文档视界 最新最全的文档下载
当前位置:文档视界 › K均值聚类算法优缺点

K均值聚类算法优缺点

K均值聚类算法优缺点
K均值聚类算法优缺点

J.B.MacQueen 在 1967 年提出的K-means算法[22]到目前为止用于科学和工业应用的诸多聚类算法中一种极有影响的技术。它是聚类方法中一个基本的划分方法,常常采用误差平方和准则函数作为聚类准则函数,误差平方和准则函数定义为:

(3-1)其中,是类中数据对象的均值,即,(j=1,2,…,n),是K个聚类中心,分别代表K个类。

K-means算法的工作原理:算法首先随机从数据集中选取 K个点作为初始聚类中心,然后计算各个样本到聚类中的距离,把样本归到离它最近的那个聚类中心所在的类。计算新形成的每一个聚类的数据对象的平均值来得到新的聚类中心,如果相邻两次的聚类中心没有任何变化,说明样本调整结束,聚类准则函数已经收敛。本算法的一个特点是在每次迭代中都要考察每个样本的分类是否正确。若不正确,就要调整,在全部样本调整完后,再修改聚类中心,进入下一次迭代。如果在一次迭代算法中,所有的样本被正确分类,则不会有调整,聚类中心也不会有任何变化,这标志着已经收敛,因此算法结束。

算法描述如下:

算法:K-means。划分的 K-means 算法基于类中对象的平均值。

输入:类的数目K和包含N个对象的数据库。

方法:

① 对于数据对象集,任意选取K个对象作为初始的类中心;

② 根据类中对象的平均值,将每个对象重新赋给最相似的类;

③ 更新类的平均值,即计算每个类中对象的平均值;

④ Repeat ②③;

⑤ 直到不再发生变化。

其中,初始聚类中心的选择对聚类结果的影响是很大的,如图3.1,图a是三个类的实际分布,图b是选取了好的初始聚类中心(+字标记的数据对象)得到的结果。图c是选取不好的初始聚类中心得到的结果,从中可以看到,选择初始聚类中心是很关键的。

a b c

图3.1基于K-means算法的一组对象的聚类

算法的数据描述为:把n个向量(j=1,2,…,n)分成c个类( i=1,2,…,c) ,并求每类的聚类中心,使得非相似性(或距离)指标的目标函数达到最小。当选择第i类中向量与相应聚类中心间的度量为欧几里德距离时,目标函数可以定义为:

(3-2) 其中是类的目标函数。J值依赖于的几何形状和的位置。可以看出J是样本和聚类中心的函数,样本集 X 给定的情况下J的值取决于K个聚类中心。J 描述 n 个样本聚类成K个类时所产生的总的误差平方和。显然,若J值越大,说明误差越大,聚类结果越不好。因此,应该寻求使J最小的聚类结果,即在误差平方和准则下的最优结果。这种聚类通常也称为最小方差划分。

3.1.3K均值聚类存在的问题

K-means 算法的特点——采用两阶段反复循环过程算法,结束的条件是不再有数据元素被重新分配:

① 指定聚类,即指定数据到某一个聚类,使得它与这个聚类中心的距离比它到其它聚类中心的距离要近。

② 修改聚类中心。

优点:本算法确定的K 个划分到达平方误差最小。当聚类是密集的,且类与类之间区别明显时,效果较好。对于处理大数据集,这个算法是相对可伸缩和高效的,计算的复杂度为O(NKt),其中N是数据对象的数目,t是迭代的次数。一般来说,K<

缺点主要有三个:

① 在 K-means 算法中 K 是事先给定的,这个 K 值的选定是非常难以估计的。很多时候,事先并不知道给定的数据集应该分成多少个类别才最合适。这也是 K-means 算法的一个不足。有的算法是通过类的自动合并和分裂,得到较为合理的类型数目 K,例如 ISODATA 算法。关于 K-means 算法中聚类数目K 值的确定在文献[23]中,是根据方差分析理论,应用混合 F 统计量来确定最佳分类数,并应用了模糊划分熵来验证最佳分类数的正确性。在文献[24]中,使用了一种结合全协方差矩阵的 RPCL 算法,并逐步删除那些只包含少量训练数据的类。而文献[25]中使用的是一种称为次胜者受罚的竞争学习规则,来自动决定类的适当数

目。它的思想是:对每个输入而言,不仅竞争获胜单元的权值被修正以适应输入值,而且对次胜单元采用惩罚的方法使之远离输入值。

② 在 K-means 算法中,首先需要根据初始聚类中心来确定一个初始划分,然后对初始划分进行优化。这个初始聚类中心的选择对聚类结果有较大的影响[26-29],一旦初始值选择的不好,可能无法得到有效的聚类结果,这也成为 K-means 算法的一个主要问题。对于该问题的解决,许多算法采用遗传算法(GA),例如文献中采用遗传算法(GA)进行初始化,以内部聚类准则作为评价[30]指标。

③ 从 K-means 算法框架可以看出,该算法需要不断地进行样本分类调整,不断地计算调整后的新的聚类中心,因此当数据量非常大时,算法的时间开销是非常大的。所以需要对算法的时间复杂度进行分析、改进,提高算法应用范围。在文献[31,32]中从该算法的时间复杂度进行分析考虑,通过一定的相似性准则来去掉聚类中心的侯选集。而在文献[33]中,使用的 K-means 算法是对样本数据进行聚类,无论是初始点的选择还是一次迭代完成时对数据的调整,都是建立在随机选取的样本数据的基础之上,这样可以提高算法的收敛速度。

