文档视界 最新最全的文档下载
当前位置:文档视界 › 水力学课后答案

水力学课后答案

水力学课后答案
水力学课后答案

以下答案是由老师自己做出来的,其中的每一题的画图都省略了,希望同学们自己在做题过程中补充上完整的图形。

在答案电子话过程中可能会有一些错误,希望同学们可多提宝贵意见。

第二章作业答案

2-9 10(1.5 1.0)53.9a p p g p kpa ρ=+--=

11151.9abs a p p p kpa =+= 20(1.50.5)58.8a p p g p kpa ρ=+--=

22156.8abs a p p p kpa =+=

1212 6.5p p

Z Z m g g

ρρ+

=+= 2-11 略

2-12

0(2.50.9)(2.00.9)(2.00.7)(1.80.7)0Hg Hg p g g g g ρρρρ+---+---=

0265p kpa =

2-14 受压面为矩形平面 76.38c P gh kN ρω==

34112c b a J m ?==

289

c D c c J y y y ω=+

= 所以,作用点至A 点的距离 10

'29

D

y y '=-= 根据合力矩守恒

2cos 60'

84.9o T P y T kN

?=?=

2-18 c P gh ρω=

(sin 60)2

146.5o a

g H ab

kN

ρ=-?= sin 60(cos 60)o o T G G P f =?++?

45.9T kN =

闸门的静水压强分布图为梯形,根据梯形的压力中心距底部距离的计算公式

1212

2()3h h a e h h +=

+ 21sin h H h H a θ

==-

1.13e m =

2-21 仅考虑左侧水:

11144.1x c x P gh kN ρω== () 1134.6z P gV kN ρ== (

仅考虑右侧水

22211.03x c x P gh kN ρω== (

) 2217.32z P gV kN ρ== (

综合两侧水

1233.08x x x P P P kN =-= (

) 1217.32z z z P P P kN =-= (

) 总压力 22()37.34x y P P P kN =+=

tan Z

x

P P θ=

2-23 分析上半球

0x P =

232[()]3

Z

P gV

T n n g R H R R n ρρππ=

=

=+-

第三章作业答案

3-3

2max 00

0.03

42

max max 00[(1())]1

/20.212/r r

Q ud u d r u u r r L s

ω

ωω

ωπ==-=-??=??

0.075/Q

v m s ω

=

=

3-6 根据连续性方程

123Q Q Q =+ 34/v m s =

3-7

根据连续性方程

123Q Q Q =+

2

3

4ωω= 222

31482.3370.58m m

ωω==

建立能量方程

22

111222

1212

22122122()

2.252hg p p v p v z z g g g g

z z p p v v h m g g ααρρρρρρ++=++

=---===油油油油油

51.1/Q L s μ==

3-15

在图上12d d 和断面建立能量方程

22

111222

12122220

p v p v z z g g g g

z z p ααρρ++=++

==

联立连续性方程 1122v v ωω= 2 4.9/v m s = 在图自由液面和2d 断面建立能量方程

2

2

1.232v H m g

== 3-18 建立能量方程

22

111222

121212221.8 1.680

p v p v z z g g g g

z m z m

p p ααρρ++=++

====

连续性方程

1221

1.8(1.80.30.12)1.3v v v v ?=--?=?

13

111.23/5.98/v m s Q v m s

ω===

建立的坐标系比较特别,X 轴沿着1Q 方向,Y 轴与X 轴垂直 根据能量方程可知

1268.1/v v v m s ===

建立动量方程,沿X 轴方向:

11221212cos 600

cos 60o o

Q v Q v Q v Q Q Q Q Q Q

ρρρ--=-=+=连续性方程

12(1cos 60)2

(1cos 60)

2o o Q

Q Q

Q =

+=-

313

225.05/8.35/Q m s Q m s

==

建立动量方程,沿Y 轴方向:

0(sin60)1969o y R Q v N ρ=--=

3-23 在A-A ,B-B 断面间建立能量方程

2.4/

3.8/A b v m s v m s

==

22

111222

1212

222175.7p v p v z z g g g g

z z p kN

ααρρ++=++

==

在A-A ,B-B 断面间建立动量方程 沿X 轴方向:

1cos 60(cos 60)sin 60sin 60

o o A A B B x B o

o

B B y B p v p v R Q v v p v R Qv ρρ--=-+=-

54555984y x R N R N

==

3-24 (1)建立能量方程

22

12

120022v v h h g g

++=++

连续性方程

1122h v h v =

3228.9215)998(v v +??=+ 029410723

2

=+-v v s m v /512.82= m h v v h 762.15512

.83

1212=?==

(2)以1-1断面和2-2断面之间的水体为控制体,并假设整个坝面对水体的水平反力为F '。

作用于控制体上的x 方向的外力有上下游水压力,以及'R

kN

b h P kN b h P 21.151762.18.921

2150.122158.92

1

2122222211=???===???==

γγ

建立x 方向的动量方程:

221112()'Q v v P P R ρββ-=--

115(8.5123)122.5015.21'R ??-=-- '24.61R kN =

水流作用于单位宽度坝面上的水平力R 与'R 大小相等,方向相反。

第四章作业答案

4-9

2.26/Q

v m s A

=

= 2

21() 1.008

20.029hg f p p l v h h d g g ρρλρρ

λ--===??== 根据210,0.0131/o t cm s ν== 5Re 2.59*102300vd

ν

=

=>

所以,流动为紊流

4-17

22222

112++3+22222=1.0

f m p l v v v v v z z h h

g d g g g g g λζζζζρζ+=++=+∑∑进口出口

阀门弯出口

4.39/v m s =

32.15/Q vA m s ==

4-18

222

22222 2.522+++2222=0.45=0.87

f m

f m

v H h h g v v l l h d g D g

v v v v h

g g g g

λλζζζζζζ=++=+=∑∑∑∑细

细细细细细

阀扩缩缩扩

工程流体力学及水力学实验报告及分析讨论

工程流体力学及水力学实验报告及分析讨论

工程流体力学及水力学实验报告及分析讨论 实验一流体静力学实验 验原理 重力作用下不可压缩流体静力学基本方程 (1.1) 中: z被测点在基准面的相对位置高度; p被测点的静水压强,用相对压强表示,以下同; p0水箱中液面的表面压强; γ液体容重; h被测点的液体深度。 对装有水油(图1.2及图1.3)U型测管,应用等压面可得油的比重S0有下列关系: (1.2) 此可用仪器(不用另外尺)直接测得S0。 验分析与讨论 同一静止液体内的测管水头线是根什么线? 测压管水头指,即静水力学实验仪显示的测管液面至基准面的垂直高度。测头线指测压管液面的连线。实验直接观察可知,同一静止液面的测压管水头线是一根。 当P B<0时,试根据记录数据,确定水箱内的真空区域。 ,相应容器的真空区域包括以下三部分:

)过测压管2液面作一水平面,由等压面原理知,相对测压管2及水箱内的水体而言,面为等压面,均为大气压强,故该平面以上由密封的水、气所占的空间区域,均为真。 )同理,过箱顶小水杯的液面作一水平面,测压管4中,该平面以上的水体亦为真空区)在测压管5中,自水面向下深度某一段水柱亦为真空区。这段高度与测压管2液面低液面的高度相等,亦与测压管4液面高于小水杯液面高度相等。 若再备一根直尺,试采用另外最简便的方法测定γ0。 最简单的方法,是用直尺分别测量水箱内通大气情况下,管5油水界面至水面和油 至油面的垂直高度h和h0,由式,从而求得γ0。 如测压管太细,对测压管液面的读数将有何影响? 设被测液体为水,测压管太细,测压管液面因毛细现象而升高,造成测量误差,毛由下式计算 中,为表面张力系数;为液体的容量;d为测压管的内径;h为毛细升高。常温(t=20℃,=7.28dyn/mm,=0.98dyn/mm。水与玻璃的浸润角很小,可认为cosθ=1.0。于是有 单位为mm) 一般来说,当玻璃测压管的内径大于10mm时,毛细影响可略而不计。另外,当水质,减小,毛细高度亦较净水小;当采用有机玻璃作测压管时,浸润角较大,其h较普管小。 如果用同一根测压管测量液体相对压差值,则毛细现象无任何影响。因为测量高、时均有毛细现象,但在计算压差时,互相抵消了。 过C点作一水平面,相对管1、2、5及水箱中液体而言,这个水平面是不是等压面?

水力学第二章课后习题测验答案

2.12 密闭容器,测压管液面高于容器内液面h =1.8m ,液体的密度为850kg/m 3,求液面压 强。 解:08509.807 1.8a a p p gh p ρ=+=+?? 相对压强为:15.00kPa 。 绝对压强为:116.33kPa 。 答:液面相对压强为15.00kPa ,绝对压强为116.33kPa 。 2.13 密闭容器,压力表的示值为4900N/m 2,压力表中心比A 点高0.4m ,A 点在水下1.5m ,, 求水面压强。 解:0 1.1a p p p g ρ=+- 4900 1.110009.807a p =+-??

5.888a p =-(kPa ) 相对压强为: 5.888-kPa 。 绝对压强为:95.437kPa 。 答:水面相对压强为 5.888-kPa ,绝对压强为95.437kPa 。 解:(1)总压力:433353.052Z P A p g ρ=?=??=(kN ) (2)支反力:()111333R W W W W g ρ==+=+??+??总水箱箱 980728274.596W =+?=箱kN W +箱 不同之原因:总压力位底面水压力与面积的乘积,为压力体g ρ?。而支座反力与水体 重量及箱体重力相平衡,而水体重量为水的实际体积g ρ?。 答:水箱底面上总压力是353.052kN ,4个支座的支座反力是274.596kN 。 2.14 盛满水的容器,顶口装有活塞A ,直径d =0.4m ,容器底的直径D =1.0m ,高h =1.8m , 如活塞上加力2520N (包括活塞自重),求容器底的压强和总压力。

