文档视界 最新最全的文档下载
当前位置:文档视界 › 电力系统谐波状态估计技术的发展与展望

电力系统谐波状态估计技术的发展与展望

电力系统谐波状态估计技术的发展与展望
电力系统谐波状态估计技术的发展与展望

电力系统谐波状态估计技术的发展与展望

吴笃贵 徐 政

浙江大学电机系,310027 杭州市

REVIEW OF POWER SYSTEM HARMONIC STATE ESTIMATION

Wu Dugui Xu Zheng

Depar tm ent o f Electrical Engineering,Zhejiang Univ ersity

Hang zhou,310027China

ABSTRACT T he concepts,functions and implement atio n methods of harmo nic state estimatio n in elect ric po wer sys-tems a re discussed in this pa per.T he har mo nic state est ima-tio n m ethods w hich ar e being used at pr esent are r eviewed. Some impor tant pro blems to be solved for har monic state estimat ion ar e pr opo sed.

KEY WORDS Po wer system Harmo nic State Est ima-tio n

摘要 本文介绍了电力系统谐波状态估计的概念、功能及其实现方法。对现有的几种谐波状态估计方法进行了评述,并提出了谐波状态估计中应首先解决的几个问题

关键词 电力系统 谐波 状态估计

1 前言

对电力系统的谐波进行管理或治理,首先应弄清电力系统中的谐波分布或谐波状态。若系统中的谐波源是已知的,电力系统中的谐波分布问题即为谐波的扩散分布问题;若系统中的谐波源是未知的,但系统中某些点上的谐波量是可以测量的,则上述问题即为谐波状态的估计问题。

以往,大多数谐波分析方面的工作集中在已知谐波电流注入的情况下,分析谐波在电力系统中的分布或扩散。但随着电力电子技术的广泛应用,谐波污染日益严重,对电力系统的安全、经济运行造成了极大的影响。为了确定和治理与谐波相关的问题,提出了对谐波的产生和扩散进行监视的要求。这就提出了电力系统谐波状态估计问题,即根据有限点上的测量值来估计整个网络的谐波状态。

2 谐波状态估计技术

多年来,电力系统状态估计的基本结构并没有多大变化,即:单相模型,单频率模型,量测量为有功功率P、无功功率Q和电压V,非同步测量。上述结构是基于如下的假设条件提出的:(1)所有电压、电流均为幅值、频率恒定的正弦波;(2)系统运行在

本课题为国家教委博士点基金资助项目(9533532)三相平衡状态下;(3)系统是三相对称的并可用正序网来表示。因此电力系统的谐波状态估计问题不能直接套用传统的电力系统状态估计方法,必须根据谐波测量的特点,重新选择和研究适合于谐波状态估计的新算法。近年来,电力系统的谐波状态估计问题逐渐为人们所关注,并有多篇研究成果发表。

在文献[1]中,Hey dt首先提出了谐波的状态估计问题并给出了一种利用最小方差估计器的谐波源识别算法。他选用注入视在功率和线路视在功率作量测量,利用广义逆求解欠定方程组,从而获得对状态变量的最优估计。1991年,Najjar与Heydt合作,提出了基于Kirchho ff电流定律的加权最小方差估计的谐波估计算法[2],但仍然采用节点注入视在功率和线路视在功率作量测量。众所周知,在波形存在畸变的情况下,关于无功功率没有一种普遍接受的定义,因此选用视在功率作为量测量没有普遍意义,因而是不合适的。

1993年,Farach和Gr ady提出过一种基于最小方差法的谐波源识别和传感器的优化配置算法[3]。它根据母线的负荷水平和对此母线成为谐波源的先验似然估计,决定了量测变量和状态变量(电压或电流)的方差。然后,采用枚举法,逐次计算在谐波传感器不同配置条件下被估计参量的协方差矩阵,通过寻找使协方差矩阵的迹最小的传感器组合方式,获得谐波传感器的最优配置方案并进而获得状态变量的最优估计。由于这种方法估计结果的准确度对人们的经验依赖较大,因此其应用是受许多条件限制的。同时,对于多母线系统,这种方法的计算量无疑将会很大。

M eliopo ulo s和张帆等人于1994年发表的研究成果[4]中将谐波状态估计问题看作优化问题,给出了相应的最小方差估计算法。与文献[1,2]不同,该文作者选用了谐波电压作为状态变量,电压和电流

第22卷第1期1998年1月

电 网 技 术

Po wer System T echno lo gy

V ol.22N o.1

Jan. 1998

作量测量,因此所描述的估计算法具有普遍性。同时,文章还描述了谐波量测系统(HES-Harmo nic M easurement System)的基本结构,指出了谐波状态估计需要研究的基本问题。最后,作者就不对称和不平衡状态估计特性的灵敏度分析及HM S的可观性分析进行了说明。但是,该文将所有的母线电压都选为未知的状态变量,因此大大增加了增益矩阵求逆的运算量。该算法利用了大量的冗余量测数据和状态估计器作为噪声滤波器的优点,但对于实际应用来讲,它的监控投资将是巨大的。

M a和Girgis提出了一种应用卡尔曼滤波器识别和寻找谐波源的新算法[5],主要用于非平衡三相电力系统中谐波测量仪表的优化配置和谐波源位置及其注入电流大小的最优动态估计。该文采用谐波电流作状态变量,谐波电压作量测量建立起状态估计必需的状态方程和量测方程。在谐波测量仪表数量一定的前提下,通过计算不同配置条件时误差协方差矩阵的迹,从而获得谐波测量仪表的最佳配置方案和谐波注入的最优估计。

考虑到电网中谐波源分布的实际情况,杜振平和Ar rillaga等人提出了电力系统连续谐波的状态估计算法[6]。在该文中,作者不仅利用关联矩阵的概念建立起谐波量测量与状态变量的数学模型,而且考虑了电力系统中谐波分布的实际情况,将母线分为非谐波源母线和可能的谐波源母线两类。由于非谐波源母线的数量远大于可能的谐波源母线数量,因此可大大减少未知状态变量的数目。另外,该文还将可能的谐波源母线分为测量母线和未测母线两类,未知状态变量的数目又可进一步减少。通过以上两步的处理,不仅估计算法的计算量大为减少,而且谐波估计方程也由欠定变为超定,估计结果的可信度大为增加。因此该文献介绍的算法仿真效率较高,量测方案更经济实用。

Hartana等人也尝试过应用线性神经元网络进行谐波源的识别[7]。由于神经元网络模型的建立需要预先提供大量的训练对,其中就要求知道全部谐波源注入电流的数组确切值,显然这对谐波估计问题来说并不现实。同时,神经元网络理论缺乏对变结构神经元网络的修正算法,而系统中某些线路或电源的切除都会影响神经元网络的联接权矩阵,因此训练好的神经元网络缺乏对电力网结构变化的适应能力。所以神经元网络方法在谐波估计方面的应用无疑会受到许多条件的限制。3 电力系统谐波状态估计研究的目标、内容和重点

电力系统谐波状态估计的根本目标在于建立起谐波情况下三相电力系统的数学模型,进而提出一套适合于电力系统谐波状态估计的计算方法,根据有限的量测数据,通过所选择的估计器实现对谐波源位置、类型和注入电流大小的识别,从而为电力系统谐波的管理和抑制提供依据。