实验三 K-均值聚类算法实验报告

实验三 K-Means聚类算法 一、实验目的 1) 加深对非监督学习的理解和认识 2) 掌握动态聚类方法K-Means 算法的设计方法 二、实验环境 1) 具有相关编程软件的PC机 三、实验原理 1) 非监督学习的理论基础 2) 动态聚类分析的思想和理论依据 3) 聚类算法的评价指标 四、算法思想 K-均值算法的主要思想是先在需要分类的数据中寻找K组数据作为初始聚类中心,然后计算其他数据距离这三个聚类中心的距离,将数据归入与其距离最近的聚类中心,之后再对这K个聚类的数据计算均值,作为新的聚类中心,继续以上步骤,直到新的聚类中心与上一次的聚类中心值相等时结束算法。 实验代码 function km(k,A)%函数名里不要出现“-” warning off [n,p]=size(A);%输入数据有n个样本,p个属性 cid=ones(k,p+1);%聚类中心组成k行p列的矩阵,k表示第几类,p是属性 %A(:,p+1)=100; A(:,p+1)=0; for i=1:k %cid(i,:)=A(i,:); %直接取前三个元祖作为聚类中心 m=i*floor(n/k)-floor(rand(1,1)*(n/k)) cid(i,:)=A(m,:); cid; end Asum=0; Csum2=NaN; flags=1; times=1; while flags flags=0; times=times+1; %计算每个向量到聚类中心的欧氏距离 for i=1:n

for j=1:k dist(i,j)=sqrt(sum((A(i,:)-cid(j,:)).^2));%欧氏距离 end %A(i,p+1)=min(dist(i,:));%与中心的最小距离 [x,y]=find(dist(i,:)==min(dist(i,:))); [c,d]=size(find(y==A(i,p+1))); if c==0 %说明聚类中心变了 flags=flags+1; A(i,p+1)=y(1,1); else continue; end end i flags for j=1:k Asum=0; [r,c]=find(A(:,p+1)==j); cid(j,:)=mean(A(r,:),1); for m=1:length(r) Asum=Asum+sqrt(sum((A(r(m),:)-cid(j,:)).^2)); end Csum(1,j)=Asum; end sum(Csum(1,:)) %if sum(Csum(1,:))>Csum2 % break; %end Csum2=sum(Csum(1,:)); Csum; cid; %得到新的聚类中心 end times display('A矩阵,最后一列是所属类别'); A for j=1:k [a,b]=size(find(A(:,p+1)==j)); numK(j)=a; end numK times xlswrite('data.xls',A);

聚类分析算法解析.doc

聚类分析算法解析 一、不相似矩阵计算 1.加载数据 data(iris) str(iris) 分类分析是无指导的分类,所以删除数据中的原分类变量。 iris$Species<-NULL 2. 不相似矩阵计算 不相似矩阵计算,也就是距离矩阵计算,在R中采用dist()函数,或者cluster包中的daisy()函数。dist()函数的基本形式是 dist(x, method = "euclidean", diag = FALSE, upper = FALSE, p = 2) 其中x是数据框(数据集),而方法可以指定为欧式距离"euclidean", 最大距离"maximum", 绝对值距离"manhattan", "canberra", 二进制距离非对称"binary" 和明氏距离"minkowski"。默认是计算欧式距离,所有的属性必须是相同的类型。比如都是连续类型,或者都是二值类型。 dd<-dist(iris) str(dd) 距离矩阵可以使用as.matrix()函数转化了矩阵的形式,方便显示。Iris数据共150例样本间距离矩阵为150行列的方阵。下面显示了1~5号样本间的欧式距离。 dd<-as.matrix(dd)

二、用hclust()进行谱系聚类法(层次聚类) 1.聚类函数 R中自带的聚类函数是hclust(),为谱系聚类法。基本的函数指令是 结果对象 <- hclust(距离对象, method=方法) hclust()可以使用的类间距离计算方法包含离差法"ward",最短距离法"single",最大距离法"complete",平均距离法"average","mcquitty",中位数法 "median" 和重心法"centroid"。下面采用平均距离法聚类。 hc <- hclust(dist(iris), method="ave") 2.聚类函数的结果 聚类结果对象包含很多聚类分析的结果,可以使用数据分量的方法列出相应的计算结果。 str(hc) 下面列出了聚类结果对象hc包含的merge和height结果值的前6个。其行编号表示聚类过程的步骤,X1,X2表示在该步合并的两类,该编号为负代表原始的样本序号,编号为正代表新合成的类;变量height表示合并时两类类间距离。比如第1步,合并的是样本102和143,其样本间距离是0.0,合并后的类则使用该步的步数编号代表,即样本-102和-143合并为1类。再如第6行表示样本11和49合并,该两个样本的类间距离是0.1,合并后的类称为6类。 head (hc$merge,hc$height)

K均值聚类算法优缺点

J.B.MacQueen 在 1967 年提出的K-means算法[22]到目前为止用于科学和工业应用的诸多聚类算法中一种极有影响的技术。它是聚类方法中一个基本的划分方法,常常采用误差平方和准则函数作为聚类准则函数,误差平方和准则函数定义为: (3-1)其中,是类中数据对象的均值,即,(j=1,2,…,n),是K个聚类中心,分别代表K个类。 K-means算法的工作原理:算法首先随机从数据集中选取 K个点作为初始聚类中心,然后计算各个样本到聚类中的距离,把样本归到离它最近的那个聚类中心所在的类。计算新形成的每一个聚类的数据对象的平均值来得到新的聚类中心,如果相邻两次的聚类中心没有任何变化,说明样本调整结束,聚类准则函数已经收敛。本算法的一个特点是在每次迭代中都要考察每个样本的分类是否正确。若不正确,就要调整,在全部样本调整完后,再修改聚类中心,进入下一次迭代。如果在一次迭代算法中,所有的样本被正确分类,则不会有调整,聚类中心也不会有任何变化,这标志着已经收敛,因此算法结束。 算法描述如下: 算法:K-means。划分的 K-means 算法基于类中对象的平均值。 输入:类的数目K和包含N个对象的数据库。 方法: ① 对于数据对象集,任意选取K个对象作为初始的类中心; ② 根据类中对象的平均值,将每个对象重新赋给最相似的类; ③ 更新类的平均值,即计算每个类中对象的平均值; ④ Repeat ②③; ⑤ 直到不再发生变化。 其中,初始聚类中心的选择对聚类结果的影响是很大的,如图3.1,图a是三个类的实际分布,图b是选取了好的初始聚类中心(+字标记的数据对象)得到的结果。图c是选取不好的初始聚类中心得到的结果,从中可以看到,选择初始聚类中心是很关键的。 a b c

