差电压即可知道接收点位置的偏移大小和方向。 图1 激光准直仪结构图 按检测原理激光准直技术大致可分为三个类型:

(一)振幅(光强)测量型 由于激光漂移、光线弯曲、大气扰动以及光束横截面内光强分布的不对称性的影响,直接利用激光本身作准直基线,稳定性最好也只能达到10?5量级。为提高准直精度,必须有效地克服上述影响,于是出现了多种设计方案。 1、菲涅尔波带片法 激光束通过Fresnel波带片形成十字形的能量分布。以十字线的中心作为准直基线,来克服光强分布不对称的影响,但因为波带片有确定的焦距,不可能在很长距离上都得到清晰的十字像。 图2 菲涅耳波带片成像原理 2、相位板法 采用二维非对称位相板,它的四个象限上每两个相邻的象限具有二相位差,所形成的直边衍射图是亮背景上的一个暗十字。这种方法很适合于对中控制,但由于衍射的作用,测量范围不可能太大。 图3 位相板准直系统 3、双光束准直法 两光束是由一个空间棱镜分出的。当激光器的出射光束漂移时,经过棱镜之后的两光束漂移方向相反。采用两光束的平分线作为准直基线可以克服激光器的漂移影响,但该系统对双光束的平行性要求较高,在长距离范围内不易实现。

zemax自聚焦透镜设计

目录 摘要................................................................ I Abstract........................................................... II 绪论. (1) 1 自聚焦透镜简介 (2) 1.1自聚焦透镜 (2) 1.2 自聚焦透镜的特点 (2) 1.3 自聚焦透镜的主要参数 (3) 2 自聚焦透镜的应用 (4) 2.1 聚焦和准直 (4) 2.2 光耦合 (5) 2.3 单透镜成像 (6) 2.4 自聚焦透镜阵列成像 (6) 3 球面自聚焦透镜设计仿真 (8) 3.1 确定透镜模型 (8) 3.2 设置波长 (8) 3.3数值孔径设定 (9) 3.4 自聚焦透镜光路 (9) 4 优化参数 (10) 4.1光线相差分析 (10) 4.2聚焦光斑分析 (12) 4.3 3D模型 (12) 结束语 (13) 致谢 (14) 参考文献 (15)

摘要 本文主要说明应用梯度折射率对光传播的影响分析设计自聚焦透镜(GRIN lens),自聚焦透镜主要应用于光纤传输系统中。自聚焦透镜同普通透镜的区别在于,自聚焦透镜材料能够使沿轴向传输的光产生折射,并使折射率的分布沿径向逐渐减小,从而实现出射光线被平滑且连续的汇聚到一点。利用此特性,G-lens 在光纤传输系统中是构成准直、耦合、成像系统的主要部分。而它结构简单,体积小的特点更适用于小型光学器材中,例如窥镜系统。 关键词:梯度折射率,自聚焦,光耦合,准直

Abstract This article main showing the impact analysis designs the self-focusing lens using the gradient refractive index to the light emission (GRIN lens), the self-focusing lens mainly apply in the optical fiber transmission system. The self-focusing lens lie in with the ordinary lens' difference, the self-focusing lens material can cause along the axial transmission light to have the refraction, and causes the refractive index the distribution to reduce gradually along the radial direction, thus realizes the exit ray by smooth and the continual gathering to a spot. Using this characteristic, G-lens in the optical fiber transmission system is the constitution collimation, the coupling, imaging system's main part. But its structure is simple, the volume small characteristic is suitable in the small optics equipment, for example looking glass system. Keywords:Gradient index, GRIN lens, Light coupling,Collimation