对谐波状态变量的选择,大多选用所有网络节点的谐波电压相量。如果采用三相网络模型,每个节点对应的状态变量为3×2×N h,这里N h表示需要考虑的谐波个数。在杜振平之前,所有文献都没有考虑量测方程的降价问题,因此在谐波测量仪表数目较少的情况下,量测方程都是欠定的。考虑到电力系统中谐波源分布的实际情况[6],将所有网络节点的谐波电压相量都选作状态变量是毫无必要的。

联接状态量与量测量的数学模型,作为谐波状态估计,网络模型选用三相模型是必要的,而量测方程采用节点电压方程比较合适。

谐波估计的质量是谐波测量设备数目和位置的函数[6]。大量配置谐波测量仪表固然可以增大测量数据的冗余度,提高估计结果的准确性,但增加的设备费用也较为可观;反之,如果测量仪表配置较少,则状态变量的估计最终归结为求解欠定方程组,所得结果将是病态的。

可观测性分析是谐波测量设备配置的根本依据。可观测性依赖于测量值的数量、位置、类型以及网络的拓扑结构。对谐波状态估计来说,电力网络的可观性分析过程就是确定谐波测量仪表的数量和配置的过程。

评价谐波状态估计的性能指标[3]有四种:(1)加权最小方差法则 根据估计值和实测值的偏差平方的加权和的最小值获得状态变量的最优估计;(2)最大似然法则 根据状态矢量估计值是真值的最大概率,判定估计值的准确程度;(3)条件期望值法则 根据估计误差与测量值正交性,由状态矢量已知的测量值确定其条件期望值,最后选择条件期望值作为状态矢量的最优估计值;(4)最小方差法则 根据状态矢量的估计值与真值的方差矩阵的迹的最小值,确定状态矢量的最优估计。尽管名称各异,但在一定条件下,这些法则都是等效的。

76P ow er System T echnolog y V o l.22No.1

4 谐波状态估计的基本方法

电力系统谐波状态估计的基本框图如图1所示。其中框1表示由全球定位系统(GPS )提供时间基准来同步测量节点电压和线路电流,并将其进行傅氏分解得出节点电压和线路电流各次谐波的幅值和相位。框2表示全网中对应于各次谐波的节点电压相量、线路电流和功率相量。

1

2

测量

测量测量

网络拓扑

电力系统

三相多频率

网络模型

谐波状态估计器

图1 电力系统谐波状态估计基本框图

Fig .1 Basic structure for harmonic state estimation

对于一个给定的谐波状态待估计的网络(通常是一个大网络中的子网络),首先应解决的问题就是究竟应配置多少谐波测量设备才能使该子网络的谐波状态可以观测。已有的关于谐波状态估计的文献都避开了这一问题,因此提供的估计结果的准确度很难判断。

传统的电力系统状态估计理论对可观测性问题已有现成的结论和算法,只不过传统的状态估计方法使用的量测量是电压和功率,网络模型为单相模型,而谐波状态估计通常使用的量测量是电压和电流,网络模型为三相模型。因此与谐波状态估计相对应的网络可观测性问题,可以借鉴已有的成果。具体地说,就是要研究量测值由功率变为电流,网络模型由单相变为三相后,原有的结论是否仍然成立,如不成立,则应作哪些修正。

如将非线性负荷用注入电流模拟,则电力网络可以看成是线性的,而各次谐波之间相互解耦,因此对各次谐波的估计问题可以分别地独立进行。以线性网络的节点分析模型为基础,结合三种不同种类的量测量(节点电压,线路电流,节点注入电流),可以构成一组线性的量测量方程

Z n =H n X n +R n

式中 Z n 为第n 次谐波的量测值,X n 为表征第n 次谐波的状态变量,H n 为第n 次谐波的量测矩阵,R n 为第n 次谐波的总体测量误差。

按照不同的估计准则,可以方便地对上述方程

进行处理。如用最小二乘法,求解上述估计问题的算法则是现成的。

当各次谐波的状态被估计出来以后,按照电能质量指标的规定,可以很容易地筛选出指标不合格的节点和线路,同时还可以算出从节点向系统注入的各次谐波的有功功率,按照此功率的正负,即可确定谐波源位置,根据各次谐波功率分布的特点,还可以判别出此谐波源的类型。

5 研究展望

电力系统的谐波状态估计问题是随着人们对谐波问题的不断重视而提出来的,并将为电力系统的

谐波治理提供有效的依据。通过以上对电力系统谐波状态估计技术发展情况的综述,我们认为应尽快开展以下几方面的工作:

(1)借鉴电力系统状态估计可观性问题的研究成果,提出针对电力系统谐波状态估计可观性分析的新方法。

(2)在可观性分析的基础上,确定最小的谐波测量集,研究使谐波状态不可观测的网络变为可观测网络的可能性。

(3)确定谐波状态估计方程的数值计算方法和对估计质量的评估办法。

6 参考文献

1 Heydt G T .Identification of h arm onic sources b y a state estima-tion tech nique .IEEE T rans on Pow er Delivery ,1989;4(1)

2 M aged N ajjar ,Heydt G T .A hybrid nonlinear -least s quares esti-mation of h arm onic s ignal levels in pow er systems.IEEE T ran s on Pow er Delivery,1991;6(1)

3 Farach J E,Gr ady W M ,Ar apos tathis A .An optimal procedure for placing sensors and es tim ating the locations of h armon ic s ources in power s ystem.IE EE T rans on Power Delivery,1993;8(3)

4 M eliopoulos A P S ,Zh ang Fan,Shalom Zelingher.Power system h arm on ic state estimation.IE EE T ran s on Power Delivery,1994;9(3):1701~1709

5 M a Haili ,Girgis A A .Identification and tr acking of h armon ic s ources in a pow er s ystem us ing a Kalman filter .IEEE T ran sac-tions on Pow er Delivery ,1996;11(3):1659~1665

6 Du Z P ,Arrillaga J ,W ats on N .Contin uous h armonic state esti-mation of pow er s ystem s.IEE Proc-Gener.Transm.Dis trib,1996;143(4):329~336

7 Hartana R K,Rich ards R G.Harmonic s ource monitoring and i-dentification us ing neural netw ork s.IEEE T ransactions on Power S ystem s,1990;5(4):1098~1104

8 Du Z P,Arrillaga J,W ats on N.A new symbolic method of ob-s ervability analysis for harmonic state es timation of pow er s ys-tem s.Proc.ICEE ′96,Beijing,Ch ina,1996:431~435收稿日期:1997-06-09。

吴笃贵 男,1969年生,在读博士生。电力系统及其自动化专业,主要研究方向为HVDC 、FACTS

技术及电力谐波的治理与监控。徐 政 男,1962年9月生,博士,副教授,直流输电与柔性交流输电研究室主任,中国电机工程学会变电专业委员会委员和电力系统专业委员会直流输电分专业委员会委员。曾获国家自然科学三等奖和国家教委科技进步二等奖,已在电工学科核心期刊上发表论文二十余篇。