《水力学》课后习题答案

第一章 绪论 1-1.20℃的水2.5m 3 ,当温度升至80℃时,其体积增加多少? [解] 温度变化前后质量守恒,即2211V V ρρ= 又20℃时,水的密度3 1/23.998m kg =ρ 80℃时,水的密度32/83.971m kg =ρ 32 1 125679.2m V V == ∴ρρ 则增加的体积为3 120679.0m V V V =-=? 1-2.当空气温度从0℃增加至20℃时,运动粘度ν增加15%,重度γ减少10%,问此时动力粘度μ增加多少(百分数)? [解] 原原ρννρμ)1.01()15.01(-+==Θ 原原原μρν035.1035.1== 035.0035.1=-=-原 原 原原原μμμμμμΘ 此时动力粘度μ增加了3.5% 1-3.有一矩形断面的宽渠道,其水流速度分布为μρ/)5.0(002.02 y hy g u -=,式中ρ、μ分别为水的密度和动力粘度,h 为水深。试求m h 5.0=时渠底(y =0)处的切应力。 [解] μρ/)(002.0y h g dy du -=Θ )(002.0y h g dy du -==∴ρμ τ 当h =0.5m ,y =0时 )05.0(807.91000002.0-??=τ Pa 807.9= 1-4.一底面积为45×50cm 2,高为1cm 的木块,质量为5kg ,沿涂有润滑油的斜面向下作等速运动,木块运动速度u=1m/s ,油层厚1cm ,斜坡角22.620 (见图示),求油的粘度。 [解] 木块重量沿斜坡分力F 与切力T 平衡时,等速下滑

y u A T mg d d sin μθ== 001 .0145.04.062 .22sin 8.95sin ????= = δθμu A mg s Pa 1047.0?=μ 1-5.已知液体中流速沿y 方向分布如图示三种情况,试根据牛顿内摩擦定律y u d d μ τ=,定性绘出切应力沿y 方向的分布图。 [解] 1-6.为导线表面红绝缘,将导线从充满绝缘涂料的模具中拉过。已知导线直径0.9mm ,长度20mm ,涂料的粘度μ=0.02Pa .s 。若导线以速率50m/s 拉过模具,试求所需牵拉力。(1.O1N ) [解] 2 53310024.51020108.014.3m dl A ---?=????==πΘ N A h u F R 01.110024.510 05.05002.053=????==∴--μ 1-7.两平行平板相距0.5mm ,其间充满流体,下板固定,上板在2Pa 的压强作用下以0.25m/s 匀速移动, 求该流体的动力粘度。 [解] 根据牛顿内摩擦定律,得 y u u u u y u u y ττ= 0y ττy 0 τττ=0 y

流体力学实验-参考答案

流体力学实验思考题 参考答案 流体力学实验室 静水压强实验

1.同一静止液体内的测压管水头线是根什么线? 测压管水头指p z +,即静水力学实验仪显示的测压管液面至基准面的垂直高度。测压管水头线指测压管液面的连线。实验直接观察可知,同一静止液面内的测压管水头线是一根水平线。 2.当0?B p 时,试根据记录数据,确定水箱内的真空区域。 0?B p ,相应容器的真空区域包括以下三个部分: (1)过测压管2液面作一水平面,由等压面原理知,相对测压管2及水箱内的水体而言,该水平面为等压面,均为大气压强,故该平面以上由密封的水、气所占区域,均为真空区域。 (2)同理,过箱顶小不杯的液面作一水平面,测压管4中,该平面以上的水体亦为真空区域。 (3)在测压管5中,自水面向下深度某一段水柱亦为真空区域。这段高度与测压管2液面低于水箱液面的高度相等,亦与测压管4液面高于小水杯液面高度相等。 3.若再备一根直尺,试采用另外最简便的方法测定0γ。 最简单的方法,是用直尺分别测量水箱内通大气情况下,管5油水界面至水面和油水界面至油面的垂直高度h 和0h ,由式00h h w w γγ= ,从而求得0γ。 4.如测压管太细,对于测压管液面的读数将有何影响? 设被测液体为水,测压管太细,测压管液面因毛细现象而升高,造成测量误差,毛细高度由下式计算 γ θσd h cos 4= 式中,σ为表面张力系数;γ为液体容量;d 为测压管的内径;h 为毛细升高。常温的水,m N 073.0=σ,30098.0m N =γ。水与玻璃的浸润角θ很小,可以认为0.1cos =θ。于是有 d h 7.29= (h 、d 均以mm 计) 一般来说,当玻璃测压管的内径大于10mm 时,毛细影响可略而不计。另外,当水质不洁时,σ减小,毛细高度亦较净水小;当采用有机下班玻璃作测压管时,浸润角θ较大,其h 较普通玻璃管小。 如果用同一根测压管测量液体相对压差值,则毛细现象无任何影响。因为测量高、低压强时均有毛细现象,但在计算压差时,互相抵消了。 5.过C 点作一水平面,相对管1、2、5及水箱中液体而言,这个水平面是不是等压面?哪一部分液体是同一等压面? 不全是等压面,它仅相对管1、2及水箱中的液体而言,这个水平面才是等压面。因为只有全部具有下列5个条件的平面才是等压面:(1)重力液体;(2)静止;(3)连通;(4)连通介质为同一均质液体;(5)同一水平面。而管5与水箱之间不符合条件(4),相对管5