LED准直照明的自由曲面透镜设计

LED准直照明的自由曲面透镜设计 Jin-Jia Chen, Te-Yuan Wang, Kuang-Lung Huang, Te-Shu Liu, Ming-Da Tsai, and Chin-Tang Lin 1、电气工程学院国立彰化师范大学系,士达路,彰化50074,台湾 2、光电与能源工程,明道大学,369文华路,Peetow,彰化52345,台湾 * jjchen@https://www.docsj.com/doc/1815938255.html,.tw 摘要:我们提出一个简单的镜头自由曲面设计方法应用到LED照明的准直。该方法是从 基本的几何光学分析及施工方法得出。通过使用这种方法,一个高度准直透镜与为 1.0mm ×1.0毫米LED芯片的尺寸和86.5%下的±5度的视角的光学模拟的效率构成。为了验证该透镜的实用性能,准直透镜的原型也制成,并且90.3%具有4.75度的射束角的光学效率被测量。 ?2012美国光学学会 OCIS代码:(220.2740)几何光学设计; (220.4298)非成像光学系统; (220.2945)照明设计; (230.3670)发光二极管。 参考文献 1.H. Ries and J. Muschaweck, “Tailored freeform optical surfaces,”J. Opt. Soc. Am. A 19(3), 590–595 (2002). 2.P. Benítez, J. C. Mi?ano, J. Blen, R. Mohedano, J. Chaves, O. Dross, M. Hernández, and W. Falicoff, “Simultaneous multiple surface optical design method in three dimensions,”Opt. Eng. 43(7), 1489–1502 (2004). 3.Y. Ding, X. Liu, Z. R. Zheng, and P. F. Gu, “Freeform LED lens for uniform illumination,”Opt. Express 16(17),12958–12966 (2008). 4.L. Sun, S. Jin, and S. Cen, “Free-form microlens for illumination applications,”Appl. Opt. 48(29), 5520–5527 (2009). 5.F. R. Fournier, W. J. Cassarly, and J. P. Rolland, “Fast freeform reflector generation usingsource-target maps,”Opt. Express 18(5), 5295–5304 (2010). 6.W. Zhang, Q. Liu, H. Gao, and F. Yu, “Free-form reflector optimization for general lighting,” Opt. Eng. 49(6), 063003 (2010). 7.G. Wang, L. Wang, L. Li, D. Wang, and Y. Zhang, “Secondary optical lens designed in the method of source-target mapping,”Appl. Opt. 50(21), 4031–4036 (2011). 8.V. Medvedev and W. A. Parkyn, Jr., “Screen illumination apparatus and method,”US Patent 6166860 (2000). 9.D. Weigert and D. Chin, “Spotlight with an adjustable angle of radiation and with an aspherical front lens,”US Patent 6499862 B1 (2002). 10.A. Domhardt, S. Weingaertner, U. Rohlfing, and U. Lemmer, “TIR Optics fornon-rotationally symmetric illumination Design,”Proc. SPIE 7103, 710304, 710304-11 (2008).

光纤准直器的结构与参数

?光纤准直器是光无源器件中的一个重要的组件,在光通信系统中有着非常普遍的应用。 它是由单模尾纤和准直透镜组成,具有低插入损耗,高回波损耗,工作距离长,宽带宽,高 稳定性,高可靠性,小光束发散角,体积小和重量轻等特点。可将光纤端面出射的发散光束变换为平行光束,或者将平行光束会聚并高效率耦合入光纤,是制作多种光学器件的基础器件,因此被广泛应用于光束准直,光束耦合,光隔离器,光衰减器,光开关,环行器, MM,密集波分复用器ES之中。 目录 ?光纤准直器的结构与参数 ?光纤准直器的原理 ?光纤准直器的优点 ?光纤准直器的装配 光纤准直器的结构与参数 ?光纤准直器的结构参数如图5 所示,因光纤头端面的8 度斜角,造成输出光束与准直器轴线存在夹角θ,称为点精度。图6 所示为两准直器的理想耦合情况,二者的输出光场完全重合,其间距为准直器的工作距离Zw。准直器输出高斯光束的束腰距离其端面Zw/2,束腰直径为2ωt,而高斯光束的发散角与其束腰直径成反比关系。到此我们介绍了光纤准直器的三个主要参数:工作距离、点精度和光斑尺寸。 光纤准直器的原理 ?光纤准直器的基本原理是,将光纤端面置于准直透镜的焦点处,使光束得到准直,然后在焦点附近轻微调节光纤端面位置,得到所需工作距离,因此准直器的工作距离与光纤头和透镜的间距L相关。光纤准直器的设计方法是,根据实际需求确定准直器的工作距离,依据高斯光束传输理论,确定光纤头和透镜间距L并计算光斑尺寸,然后依据光线理论计算准直器的点精度。 光纤准直器的优点 ?低插损、高回损、尺寸小 工作距离长、宽带宽

高稳定性、高可靠性 光纤准直器的装配 (1)采用斜端面插针耦合,可大大提高光纤准直器的回波损耗,当斜面倾角为8°01%增 透膜时,光纤准直器的时,光纤准直器的自聚焦透镜后端面镀反射率为0.回波损耗可达 60dB。采用斜端面插针耦合,主要是为了满足器件高回波损耗的求,角度越大,准直器的回波损耗越大。但插针的端面角度越大,准直器的插入损耗就会越大(要求是:插入损耗越小越好,回波损耗越大越好),这和准直器要求的低插入损耗矛盾,对于准直器插入损耗而言,透镜和毛细管是垂直端面最为理想。因此本文采用8°是针对环行器在这种互相制约关系下的一个折中。视应用场合不同其端面斜角可做成6°、8°、9°、11°或任何角度。 (2)透镜与光纤毛细管端面的间隙也主要是和器件高回波损耗有关,为了达到器件高回 波损耗的要求,其间隙一般大于200μm,当间隙大于200μm,器件的回波损耗值近似达到理论上最大值。但透镜和毛细管端面的间隙越大,同时会造成准直器的插入损耗增大,这又是一对矛盾,根据准直器图纸的精度要求,其间隙是0.385mm,这同时能满足高回波损耗的距离要求,也能使其插入损耗达到要求。准直器的插入损耗和回波损耗相比较而言,回波损耗更容易保证,因此在准直器装配时,以其插入损耗为检测依据,就是这个道理。