77

第22卷第1期电 网 技 术

电力系统的谐波

《电力系统的谐波》 电气工程与自动化 1.什么是谐波?特性?分类? 2.含有谐波的电量的电气参数如何计算? 3.衡量谐波含量的参数有哪些?定义? 4.电力系统常见的谐波源有哪些? 5.谐波的危害是什么?治理方法有哪些? 理想的交流电压和交流电流波形应是单一频率的正弦波,而实际电力系统中由于负荷 的非线性常会使电压和电流波形产生畸变而偏离正弦,出现各种谐波分量。谐波的含量是 衡量电能质量的重要指标之一。 那么什么是谐波呢?谐波 (harmonic wave),从严格的意义来讲,谐波是指电流中所含有的频率为基波的整数倍的电量,一般是指对周期性的非正弦电量进行傅里叶级数分解,其余大于基波频率的电流产生的电量。从广义上讲,由于交流电网有效分量为工频单一频率,因此任何与工频频率不同的成分都可以称之为谐波,这时“谐波”这个词的意义已经变得与原意有些不符。正是因为广义的谐波概念,才有了“分数谐波”、“间谐波”、“次谐波”等等说法。 奇次谐波:额定频率为基波频率奇数倍的谐波,被称为“奇次谐波”,如3、5、7次谐波; 偶次谐波:额定频率为基波频率偶数倍的谐波,被称为“偶次谐波”,如2、4、6、8次谐波。 一般地讲,奇次谐波引起的危害比偶次谐波更多更大。在平衡的三相系统中,由于对称关系,偶次谐波已经被消除了,只有奇次谐波存在。对于三相整流负载,出现的谐波电流是6n ±1次谐波,例如5、7、11、13、17、19等。 变频器主要产生5、7次谐波; 分量谐波:频率为基波非整数倍的分量称为间谐波,有时候也将低于基波的间谐波称为次谐波,次谐波可看成直流与工频之间的间谐波。 电气参数计算 有效值: U= 1T u 2T 0(t)dt I= 1T i 2T 0(t)dt u(t)= 2∞n =1U n sin ?(nw 1t +αn ) i(t)= 2∞ n =1I n sin ?(nw 1t +βn ) w 1=2πT =2πf 1 I= A A= 1T [ 2I 1T sin w 1t +β1 + 2I 2sin 2w 1t +β2 +?+ 2I n sin nw 1t +βn ]∧2dt

基于MATLAB的电力谐波分析

目录 摘要 (2) Abstract (2) 1:绪论 (2) 1.1课题背景 (2) 1.2谐波的产生 (3) 1.3电网中谐波的危害 (5) 1.4研究谐波的重要性 (5) 2:谐波的限制标准和常用措施 (7) 2.1国外谐波的标准和规定 (8) 2.1.1谐波电压标准 (8) 2.1.2谐波电流的限制 (9) 2.2我国谐波的标准和规定 (9) 2.2.1谐波电压标准 (10) 2.2.2谐波电流的限制 (11) 2.3谐波的限制措施 (12) 3:谐波的检测与分析 (15) 3.1电力系统谐波检测的基本要求 (15) 3.2国内外电力谐波检测与分析方法研究现状 (15) 3.3谐波的分析 (18) 3.3.1电力系统电压(或电流)的傅立叶分析 (19) 3.3.2基于连续信号傅立叶级数的谐波分析 (19) 4:电力谐波基于FFT的访真 (21) 4.1快速傅立叶变换的简要和计算方法 (21) 4.1.1快速傅立叶变换的简要 (21) 4.1.2快速傅立叶变换的计算方法 (21) 4.2 FFT应用举例 (22) 5:结论 (28) 附录: (28) 参考文献: (30) 致谢: (30)

基于MATLAB的电力谐波分析 学生: 指导老师: 电气信息工程学院 摘要:电力系统的谐波问题早在20世纪20年代就引起人们的注意,到了50年代和60年代,由于高压直流输电技术的发展,发表了有关换流器引起电力系统谐波问题的大量论文。70年代以来,由于电力电子技术的飞速发展,各种电力电子装置在电力系统、工业、交通及家庭中的应用日益广泛,谐波所造成的危害也日趋严重。世界各国都对谐波问题予以充分的关注。 本文首先对目前国内外电力谐波检测与分析方法进行了综述与展望,并对电力谐波的基本概念、性质和特征参数进行了详细的分析,给出了谐波抑制的措施。并得出基于连续信号傅立叶级数的各次谐波系数的计算公式,推导了该计算公式与MATLAB函数FFT计算出的谐波系数的关系。实例证明:准确测量各次谐波参数,对电力系统谐波分析和抑制具有很大意义,可确保系统安全、可靠、经济地运行。同时实验结果表明,该法对设备要求不高,易于实现。 关键字:MA TLAB电力谐波分析 Harmonic Analysis of Electric Power System Based On Matlab Student: Teacher: Electrical and Information Engineering Abstract:The harmonic problem of electric power system has caused the attention of people in1920s and 1930s.Until 1950s,owing to the development of high voltage direct current transportation electricity technology,people published a large number of theses about the electricity power system harmonic problem,which caused by the current transform device.Since 1970s,because of the speedly development of eletricity power electronics technology,the various electric power electronics devices were applied extensively in the electric power system,industry,traffic and family,but the harm which the harmonic creates was serious more and more.Many country of the world all pay attention to the harmonic problem. Summary and Prospects of the first domestic and international power harmonics detection and analysis methods, and power harmonics of the basic concepts of the nature and characteristic parameters of a detailed analysis, given a harmonic suppression measures. Obtained based on the

电力系统的谐波产生的原因

电力系统的谐波产生的原因电网谐波来自于3个方面: 一是发电源质量不高产生谐波: 发电机由于三相绕组在制作上很难做到绝对对称,铁心也很难做到绝对均匀一致和其他一些原因,发电源多少也会产生一些谐波,但一般来说很少。 二是输配电系统产生谐波: 输配电系统中主要是电力变压器产生谐波,由于变压器铁心的饱和,磁化曲线的非线性,加上设计变压器时考虑经济性,其工作磁密选择在磁化曲线的近饱和段上,这样就使得磁化电流呈尖顶波形,因而含有奇次谐波。它的大小与磁路的结构形式、铁心的饱和程度有关。铁心的饱和程度越高,变压器工作点偏离线性越远,谐波电流也就越大,其中3次谐波电流可达额定电流0.5%。 三是用电设备产生的谐波: 晶闸管整流设备。由于晶闸管整流在电力机车、铝电解槽、充电装置、开关电源等许多方面得到了越来越广泛的应用,给电网造成了大量的谐波。我们知道,晶闸管整流装置采用移相控制,从电网吸收的是缺角的正弦波,从而给电网留下的也是另一部分缺角的正弦波,从而给电网留下的也是另一部分缺角的正弦波,显然在留下部分中含有大量的谐波。如果整流装置为单相整流电路,在接感性负载时则含有奇次谐波电流,其中3次谐波的含量可达基波的30%;接容性负载时则含有奇次谐波电压,其谐波含量随电容值的增大而增大。如果整流装置为三相全控桥6脉整流器,变压器原边及供电线路含有5次及以上奇次谐波电流;如果是12脉冲整流器,也还有11次及以上奇次谐波电流。经统计表明:由整流装置产生的谐波占所有谐波的近40%,这是最大的谐波源。变频装置。变频装置常用于风机、水泵、电梯等设备中,由于采用了相位控制,谐波成份很复杂,除含有整数次谐波外,还含有分数次谐波,这类装置的功率一般较大,随着变频调速的发展,对电网造成的谐波也越来越多。 电弧炉、电石炉。由于加热原料时电炉的三相电极很难同时接触到高低不平的炉料,使得燃烧不稳定,引起三相负荷不平衡,产生谐波电流,经变压器的三角形连接线圈而注入电网。其中主要是2 7次的谐波,平均可达基波的8% 20%,最大可达45%。 气体放电类电光源。荧光灯、高压汞灯、高压钠灯与金属卤化物灯等属于气体放电类电光源。分析与测量这类电光源的伏安特性,可知其非线性十分严重,有的还含有负的伏安特性,它们会给电网造成奇次谐波电流。 家用电器。电视机、录像机、计算机、调光灯具、调温炊具等,因具有调压整流装置,会产生较深的奇次谐波。在洗衣机、电风扇、空调器等有绕组的设备中,因不平衡电流的变化也能使波形改变。这些家用电器虽然功率较小,但数量巨大,也是谐波的主要来源之一。 供电系统的无功补偿及谐波治理 在供电系统中,为了节能降损、提高电压质量和电网经济运行水平,经常采用各种无功补偿装置。近年来,配电网中整流器、变频调速装置、电弧炉、各种电力电子设备以及电气化铁路大量应用。这些负荷大都具有非线性、冲击性和不平衡性的特点,在运行中会产