K 均值聚类算法(原理加程序代码)

K-均值聚类算法 1.初始化:选择c 个代表点,...,,321c p p p p 2.建立c 个空间聚类表:C K K K ...,21 3.按照最小距离法则逐个对样本X 进行分类: ),(),,(min arg J i i K x add p x j ?= 4.计算J 及用各聚类列表计算聚类均值,并用来作为各聚类新的代表点(更新代表点) 5.若J 不变或代表点未发生变化,则停止。否则转2. 6.),(1∑∑=∈=c i K x i i p x J δ 具体代码如下: clear all clc x=[0 1 0 1 2 1 2 3 6 7 8 6 7 8 9 7 8 9 8 9;0 0 1 1 1 2 2 2 6 6 6 7 7 7 7 8 8 8 9 9]; figure(1) plot(x(1,:),x(2,:),'r*') %%第一步选取聚类中心,即令K=2 Z1=[x(1,1);x(2,1)]; Z2=[x(1,2);x(2,2)]; R1=[]; R2=[]; t=1; K=1;%记录迭代的次数 dif1=inf; dif2=inf; %%第二步计算各点与聚类中心的距离 while (dif1>eps&dif2>eps) for i=1:20 dist1=sqrt((x(1,i)-Z1(1)).^2+(x(2,i)-Z1(2)).^2); dist2=sqrt((x(1,i)-Z2(1)).^2+(x(2,i)-Z2(2)).^2); temp=[x(1,i),x(2,i)]'; if dist1

聚类分析法总结

聚类分析法 先用一个例子引出聚类分析 一、聚类分析法的概念 聚类分析又叫群分析、点群分析或者簇分析,是研究多要素事物分类问题的数量,并根据研究对象特征对研究对象进行分类的多元分析技术,它将样本或变量按照亲疏的程度,把性质相近的归为一类,使得同一类中的个体都具有高度的同质性,不同类之间的个体都具有高度的异质性。 聚类分析的基本原理是根据样本自身的属性,用数学方法按照某种相似性或差异性指标,定量地确定样本之间的亲疏关系,并按这种亲疏关系程度对样本进行聚类。 描述亲属程度通常有两种方法:一种是把样本或变量看出那个p维向量,样本点看成P 维空间的一个点,定义点与点之间的距离;另一种是用样本间的相似系数来描述其亲疏程度。有了距离和相似系数就可定量地对样本进行分组,根据分类函数将差异最小的归为一组,组与组之间再按分类函数进一步归类,直到所有样本归为一类为止。 聚类分析根据分类对象的不同分为Q型和R型两类,Q--型聚类是对样本进行分类处理,R--型聚类是对变量进行分类处理。 聚类分析的基本思想是,对于位置类别的样本或变量,依据相应的定义把它们分为若干类,分类过程是一个逐步减少类别的过程,在每一个聚类层次,必须满足“类内差异小,类间差异大”原则,直至归为一类。评价聚类效果的指标一般是方差,距离小的样品所组成的类方差较小。 常见的聚类分析方法有系统聚类法、动态聚类法(逐步聚类法)、有序样本聚类法、图论聚类法和模糊聚类法等。 二、对聚类分析法的评价 聚类分析也是一种分类技术。与多元分析的其他方法相比,该方法较为粗糙,理论上还不完善,但应用方面取得了很大成功。与回归分析、判别分析一起被称为多元分析的三大方法。 聚类的目的:根据已知数据,计算各观察个体或变量之间亲疏关系的统计量(距离或相关系数)。根据某种准则(最短距离法、最长距离法、中间距离法、重心法),使同一类内的

matlab实现Kmeans聚类算法

matlab实现Kmeans聚类算法 1.简介: Kmeans和应用于混合高斯模型的受限EM算法是一致的。高斯混合模型广泛用于数据挖掘、模式识别、机器学习、统计分析。Kmeans 的迭代步骤可以看成E步和M步,E:固定参数类别中心向量重新标记样本,M:固定均值只考虑(估计)了均值,而没有估计类别的方差,所以聚类的结构比较适合于特征协方差相等的类别。 Kmeans在某种程度也可以看成Meanshitf的特殊版本,Meanshift 是所以Meanshift可以用于寻找数据的多个模态(类别),利用的是梯度上升法。在06年的一篇CVPR文章上,证明了Meanshift方法是牛顿拉夫逊算法的变种。Kmeans和EM算法相似是指混合密度的形式已知(参数形式已知)情况下,利用迭代方法,在参数空间中搜索解。而Kmeans和Meanshift相似是指都是一种概率密度梯度估计的方法,不过是Kmean选用的是特殊的核函数(uniform kernel),而与混合概率密度形式是否已知无关,是一种梯度求解方式。 k-means是一种聚类算法,这种算法是依赖于点的邻域来决定哪些点应该分在点,也可以对高维的空间(3维,4维,等等)的点进行聚类,任意高维的空间都可以。 上图中的彩色部分是一些二维空间点。上图中已经把这些点分组了,并使用了不同的颜色对各组进行了标记。这就是聚类算法要做的事情。 这个算法的输入是: 1:点的数据(这里并不一定指的是坐标,其实可以说是向量)