准直TIR透镜Tracepro实例

准直TIR透镜的TracePro模拟过程 说明:本例只讲解我用TP的模拟过程,不是TP的使用手册之类,讲解有误或不清楚的地方请见谅。本例不讲解透镜的设计方法,请不要追问如何设计透镜。 最后提一个要求:不喜勿喷。 作者:虫洞里的猫 准直TIR透镜,是指在原点的点光源经过透镜后光线能平行出射的透镜,但由于LED的发光面都是面光源,因此LED经过此透镜后不可能是平行光出射,但其出光角度会是最小值。 本实例以已设计好的准直TIR透镜为例,逐步演示TracePro的模拟过程。 1.插入3D文件 TracePro可以打开多种3D格式的文件,最方便的是直接插入零件,但此过程只能使用.SAT格式的文件,如下图的过程。

如果你的3D文件是其它格式,如STEP等,则可以用TracePro直接打开,具体过程为:文件-打开,在打开的对话框的下拉菜单中选择合适的格式。 2.设置光源 2.1 设置档案光源 2.1.1 方法一 设置光源可以有很多方式,但最直接也最准确的是使用光源文件,在TracePro中也称为档案光源,TracePro可用的档案光源主要有.DAT或.RAY格式的。此文件可以从LED厂家的官网上下载,本实例使用的LED为CREE公司的XLamp XP-E。如下图,XP-E Cool White Optical Source Model - TracePro (zip) (42 MB)是适合TracePro使用的光源文件,其网站地址为:https://www.docsj.com/doc/1815938255.html,/LED-Components-and-Modules/Products/XLamp/Discrete-Directional/XLa mp-XPE。

第二章激光准直基础学习知识原理

第二章 激光准直原理 第一节 光的衍射现象 一切波动都能绕过障碍物向背后传播的性质。 例如:户外的声波可绕过树木,墙壁等障碍物而传到室内,无线电波能绕过楼房,高山等障碍物传到收音机、电视里等。 波遇到障碍物时偏离原来直线传播的方向的现象称为波的衍射 日常生活中的光的衍射现象不明显的原因??? 310a 衍射现象不明显 1-2-1010a 衍射现象显著 110a 1- 逐渐过渡为散射 首先我们来做一个实验,让一单色强光源(激光)发出的光波,通过半径为ρ且连续可调的小圆孔后,则在小圆孔后的屏上将发现:当ρ足够大时,在原屏上看到的是一个均与照明的光斑,光斑的大小为圆孔的几何投影。这与光的直线传播想一致。如图: 随着ρ的逐渐变小,屏上的光斑也逐渐减小,但当圆孔减小到一定程度时,屏上的光斑

将逐渐扩展,弥漫。 光强出现分布不均匀,呈现出明暗 相间的同心圆环,且圆环中心出现 时亮时暗的变化。 光斑的扩展弥漫,说明光线偏离了 原来的直线传播,绕过障碍物,这 种现象称为光的衍射。 再来做一个实验,用一束激光照射宽度连续可调的竖直狭缝,并在数米外放置接受屏,也可以得到衍射图样。 逐渐减狭缝的宽度,屏上亮纹也逐渐减小,当狭缝的宽度小到一定程度,亮纹将沿于狭缝垂直的水平方向扩展。同时出现明暗相间的衍射图样,中央亮纹强度最大,两侧递减,衍射效应明显,缝宽越窄,对入射光束的波限制越厉害,则衍射图样扩展的越大,衍射效应越显著。 一、光的衍射定义: 光绕过障碍物偏离直线传播而进入几何阴影,并在屏幕上出现光强分布不均匀的现象