电力系统谐波影响及消除

电力系统谐波影响及消除(网络摘录)2011.12.20 返回日志列表 从补偿电容无法投入,谈谐波危害,分析谐波来源,提出治理谐波的初步建议随着个私经济特别是特钢和化学工业在我市的发展,我公司的供电量也不断的增长,为了使功率因素达到标准,必须投入补偿电容,但是这几个乡镇的变电所的补偿电容器却无法投上,强行投入后,电容器熔丝也会很快熔断。但根据其他变电所运行经验,在此功率因数下,无功电流不应大于熔丝熔断电流。这是为什么呢? 经过对该地区的供电现状分析,这是由于谐波引起的。所谓谐波,即理想的电力系统向用户提供的应该是一个恒定工频的正弦波形电压,但是由于各种原因,使这种理想状态在实际中无法存在。因此通过对周期性电压或电流的傅立叶分解,所得到的频率为基波整数倍分量的含有量,称为谐波。 谐波对于电网的危害非常大,主要表现在以下方面: 1.由于电网主要是按基波设计的。由于LC元件的存在,虽然在基波时不会发生谐振,但在某个特定谐波时却可能引起谐振,可能将谐波电流放大几倍甚至数十倍,电网谐振引起设备过电压,产生谐波过流,对设备造成危害。特别是对电容器和与之串联的电抗器。其中,特别要注意的是,由于电容器是容性负载,能与电网上感性设备(其它设备主要是感性设备)配合,构成共振条件,又由于其大小与谐波频率成反比,因此,电容更容易吸收谐波共振电流,引起电容过载,造成电容损坏,或者熔丝熔断。 2.使电网中的电气设备产生额外的损耗(谐波功率),降低了设备的效率,同时谐波会影响设备的正常工作,例如变压器局部严重过热,电容器、电缆等设备过热,电机产生机械振动等故障,绝缘部分老化、变质,严重时候甚至设备损坏。 3.导致继电保护和自动装置误动或拒动,造成不必要的损失,谐波会使电气测量仪表测量不准确,造成计量误差。 另外,谐波还会产生对设备附近的通信系统产生干扰等其他危害。 既然谐波危害如此之大,那么谐波是如何产生的?又如何能减小它的影响和危害呢? 谐波来源 1、中频炉、电弧炉等设备是该地区谐波的主要来源 对该地区负荷进行分析,发现主要的原因是该地区特钢工业发达,中频炉、电弧炉等作为一类高效的加热源已经非常普及。电弧炉是利用电极物料间产生的电弧熔炼金属,因此,它的电流波形很不规则,含有多种谐波(2次到7次)以及间谐波,这是谐波的一个重要来源。而中频炉是工频电流整流后再变为中频,再利用电磁感应来熔炼金属,因此产生大量的高次谐波,其中以5次、7次、11次等奇次谐波为主。这正是该地区谐波的主要来源。 2、用户变压器群是该地区谐波的重要来源 一般情况下,三相变压器由于铁芯为“日”形状,中相比边相要短一半,因此,三个磁路的不对称引起变压器励磁电流中含有谐波分量。所以当对空载三相变压器加电压激励时,即使受电侧没有零序电流通路(中性点不接地或三角形接线),励磁电流中也会有谐波分量。虽然在实际运行时,这个谐波分量很小,但由于变压器绕组接法以及各绕组和电网各相的连接统一规定时,则各台变压器励磁电流里的同次谐波彼此叠加,形成了电网中谐波的又一重要来源。例如,在绝大多数配变中,都是Y,yn接线,变压器的中间的铁柱对应的线圈即中相接的都是B相,这样的统一接法,就为3、5、7等次谐波提供了一个分别互相叠加的条件。在该地区,现有35kV用户变压器5台,总容量400kVA,10kV用户变压器约800台,总容量330kVA.如此庞大的用户变群又成为了谐波的又一个重要来源。

电路分析基础谐波分析法

电路分析基础谐波分析法 本章实训谐波分析法的验证 实训任务引入和介绍 在电路分析的应用过程中~遇到非正弦周期电流电路的情况并不少见。有时候~电流波形非常简单,如矩形波、三角波等,~可以通过简单的计算得出其有效值、平均值及平均功率,但有时候非正弦周期电流的波形非常复杂~那么通过谐波分析法来进行电路分析就显得尤为重要。本次实训我们就以一个简单的电路为基础~通过简单的理论计算和实际测量的结合来验证谐波分析法。 实训目的 1.掌握非正弦周期电流电路的测量方法, 2.理解谐波分析法的基本原理, 3.学会用谐波分析法进行简单的电路分析。 实训条件 100V直流电源、150V/50Hz交流电源、100V/100Hz交流电源、功率计、 R=10Ω、L=1H、 3C=1.11*10uF、电压表、电流表。 操作步骤 (1)连接电路。 如图5-12所示,将在直流、交流电源串联,根据叠加定理,可以知道电路中的电流为非正弦周期电流,且该信号可以分解为100V直流、150V/50Hz交流、100V/100Hz电源给出的信号。

图5-12 实训电路 (2)理论计算。 已知: U,100,150sin,t,100sin(2,t,90:)V s R,10, 1X,,90,, c,C X,,L,10, L ? 直流分量作用于电路时,电感相当于短路,电容相当于开路。故有: I,0,U,0,P,0000 ? 一次谐波作用于电路时,有: 150 U,,0:Vs12 150,0:U2s1 I,,,1.32,82.9:A1R,j(X,X)10,j(10,90)L1C1 U,1.31,82.9:(10,j10),18.5,127.9:V1 ? 二次谐波作用于电路时,有: 100,,90:U2s2 I,,,2.63,,21.8:A2R,j(X,X)10,j(20,45)L2C2 U,2.63,,21.8:(10,j20),58.8,41.6:V2

