文档视界 最新最全的文档下载
当前位置:文档视界 › 考虑轧件弹性变形的Hill轧制力显式公式 - 副本

考虑轧件弹性变形的Hill轧制力显式公式 - 副本

考虑轧件弹性变形的Hill轧制力显式公式 - 副本
考虑轧件弹性变形的Hill轧制力显式公式 - 副本

考虑轧件弹性变形的Hill轧制力显式公式2

吕程矫志杰刘相华王国栋

摘要带钢的轧制力计算和轧辊的压扁计算互为条件,针对考虑轧件弹性变形的Hill轧制力公式和Hitchcock轧辊压扁公式,推导了它们的显式计算公式,从而避免了传统的迭代计算。

关键词轧制力压扁Hill公式显式公式

HILL EXPLICIT EXPRESSION OF ROLLING FORCE TAKING INTO CONSIDERATION ELASTIC DEFORMATION OF ROLLED STOCK

Lu Chen Jiao Zhijie Liu Xianghua Wang Guodong

(Northeastern University)

Synopsis Since calculations of the rolling force and the flattening of roll are interdependent their explicit calculation expression is derived with the help of the rolling force express HILL which takes into consideration the elastic deformation of the rolled stock and the flattening of roll expression Hitchcock. The traditional iterative calculation can be avoided thereby.

Keywords rolling force flattening expression HILL explicit expression

1 前言

轧制力是轧机最重要的设备参数和工艺参数,不仅被广泛应用于机械设备的强度设计与校核,而且也是制定工艺制度的重要参数,特别是在板带轧制的计算机控制技术中轧制力公式起着核心数学模型的作用。

Bland-Ford-Hill公式是冷轧带钢最常用的轧制力公式。由于冷轧过程中轧辊产生明显的弹性压扁现象,因此轧制力计算中需要考虑轧辊压扁的影响。而计算轧辊压扁Hitchcock公式又是以轧制力为条件的,所以,计算轧制力时需要将Bland-Ford-Hill公式和Hitchcock公式联立求解,一般采用迭代的方法[1],计算过程复杂。本文推导了轧制力计算的显式公式。

2 Bland-Ford-Hill公式

Hill在Bland-Ford轧制力公式的基础上,提出了考虑轧件弹性变形的简化公式[2],成为目前带钢冷轧最为经典的轧制力公式。该公式考虑

了轧件的弹性压缩区和弹性回复区,如图1所示。

图1 变形区组成示意图

1.入口轧件弹性压缩区

2.出口轧件弹性回复区

3.轧件塑性变形区

单位宽总轧制力公式为:

P=P

p +P

e1

+P

e2

(1)

(2)

(3)

(4)

式中P——单位宽轧制力

P

p

——单位宽塑性变形区轧制力

P

e1

——单位宽弹性压缩区轧制力

P

e2

——单位宽弹性回复区轧制力

k

fm

——平均变形抗力

R′——轧辊压扁半径

Q

p

——外摩擦影响系数

n

t

——张力影响系数

H——轧前带钢厚度

h——轧后带钢厚度

Δh——带钢压下量,Δh=H-h

t

f

——前张应力

t

b

——后张应力

E——轧件杨氏模量

v——轧件泊松比

(5) (5)式中,ε为压下率,;f为摩擦系数。

(6)

式中μ

t ——加权系数,μ

t

=0.7

3 轧辊压扁公式

考虑轧件的弹性压缩和弹性回复后,需要对计算压扁的Hitchcock

公式进行修正[1],具体为:

(7)

(8)

(9)

(10)

式中R——压扁前轧辊半径

C

——轧辊的压扁系数

E

R

——轧辊的杨氏模量

v

R

——轧辊的泊松比

k

h

——轧件出口变形抗力

4 显式公式的推导

为了便于显式公式的推导,将式(1)~(4)做如下参数替换:

(11)

(12)

α

3

=1.08-1.02ε(13)

(14)

α

1、α

2

、α

3

和α

4

与轧辊压扁无关,则式(1)变为:

(15)

轧辊压扁半径公式做如下替换:

β1=R (16)

(17) β1和β2与轧制力无关,式(7)可表示为:

R′=β

1+β

2

P (18)

将上式变化后,

(19) 将式(19)代入式(15),得

(20)

整理后,有

(21) 式(21)的解为

(22)