二、产生条件: 障碍物的线度和光的波长可以比拟的时候 三、衍射规律: 1.光在均匀的自由空间传播时,因光波波面未受到限制,则光沿直线传播。当遇 到障碍物时,光波面受限,造成光强扩展,弥漫,分布不均匀,并偏离直线传播而出现衍射现象。 2.光波面受限越厉害,衍射图样扩展越显著。光波面在衍射屏上哪个方向受限, 接受屏上的衍射图样就在哪个方向扩展。 第二节惠更斯——菲涅耳原理 一、惠更斯原理 1.波面:等相位面 2. 任何时刻波面上的每一点都可作为次波的波源, 各自发出球面次波;在以后的任何时刻,所有这些次波面 的包络面形成整个波,在该时刻的新波面——“次波” 假设。 能解释: 直线传播、反射、折射、晶体的双折射等; 不能解释: 波的干涉和衍射现象(未涉及波长等); 而且由惠更斯原理还会导致有倒退波的存在,而实际上倒退波是不存在的。

zemax自聚焦透镜设计

目录 摘要 .................................................................................................................................................. I Abstract .......................................................................................................................................... I I 绪论 . (1) 1 自聚焦透镜简介 (2) 1.1自聚焦透镜 (2) 1.2 自聚焦透镜的特点 (2) 1.3 自聚焦透镜的主要参数 (3) 2 自聚焦透镜的应用 (4) 2.1 聚焦和准直 (4) 2.2 光耦合 (5) 2.3 单透镜成像 (6) 2.4 自聚焦透镜阵列成像 (6) 3 球面自聚焦透镜设计仿真 (8) 3.1 确定透镜模型 (8) 3.2 设置波长 (8) 3.3数值孔径设定 (9) 3.4 自聚焦透镜光路 (9) 4 优化参数 (10) 4.1光线相差分析 (10) 4.2聚焦光斑分析 (12) 4.3 3D模型 (12) 结束语 (13) 致 (14) 参考文献 (15)

摘要 本文主要说明应用梯度折射率对光传播的影响分析设计自聚焦透镜(GRIN lens),自聚焦透镜主要应用于光纤传输系统中。自聚焦透镜同普通透镜的区别在于,自聚焦透镜材料能够使沿轴向传输的光产生折射,并使折射率的分布沿径向逐渐减小,从而实现出射光线被平滑且连续的汇聚到一点。利用此特性,G-lens 在光纤传输系统中是构成准直、耦合、成像系统的主要部分。而它结构简单,体积小的特点更适用于小型光学器材中,例如窥镜系统。 关键词:梯度折射率,自聚焦,光耦合,准直

用ZEMAX设计简易LED准直镜

用ZEMAX设计简易LED准直镜 一. 初始解的构建 1. 为了简单采用此透镜由三部分构成: A. 全反射部分, B. 折射部分, C.切除部分(这一部分在设计时也可以不考虑,可以在设计完成后再加入) 图中光束分两个部分, 一部分为折射部分,另一部分为全反射部分, 可以看出,折射部分光束为三段,全反射部分光束分为四段,由于是平行光出射, 所以在优化时只要考虑第三段就可以了. 初始数据: 1) 几何体部分 TIR部分是一个非球面透镜,中间部分是一个标准透镜(有曲率和圆锥系数),切除部分是一个圆柱体; 注意中间的透镜部分的材料为空气,因为它相当于也是被切除掉的.

2) 光源部分 我们用SOURCE RAY做为光源, 这样可以NSRA来进行优化; 光源的生成与操作数的建立按如下的MACRO可以自动生成: steps=90 incr=90/steps #max angle is 90 degree pi = 4*ATAN(1) dr = pi/180 startobj=4 For i,0,steps,1 angle = i*incr oo=i+startobj InsertObject 1,oo SetNSCProperty 1,oo,0,0,"NSC_SRAY" # surface,object,code,face,value SetNSCProperty 1,oo,3,0,2 # source inside of object 2 SetNSCPosition 1,oo,4,angle SetNSCParameter 1,oo,1,1 #layout rays SetNSCParameter 1,oo,2,1 #analysis rays tar = 0 opr = i+1 InsertMFO opr setoperand opr, 11, "NSRA" setoperand opr, 3, oo # src# setoperand opr, 6, 3 # seg# setoperand opr, 9, 1 # weight setoperand opr, 7, 5 # y coordinate setoperand opr, 8, tar # tar Next update 我们每隔一度产生一条光线,最终的结果如下, 从图中可以看出,光线都不是平行的. 这里注意要调整参数保证所有光线都大概的按预期的方向会聚!!