《水力学》题集1-3章答案

第一章绪论 第一题、选择题 1. 理想液体是(B ) (A)没有切应力又不变形的液体;(B)没有切应力但可变形的一种假想液体;(C)切应力与剪切变形率成直线关系的液体;(D)有切应力而不变形的液体。 2. 理想液体与实际液体最主要的区别是(D) A. 不可压缩; B ?不能膨胀;B?没有表面张力; D.没有粘滞性。 3. 牛顿内摩擦定律表明,决定流体内部切应力的因素是( C ) A动力粘度和速度 B动力粘度和压强C动力粘度和速度梯度D动力粘度和作用面积 4. 下列物理量中,单位有可能为 m i/s的系数为(A ) A.运动粘滞系数 B. 动力粘滞系数 C.体积弹性系数 D. 体积压缩系数 6. 影响水的运动粘度的主要因素为(A ) A. 水的温度; B. 水的容重; B. 当地气压; D. 水的流速。 7. 在水力学中,单位质量力是指(C ) A、单位面积液体受到的质量力 B、单位面体积液体受到的质量力 C单位质量液体受到的质量力 D、单位重量液体受到的质量力 8. 某流体的运动粘度v=3X10-6m/s,密度p =800kg/m3,其动力粘度卩为(B ) A. 3.75 X 10-9Pa?s B.2.4 X 10-3Pa?s C. 2.4 X 105Pa ?s D.2.4 X 109Pa ?s 第二题、判断题 1. 重度与容重是同一概念。(V) 2. 液体的密度p和重度丫不随温度变化。(X) 3. 牛顿内摩擦定律适用于所有的液体。(X) 4. 黏滞力随相对运动的产生而产生,消失而消失。(V) 5. 水的粘性系数随温度升高而减小。(V) 7. 一般情况下认为液体不可压缩。(V) 8. 液体的内摩擦力与液体的速度成正比。(X ) 9. 水流在边壁处的流速为零,因此该处的流速梯度为零。(X ) 10. 静止液体有粘滞性,所以有水头损失。(X ) 12. 表面张力不在液体的内部存在,只存在于液体表面。(V) 13. 摩擦力、大气压力、表面张力属于质量力。(X)

流体力学实验思考题解答全

流体力学课程实验思考题解答 (一)流体静力学实验 1、 同一静止液体内的测压管水头线就是根什么线? 答:测压管水头指γp Z +,即静水力学实验仪显示的测压管液面至基准面的垂直高度。测压 管水头线指测压管液面的连线。从表1、1的实测数据或实验直接观察可知,同一静止液面的测压管水头线就是一根水平线。 2、 当0

水力学第二章课后答案.docx

1 2 6 11答案在作业本 2.12 (注:书中求绝对压强)用多管水银测压计测压,图中标高的单位为m,试求 水面的压强0p 。 解: ()04 3.0 1.4p p g ρ=-- ()()5 2.5 1.4 3.0 1.4Hg p g g ρρ=+--- ()()()()2.3 1.2 2.5 1.2 2.5 1.4 3.0 1.4a Hg Hg p g g g g ρρρρ=+---+--- ()()2.3 2.5 1.2 1.4 2.5 3.0 1.2 1.4a Hg p g g ρρ=++---+-- ()()2.3 2.5 1.2 1.413.6 2.5 3.0 1.2 1.4a p g g ρρ=++--?-+--???? 265.00a p =+(k Pa ) 答:水面的压强0p 265.00=kPa 。 2-12形平板闸门AB ,一侧挡水,已知长l =2m,宽b =1m,形心点水深c h =2m,倾角α=?45,闸门上缘A 处设有转轴,忽略闸门自重及门轴摩擦力,试求开启闸门所需拉力T 。

l b α B A T h c 解:(1)解析法。 10009.80721239.228C C P p A h g bl ρ=?=?=????=(kN ) 3 22221222 2.946 122sin sin 4512sin 45sin C C D C C C bl I h y y h y A bl αα=+=+=+=+=??

2-13矩形闸门高h =3m,宽b =2m ,上游水深1h =6m,下游水深2h =4.5m ,试求:(1)作用在闸门上的静水总压力;(2)压力中心的位置。 解:(1)图解法。 压强分布如图所示: ∵ ()()12p h h h h g ρ=---???? ()12h h g ρ=-

水力学实验报告思考题答案(想你所要)..

实验二不可压缩流体恒定流能量方程(伯诺利方程)实验 成果分析及讨论 1.测压管水头线和总水头线的变化趋势有何不同?为什么? 测压管水头线(P-P)沿程可升可降,线坡J P可正可负。而总水头线(E-E)沿程只降不升,线坡J 恒为正,即J>0。这是因为水在流动过程中,依据一定边界条件,动能和势能可相互转换。测点5至测点7,管收缩,部分势能转换成动能,测压管水头线降低,Jp>0。测点7至测点9,管渐扩,部分动能又转换成势能,测压管水头线升高,J P<0。而据能量方程E1=E2+h w1-2, h w1-2为损失能量,是不可逆的,即恒有h w1-2>0,故E2恒小于E1,(E-E)线不可能回升。(E-E) 线下降的坡度越大,即J越大,表明单位流程上的水头损失越大,如图2.3的渐扩段和阀门等处,表明有较大的局部水头损失存在。 2.流量增加,测压管水头线有何变化?为什么? 有如下二个变化: (1)流量增加,测压管水头线(P-P)总降落趋势更显著。这是因为测压管水头 ,任一断面起始时的总水头E及管道过流断面面积A为定值时,Q增大, 就增大,则必减小。而且随流量的增加阻力损失亦增大,管道任一过水断面上的总水头E相应减 小,故的减小更加显著。 (2)测压管水头线(P-P)的起落变化更为显著。 因为对于两个不同直径的相应过水断面有 式中为两个断面之间的损失系数。管中水流为紊流时,接近于常数,又管道断面为定值,故Q增大,H亦增大,(P-P)线的起落变化就更为显著。 3.测点2、3和测点10、11的测压管读数分别说明了什么问题? 测点2、3位于均匀流断面(图2.2),测点高差0.7cm,H P=均为37.1cm(偶有毛细影响相差0.1mm), 表明均匀流同断面上,其动水压强按静水压强规律分布。测点10、11在弯管的急变流断面上,测压管水头差为7.3cm,表明急变流断面上离心惯性力对测压管水头影响很大。由于能量方程推导时的限制条件之一是“质量力只有重力”,而在急变流断面上其质量力,除重力外,尚有离心惯性力,故急变流断面不能选作能量方程的计算断面。在绘制总水头线时,测点10、11应舍弃。 4.试问避免喉管(测点7)处形成真空有哪几种技术措施?分析改变作用水头(如抬高或降低水箱的水位)对喉管压强的影响情况。 下述几点措施有利于避免喉管(测点7)处真空的形成: (1)减小流量,(2)增大喉管管径,(3)降低相应管线的安装高程,(4)改变水箱中的液位高度。