若(α

4

β

2

-1)≥0,则两解均为负值,因此,必有(α

1

α

4

β

2

-1)<0,

则轧辊压扁半径显式公式为:

(23)

将此式代入式(15),即可得到轧制力的显式计算公式。

5 结论

本文针对考虑轧件弹性变形的Bland-Ford-Hill轧制力计算公式和Hitchcock轧辊压扁计算公式之间耦合关系,推导了其显式计算公式,避免了传统的迭代计算。同时,该方法也可用于其它轧制力显式公式的推导。

吕程(东北大学)

矫志杰(东北大学)

刘相华(东北大学)

王国栋(东北大学)

三角恒等变换公式大全

三角函数 cos (a+ B)=CoS a'-cos B - sin a - sin B cos (a-B)=cos a-cos B + sin a - sin B sin (a+ B)=S in a'-cos B cos a - sin B sin (a-B)=sin a-cos B - cos ,a?sin B tan (a+ B)=(ta n a+ta n B)/ (1-tan a - tan B) tan (a-B)=(ta n a-ta n B)/ (1+ta n a - tan B) 二 倍 角 sin (2a) =2sin a - cos a =2tan (a) /[1-ta门(a)] cos (2 a) =cosA2 (a) -si 门八2 (a) =2cosA2 (a)-1=1-2si nA2 (a)=[1-ta 门 八(a)]/[1+tanA2 (a)] tan (2a) =2tan a /[1 -ta门八2 (a)] 三倍角 sin3 a =3sin a -4sinW (a) C0S3 a =4COS A3 (a) - 3C0S a tan3 a = (3tan a -ta门八3 (a))*( 1-3ta门八2 (a)) sin3 a =4sin aX sin ( 60- a) sin (60+a) C0S3 a =4cos aX COS ( 60- a) C0s ( 60+a) tan3 a =tan aX tan ( 60- a) tan (60+a) 半角公式 sin A2 (a /2 )= (1-cos a) /2 cosA2 (a /2 )= (1+cos a) /2 tan A2 (a /2 )= (1-CoS a) / ( 1+cos a) tan ( a /2 ) =sin a / ( 1+cos a) = ( 1- CoS a) /si n a 半角变形 sinA2 (a /2 ) = (1-cos a) /2 sin(a/2 ) =V[ (1-cos a) /2] a/2 在一、二象限 =-V[ (1-cos a) /2] a/2 在三、四象限 C0SA2 (a /2 ) = (1+cos a) /2 cos(a/2 ) =V[ (1+cos a) /2] a/2 在一、四象限 =-V[ (1+cos a) /2] a/2 在二、三象限 tan A2 (a 12 ) = ( 1-COS a) / ( 1+COS a) tan (a /2 ) =S in a / ( 1+COS a) =( 1- COS a) /si n a =V[ ( 1-COS a) / ( 1+COS a)] a/2在一、三象限 =-V [ ( 1- COS a) / ( 1+COS a) ] a/2 在二、四象限

完全平方公式之恒等变形

§1.6 完全平方公式(2) 班级: 姓名: 【学习重点、难点】 重点: 1、弄清完全平方公式的结构特点; 2、会进行完全平方公式恒等变形的推导. 难点:会用完全平方公式的恒等变形进行运算. 【学习过程】 ● 环节一:复习填空 ()2_____________a b += ()2_____________a b -= ● 环节二: 师生共同推导完全平方公式的恒等变形 ①()222_______a b a b +=+- ②()222_______a b a b +=-+ ③()()22_______a b a b ++-= ④()()22_______a b a b +--= ● 典型例题及练习 例1、已知8a b +=,12ab =,求22a b +的值 变式训练1:已知5a b -=,22=13a b +,求ab 的值 变式训练2:已知6ab =-,22=37a b +,求a b +与a b -的值 方法小结:

提高练习1:已知+3a b =,22+30a b ab =-,求22a b +的值 提高练习2:已知210a b -=,5ab =-,求224a b +的值 例2、若()2=40a b +,()2=60a b -,求22a b +与ab 的值 小结: 课堂练习 1、(1)已知4x y +=,2xy =,则2)(y x -= (2)已知2()7a b +=,()23a b -=,求=+22b a ________,=ab ________ (3)()()2222________a b a b +=-+ 2、(1)已知3a b +=,4a b -=,求ab 与22a b +的值 (2)已知5,3a b ab -==求2()a b +与223()a b +的值。 (3)已知224,4a b a b +=+=,求22a b 与2()a b -的值。