光纤准直器原理

光纤准直器原理 曾孝奇 一. 模型 光纤准直器通过透镜能实现将从发散角较大(束腰小)的光束转换为发散角较小(束腰大)的光束,从而以较低损耗耦合进入其他光学器件。在这里,我们将从光纤中的出射光束认为是基模高斯光束;光纤准直器基本模型如下: 图1 光纤准直器原理示意图 其中,i q (i=0,1,2,3)为高斯光束的q 参数,q 参数定义为: ()()() z w i z R z q 211πλ-=, (1) ()z f z z R 2 +=,()2 01??? ? ??+=f z w z w ,λπ2 0w f =; (2) 图1中,i q (i=0,1,2,3)分别表示光纤端面,透镜入射面,透镜出射面,和出射光束的束腰处的q 参数,而01w 和02w 分别表示透镜变换前后的束腰;l 表示光纤端面与透镜间隔,l w 为准直器的设计工作距离。 二. 理论分析 根据ABCD 理论,高斯光束q 参数经透镜变换后, D Cq B Aq q ++= 112, (3) 而且,l q q +=01,2/32w l q q -=,12 010if w i q ==λπ,22 023if w i q ==λ π。

这样,我们可以得到经过透镜后的束腰大小: () () 2 12 01 02Cf D Cl BC AD w w ++-=, (4) 工作距离: ()()()()2 12212 Cf D Cl ACf D Cl B Al l w +++++-=, (5) 方程(5)是关于l 的二次方程,为使得l 有实根,方程(5)的判别式应该不小于零,从而我们可以得到: 1 2 1 2f C ACf BC AD l w --≤ , (6) 方程(6)表示准直器的工作距离有上限,就是一个最大工作距离 ()() 121max /2f C ACf BC AD l w --=。此时,我们得到:C D f l - =1。 分析:不论对于何种透镜,准直器的出射光斑和工作距离都取决于透镜的传输矩阵ABCD ;对于给定的透镜,它们还跟入射光斑大小和光纤端面与透镜间的距离l 有关,也就是说,对于给定的入射光束和给定的透镜,我们可以通过在透镜焦距附近改变l 来实现不同的工作距离。在实际制作准直器当中,我们正是通过这种方法来实现不同的工作距离的。 进一步地,如果我们需要定量计算准直器的出射束腰和工作距离,需要具体知道不同透镜的ABCD 系数。对于G Lens (自聚焦透镜,通常为0.23P ),它的ABCD 矩阵为: () () () () ?? ? ? ???? ?? -=??????L A L A A n L A A n L A D C B A o o cos sin sin 1 cos , (7) 其中,0n 透镜的透镜的轴线折射率,L 为透镜的中心厚度,A 为透镜的聚焦常数。由于G Lens 的ABCD 系数取决于0n ,L 和A ,因而,适当选择这些参数,同样能改变准直器的出射光斑大小和工作距离。 对于 C lens(厚透镜),它的传输矩阵为:

光纤准直器原理

3) 而且, q 1 q 0 l , q 2 q 3 l w /2, q 0 i 2 w01 if 1, q 3 i 2 w 02 2 if 2。 一 . 模型 光纤准直器通过透镜能实现将从发散角较大 (束腰小) 的光束转换为发散角 较小(束腰大)的光束,从而以较低损耗耦合进入其他光学器件。在这里,我们 将从光纤中的出射光束认为是基模高斯光束;光纤准直器基本模型如下: 其中, q i ( i=0,1,2,3 )为高斯光束的 q 参数,q 参数定义为: 图 1 中, q i (i=0,1,2,3 )分别表示光纤端面,透镜入射面,透镜出射面,和出 射光束的束腰处的 q 参数,而w 01和 w 02分别表示透镜变换前后的束腰; l 表示光 纤端面与透镜间隔, l w 为准直器的设计工作距离。 二 . 理论分析 根据 ABCD 理论,高斯光束 q 参数经透镜变换后, Aq 1 B q2 Cq 1 D , 光纤准直器原理 曾孝奇 11 qz Rz i w 2z , 1) 2 , w z w 0 1 2 w 2)