水力学第二章课后习题答案

2.12 密闭容器,测压管液面高于容器内液面h=1.8m ,液体的密度为850kg/m 3,求液面 压强。 解:P o = P a ,gh = P a 850 9.807 1.8 相对压强为:15.00kPa。 绝对压强为:116.33kPa。 答:液面相对压强为15.00kPa,绝对压强为116.33kPa。 2.13 密闭容器,压力表的示值为4900N/m 2,压力表中心比A点高0.4m , A点在水下 1.5m,,求水面压强。 P0 1.5m 1 0.4m A

解: P0 = P a P -1.1 'g 二P a 4900 -1.1 1000 9.807 二p a「5.888 (kPa) 相对压强为:_5.888kPa。 绝对压强为:95.437kPa。 答: 水面相对压强为-5.888kPa,绝对压强为95.437kPa。 3m 解:(1)总压力:Pz=A p=4「g 3 3 = 353.052 (kN) (2)支反力:R 二W总二W K W箱二W箱;?g 1 1 1 3 3 3 =W箱 9807 28 =274.596 kN W箱 不同之原因:总压力位底面水压力与面积的乘积,为压力体Qg。而支座反力与水体重量及箱体重力相平衡,而水体重量为水的实际体积Eg。 答:水箱底面上总压力是353.052kN,4个支座的支座反力是274.596kN。 2.14 盛满水的容器,顶口装有活塞A,直径d =0.4m,容器底的直径D=1.0m,高h

=1.8m ,如活塞上加力2520N (包括活塞自重),求容器底的压强和总压力 解: (1)容器底的压强: P D =P A'gh =252°9807 1.8 =37.706(kPa)(相对压强) /-d2 4 (2)容器底的总压力: P D二Ap D D2 p D12 37.706 10 = 29.614(kN) 4 4 答:容器底的压强为37.706kPa,总压力为29.614kN 。 2.6用多管水银测压计测压,图中标高的单位为m,试求水面的压强P0。

水力学第二章课后答案

1 2 6 11答案在作业本 2.12 (注:书中求绝对压强)用多管水银测压计测压,图中标高的单位为m , 试求水面的压强0p 。 解: ()04 3.0 1.4p p g ρ=-- 265.00a p =+(kPa ) 答:水面的压强0p 265.00=kPa 。 2-12形平板闸门AB ,一侧挡水,已知长l =2m ,宽b =1m ,形心点水深c h =2m ,倾角α=?45,闸门上缘A 处设有转轴,忽略闸门自重及门轴摩擦力,试求开启闸门所需拉力T 。 解:(1)解析法。 10009.80721239.228C C P p A h g bl ρ=?=?=????=(kN ) 2-13矩形闸门高h =3m ,宽b =2m ,上游水深1h =6m ,下游水深2h =4.5m ,试求: (1)作用在闸门上的静水总压力;(2)压力中心的位置。 解:(1)图解法。 压强分布如图所示: ∵ ()()12p h h h h g ρ=---???? 14.71=(kPa ) 14.713288.263P p h b =??=??=(kN ) 合力作用位置:在闸门的几何中心,即距地面(1.5m,)2 b 处。 (2)解析法。 ()()111 1.56 1.5980732264.789P p A g h hb ρ==-?=-???=(kN ) ()120.250.75 4.6674.5 =?+=(m ) ()222 1.539.80732176.526P p A g h hb ρ==-?=???=(kN ) ()22211111130.75 3.253 C C D C C C C I I y y y y A y A ??=+=+=+= ???(m ) 合力:1288.263P P P =-=(kN ) 合力作用位置(对闸门与渠底接触点取矩): 1.499=(m ) 答:(1)作用在闸门上的静水总压力88.263kN ;(2)压力中心的位置在闸门的

流体力学实验思考题解答(全)

流体力学课程实验思考题解答 (一)流体静力学实验 1、 同一静止液体内的测压管水头线是根什么线? 答:测压管水头指γ p Z + ,即静水力学实验仪显示的测压管液面至基准面的垂直高度。测 压管水头线指测压管液面的连线。从表1.1的实测数据或实验直接观察可知,同一静止液面的测压管水头线是一根水平线。 2、 当0

流体力学实验思考题解答

流体力学实验思考题解答 (一)流体静力学实验 1、 同一静止液体内的测压管水头线是根什么线? 答:测压管水头指γ p Z + ,即静水力学实验仪显示的测压管液面至基准面的垂直高度。测 压管水头线指测压管液面的连线。从表1.1的实测数据或实验直接观察可知,同一静止液面的测压管水头线是一根水平线。 2、 当0