高等电力系统分析第二章

1. 什么是电力系统状态估计和可观察性。 电力系统状态估计:对给定的系统结构及量测配置,在量测量有误差的情况下,通过计算得到可靠地并且位数最少的状态变量值----各母线上的电压相角与模值及各元件上的潮流。 当收集到的量测量通过量测方程能够覆盖所有母线的电压幅值和相角时,则通过状态估计可以得到这些值,称该系统是可观测的,每一时刻的测量量维数至少应该与状态量的维数相等。 2. 电力系统状态估计的作用。 提高数据精度,去除不良数据 计算出难以测量的电气量,相当于补充了量测量。 状态估计为建立一个高质量的数据库提供数据信息,以便于进一步实现在线潮流、安全分析及经济调度等功能。 3. 运行状态估计必须具备什么基本条件? 实现状态估计需要的条件: 1.量测冗余度:量测冗余度是指量测量个数m 与待估计的状态量个数n 之间的比值m/n 。系统冗余度越高,对状态估计采用一定的估计方法排除不良数据以及消除误差影响就越好。冗余量测的存在是状态估计可以实现提高数据精度的基础。 2. 分析系统可观性:当收集到的量测量通过量测方程能够覆盖所有母线的电压幅值和相角时,则通过状态估计可以得到这些值,称该系统是可观测的。 4. 状态估计与常规潮流计算的区别和联系? 潮流计算方程式的数目等于未知数的数目。而状态估计的测量向量的维数一般大于未知状态向量的维数,即方程数的个数多于未知数的个数。其中,测量向量可以是节点电压、节点注入功率、线路潮流等测量量的任意组合。 两者求解的数学方法也不同。潮流计算一般用牛顿-拉夫逊法求解 个非线性方程组。而状态估计则是根据一定的估计准则,按估计理论的方法求解方程组 状态估计中的“估计”不意味着不准确,相反,对于实际运行的系统来说,不能认为潮流计算是绝对准确的,而状态估计的值显然更准确。 状态估计可认为是一种广义潮流,而常规潮流计算是一种狭义潮流,及状态估计中m=n 的特例。 5. 数学期望,测量误差,状态估计误差和残差的概念? 数学期望:统计数据的平均值。 状态估计误差:状态量的估计值与真值之间的误差。 6. 电力系统的配置。 ? 状态估计的误差为,可得?-x x []1?()()()T --=-∑-x x x H x R z h x ?测量误差:v = z -h (x ) ? 残差:量测量与量测估计值之差。?-z z

电力系统谐波检测与分析毕业设计论文

毕业设计(论文)题目:电力系统谐波检测与分析

毕业设计(论文)原创性声明和使用授权说明 原创性声明 本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。 作者签名:日期: 指导教师签名:日期: 使用授权说明 本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。 作者签名:日期:

学位论文原创性声明 本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律后果由本人承担。 作者签名:日期:年月日 学位论文版权使用授权书 本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。 涉密论文按学校规定处理。 作者签名:日期:年月日 导师签名:日期:年月日

电力系统谐波管理暂行规定

电力系统谐波管理暂行规定 SD126~84 第一章总则 第一条电力系统中的谐波主要是治金、化工、电气化铁路等换流设备及其他非线性用电设备产生的。随着硅整流及可控硅换流设备的广泛使用和各种非线性负荷的增加,大量的谐波电流注入电网,造成电压正弦波形畸变,使电能质量下降,给发供电设备及用户用电设备带来严重危害。为保证向国民经济各部门提供质量合格的50赫兹电能,必须对各种非线性用电设备注入电网的谐波电流加以限制,以保证电网和用户用电设备的安全经济运行,特制订本规定。 第二条本规定适于电力系统以及由电网供电的所有电力用户。 第三条电网原有的谐波超过本规定的电压正弦波形畸变率极限值时,应查明谐波源并采取措施,把电压正弦波形畸变率限制在规定的极限值以内。在本规定颁发前已接入电网的非线性用电设备注入电网的谐波电流超过本规定的谐波电流允许值时,应制订改造计划并限期把谐波电流限制在允许范围以内。所需投资和设备由非线性用电设备的所属单位负责。 第四条新建或扩建的非线性用电设备接入电网,必须按本规定执行。如用户的非线性用电设备接入电网,增加或改变了电网的谐波值及其分布,特别是使与电网连接点的谐波电压、电流升高,用户必须采取措施,把谐波电流限制在允许的范围内,方能接入电网运行。 第五条进口设备和技术合作项目亦应执行本规定。但如对方的国家标准或企业标准的全部或部分规定比本规定严格,则应按对方较严格的规定执行。 第六条谐波对通讯等的影响应按国内有关规定执行。 第七条用户用电设备对谐波电压的要求较本规定的电压正弦波畴变率极限更严格时,由用户自行采取限制谐波电压的措施。 第二章电压正弦波形畸变率极限值和谐波电流允许值 第八条电网中任何一点的电压正弦波形畴变率均不得超过表1规定的极限值。 表1 电网电压正弦畸形畸变率极限值(相电压)

电力系统中谐波论文

浅谈电力系统中的谐波 摘要:经济的飞速发展带来供电紧张,为解决供电紧张,一方面要建设许多新的电厂和输电线路,另一方面要高效利用现有的电力资源,减少电力损耗。谐波是导致电力损耗增加,供电质量下降的重要因素。过去,谐波电流是由电气化铁路和工业的直流调速传动装置所用的,由交流变换为直流电的水银整流器所产生的。近年来,产生谐波的设备类型及数量均已剧增,并将继续增长。电力系统中谐波对供配电线路、对电力设备的危害都是相当严重的。所以,我们必须很慎重地考虑谐波和它的不良影响,以及如何将不良影响减少到最小。本文分析谐波基本性质和测量方法,对配网中谐波的来源和危害进行了详细说明,总结和提出了治理谐波的若干方法。 关键字:电力系统电能质量谐波电流谐波危害谐波治理 abstract: the rapid development of economy brings power supply nervous, to solve the power supply nervous, on the one hand, to build many new power plants and transmission lines, on the other hand to efficient use of the existing power resources, and reduce power consumption. harmonic is caused power loss increases, the quality of power supply of the decline of the important factors. in the past, the harmonic current is electrified railway and industry by dc speed control of transmission device used by the exchange transformation for the dc produced by mercury rectifier. in

电力系统中谐波的危害与产生

编号:AQ-JS-03716 ( 安全技术) 单位:_____________________ 审批:_____________________ 日期:_____________________ WORD文档/ A4打印/ 可编辑 电力系统中谐波的危害与产生 Harm and generation of harmonics in power system