三角恒等变换公式

三角恒等变换公式 1.两角和与差的三角函数 和(差)角公式: sin(α±β)=sin αcos β±cos αsin β cos(α±β)=cos αcos β sin αsin β tan(α±β)= β αβαtan tan 1tan tan ± 倍角公式: sin 2α =2sin αcos α cos2α=cos 2α-sin 2α=2cos 2α-1=1 - sin 2α tan2α=αα2tan 1tan 2- 2.和差化积与积化和差公式 积化和差公式: 2sin αcos β=sin(α+β)+sin(α-β) 2cos αsin β= sin(α+β)-sin(α-β) 2cos αcos β= cos(α+β)+cos(α-β) -2sin αsin β=cos(α+β)-cos(α-β) 和差化积公式: sin α+ sin β=2sin 2βα+cos 2 β α- sin α- sin β=2cos 2βα+sin 2 βα- cos α+ cos β=2cos 2βα+cos 2 βα- cos α- cos β=-2sin 2βα+sin 2βα- 3.万能公式与半角公式 万能公式:

sin α=2tan 12tan 22 αα+ cos α=2tan 12tan 12 2 αα+- tan α=2tan 12tan 22 αα- 半角公式: sin 2 cos 12αα -±= cos 2 cos 12αα+±= tan ααα cos 1cos 12+-± ==ααsin cos 1-=ααcos 1sin + 其他: cos 2 2cos 12αα+= sin 22cos 12αα-= 1+cos2α=2cos α2 1-cos2α=2sin α2

§4.2 多项式的恒等变形

§4.2 多项式的恒等变形 教学目的:使学生掌握多项式的有关理论及多项式变形的方法,主要是 解析式的求法——拉格朗日插值公式,因式分解的常用方法。 教学重点与难点:解析式的求法——拉格朗日插值公式,因式分解的 常用方法。 课时安排:2课时。 教学内容如下: 一、 多项式的基本概念 多项式是由数与字母进行+、—、?运算而构成。 定义 设n 是一非负整数,形如1110()n n n n f x a x a x a x a --=++++ 的多项式,当0n a ≠时,叫做一元n 次多项式。 所有系数全为零的多项式叫做零多项式,记为0。零多项式是唯一不定义次数的多项式。 二、多项式的恒等定理(多项式的基本定理) 定理1 如果在给定的数域里,对于变数字母的任意值,多项式 1110()n n n n f x a x a x a x a --=++++ 的值都等于零,那么这个多项式的所 有系数都等于零。 证明 用数学归纳法 (1)当n=1时,10()f x a x a =+。因为对于x 的任意值,f(x)的值都等于零,所以令x=0,即得0 0a =。由此得1()0f x a x =≡, 再令x=1,则有10a =。因此,命题对于一次多项式成立。 (2)假定命题对于次数低于n 的多项式成立,现在来证明对于

n 次多项式也成立。 如果对于x 的任意值,都有 1 11 ()n n n n f x a x a x a x a --=++++ 0≡ ① 在等式①中,以2x 代x ,得 11 110(2)2220n n n n n n f x a x a x a x a ---=++++≡ ② ①2n ?—②,得1 12221202 (21)2(21)(21)0n n n n n n n a x a x a -------+-++-≡ ③ 这是一个次数低于n 次的多项式,它恒等于零,依归纳假定,它的所有系数都等于零,即 122 122(21)0,2(21)0,,n n n n a a -----=-= 02(21)0,,(21)0n k k n n k a a ---=-= 因为 20,210( 1,2,n k k k n -≠-≠= 所以 12100,0,,0,0 n n a a a a --=== = 代入①得,0n n a x ≡,令x=1,得0n a = 根据(1)、(2),命题对于任意的一元多项式都成立。 定理2 两个多项式 1110()n n n n f x a x a x a x a --=++++ (0n a ≠) 1m 110 g(x)=b (0)m m m m x b x b x b b --++++≠ 恒等的充分必要条件是它们的次数相等,且对应项系数相等,即 ,(1,2,,)i i n m a b i n === 证明 条件的充分性是显然的,下面证明必要性。 为了确定起见,不妨设n ≥m 。若两个多项式的次数不同,可以在次数较低的多项式中添系数为零的项,使

圆柱弹簧的设计计算.