水力学第四版课后答案

?第一章 绪论 1-2.20℃的水2.5m 3 ,当温度升至80℃时,其体积增加多少? [解] 温度变化前后质量守恒,即2211V V ρρ= 又20℃时,水的密度3 1/23.998m kg =ρ 80℃时,水的密度32/83.971m kg =ρ 32 1 125679.2m V V == ∴ρρ 则增加的体积为3 120679.0m V V V =-=? 1-4.一封闭容器盛有水或油,在地球上静止时,其单位质量力为若干?当封闭容器从空中自由下落时,其单位质量力又为若干? [解] 在地球上静止时: g f f f z y x -===;0 自由下落时: 00=+-===g g f f f z y x ; 第二章 流体静力学 2—1.一密闭盛水容器如图所示,U 形测压计液面高于容器内液面h =1.5m,求容器液面的相对压强。 [解] gh p p a ρ+=0 kPa gh p p p a e 7.145.1807.910000=??==-=∴ρ 2—3.密闭水箱,压力表测得压强为4900P a.压力表中心比A点高0.5m,A 点在液面下1.5m.求液面的绝对压强和相对压强.

[解] g p p A ρ5.0+=表 Pa g p g p p A 49008.9100049005.10-=?-=-=-=ρρ表 Pa p p p a 9310098000490000 =+-=+=' 2.8绘制题图中AB 面上的压强分布图。 h 1 h 2 A B h 2 h 1 h A B 解: B ρgh 1 ρgh 1 ρgh 1 ρgh 2

A B ρg(h2-h1) ρg(h2-h1) B ρgh

流体力学实验思考题解答

流体力学实验思考题解答 (一)流体静力学实验 1、 同一静止液体内的测压管水头线是根什么线? 答:测压管水头指γ p Z + ,即静水力学实验仪显示的测压管液面至基准面的垂直高度。测 压管水头线指测压管液面的连线。从表1.1的实测数据或实验直接观察可知,同一静止液面的测压管水头线是一根水平线。 2、 当0

水力学第二章课后答案

12611答案在作业本 2.12(注:书中求绝对压强)用多管水银测压计测压,图中标高的单位为m, 试求水面的压强。 解: (kPa) 答:水面的压强kPa。 2-12形平板闸门,一侧挡水,已知长=2m,宽=1m,形心点水深=2m,倾角=,闸门上缘处设有转轴,忽略闸门自重及门轴摩擦力,试求开启闸门所需拉力。 解:(1)解析法。 (kN) 2-13矩形闸门高=3m,宽=2m,上游水深=6m,下游水深=,试求:(1)作用在闸门上的静水总压力;(2)压力中心的位置。 解:(1)图解法。 压强分布如图所示: ∵ (kPa) (kN) 合力作用位置:在闸门的几何中心,即距地面处。 (2)解析法。 (kN) (m) (kN) (m) 合力:(kN) 合力作用位置(对闸门与渠底接触点取矩): (m) 答:(1)作用在闸门上的静水总压力kN;(2)压力中心的位置在闸门的几何中 心,即距地面处。 2-14矩形平板闸门一侧挡水,门高=1m,宽=,要求挡水深超过2m时,闸门即可 自动开启,试求转轴应设的位置。 解:当挡水深达到时,水压力作用位置应作用在转轴上,当水深大于时,水压 力作用位置应作用于转轴上,使闸门开启。 (kPa) (m) ∴转轴位置距渠底的距离为:(m) 可行性判定:当增大时增大,则减小,即压力作用位置距闸门形越近,即 作用力距渠底的距离将大于米。 答:转轴应设的位置m。

2-16一弧形闸门,宽2m,圆心角=30,半径R=3m,闸门转轴与水平齐平,试求作用在闸门上的静水总压力的大小和 方向。 2-18球形密闭容器内部充满水,已知测压管水面标高=,球外自由水面标高=,球直径=2m,球壁重量不计,试求:(1)作用于半球连接螺栓上的总压力;(2) 作用于垂直柱上的水平力和竖向力。 解:(1)取上半球为研究对象,受力如图所示。 ∵ (kN) ∴(kN) (2)取下半球为研究对象,受力如图。 ∵(kN) 答:(1)作用于半球连接螺栓上的总压力为kN;(2)作用于垂直柱上的水平力 和竖向力。 2-19密闭盛水容器,水深=60cm,=100cm,水银测压计读值=25cm,试求半径=的半球形盖所受总压力的水平分力和铅垂分力。 解:(1)确定水面压强。 (kPa) (2)计算水平分量。 (kN) (3)计算铅垂分力。 (kN) 答:半球形盖所受总压力的水平分力为kN,铅垂分力为kN。

水力学实验报告思考题答案(想你所要)

水力学实验报告思考题答案(想你所要)