2:K,聚类中心的个数(即要把这一堆数据分成几组) 所以,在处理之前,你先要决定将要把这一堆数据分成几组,即聚成几类。但并不是在所有情况下,你都事先就能知道需要把数据聚成几类的。意味着使用k-means就不能处理这种情况,下文中会有讲解。 把相应的输入数据,传入k-means算法后,当k-means算法运行完后,该算法的输出是: 1:标签(每一个点都有一个标签,因为最终任何一个点,总会被分到某个类,类的id号就是标签) 2:每个类的中心点。 标签,是表示某个点是被分到哪个类了。例如,在上图中,实际上有4中“标签”,每个“标签”使用不同的颜色来表示。所有黄色点我们可以用标签以看出,有3个类离的比较远,有两个类离得比较近,几乎要混合在一起了。 当然,数据集不一定是坐标,假如你要对彩色图像进行聚类,那么你的向量就可以是(b,g,r),如果使用的是hsv颜色空间,那还可以使用(h,s,v),当然肯定可以有不同的组合例如(b*b,g*r,r*b) ,(h*b,s*g,v*v)等等。 在本文中,初始的类的中心点是随机产生的。如上图的红色点所示,是本文随机产生的初始点。注意观察那两个离得比较近的类,它们几乎要混合在一起,看看算法是如何将它们分开的。 类的初始中心点是随机产生的。算法会不断迭代来矫正这些中心点,并最终得到比较靠5个中心点的距离,选出一个距离最小的(例如该点与第2个中心点的距离是5个距离中最小的),那么该点就归属于该类.上图是点的归类结果示意图. 经过步骤3后,每一个中心center(i)点都有它的”管辖范围”,由于这个中心点不一定是这个管辖范围的真正中心点,所以要重新计算中心点,计算的方法有很多种,最简单的一种是,直接计算该管辖范围内所有点的均值,做为心的中心点new_center(i). 如果重新计算的中心点new_center(i)与原来的中心点center(i)的距离大于一定的阈值(该阈值可以设定),那么认为算法尚未收敛,使用new_center(i)代替center(i)(如图,中心点从红色点

K-均值聚类法实例解析

例: 为了更深入了解我国环境的污染程度状况,现利用2009 年数据对全国31个省、自治区、直辖市进行聚类分析。 解:现在要分析我国各个地区的环境污染程度,案例中选择了各地区“工业废气排放总量”、“工业废水排放总量”和“二氧化硫排放总量”三个指标来反映不同污染程度的环境状况,同时选择了北京等省市的数据加以研究。这个问题属于典型的多元分析问题,需要利用多个指标来分析各省市之间环境污染程度的差异。因此,可以考虑利用快速聚类分析来研究各省市之间的差异性,具体操作步骤如下。 1)打随书光盘中的数据文件9-2.sav,选择菜单栏中的【A nalyze(分析)】→【Classify(分 类)】→【K-Means Cluster(K均值聚类)】命令,弹出【K-Means Cluster Analysis(K均值聚类分析)】对话框。 2)在左侧的候选变量列表框中将X1、X2和X3变量设定为聚类分析变量,将其添加至 【Variables(变量)】列表框中;同时选择Y作为标识变量,将其移入【Label Cases by (个案标记依据)】列表框中。 3)在【Number of Clusters(聚类数)】文本框中输入数值“3”,表示将样品利用聚类分析 分为三类,如下图所示。 4)单击【Save(保存)】按钮,弹出【K-Means Cluster Analysis:Save(K均值聚类分析: 保存)】对话框;勾选【Cluster membership(聚类新成员)】和【Distanc e from cluster center (与聚类中心的距离)】复选框,表示输出样品的聚类类别及距离,其他选项保持系统默认设置,如下图所示,单击【Continue(继续)】按钮返回主对话框。

聚类分析原理及步骤

1、什么是聚类分析 聚类分析也称群分析或点群分析,它是研究多要素事物分类问题的数量方法,是一种新兴的多元统计方法,是当代分类学与多元分析的结合。其基本原理是,根据样本自身的属性,用数学方法按照某种相似性或差异性指标,定量地确定样本之间的亲疏关系,并按这种亲疏关系程度对样本进行聚类。 聚类分析是将分类对象置于一个多维空问中,按照它们空问关系的亲疏程度进行分类。 通俗的讲,聚类分析就是根据事物彼此不同的属性进行辨认,将具有相似属性的事物聚为一类,使得同一类的事物具有高度的相似性。 聚类分析方法,是定量地研究地理事物分类问题和地理分区问题的重要方法,常见的聚类分析方法有系统聚类法、动态聚类法和模糊聚类法等。 2、聚类分析方法的特征 (1)、聚类分析简单、直观。 (2)、聚类分析主要应用于探索性的研究,其分析的结果可以提供多个可能的解,选择最终的解需要研究者的主观判断和后续的分析。 (3)、不管实际数据中是否真正存在不同的类别,利用聚类分析都能得到分成若干类别的解。 (4)、聚类分析的解完全依赖于研究者所选择的聚类变量,增加或删除一些变量对最终的解都可能产生实质性的影响。 (5)、研究者在使用聚类分析时应特别注意可能影响结果的各个因素。 (6)、异常值和特殊的变量对聚类有较大影响,当分类变量的测量尺度不一致时,需要事先做标准化处理。 3、聚类分析的发展历程 在过去的几年中聚类分析发展方向有两个:加强现有的聚类算法和发明新的聚类算法。现在已经有一些加强的算法用来处理大型数据库和高维度数据,例如小波变换使用多分辨率算法,网格从粗糙到密集从而提高聚类簇的质量。 然而,对于数据量大、维度高并且包含许多噪声的集合,要找到一个“全能”的聚类算法是非常困难的。某些算法只能解决其中的两个问题,同时能很好解决三个问题的算法还没有,现在最大的困难是高维度(同时包含大量噪声)数据的处理。 算法的可伸缩性是一个重要的指标,通过采用各种技术,一些算法具有很好的伸缩