电力系统中谐波的危害与产生 使用备注:技术安全主要是通过对技术和安全本质性的再认识以提高对技术和安全的理解,进而形成更加科 学的技术安全观,并在新技术安全观指引下改进安全技术和安全措施,最终达到提高安全性的目的。 电网谐波造成电网污染,正弦电压波形畸变,使电力系统的发供用电设备出现许多异常现象和故障,情况日趋严重。本文全面论述了电力系统中谐波的危害及产生情况,希望能引起我们的高度重视。 谐波的危害电力系统中谐波的危害是多方面的,概括起来有以下几个方面: 1.对供配电线路的危害 (1)影响线路的稳定运行 供配电系统中的电力线路与电力变压器一般采用电磁式继电器、感应式继电器或晶体管继电器予以检测保护,使得在故障情况下保证线路与设备的安全。但由于电磁式继电器与感应式继电器对10%以下含量高达40%时又导致继电保护误动作,因而在谐波影响下不能全面有效地起到保护作用。晶体管继电器虽然具有许多优点,

但由于采用了整流取样电路,容易受谐波影响,产生误动或拒动。这样,谐波将严重威胁供配电系统的稳定与安全运行。 (2)影响电网的质量 电力系统中的谐波能使电网的电压与电流波形发生畸变。如民用配电系统中的中性线,由于荧光灯、调光灯、计算机等负载,会产生大量的奇次谐波,其中3次谐波的含量较多,可达40%;三相配电线路中,相线上的3的整数倍谐波在中性线上会叠加,使中性线的电流值可能超过相线上的电流。另外,相同频率的谐波电压与谐波电流要产生同次谐波的有功功率与无功功率,从而降低电网电压,浪费电网的容量。 2.对电力设备的危害 对电力电容器的危害 当电网存在谐波时,投入电容器后其端电压增大,通过电容器的电流增加得更大,使电容器损耗功率增加。对于膜纸复合介质电容器,虽然允许有谐波时的损耗功率为无谐波时损耗功率的1.38倍;对于全膜电容器允许有谐波时的损耗功率为无谐波时的1.43倍,但

电力系统状态估计

状态估计的定义(课后题) 状态估计的作用和步骤(课后题) 状态估计与潮流计算的联系和区别(课后题) 各种状态估计模型和算法的特点(课后题) 相关的概念和定义(课后题) 电力系统状态估计的主要内容是什么?有哪些变量需要状态估计?(06B) 通常称能够表征电力系统特征所需最小数目的变量为电力系统的状态变量。电力系统的状态估计就是要求能在测量量有误差的情况下,通过计算以得到可靠的并且为数最小的状态变量值。 电力系统的测量量一般包括支路功率、节点注入功率、节点电压模值等;状态变量是各节点的电压模值和相角。 什么是状态估计? 环境噪声使理想的运动方程无法精确求解。测量系统的随机误差,使测量向量不能直接通过理想的测量方程求出状态真值。通过统计学的方法加以处理以求出对状态向量的估计值。这种方法,称为状态估计。按运动方程与以某一时刻的测量数据作为初值进行下一时刻状态量的估计,叫做动态估计,仅仅根据某时刻测量数据,确定该时刻的状态量的估计,叫做静态估计。 电力系统状态估计的必要性? 1)电力系统需要随时监视系统的运行状态; 2)需要提供调度员所关心的所有数据; 3)测量所有关心的量是不经济的,也是不可能的,需要利用一些测量量来推算其它电 气量; 4)由于误差的存在,直接测量的量不甚可靠,甚至有坏数据; 状态估计的作用和流程?(下图左) 1)降低量测系统投资,少装测点; 2)计算出未测量的电气量; 3)利用量测系统的冗余信息,提高量测数据的精度(独立测量量的数目与状态量数目 之比,成为冗余度)。 状态估计与潮流计算的关系?(上图右) 1)潮流计算是状态估计的一个特例; 2)状态估计用于处理实时数据,或者有冗余的矛盾方程的场合; 3)潮流计算用于无冗余矛盾方程的场合; 4)两者的求解算法不同; 5)在线应用中,潮流计算在状态估计的基础上进行,也就是说,由状态估计提供经过 加工处理过的熟数据,作为潮流计算的原始数据。

浅谈电力系统中谐波污染的危害与治理

浅谈电力系统中谐波污染的危害与治理摘要:目前,谐波污染已成为影响电力系统安全稳定运行的主要因素之一。谐波会影响电力系统中的电能质量,产生附加的谐波损耗,降低发电、输电及用电设备的效率,对谐波污染进行有效的治理,对于保证电力系统正常的经济运行具有重要的意义。本文介绍了电力系统中常见的谐波污染源种类,分析了谐波污染的危害,并对谐波治理方法进行了总结。 关键词:电力系统;谐波治理 abstract: at present, the harmonic pollution has become one of the main factors that affect the safe and stable operation of power system. harmonics will affect the quality of the electrical energy in the power system, generate additional harmonic losses, reducing the efficiency of power generation, transmission and distribution of electrical equipment, of harmonic pollution effective governance, is of great significance to ensure normal economic operation of power systems . this article describes a common kind of harmonic pollution sources in the power system, harmonic pollution hazards, and harmonic treatment methods are summarized.keywords: power systems; harmonic control 中图分类号:tm712 文献标识码:a 文章编号:2095-2104(2012)

电力系统谐波分析

海南大学 课程论文 题目:电力系统谐波分析 学号: B0736039 姓名:陈肖前 年级: 07电气1班 学院:机电与工程学院 系别:电气系 专业:电气工程及其自动化 指导教师:王海英 完成日期: 2010 年 06月 15 日

摘要 谐波对电力系统和用电设备产生了严重的危害及影响,而小波变换为电力系统谐波信号分析提供了有力的分析工具。与Fourier变换相比,小波变换是时间频率的局部化分析,它通过伸缩平移运算对信号逐步进行多尺度细化,最终达到高频处时间细分,低频处频率细分,能自动适应时频信号分析的要求,从而可聚焦到信号的任意细节,解决了Fourier变换的困难问题,成为继Fourier变换以来在科学方法上的重大突破。有人把小波变换称为“数学显微镜”。 本设计探讨了小波变换的基本原理之后,就如何应用小波工具箱对系统的谐波信号进行了分析。主要内容如下: 首先,采用小波变换进行谐波检测的方法进行了系统仿真,通过仿真验证了小波分析具有时域和频域的双重分辨率,能够较好的解决傅立叶分析所不能解决的问题。 其次,在谐波分析中,采用小波分析算法,不仅能正确的得到各次谐波,而且对用傅立叶分析没法解决的有关信号的暂态分量的提取,暂态分量时间的定位,电压、电流波形的间断、突起、凹陷和瞬态分量的检测都具有较好的效果。 最后MATLAB仿真的结果验证了本文的分析方法的正确性和有效性。基本达到了实验目的。 关键词:谐波分析小波理论MATLAB