这样,我们可以得到经过透镜后的束腰大小: AD BC w 02 w 01 2 Cl D 2 Cf 1 工作距离: 2 l 2 Al B Cl D ACf 12 , ( 5) l w 2 2 2 , ( 5) w Cl D 2 Cf 1 2 方程( 5)是关于 l 的二次方程,为使得 l 有实根,方程( 5)的判别式应该不小 于零,从而我们可以得到: AD BC 2ACf 1 , w 2 , C 2 f 1 方程( 6)表示准直器的工作距离有上限,就是一个最大工作距离 2D l wmax AD BC 2ACf 1 / C 2 f 1 。此时,我们得到: l f 1 D 。 C 分析:不论对于何 种透镜, 准直器的出射光斑和工作距离都取决于透镜的传 输矩阵 ABCD ;对于给定的透镜,它们还跟入射光斑大小和光纤端面与透镜间的 距离 l 有关, 也就是说,对于给定的入射光束和给定的透镜, 我们可以通过在透 镜焦距附近改变 l 来实现不同的工作距离。 在实际制作准直器当中, 我们正是通 过这种方法来实现不同的工作距离的。 进一步地, 如果我们需要定量计算准直器的出射束腰和工作距离, 需要具体 知道不同透镜的 ABCD 系数。对于 G Lens (自聚焦透镜,通常为 0.23P ),它的 ABCD 矩阵为: 1 cos AL 1 sin AL n o A , ( 7) n o Asin AL cos AL 其中,n 0 透镜的透镜的轴线折射率, L 为透镜的中心厚度, A 为透镜的聚焦常数。 由于G Lens 的ABCD 系数取决于 n 0,L 和 A ,因而,适当选择这些参数,同样能 改变准直器的出射光斑大小和工作距离。 对于 C lens ( 厚透镜 ) ,它的传输矩阵为: 4) 6) C A D B

zemax自聚焦透镜设计学习资料

目录摘要Abstract............................................................ I 绪论. 0 1 自聚焦透镜简介 (1) 1.1自聚焦透镜 (1) 1.2 自聚焦透镜的特点 (1) 1.3 自聚焦透镜的主要参数 (2) 2 自聚焦透镜的应用 (3) 2.1 聚焦和准直 (3) 2.2 光耦合 (4) 2.3 单透镜成像 (5) 2.4 自聚焦透镜阵列成像 (5) 3 球面自聚焦透镜设计仿真 (7) 3.1 确定透镜模型 (7) 3.2 设置波长 (7) 3.3数值孔径设定 (8) 3.4 自聚焦透镜光路 (8) 4 优化参数 (9) 4.1光线相差分析 (9) 4.2聚焦光斑分析 (11) 4.3 3D模型 (11) 结束语 (12) 致谢 (13)

参考文献 (14)

摘要 本文主要说明应用梯度折射率对光传播的影响分析设计自聚焦透镜(GRIN lens),自聚焦透镜主要应用于光纤传输系统中。自聚焦透镜同普通透镜的区别在于,自聚焦透镜材料能够使沿轴向传输的光产生折射,并使折射率的分布沿径向逐渐减小,从而实现出射光线被平滑且连续的汇聚到一点。利用此特性,G-lens 在光纤传输系统中是构成准直、耦合、成像系统的主要部分。而它结构简单,体积小的特点更适用于小型光学器材中,例如窥镜系统。 关键词:梯度折射率,自聚焦,光耦合,准直

Abstract This article main showing the impact analysis designs the self-focusing lens using the gradient refractive index to the light emission (GRIN lens), the self-focusing lens mainly apply in the optical fiber transmission system. The self-focusing lens lie in with the ordinary lens' difference, the self-focusing lens material can cause along the axial transmission light to have the refraction, and causes the refractive index the distribution to reduce gradually along the radial direction, thus realizes the exit ray by smooth and the continual gathering to a spot. Using this characteristic, G-lens in the optical fiber transmission system is the constitution collimation, the coupling, imaging system's main part. But its structure is simple, the volume small characteristic is suitable in the small optics equipment, for example looking glass system. Keywords:Gradient index, GRIN lens, Light coupling,Collimation

激光准直仪操作规程.(精选)

激光准直仪操作规程 激光准直测量系统由半导体激光器、光学分光及转向系统、光电接收系统及 液晶显示模块组成。激光光束经转向系统后出射两条相互平行的基准光束,作为导轨的安装检测基准。该系统利用二维PSD作为光电接收器件,采用液晶显示模块显示导轨偏差,可快速、直接、准确地测量导轨安装的偏移量,从而提高导轨安装的精度和速度。实验结果显示测量系统在X,Y方向上的标准偏差分别为: 0.002mm,0.005mm。 1、主要参数 2、主机由半导体激光器、空间位相调制器、壳体、底座、和电源所组成。 3、激光准直仪的特点与工作原理 1)仪器的特点是采用了空间位相调制器。激光束在任意测距上,其横截面均为一组良好的、红黑反差很大的同心圆环,中心光斑亮且小,利于定位。而且在不同测距进行测量时是不用调焦的,实现了无调焦运行差。 中心光斑直径随着工作距离的增大而增大,符合下列参数: L=2.5米时?0.1mm L=20米时?1.2mm L=50米时?2.5mm 2)将仪器固定在主机的回转轴上后用百分表测量仪器端部的测环在盘车处于不同位置时的差值,通过调整仪器底座上的调整螺钉,使其差值越来越小,只要主机轴系配合良好,可以调至±0.02~0.03mm。然后利用置于远离主机15米左右的平面反射镜,将仪器射出的激光束反射至位于仪器附近的测微光靶。在主机盘车时调整仪器壳体上的四只调整螺钉,(必要时适当调整反射镜的角度),使反射回来的激光束画的圆的半径越来越小,最后调至±0.1mm以内为止,此时应再次检查盘车360°时,百分表所显示波动值的范围和测微光靶的测量差值,准确无误时即可用此光轴代替主机的机械轴。 3)二维测微光靶