聚类分析及算法研究

聚类分析及算法研究 公允价值计量属性的应用 ——以我国金融行业为例 赵婷 (重庆理工大学会计学院,重庆400054) 公允价值对金融行业的影响不容忽视。以我国金融行业A股上市公司2015年年报披露的信息为基础,分析了当前公允价值计量的应用意义;同时,阐述了金融行业运用公允价值计量的现状。结果表明,公允价值计量属性对金融行业资产的计量极其重要,可以帮助提高行业信息的相关性,有助于投资者了解金融市场动态。 标签:公允价值;金融行业;会计信息质量 1引言 随着经济的发展,国家在不断地修订会计准则,会计政策也随之产生巨大的变化,而会计政策的每一次变动,都对处于该经济背景下的企业产生了深远的影响。有学者认为,经济环境的变化将持续不断地影响着会计政策的选取,而如何在历次的变化中觉察会计政策变化的轨迹与特征,并利用其具有的特征和轨迹做出有利于企业经营管理的决策,应是我们重点关注的领域,而公允价值计量属性是会计政策的内容之一。 2公允价值计量属性的应用意义 公允价值计量属性对我国金融资产的计量影响深远。美国历史上著名的“储蓄与贷款危机”表明:企业若以公允价值对储蓄和贷款款项进行计量,能够及时的向大众传达企业已经资不抵债的现状,有助于减少投资者的损失,反之,企业若自欺欺人的认为自身资金实力雄厚,偿债能力较强,会误导外部投资者与政府监管部门而使企业和社会蒙受了巨大的损失。随着市场经济的发展,企业经营业务不断的扩张,越来越多的公司开展股票、债券等金融产品的交易,市场活跃程度加强,历史成本计量属性已不符合广大投资者的需求,急需“公允价值”入驻进行恰当的补充。 3金融行业公允价值计量属性应用现状 表12015年金融业A股上市公司年报披露公允价值变动损失最大的前十家公司及原因

聚类分析算法解析

聚类分析算法解析 一、不相似矩阵计算 1. 加载数据 data(iris) str(iris) > data (iris) > str(iris) 1 data .fizame :": 150 oba.. of 5 var iato les : $ Sepal. Length: num 5,. 1 电?9 屯?=4.6 5 5.4 4, E S 4?4 4?9 ■■甲 S Sepal. Width : num 3<5 3 3*2 3.1 3.6 3*9 3.4 3.1 2 ,9 3*1 $ Petal .Length: nuio 1?4 1?4 1?3 1.5 1?4 1,4 1 ■理 1?5??? $ Petal. Width. : num 0..2 0). 2 0.2 0.2 0.2 0.4 0?3 0.2 0.2 0.1 ■… $ Species : Factor w/ 3 levels ^setosa^-j -?verslcolor **, ■八 1 1 分类分析是无指导的分类,所以删除数据中的原分类变量。 iris$Species<-NULL 2. 不相似矩阵计算 不相似矩阵计算,也就是距离矩阵计算,在 R 中采用dist()函数,或者cluster 包中 的daisy()函数。dist()函数的基本形式是 dist(x, method = "euclidean", diag = FALSE, upper = FALSE, p = 2) 其中x 是数据框(数据集),而方法可以指定为欧式距离 "euclidean", 最大距离 "maximum",绝对值距离"manhattan", "canberra", 二进制距离非对称 "binary" 和明氏距 离"mi nkowski"。默认是计算欧式距离,所有的属性必须是相同的类型。 比如都是连续类型, 或者都是二值类型。 dd<-dist(iris) str(dd) > str(dd) Class 'disf atomic [1: 11175] CL 539 Cl ?£l 0.6^18 D ? 1^11 0.616 **? ??—attr (*z *r Size F,J = lnt 150 .attr= logi FALSE .atvr ^Vpper**) = logi FALSE ■ +— attr ( *, fr methcd r,) = chr fF euclidean F, ?* 一 attr ( *t *r calldist (x = ir is) 距离矩阵可以使用 as.matrix() 函数转化了矩阵的形式,方便显示。 例样本间距离矩阵为 150行列的方阵。下面显示了 1~5号样本间的欧式距离。 dd<-as.matrix(dd) > str(dd) -attr (*y ^diimnames"] =List of 2 ..$ : chr [1:150] H l ,f ”旷 ”3” "4” : chr [1:150] n l rr "2n Iris 数据共150 0.51 0.648 0?141 num [1:150, 0 0.539

基于Matlab环境下的K均值聚类算法

基于Matlab环境下的K均值聚类算法 摘要:为了将模式识别方法与图像处理技术相结合,掌握利用均值聚类算法进行图行处理,往往能得到比较好的处理结果,本文在matlab环境下,对有效图像点进行K均值聚类算法,与传统K近邻聚类方法比照,得出了比较好的实验效果。 关键词:K均值聚类算法matlab 图像 引言 k-means算法,也被称为k-平均或k-均值,是一种得到最广泛使用的聚类算法。它是将各个聚类子集内的所有数据样本的均值作为该聚类的代表点,算法的主要思想是通过迭代过程把数据集划分为不同的类别,使得评价聚类性能的准则函数达到最优,从而使生成的每个聚类内紧凑,类间独立。 1、K-均值聚类的分析 K-均值聚类的目的是将数据拆成K个不同的群组,该算法的特点是运算结果受到所选择的聚类中心数目、初始位置、模式样本的几何性质以及读入次序的影响。 具体的算法如下: 1、在n维空间中随机生成K个中心点 2、将每个数据项分配给与其距离最近的中心点。 3、将中心点位置移动到所有分配给它的数据项的中心。如果中心点位置没有改变,则结束算法,否则回到第二步。 2、K均值聚类算法与K近邻算法的区别 K近邻算法的基本思想是是使体积为数据的函数,而不是样本N的函数。K-最近邻也是一种用来进行预测的算法。它的工作原理是接受一个用以进行数值预测的新数据项,然后将它与一组已经赋过值的数据项进行比较。算法会从中找出与待预测数据最为接近的K项,并且这K项其求均值以得到最终的结果。优点:能利用复杂函数进行数值预测,又简单易懂,并且我们可以很容易在算法中实现查看用哪些近邻进行预测。缺点:每次进行预测,它都会使用所有的样本,这会导致效率的低下。因此,寻找缩放因子是一种很乏味的事情。 3、K均值聚类法分为如下几个步骤