Abstract Harmonics have a serious danger and affect in the power system and electrical equipment, but wavelet transform can provides a powerful analytical tool for harmonics signal analysis. Compared with the Fourier transform, wavelet transform is the localized analysis of time frequency, which refines the signal multi-scale by scalabling and shifting operation step-by-step. Finally it meets the requirement of high-frequency time and low-frequency frequency subdivided, and of automatically adapting to time-frequency signal analysis. It can focus on arbitrary particulars of signal , solving the difficult problems of the Fourier transform. It is a major breakthrough in science method since the Fourier transform. Someone praised wavelet transform as the “mathematical microscope”. After discussing the basic principles of wavelet transform, this Design discussed how to use the wavelet toolbox to analy the harmonic signals. They are as follows: Firstly, the Harmonic Detection method was simulated by Wavelet Transform, and the simulation shows that the Wavelet Transform has double resolutions in both time and frequency domains, which can solve the problem that the Fourier Transform can't do well. Secondly, we could not only correctly get various orders of harmonics, but also effectively solve how to draw the transient component of the signal ,and how to locate the time of transient component of the signal ,and solve the problem of intermittent and Processes and depression of the voltage and current wave, and solve how to detect transient component,and the Fourie are not available. Finally,MATLAB simulation results verify the correctness and effectiveness of the analytical methods. It achieves the basic purpose of the experiment. Key words: Harmonic measurement Wavelet theory MATLAB

电力系统谐波检测的现状与发展

电力系统谐波检测的现状与发展 李红,杨善水(南京航空航天大学自动化学院江苏南京210016) 摘要:准确、实时地对电力系统谐波进行检测有着重要的意义。本文根据电力系统谐波测量的基本方法,对近年来电力系统谐波检测的新方法进行了分析和评述。最后对电力系统的谐波测量进行了总结并提出了看法。 关键词:谐波测量;傅里叶变换;瞬时无功功率;神经网络;小波分析 1 引言 电力是现代人类社会生产与生活不可缺少的一种主要能源形式。随着电力电子装置的应用日益广泛,电能得到了更加充分的利用。但电力电子装置带来的谐波问题对电力系统安全、稳定、经济运行构成潜在威胁,给周围电气环境带来了极大影响。谐波被认为是电网的一大公害,对电力系统谐波问题的研究已被人们逐渐重视。谐波问题涉及面很广,包括对畸变波形的分析方法、谐波源分析、电网谐波潮流计算、谐波补偿和抑制、谐波限制标准以及谐波测量及在谐波情况下对各种电气量的检测方法等。 谐波检测是谐波问题中的一个重要分支,对抑制谐波有着重要的指导作用,对谐波的分析和测量是电力系统分析和控制中的一项重要工作,是对继电保护、判断故障点和故障类型等工作的重要前提。准确、实时的检测出电网中瞬态变化的畸变电流、电压,是众多国内外学者致力研究的目标。 常规的谐波测量方法主要有:模拟带通或带阻滤波器测量谐波;基于傅里叶变换的谐波测量;基于瞬时无功功率的谐波测量。 但是,各种基本方法在实际运用中均有不同程度局限及缺点。针对这一问题,在以上各种方法基础上的拓展和改进方法应运而生,本文着重介绍近几年来的一些新兴的谐波测量方法。 2 改进的傅里叶变换方法 傅里叶变换是检测谐波的常用方法,用于检测基波和整数次谐波。但是傅里叶变换会产生频谱混叠、频谱泄漏和栅栏效应。怎样减小这些影响是研究的主要任务,通过加适当的窗函数,选择适当的采样频率,或进行插值,尽量将上述影响减到最小。 延长周期法[1]是在补零法的基础上,把在一个采样周期内采到的N个点扩展任何整数倍。他的表达式为:

浅析电力系统谐波及其研究现状

龙源期刊网 https://www.docsj.com/doc/1210673212.html, 浅析电力系统谐波及其研究现状 作者:高瑜郭天飞郭天超路静韩一帆 来源:《科学与财富》2016年第28期 摘要:近些年来,随着人们对电力需求量的不断增长以及电力系统的迅速发展,人们越 来越关注所用电能的质量。由于电力电子技术具有能使设备响应速度快、控制性能好、效率高、体积小、重量轻等特点,其在各种设备上得以广泛应用。然而,变压器、电力电子装置等非线性负荷,作为谐波源,其广泛的使用给电力系统及电气设备的正常运行造成了严重的危害,电力系统也因此面临着严重的谐波污染。因此,谐波的分析及抑制已成为国内外电气领域广泛关注的课题。 关键词:谐波;起因;危害;研究现状 1谐波的起因 目前,国际上公认的谐波含意是:“谐波是一个周期电气量的正弦波的分量,或者说谐波分量为周期量的傅里叶级数中大于1的h次分量其频率为基波频率的整数倍”[1]。 在电力系统中,谐波主要是由变压器、旋转电机和各种电力电子设备等非线性负载产生的。在一般情况下,电气设备的非线性电特性使其组成了谐波源。通常,可将谐波源分为两类,一类是以电力电子装置为代表的现代非线性设备;另一类为传统非线性设备包括变压器、旋转电机等。 (1)现代的非线性设备,主要包括各种电力电子变流装置。这类设备广泛使用于家用电器和大量工矿企业中,它们在开关投切或换向时产生的阶跃电流中含有大量谐波成分。比如荧光灯,它的电流之所以是畸变的,主要是由于在点亮状态下有感性的非线性镇流器限制了电流的变化[2]。 (2)传统的非线性设备,主要包括旋转电机、变压器等。这类设备产生的电流中之所以含有谐波成份是因为它们的铁芯在产生磁饱和时具有非线性特性。例如,旋转电机,旋转电机的线圈通电,通过电磁感应原理,产生磁动势。由于线圈是嵌入线槽内的,而线槽不会完全按照正弦分布,所以其产生的磁动势的波形不会完全是正弦波,含有大量谐波。 这两种谐波源都会向电网注入大量的谐波电流,而谐波电压的产生则是电流流经电网阻抗的结果。电力电子装置等大量现代非线性装置的广泛应用,致使其所产生的电力系统谐波比重超过了传统非线性设备,因而已成为主要的谐波源。 2谐波产生的危害

电力系统状态估计概述

电力系统状态估计研究综述 摘要:电力系统状态估计是当代电力系统能量管理系统(EMS)的重要组成部分。本文介绍了电力系统状态估计的概念、数学模型,阐述了状态估计的必要性及其作用,系统介绍了状态估计的研究现状,最后对状态估计的研究方向进行了展望。关键词:电力系统;状态估计;能量管理系统 0 引言 状态估计是当代电力系统能量管理系统(EMS)的重要组成部分, 尤其在电力市场环境中发挥更重要的作用。它是将可用的冗余信息(直接量测值及其他信息)转变为电力系统当前状态估计值的实时计算机程序和算法。准确的状态估计结果是进行后续工作(如安全分析、调度员潮流和最优潮流等)必不可少的基础。随着电力市场的发展,状态估计的作用更显重要[1]。 状态估计的理论研究促进了工程应用,而状态估计软件的工程应用也推动了状态估计理论的研究和发展。迄今为止,这两方面都取得了大量成果。然而,状态估计领域仍有不少问题未得到妥善解决,随着电力系统规模的不断扩大,电力工业管理体制向市场化迈进,对状态估计有了新要求,各种新技术和新理论不断涌现,为解决状态估计的某些问题提供了可能。本文就电力系统状态估计的研究现状和进一步的研究方向进行了综合阐述。 1 电力系统状态估计的概念 1.1电力系统状态估计的基本定义 状态估计也被称为滤波,它是利用实时量测系统的冗余度来提高数据精度,自动排除随机干扰所引起的错误信息,估计或预报系统的运行状态(或轨迹)。状态估计作为近代计算机实时数据处理的手段,首先应用于宇宙飞船、卫星、导弹、潜艇和飞机的追踪、导航和控制中。它主要使用了六十年代初期由卡尔曼、布西等人提出的一种递推式数字滤波方法,该方法既节约内存,又大大降低了每次估计的计算量[2,4]。 电力系统状态估计的研究也是由卡尔曼滤波开始。但根据电力系统的特点,即状态估计主要处理对象是某一时间断面上的高维空间(网络)问题,而且对量测误差的统计知识又不够清楚,因此便于采用基于统计学的估计方法如最小方差估计、极大验后估计、极大似然估计等方法,目前很多电力系统实际采用的状态估计算法是最小二乘法。 1.2电力系统状态估计的数学模型 状态估计的数学模型是基于反映网络结构、线路参数、状态变量和实时量测之间相互关系的量测方程: z+ =) ( h v x 其中z是量测量;x是状态变量,一般是节点电压幅值和相位角;v是量测误差;z和v都是随机变量。 状态估计器的估计准则是指求解状态变量x的原则, 电力系统状态估计器采用的估计准则大多是极大似然估计, 即求解的状态变量x*使量测值z被观测到的可能性最大, 用数学语言描述, 即: z f x f= z (x , )] , ( *) max[ 其中f(z)是z的概率分布密度函数[3]。