自聚焦透镜产品说明书范本

自聚焦透镜 产品讲明书 北京旭廷科技开发有限公司 2004年8月

讲明书目录 1.产品概述及参数列 表 (1) 2.订货信 息 (3) 3.使用注意事 项 (5) 附:自聚焦透镜原理简介 (6)

1.产品概述及参数列表 自聚焦透镜又称梯度渐变折射率(GRIN)透镜,其折射率从中心轴到周边沿径向梯度减小,呈轴对称抛物线分布。它具备准直、聚焦、耦合等功能,具有体积小、耦合效率高、插入损耗低的优点,同时能够在端面成像。自聚焦透镜广泛用于各种有源、无源光器件,如光纤连接器、光纤耦合器、波分复用器、光衰减器、光隔离器、光滤波器、光开关、光纤准直器、掺铒光纤放大器、光纤光栅等;同时它也广泛应用于医用光学领域,如数码电子宫腔镜等医用内窥镜。

本公司生产的自聚焦透镜要紧用于光通信领域,其表面质量指标如下: 针孔、麻点:直径范围内不同意存在直径大于30um的缺陷;不同意直径大于10um的杂质缺陷存在;直径在10um-30um之间的缺陷少于4处。 划痕:不同意宽度超过5um的划伤;同意宽度小于2um的划伤存在;不同意宽5um长200um划伤。 崩边:在中心区域的90%范围内不得有崩边。 要紧应用参数如下表:

其他技术指标如下: 2.产品订货信息 本公司产品采纳如下命名方法:

43o 55o 74o A-孔径角2θ 序号X1 X2 X3 B-直径(mm) 1.0 1.8 2.0 序号10 18 20 C-截距P 0.23 0.25 0.29 序号023 025 029 D-波长(nm) 630 830 1060 1310 1550 序号630 830 1060 1310 1550 E-镀膜单面镀膜双面镀膜不镀膜 序号AR1 AR2 N F-角度1o 2o 3o 4o 2o 4o 6o 8o 序号1D 2D 3D 4D 2 4 6 8 示例:SL-X2-10-025-1310-AR2-3D,表示需要定购的自聚焦透镜孔径角为55o、直径1.0mm、截距0.25P、应用波长1310nm、双端面倾角为3o同时双面镀膜。 依照客户要求,可对透镜进行的专门工艺处理讲明如下: (1)端面角度化处理:此种处理能够有效减少回光反射。有

LED灯珠的准直透镜的自由曲面设计

一个关于led灯珠的准直透镜的自由曲面设计 陈金佳光学学报 林石塘 国立彰化教育大学 电机工程学系 台湾,彰化,50074 师大路2 电子邮件:jjchen@https://www.docsj.com/doc/1815938255.html,.tw 摘要。自由形式的准直透镜的设计方案是由LED光源发出的光线追击到一个原平面。一般来说,投影距离假定为100多米,光束有微不足道的分歧。一个透镜是由总反射(TIR)侧面,在后方的球面,在垂直平面前的外层部分,和在自由屈光面前的中央部分组成。从LED源发出的大角度的光线击中TIR表面平行于光轴被重定向反射出,再和那些有小的扩散角度光线一起经过一个自由屈光面,最终平行光轴射出。计算机模拟结果表明,81.5%的光效下±5°的视角的要求,可用面积为1平方毫米LED光源实现。 1引言 由于LED光源具有亮度和能耗低,反应速度快,寿命长,不含汞等优良特性,并明显的改善,近年来它在室内室外照明上得以广泛应用。因此,越来越多的国家和行业已经花费了大量的财政和人力资源在LED光源和灯具的研究和发展上。然而,发光二极管与传统光源相比,高度集中的光分布和非常低的亮度,因此,他们需要额外的光学,称为二次光学元件,以提高其光效和生产规定的照明。许多例子,发光二极管可用于各种普通照明系统,汽车大灯,LCD背光模组,其中大部分是与自由形式曲面设计,以获得规定的光分布。这些方法一般需要翻译成合适的差分方程的基础上的反射和折射定律的非成像的问题。然而,解决这类微分方程是复杂和具有挑战性的,它需要一个数值方法。其他一些方法可能不需要求解微分方程,然而,他们用来构造自由曲面光学表面是复杂的。 由于涉及的准直透镜,其中有许多各种各样的应用,如探照灯,射灯,手电筒,夜视系统,传统的设计方法包括各种已知圆锥或非球面光学元件,以实现准直的功能。然而,从源头上发出的光线不能得到有效利用。要解决这问题得到良好性能,对光源器件要求极高。另一方面在透镜的TIR表面可以纳入一个单一的机构,所有光学元件,体积紧凑,实现全光射线利用率。因此,最近已经吸引了许多有趣的应用。因为传统光源的LED光源的半空间分布不同,准直透镜的TIR表面需要专门设计的。尤其是复杂的光学表面应采用高品质的镜头。在本文中,我们提出了一个近似的方法来构建一个基于LED的准直透镜,其中包含一项TIR侧表面和自由曲面在前面中央部分的屈光面,并可以用一个简单的几何关系和一个三维(3D)模型模拟。由于解决TIR表面和自由曲面的方法很简单,不需要求解微分方程,它的算法是简单,直接,方便地实现。 一般准直透镜的结构,被认为是旋转对称的,因此可以在一个两维的(2D)空间操作。此外,镜头的设计是基于一个理想的点光源,而LED是2πsr立体角的面光源,并明显地影响镜头的性能。因此,为实现一个实用的LED光源应用