K-means聚类算法基本思想讲解学习

K-m e a n s聚类算法基 本思想

精品文档 K-means聚类算法基本思想 聚类分析以相似性为基础,在一个聚类中的模式之间比不在同一聚类中的模式之间具有更多的相似性。K-means也是聚类算法中最简单的一种。以星团划分为例,,首先随机选取k个宇宙中的点(或者k个星星)作为k 个星团的质心,然后第一步对于每一个星星计算其到k个质心中每一个的距离,然后选取距离最近的那个星团作为 ,这样经过第一步每一个星星都有了所属的星团;第二步对于每一个星团,重新计算它的质心(对里面所有的 星星坐标求平均)。重复迭代第一步和第二步直到质心不变或者变化很小。 K-means也是聚类算法中最简单的一种了,但是里面包含的思想却是不一般。最早我使用并实现这个算法是在学习韩爷爷那本数据挖掘的书中,那本书比较注重应用。看了Andrew Ng的这个讲义后才有些明白K-means后面包含的EM思想。 聚类属于无监督学习,以往的回归、朴素贝叶斯、SVM等都是有类别标签y的,也就是说样例中已经给出了样例的分类。而聚类的样本中却没有给定y,只有特征x,比如假设宇宙中的星星可以表示成三维空间中的点集。 聚类的目的是找到每个样本x潜在的类别y,并将同类别y的样本x放在一起。比如上面的星星,聚类后结果是一个个星团,星团里面的点相互距离比较近,星团间的星星距离就比较远了。 在聚类问题中,给我们的训练样本是,每个,没有了y。 K-means算法是将样本聚类成k个簇(cluster),具体算法描述如下: 1、随机选取k个聚类质心点(cluster centroids)为。 2、重复下面过程直到收敛 { 对于每一个样例i,计算其应该属于的类 对于每一个类j,重新计算该类的质心 } K是我们事先给定的聚类数,代表样例i与k个类中距离最近的那个类,的值是1到k中的一个。质心 代表我们对属于同一个类的样本中心点的猜测,拿星团模型来解释就是要将所有的星星聚成k个星团,首先随机选取k个宇宙中的点(或者k个星星)作为k个星团的质心,然后第一步对于每一个星星计算其到k个质心中每一个的距 离,然后选取距离最近的那个星团作为,这样经过第一步每一个星星都有了所属的星团;第二步对于每一个星团,重新计算它的质心(对里面所有的星星坐标求平均)。重复迭代第一步和第二步直到质心不变或者变化很小。 下图展示了对n个样本点进行K-means聚类的效果,这里k取2。 收集于网络,如有侵权请联系管理员删除

K均值聚类算法

k均值算法是模式识别的聚分类问题,这是用C#实现其算法 以下是程序源代码: using System; using System.Drawing; using System.Collections; using https://www.docsj.com/doc/1410194100.html,ponentModel; using System.Windows.Forms; using System.Data; namespace KMean_win { /// /// Form1 的摘要说明。 /// public class Form1 : System.Windows.Forms.Form { /// /// 必需的设计器变量。 /// private https://www.docsj.com/doc/1410194100.html,ponentModel.Container components = null; private static int k = 2; //类数,此例题为2类 private static int total = 20; //点个数 private int test = 0; private PointF[] unknown = new PointF[total]; //点数组 private int[] type = new int[total]; //每个点暂时的类 public PointF[] z = new PointF[k]; //保存新的聚类中心 public PointF[] z0 = new PointF[k]; //保存上一次的聚类中心private PointF sum; private int temp = 0; private System.Windows.Forms.TextBox textBox1; private int l = 0; //迭代次数 //构造函数,初始化 public Form1() { unknown[0]=new Point(0,0); unknown[1]=new Point(1,0); unknown[2]=new Point(0,1); unknown[3]=new Point(1,1); unknown[4]=new Point(2,1); unknown[5]=new Point(1,2); unknown[6]=new Point(2,2); unknown[7]=new Point(3,2); unknown[8]=new Point(6,6); unknown[9]=new Point(7,6); unknown[10]=new Point(8,6);

聚类分析简单介绍

因为混合模型是一个灵活且强有力的概率建模工具,在理论和实践中得到了 极为广泛的应用,它具有以下的优势 (1)提供了用简单的结构模拟复杂分布的一个有效的模型。正态分布在实践中 应用很广,主要因为它形式较简单并且有很强的理论支持,因此它是最重要、最 基本的分布。理论己经证明,利用混合正态分布模型可以逼近任何一个光滑分布, 即只要项数it足够大,有限混合分布模型可以用于描述任何复杂现象,从而有利于解决实际生活中的许多难题。 (2)提供了模拟同质性和异质性的一个自然框架。当)t = l时,该模型是一个单一分布,因此数据具有相同的性质;当时,(1-1)式就反映了混合数据的异质 性。 (3)即使现象比较复杂时,混合模型在参数的框架内也提供了一个可行的建模 环境,它综合了参数模型的解析优势和非参数模型的灵活性,因而具有更多的建 模优势。 综上所述,混合分布模型是大量数据部分特征的比较有效的模拟。 高斯混合模型(Gaussian Mixture Model, GMM)是一个常用的描述混合密度分 布的模型,即多个高斯分布的混合分布ti5]。高斯混合模型是一种半参数的密度估计方法,它融合了参数估计法和非参数估计法的优点,既不局限于特定的概率密 度函数的形式,而且模型的复杂度仅与所求解的问题有关而与样本集合的大小无关。高斯混合模型的一个重要特性是,如果模型中的成员足够多,它能够以任意 精度逼近任意的连续分布。所以高斯混合模型在许多领域得到了广泛的应用。