浅谈电力系统谐波治理

浅谈电力系统谐波治理 发表时间:2019-09-12T09:45:09.953Z 来源:《基层建设》2019年第17期作者:李俊正[导读] 摘要:谐波在电网中就像是一种垃圾,严重危害着电力设备的“健康”,不但降低了电气设备的使用寿命,而且对用电设备的供电质量造成了极大的影响。 青海宝盈电力设计咨询有限公司 摘要:谐波在电网中就像是一种垃圾,严重危害着电力设备的“健康”,不但降低了电气设备的使用寿命,而且对用电设备的供电质量造成了极大的影响。为此我们应积极采取有效的措施抑制和消除电网谐波污染,维护绿色电力环境、确保电网运行安全,为用电终端设备提供清洁的电能。 关键词:谐波治理;绿色电能 随着工业的不断发展,社会经济得到了迅速的提高,电力电子技术也有了突飞猛进的发展;然而,电力电子技术带来方便、高效巨大利益的同时,它的非线性、冲击性和不平衡用电特性,也给电力系统的供电质量造成严重污染,给电网注入了大量的谐波,危及电力系统的安全经济运行,同时也为其他用电终端设备造成了极大的危害。随着以计算机为代表的大量敏感设备的普及应用,电网谐波的危害越来严重。就像现代人喜欢绿色食品一样,人们对电力系统的供电质量要求越来越高,对电网中的谐波含量提出了更严格的要求。我们必须采取有效的措施来消除电网中的高次谐波,为电网创造绿色空间。 1.谐波的产生及影响 与电网连接并输入2倍于50Hz及以上频率电流的设备,统称为谐波源。谐波的产生可以分两类,一类为系统本身的电气设备(如发电机、变压器等)三相绕组不对称或铁芯饱和产生;另一类为用户非线性用电设备产生。电网中谐波污染主要由用户非线性用电设备造成。对于发电机及变压器,我们用提高制作工艺的方法可以降低高次谐波的产生;而对于用电设备,随着工业迅速发展的今天已经很难控制,工业领域大量使用的非线性变流装置、家用电器、通讯设备、冶炼行业的电弧炉、新能源光伏发电采用的逆变装置、电气化铁道的牵引设备等,它们给电网带来了日益严重的谐波污染,极易引起电网波形畸变。 非线性用电设备主要为晶闸管整流设备。如果整流装置为单相整流电路,在接感性负载则含有奇次谐波电流,其中3次谐波的含量可达基波的30%;在接容性负载时则含有奇次谐波电压,其谐波含量随电容值的增大而增大。而整流设备在工业中应用广泛,并对社会经济具有直接影响,可见谐波污染和工业同时出现,而且在成倍增长。 如果不及时治理电网中谐波,谐波含量一旦超标,会对电力系统及用户产生如下危害: 1)持续的谐波含量过高,将加速变压器、断路器、电力电缆等电气设备的绝缘老化,并其减少使用寿命; 2)谐波产生的序电流分解后主要为正序和负序电流,对继电保护和自动化装置产生影响,使其误动,甚至造成电网解列,大面积停电; 3)针对普通感应式电能表,计量波形严重畸变的非线性负荷,电能计量值会小于客户实际消耗的电量,达不到准确计量的目的; 4)谐波功率除对供热用的普通电炉外,不会做任何有用功,却在各种发、送、变、配和用电设备中以发热的方式消耗掉,增大供电线路损耗,减少了电能的利用效率; 5)谐波电压和谐波电流通过线路间的感应耦合,会对信息系统产生频率藕合干扰,影响通信网络的正常工作。 根据发达国家的经验和预测表明,非线性负荷用电设备的种类、数量和用电量将迅速增加,这些非线性负荷即谐波源是电网中谐波问题的根源。要想得到“绿色”清洁的电能,就必须抑制和消除电网中的谐波。 2.谐波消除的措施 在电力系统设计中加大系统短路容量、提供供电电压等级、提高系统三相负荷平衡、提高电气设备的三相绕组对称性和磁饱和等措施都能减少系统中谐波的产生,但这样就会增加系统的建设投资,而且像三相负荷绝对平衡和三相绕组绝对对称工程中很难做到。所以采用交流滤波装置是抑制和消除谐波的有效措施。 当电网中有谐波源时,谐波源流向电网的谐波电流公式为: (1) IS—注入电网的谐波电流 In—谐波源谐波电流 ZL—电网的负载阻抗 ZS—电网阻抗 可见,电网阻抗ZS可看为定值,In大小由谐波源决定,所以由谐波源注入电网的谐波电流IS大小可由ZL决定,只有我们设置一个让IS 顺利通过的ZL就能消除谐波,也就是在谐波产生后没进入到电网之前就消除它,就地消化掉,为此我们可以采用LC滤波装置。 LC滤波装置我们在变电工程设计中比较常用,在并联无功补偿电容回路中接入一组电抗器,根据要消除的谐波次数选择电抗参数,这样在提电网供功率因数的同时又消除了谐波。LC滤波器结构简单,吸收谐波效果明显,但由于结构原理上的原因,在应用中存在着难以克服的缺陷: 1)谐波的消除受电网系统阻抗ZS的影响,随着电网增大注入电网的谐波电流IS有增大的趋势; 2)当电网阻抗和LC滤波器参数匹配的情况下系统有可能发生谐振,此时对某些谐波有谐波放大的可能; 3)LC滤波器仅对固有频率的谐波有较好的消除作用,当谐波成分变化时效果较差,而电力系统中的谐波是随时出现频率不定的。 所以,如果滤波装置具有可调节性,根据谐波的频率和大小及出现的时间进行实时监控,能够积极的消除高次谐波就能解决这一问题。这个我们从负载电流IL的傅立叶展开式着手: IL=ΣInsin(nωt+θn) =I1cosθ1 sinωt+ I1sinθ1 cosωt+ΣInsin(nωt+θn) = I1P+ I1Q+ In (2)

相关文档