圆柱弹簧的设计计算 (一)几何参数计算 普通圆柱螺旋弹簧的主要几何尺寸有:外径D、中径D2、内径D1、节距p、螺旋升角α及弹簧丝直径d。由下图圆柱螺旋弹簧的几何尺寸参数图可知,它们的关系为: 式中弹簧的螺旋升角α,对圆柱螺旋压缩弹簧一般应在5°~9°范围内选取。弹簧的旋向可以是右旋或左旋,但无特殊要求时,一般都用右旋。 圆柱螺旋弹簧的几何尺寸参数 普通圆柱螺旋压缩及拉伸弹簧的结构尺寸计算公式见表(普通圆柱螺旋压缩及拉伸弹簧的结构尺寸(mm)计算公式)。 普通圆柱螺旋压缩及拉伸弹簧的结构尺寸(mm)计算公式

(二)特性曲线

弹簧应具有经久不变的弹 性,且不允许产生永久变形。因 此在设计弹簧时,务必使其工作 应力在弹性极限范围内。在这个 范围内工作的压缩弹簧,当承 受轴向载荷P时,弹簧将产生 相应的弹性变形,如右图a所 示。为了表示弹簧的载荷与变形 的关系,取纵坐标表示弹簧承受 的载荷,横坐标表示弹簧的变 形,通常载荷和变形成直线关系 (右图b)。这种表示载荷与变 形的关系的曲线称为弹簧的特 性曲线。对拉伸弹簧,如图<圆 柱螺旋拉伸弹簧的特性曲线> 所示,图b为无预应力的拉伸 弹簧的特性曲线;图c为有预 应力的拉伸弹簧的特性曲线。 右图a中的H0是压缩弹簧 在没有承受外力时的自由长度。 弹簧在安装时,通常预加一个压 力 Fmin,使它可靠地稳定在安 装位置上。Fmin称为弹簧的最 小载荷(安装载荷)。在它的作 用下,弹簧的长度被压缩到H1 其压缩变形量为λmin。Fmax 为弹簧承受的最大工作载荷。在 Fmax作用下,弹簧长度减到 H2,其压缩变形量增到λmax。 圆柱螺旋压缩弹簧的特性曲线λmax与λmin的差即为弹簧的 工作行程h,h=λmax-λmin。 Flim为弹簧的极限载荷。在该 力的作用下,弹簧丝内的应力达 到了材料的弹性极限。与Flim 对应的弹簧长度为H3,压缩变 形量为λlim。

弹簧计算公式#(优选.)

记号的含义 螺旋弹簧的设计时候使用的记号如下表1所示。横弹性系数G的值如表2所示。表1.计算时使用的记号及单位 记号记号的含义单位 d 材料的直径mm D1 弹簧内径mm D2 弹簧外径mm D 弹簧平均径mm Nt 总圈数— Na 有效圈数— Hs 试验载荷下的高度mm Hf 自由高度mm c=D/d 弹簧指数— G 横弹性指数N/mm2 P 弹簧所受负荷N δ弹簧的弯曲mm k 弹簧定数N/mm τ0扭转应力N/mm2 τ扭转修正应力N/mm2

记号 记号的含义单位 κ应力修正系数—表2.横弹性系数:G(N/m㎡) 材料G的值 弹簧钢钢材 高碳素钢丝 高强钢丝 油回火钢丝 7.85×104 不锈钢 SUS304 SUS316 SUS631J1 6.85×104 6.85×104 7.35×104黄铜丝 3.9×104锌白铜丝 3.9×104磷青铜丝 4.2×104铍铜丝 4.4×104 螺旋弹簧的设计用基本计算公式 螺旋弹簧的负荷和弹簧定数?弯曲的关系具有线性特征弹簧的负荷和弯曲是成比例的。 从螺旋弹簧的尺寸求弹簧的定数 压缩螺旋弹簧的素線径因扭转而产生弯曲的弹簧定数K 螺旋弹簧的扭转应力