复杂度这对矛盾,促使基于聚类分析的图像分割方法在实际图像分割应用中不仅可以得到正确的分割结果还可以满足计算效率的要求。 其二,制约软划分聚类算法在图像分割中应用的一个主要因素是算法对图像 中噪声干扰的抑制能力。在图像分割中,由于各种因素造成的不同程度的噪声存在于真实图像中,例如,核磁共振图像和计算机断层图像中由于部分容积效应产生的噪声,热红外图像中由于温度散射造成的噪声等等。这些图像的内容已经很复杂了并且具有很高的不确定性,再加之噪声的存在,影响了图像分割的效果, 干扰了感兴趣区域的提取。因此,通过分析和研究对软划分聚类算法引入和加强来自于图像像素间的空间信息能够提高算法在图像分割中对噪声的抑制能力。在空间信息的约束下,基于聚类分析的图像分割方法能够产生对噪声更加不敏感的分割结果并且提取出更加完整和平滑的感兴趣区域。 大化参数的似然函数的过程中搜索最优划分或解,例如模糊K均值算法[11],模糊J 均值算法[12],FMM[13-15], SVFMM[16]等。 对于图像分割问题来说,这两类聚类算法的关系是非常密切的。首先,硬划 分聚类算法先被提出并且对具有较简单内容的图像进行图像分割。经过一段时间的发展,通过引入不确定性分类思想,衍生出了软划分聚类算法,并且将它应用 于解决具有较复杂内容的图像分割问题。这说明这两类算法在解决图像分割问题上具有相同的核心思想,即基于相似性划分的图像分割。其次,由于引入了不确定性分类理论,软划分聚类算法可以解决硬划分聚类算法所不能解决的具有不确

K-Means聚类算法及实现代码

K-Means算法 k-means 算法接受参数k ;然后将事先输入的n个数据对象划分为k个聚类以便使得所获得的聚类满足:同一聚类中的对象相似度较高;而不同聚类中的对象相似度较小。聚类相似度是利用各聚类中对象的均值所获得一个“中心对象”(引力中心)来进行计算的。 假设要把样本集分为c个类别,算法描述如下: (1)适当选择c个类的初始中心; (2)在第k次迭代中,对任意一个样本,求其到c个中心的距离,将该样本归到距离最短的中心所在的类; (3)利用均值等方法更新该类的中心值; (4)对于所有的c个聚类中心,如果利用(2)(3)的迭代法更新后,值保持不变,则迭代结束,否则继续迭代。 #include #include #include #define _NUM 3 //预定义划分簇的数目 using namespace std; /** 特征对象,表示一个元组,一个元组有两个数值属性 **/ struct Tuple { int attr1; int attr2; }; /** 获取两个特征对象之间的距离,在此以欧基米德距离作为距离度量标准 **/ double getDistXY(Tuple t1, Tuple t2) { return sqrt((t1.attr1 - t2.attr1) * (t1.attr1 - t2.attr1) + (t1.attr2 - t2.attr2) * (t1.attr2 - t2.attr2)); } /** 计算簇的中心点,在此以簇中所有对象的平均距离来计算中心点 **/ Tuple getMeansC(vector c)

(完整版)matlab实现Kmeans聚类算法

题目:matlab实现Kmeans聚类算法 姓名 学号

背景知识 1.简介: Kmeans算法是一种经典的聚类算法,在模式识别中得到了广泛的应用,基于Kmeans的变种算法也有很多,模糊Kmeans、分层Kmeans 等。 Kmeans和应用于混合高斯模型的受限EM算法是一致的。高斯混合模型广泛用于数据挖掘、模式识别、机器学习、统计分析。Kmeans 的迭代步骤可以看成E步和M步,E:固定参数类别中心向量重新标记样本,M:固定标记样本调整类别中心向量。K均值只考虑(估计)了均值,而没有估计类别的方差,所以聚类的结构比较适合于特征协方差相等的类别。 Kmeans在某种程度也可以看成Meanshitf的特殊版本,Meanshift 是一种概率密度梯度估计方法(优点:无需求解出具体的概率密度,直接求解概率密度梯度。),所以Meanshift可以用于寻找数据的多个模态(类别),利用的是梯度上升法。在06年的一篇CVPR文章上,证明了Meanshift方法是牛顿拉夫逊算法的变种。Kmeans 和EM算法相似是指混合密度的形式已知(参数形式已知)情况下,利用迭代方法,在参数空间中搜索解。而Kmeans和Meanshift相似是指都是一种概率密度梯度估计的方法,不过是Kmean选用的是特殊的核函数(uniform kernel),而与混合概率密度形式是否已知无关,是一种梯度求解方式。 k-means是一种聚类算法,这种算法是依赖于点的邻域来决定哪些

点应该分在一个组中。当一堆点都靠的比较近,那这堆点应该是分到同一组。使用k-means,可以找到每一组的中心点。 当然,聚类算法并不局限于2维的点,也可以对高维的空间(3维,4维,等等)的点进行聚类,任意高维的空间都可以。 上图中的彩色部分是一些二维空间点。上图中已经把这些点分组了,并使用了不同的颜色对各组进行了标记。这就是聚类算法要做的事情。 这个算法的输入是: 1:点的数据(这里并不一定指的是坐标,其实可以说是向量) 2:K,聚类中心的个数(即要把这一堆数据分成几组) 所以,在处理之前,你先要决定将要把这一堆数据分成几组,即聚成几类。但并不是在所有情况下,你都事先就能知道需要把数据聚成几类的。但这也并不意味着使用k-means就不能处理这种情况,下文中会有讲解。 把相应的输入数据,传入k-means算法后,当k-means算法运行完后,该算法的输出是: 1:标签(每一个点都有一个标签,因为最终任何一个点,总会被分到某个类,类的id号就是标签) 2:每个类的中心点。 标签,是表示某个点是被分到哪个类了。例如,在上图中,实际上