实验二不可压缩流体恒定流能量方程(伯诺利方程)实验 果分析及讨论 压管水头线和总水头线的变化趋势有何不同?为什么? 测压管水头线(P-P)沿程可升可降,线坡J P可正可负。而总水头线(E-E)沿程只降不升,线坡J恒为正,即J>水在流动过程中,依据一定边界条件,动能和势能可相互转换。测点5至测点7,管收缩,部分势能转换成动能,测降低,Jp>0。测点7至测点9,管渐扩,部分动能又转换成势能,测压管水头线升高,J P<0。而据能量方程E1=E2+h w 失能量,是不可逆的,即恒有h w1-2>0,故E2恒小于E1,(E-E)线不可能回升。(E-E) 线下降的坡度越大,即J越大流程上的水头损失越大,如图2.3的渐扩段和阀门等处,表明有较大的局部水头损失存在。 量增加,测压管水头线有何变化?为什么? 下二个变化: 流量增加,测压管水头线(P-P)总降落趋势更显著。这是因为测压管水头,任一 的总水头E及管道过流断面面积A为定值时,Q增大,就增大,则必减小。而且随流量的增加阻力损失亦 任一过水断面上的总水头E相应减小,故的减小更加显著。 测压管水头线(P-P)的起落变化更为显著。 对于两个不同直径的相应过水断面有 为两个断面之间的损失系数。管中水流为紊流时,接近于常数,又管道断面为定值,故Q增大,H亦增大,(P-P)化就更为显著。 点2、3和测点10、11的测压管读数分别说明了什么问题? 测点2、3位于均匀流断面(图2.2),测点高差0.7cm,H P=均为37.1cm(偶有毛细影响相差0.1mm),表明均 上,其动水压强按静水压强规律分布。测点10、11在弯管的急变流断面上,测压管水头差为7.3cm,表明急变流断性力对测压管水头影响很大。由于能量方程推导时的限制条件之一是“质量力只有重力”,而在急变流断面上其质量外,尚有离心惯性力,故急变流断面不能选作能量方程的计算断面。在绘制总水头线时,测点10、11应舍弃。 问避免喉管(测点7)处形成真空有哪几种技术措施?分析改变作用水头(如抬高或降低水箱的水位)对喉管压强的 几点措施有利于避免喉管(测点7)处真空的形成: 减小流量,(2)增大喉管管径,(3)降低相应管线的安装高程,(4)改变水箱中的液位高度。 显然(1)、(2)、(3)都有利于阻止喉管真空的出现,尤其(3)更具有工程实用意义。因为若管系落差不变,单单降往往就可完全避免真空。例如可在水箱出口接一下垂90弯管,后接水平段,将喉管的高程降至基准高程0—0,比位比压能p/γ得以增大(Z),从而可能避免点7处的真空。至于措施(4)其增压效果是有条件的,现分析如下:

水力学实验总结报告

水力学实验总结报告 经过八个星期的学习与实验,我学到了很多相关的知识,也对水力学实验部分有了自认为较为清醒的体会与感悟。 因为之前有做过大学物理实验,明白在实验过程的注意事项和实验结束后的数据处理在实验的整个过程尤为重要,于是在水力学实验开课之前我仔细阅读了水力学实验课本第^一章和第十二章关于测量误差及精度分析与实验数据的处理的内容,从中学到了很多需要在实验时与实验后处理时特别注意的方面,这对我后续所有实验的进行起了很好的指导作用。 在每一次实验前,老师都会向我们讲解实验的大概原理与操作步骤,因为有两个班和很多组的关系,老师的讲解我们也不是能听的很清楚,这就要求我们在实验准备阶段仔细的弄清实验原理与可能得出的实验结果,以便我们在做实验的过程中及时判断实验数据的准确性,从而避免因错误的实验操作导致的错误结果。当然在这一部分我们做的相对并不是很好,有时甚至在上课 前并未对实验原理及过程进行很好的预习。在做实验的过程中,我们不能简单的按照实验步骤来操作,在实验的过程中应仔细分析每一次得出的结果(当然,太固执与每一次的结果是无益的。),及时验算并发现错误,以便后续实验步骤的进行。 实验中要注意的事项有很多,一个小小的疏忽就很有可能导致整个实验的失败。我们也吃了这方面的亏,做第一个实验静水

压强实验时没有很好的理解装置的原理与应该特别注意的细节, 得出来的实验结果也不是特别的令人满意,在后续处理数据的时 候发现有一个实验结果得出的误差很大,效果很不好。开始时我 们打算舍弃所有的数据等到第二周重做,可是后来我们在分析思考题时发现在用实验数据来计算油的密度来验算结果时,有一项 结果是具有前后联系的,因而它的变化范围也是具有一定区间的,所以我们发现实验的误差来源于我们数据读数的估读位的误差,然后我们将这一数据的估读位做了一小幅度的调整,得出的 结果便相对十分准确了。从中我们便明白了一个实验并不是说实验结束了,数据处理完了,它就结束了,相反,在一个实验结束后对它的结果的思考与理解却是整个实验中最关键的一环。 而对于我来说,对一个实验最好的理解无益于在处理实验数据的时候了,有时候通过对计算公式的理解,对结果的分析,对思考题的解读,确实促进了我对水力学每一相关部分的认识。相对于以前需要无数次死记硬背的部分,难以理解的公式,通过对 水力学实验这一阶段的学习,我发现再去理解与记忆他们变得容易多了,这确实是一份难得的收获与体会。 当然,在处理实验数据与得出结果的过程中,也并不总是一 帆风顺的,我们也遇到了很多难题,最让我印象深刻的是水电比拟实验中流网的绘制与计算。因为实验时仪器总是并不能满足中线附近不能满足电压等于5V的缘故,我们5V的等势线偏向左边0.9厘米左右,这就造成了我们的等势线的左右不对称,给我们

最新水力学实验报告思考题答案(想你所要)