激光光束特定方向准直方法与技术

激光光束特定方向准直方法与技术 摘要:基于光束漂移量反馈通过PZT 驱动的微角度控制,实时动态检测和控 制激光光束特定方向的平漂量和角漂量,以达到出射光束特定方向的高稳定性。准直系统中对光束平漂量和角漂量进行了分离检测,并各自构成了平漂量和角漂量反馈控制执行系统,减小了平漂量和角漂量反馈控制中的相互耦合,提高了准直精度及准直效率。实验表明,该方法特定方向准直精度可达5 ×10 - 8 rad。关键词:激光准直; 光束漂移; 激光基准; 激光 Laser Beam Collimation Method and Technology in Given Beam Direction Abstract: in this method, displacement and angle excursions of laser beam from given direction was measured and controlled dynamically in real time through micro-angle measuring and micro-angle controlling systems based on piezoelectric driving, in the collimation system dis placement excursion and angle excursions of laser beam was measured s eparately and each of them has a independent feedback control system to restrain and angle excursion is decreased so the collimation preci sion and collimation efficiency are improved. Experiments prove the c ollimation precision of laser beam can reach 5×10-8 rad. 1 引言 激光器由于受其本身的热变形、环境振动和空气扰动等因素的影响,出射的激光束在传播过程中常会产生漂移,主要表现为光束的平漂和角漂,其量级一般在10 - 4~10 - 6 rad。这一弱点限制了激光器准直精度的进一步提高,影响了其在实际中的运用。目前的许多方法,如激光方向稳定法[1 ] 、位相板衍射准直法[2 ,3 ] 、双光束补偿准直法[4 ] 、单模光纤准直法、CCD传真法等[5~7 ] ,都是为解决这一问题而提出的。但此类方法,均将激光光束在任意方向的平漂和角漂作为一个综合影响量,来对其进行准直,增加了准直难度及准直系统的复杂性,降低了准直效率。在激光长距离准直技术中,有时只需对激光光束传播中的某个空间位置方向(激光束截面的x 方向或y 方向) 进行准直;在许多应用场合,对测量结果起作用的只是光束截面的某个特定方向的稳定性,此种情况下只需对所用光束特定方向进行准直, 这样既可降低难度、减小系统复杂性,同时又能提高特定方向的准直效率及精度。为此,本文提出抑制光束特定方向的漂移量反馈控制方法及技术。 2 特定方向反馈控制准直法 2. 1分离检测 光束角漂量分离检测法见图1 ,将二像限探测器( TEPD ,two2element pho todioe) 光敏面中心对称线置于聚焦物镜的焦点处,与TEPD 中心对称线垂直的方向即为将要准置的特定方向,安放二像限硅光电池使纸面为将需准直的特定方向面,如图1 (a) 所示。 当光束产生平漂量Δx 时,由于入射光束平行于光轴经聚焦物镜后仍聚于焦点上, TEPD 对光束的平漂量不敏感。当光束产生角漂即相对光轴以θ角入射时,光束聚焦于聚焦物镜的焦平面上并发生偏移, 见图1 (b) ,偏移TEPD 的中心位置量为Δy =θ×f 。其中,θ为光束角漂量,Δy 为光束焦点偏移TEPD 中心线,

相关文档