聚类分析方法小结

聚类分析方法小结 简单点说:分类是将一片文章或文本自动识别出来,按照先验的类别进行匹配,确定。聚类就是将一组的文章或文本信息进行相似性的比较,将比较相似的文章或文本信息归为同一组的技术。分类和聚类都是将相似对象归类的过程。区别是,分类是事先定义好类别,类别数不变。分类器需要由人工标注的分类训练语料训练得到,属于有指导学习范畴。聚类则没有事先预定的类别,类别数不确定。聚类不需要人工标注和预先训练分类器,类别在聚类过程中自动生成。分类适合类别或分类体系已经确定的场合,比如按照国图分类法分类图书;聚类则适合不存在分类体系、类别数不确定的场合,一般作为某些应用的前端,比如多文档文摘、搜索引擎结果后聚类(元搜索)等。 分类(classification )是找出描述并区分数据类或概念的模型(或函数),以便能够使用模型预测类标记未知的对象类。分类技术在数据挖掘中是一项重要任务,目前商业上应用最多。分类的目的是学会一个分类函数或分类模型(也常常称作分类器),该模型能把数据库中的数据项映射到给定类别中的某一个类中。 要构造分类器,需要有一个训练样本数据集作为输入。训练集由一组数据库记录或元组构成,每个元组是一个由有关字段(又称属性或特征)值组成的特征向量,此外,训练样本还有一个类别标记。一个具体样本的形式可表示为:(v1,v2,...,vn; c);其中vi表示字段值,c表示类别。分类器的构造方法有统计方法、机器学习方法、神经网络方法等等。

不同的分类器有不同的特点。有三种分类器评价或比较尺度:1)预测准确度; 2)计算复杂度;3)模型描述的简洁度。预测准确度是用得最多的一种比较尺度,特别是对于预测型分类任务。计算复杂度依赖于具体的实现细节和硬件环境,在数据挖掘中,由于操作对象是巨量的数据,因此空间和时间的复杂度问题将是非常重要的一个环节。对于描述型的分类任务,模型描述越简洁越受欢迎。 另外要注意的是,分类的效果一般和数据的特点有关,有的数据噪声大,有的有空缺值,有的分布稀疏,有的字段或属性间相关性强,有的属性是离散的而有的是连续值或混合式的。目前普遍认为不存在某种方法能适合于各种特点的数据 聚类(clustering)是指根据“物以类聚”原理,将本身没有类别的样本聚集成不同的组,这样的一组数据对象的集合叫做簇,并且对每一个这样的簇进行描述的过程。它的目的是使得属于同一个簇的样本之间应该彼此相似,而不同簇的样本应该足够不相似。与分类规则不同,进行聚类前并不知道将要划分成几个组和什么样的组,也不知道根据哪些空间区分规则来定义组。其目的旨在发现空间实体的属性间的函数关系,挖掘的知识用以属性名为变量的数学方程来表示。聚类技术正在蓬勃发展,涉及范围包括数据挖掘、统计学、机器学习、空间数据库技术、生物学以及市场营销等领域,聚类分析已经成为数据挖掘研究领域中一个非常活跃的研究课题。常见的聚类算法包括:K-均值聚类算法、K-中心点聚类算法、CLARANS、BIRCH、CLIQUE、DBSCAN等。 1.含义

K-Means聚类算法

K-means聚类算法综述 摘要:空间数据挖掘是当今计算机及GIS研究的热点之一。空间聚类是空间数据挖掘的一个重要功能。K-means聚类算法是空间聚类的重要算法。本综述在介绍了空间聚类规则的基础上,叙述了经典的K-means算法,并总结了一些针对K-means算法的改进。 关键词:空间数据挖掘,空间聚类,K-means,K值 1、引言 现代社会是一个信息社会,空间信息已经与人们的生活已经密不可分。日益丰富的空间和非空间数据收集存储于空间数据库中,随着空间数据的不断膨胀,海量的空间数据的大小、复杂性都在快速增长,远远超出了人们的解译能力,从这些空间数据中发现邻域知识迫切需求产生一个多学科、多邻域综合交叉的新兴研究邻域,空间数据挖掘技术应运而生。空间聚类分析方法是空间数据挖掘理论中一个重要的领域,是从海量数据中发现知识的一个重要手段。K-means算法是空间聚类算法中应用广泛的算法,在聚类分析中起着重要作用。 2、空间聚类 空间聚类是空间数据挖掘的一个重要组成部分。作为数据挖掘的一个功能,空间聚类可以作为一个单独的工具用于获取数据的分布情况,观察每个聚类的特征,关注一个特定的聚类集合以深入分析。空间聚类也可以作为其它算法的预处理步骤,比如分类和特征描述,这些算法将在已发现的聚类上运行。 空间聚类规则是把特征相近的空间实体数据划分到不同的组中,组间的差别尽可能大,组内的差别尽可能小。空间聚类规则与分类规则不同,它不顾及已知的类标记,在聚类前并不知道将要划分成几类和什么样的类别,也不知道根据哪些空间区分规则来定义类。(1)因而,在聚类中没有训练或测试数据的概念,这就是将聚类称为是无指导学习(unsupervised learning)的原因。(2) 在多维空间属性中,框定聚类问题是很方便的。给定m个变量描述的n个数据对象,每个对象可以表示为m维空间中的一个点,这时聚类可以简化为从一组非均匀分布点中确定高密度的点群。在多维空间中搜索潜在的群组则需要首先选择合理的相似性标准。(2)已经提出的空间聚类的方法很多,目前,主要分为以下4种主要的聚类分析方法(3): ①基于划分的方法 包括K—平均法、K—中心点法和EM聚类法。它们都是采用一种迭代的重定位技术,尝试通过对象在划分间移动来改进聚类效果。由于这类方法适用于发现大小相近的球状簇,故常用在设施选址等应用中。 ②基于层次的方法 此法只是对对象集合进行分解。根据层次的分解方式,这类方法可分为凝聚和分裂两种, Birch, Cure 和Chameleon是上述方法的改进。 ③基于密度的方法 对给定类中的每个数据点,在一个给定范围的区域中必须包含超过某个阈值的数据点,才继续聚类。它可以用来发现任意形状的簇,过滤“噪声”。代表性的方法有:DBscan,Optics和Denclue。 ④基于栅格的方法 把对象空间划为有限的数据单元,形成一个网格结构。该方法处理速度快,处理时间独立于数据对象的数目。常用的方法有STING、WaveCluster以及CLIQUE等。 在这些方法中,K-means(k—均值)算法是一种应用十分广泛的聚类分析方法。 3、经典的K-Means算法 K-means聚类问题的假设是有一组N个数据的集合X={x1,x2,x3,…,x n}待聚类。K

相关文档
相关文档 最新文档