实验二 不可压缩流体恒定流能量方程(伯诺利方程)实验 成果分析及讨论 1. 测压管水头线和总水头线的变化趋势有何不同?为什么? 测压管水头线(P-P)沿程可升可降,线坡J P可正可负。而总水头线(E-E)沿程只降不升,线坡J 恒为正,即J>0。这是因为水在流动过程中,依据一定边界条件,动能和势能可相互转换。测点5至测点7,管收缩,部分势能转换成动能,测压管水头线降低,Jp>0。测点7至测点9,管渐扩,部分动能又转换 成势能,测压管水头线升咼,J p<0。而据能量方程E i=E2+h wi-2, h wi-2为损失能量,是不可逆的,即恒有h wi-2>0,故E2恒小于E i, (E-E)线不可能回升。(E-E)线下降的坡度越大,即J越大,表明单位流程上的水头损失 越大,如图2.3的渐扩段和阀门等处,表明有较大的局部水头损失存在。 2. 流量增加,测压管水头线有何变化?为什么?有如下二个变化: (1 )流量增加,测压管水头线(P-P )总降落趋势更显著。这是因为测压管水头豆屮=Z +—■= E —管=E —°- 二一■ :'r,任一断面起始时的总水头E及管道过流断面面积A为定值时,Q增大, 2L 2^-- -二就增大,则'必减小。而且随流量的增加阻力损失亦增大,管道任一过水断面上的总水头E相应减 2 + ^ 小,故 '的减小更加显著 (2)测压管水头线(P-P)的起落变化更为显著因为对于两个不同直径的相应过水断面有 式中为两个断面之间的损失系数。管中水流为紊流时,接近于常数,又管道断面为定值,故增 大,(P-P)线的起落变化就更为显著。 3. 测点2、3和测点10、11的测压管读数分别说明了什么问题? Z十土 测点2、3位于均匀流断面(图2.2),测点高差0.7cm, H P="均为37.1cm(偶有毛细影响相差0.1mm), 表明均匀流同断面上,其动水压强按静水压强规律分布。测点10、11在弯管的急变流断面上,测压管水 头差为7.3cm,表明急变流断面上离心惯性力对测压管水头影响很大。由于能量方程推导时的限制条件之一是“质量力只有重力”,而在急变流断面上其质量力,除重力外,尚有离心惯性力,故急变流断面不能选作能量 方程的计算断面。在绘制总水头线时,测点10、11应舍弃。 4. 试问避免喉管(测点7)处形成真空有哪几种技术措施?分析改变作用水头(如抬高或降低水箱的水位)对 喉管压强的影响情况。 下述几点措施有利于避免喉管(测点7)处真空的形成: (1)减小流量,(2)增大喉管管径,(3)降低相应管线的安装高程,(4)改变水箱中的液位高度。 Q增大,H亦

水力学第二章答案

第二章:水静力学 一:思考题 2-1.静水压强有两种表示方法,即:相对压强和绝对压强 2-2.特性(1)静水压强的方向与受压面垂直并指向手压面;(2)任意点的静水压强的大小和受压面的方位无关,或者说作用于同一点上各方向的静水压强都相等. 规律:由单位质量力所决定,作为连续介质的平衡液体内,任意点的静水压强仅是空间坐标的连续函数,而与受压面的方向无关,所以p=(x,y,z) 2-3答:水头是压强的几何意义表示方法,它表示h 高的水头具有大小为ρgh 的压强。 绝对压强预想的压强是按不同的起点计算的压强,绝对压强是以0为起点,而相对压强是以当地大气压为基准测定的,所以两者相差当地大气压Pa. 绝对压强小于当地大气压时就有负压,即真空。某点负压大小等于该点的相对压强。Pv=p'-pa 2-4.在静水压强的基本方程式中C g p z =+ρ中,z 表示某点在基准面以上的高度,称为位置水头,g p ρ表示在该点接一根测压管,液体沿测压管上升的高度,称为测压管高度或压强水头,g p z ρ+称为测压管水头,即为某点的压强水头高出基准面 的高度。关系是:(测压管水头)=(位置水头)+(压强水头)。 2-5.等压面是压强相等的点连成的面。等压面是水平面的充要条件是液体处于惯性坐标系,即相对静止或匀速直线运动的状态。 2-6。图中A-A 是等压面,C-C,B-B 都不是等压面,因为虽然位置高都相同,但是液体密度不同,所以压强水头就不相等,则压强不相等。 2-7.两容器内各点压强增值相等,因为水有传递压强的作用,不会因位置的不同

压强的传递有所改变。当施加外力时,液面压强增大了A p ?,水面以下同一高度的各点压强都增加A p ?。 2-8.(1)各测压管中水面高度都相等。 (2)标注如下,位置水头z,压强水头h,测压管水头p. 图2-8 2-9.选择A 2-10.(1)图a 和图b 静水压力不相等。因为水作用面的面积不相等,而且作用面的形心点压强大小不同。所以静水压力Pa>Pb. (2)图c 和图d 静水压力大小相等。以为两个面上的压强分布图是相同的,根据梯形压强分布图对应的压力计算式可知大小相等,作用点离水面距离相等。 2-11.(1)当容器向下作加速运动时,容器底部对水的作用力为F=m*(g-a),由牛顿第三定律知水对容器的压力也等于F ,根据p=F/A,知底部的压强 p=)(*)()(a g h h V a g m A a g m -==--ρ水面上相对压强为0,所以作图如a 。 (2)当容器向上作加速运动时,水对容器底部的压力大小为)(a g m F +=,则底部压强大小)()(h g h p A a g m +==+ρ,水面压强为0,作图如b 。 P P

相关文档 最新文档