螺旋弹簧的扭转修正应力 螺旋弹簧试验载荷下高度(端面磨削的情况下) 螺旋弹簧两端的各厚度之和 不同材质螺旋弹簧在高温时的机械特性 表3. 不同温度下弹簧的横弹性定数(N/mm2) 材質環境100℃200℃300℃400℃500℃600℃SUP10 通常76500 74300 ————SUS304 耐蚀?高温68100 66200 ————SUS316 耐蚀?高温68100 66200 ————SKD4 高温77000 74700 71600 69000 ——INCONEL X750 耐蚀?高温77700 76600 74700 72800 70900 —INCONEL 718 耐蚀?高温74700 72400 70100 67800 65900 63600 C5191 耐蚀—————— 表4. 不同温度下弹簧的容许应力(N/mm2) 材質応力位置100℃200℃300℃400℃500℃600℃SUP10 τ 0490 410 ———— SUS304 τ 00.7a 0.5a ————

弹簧弹力计算公式详解

弹簧弹力计算公式详解 压力弹簧、拉力弹簧、扭力弹簧是三种最为常见的弹簧,压力弹簧、拉力弹簧、扭力弹簧的弹力怎么计算,东莞市大朗广原弹簧制品厂为您详解,压力弹簧、拉力弹簧、扭力弹簧的弹力计算公式。 一、压力弹簧 ·压力弹簧的设计数据,除弹簧尺寸外,更需要计算出最大负荷及变位尺寸的负荷; ·弹簧常数:以k表示,当弹簧被压缩时,每增加1mm距离的负荷(kgf/mm); ·弹簧常数公式(单位:kgf/mm): G=线材的钢性模数:琴钢丝G=8000 ;不锈钢丝G=7300 ,磷青铜线G=4500 ,黄铜线G=3500 d=线径 Do=OD=外径 Di=ID=内径 Dm=MD=中径=Do-d N=总圈数 Nc=有效圈数=N-2 弹簧常数计算范例: 线径=2.0mm , 外径=22mm , 总圈数=5.5圈,钢丝材质=琴钢丝 二、拉力弹簧 拉力弹簧的k值与压力弹簧的计算公式相同 ·拉力弹簧的初张力:初张力等于适足拉开互相紧贴的弹簧并圈所需的力,初张力在弹

簧卷制成形后发生。拉力弹簧在制作时,因钢丝材质、线径、弹簧指数、静电、润滑油脂、热处理、电镀等不同,使得每个拉力弹簧初始拉力产生不平均的现象。所以安装各规格的拉力弹簧时,应预拉至各并圈之间稍为分开一些间距所需的力称为初张力。 ·初张力=P-(k×F1)=最大负荷-(弹簧常数×拉伸长度) 三、扭力弹簧 ·弹簧常数:以k 表示,当弹簧被扭转时,每增加1°扭转角的负荷(kgf/mm). ·弹簧常数公式(单位:kgf/mm): E=线材之钢性模数:琴钢丝E=21000 ,不锈钢丝E=19400 ,磷青铜线E=11200 ,黄铜线E=11200 d=线径 Do=OD=外径 Di=ID=内径 Dm=MD=中径=Do-d N=总圈数 R=负荷作用的力臂 p=3.1416

高一数学上期三角函数恒等变换知识归纳与整理

《三角函数恒等变换》知识归纳与整理 一、 基本公式 1、必须掌握的基本公式 (1) 两角和与差的三角函数 S S C C C βαβαβα =±) ( 同名乘积的和与差 S C C S S βαβαβα±=±) ( 异名乘积的和与差 T T T T T β αβαβα 1) (±=± (2) 二倍角的三角函数 C S S ααα22 = S C S C C 2 22222112ααααα -=-=-= 差点等于1 T T T 2 212α αα -= (3) 半角的三角函数 212 C S α α -± = 2 12 C C α α+± = C C T α α α +-± =112 θ θ θθθsin cos 1cos 1sin 2 -=+= T 2、理解记忆的其他公式 (1) 积化和差 ][2 1 )()(C C C C βαβαβ α-++=

=S S βα][21)()-(C C βαβα+- ][21)()(S S C S βαβαβα-++= ][21)()(S S S C βαβαβα-+-= (2) 和差化积 ][22 2 C S S S βα βαβα-+=+ ][22 2 C S S S βαβαβα+-=- ][22 2C C C C βα βαβα-+=+ ][22 2 S S C C βα βαβα-+-=- (3) 万能公式(全部用正切来表示另外的三角函数称为万能公式) T T S 2 2 212α α α += T T C 22 2 211α α α+-= T T T 2 2 212α α α- = (4) 辅助角公式 )sin(cos sin 2 2 ?++=+x x b x a b a 其中:a b = ?tan 常见的几种特殊辅助角公式: ① ) 4 sin(2cos sin π + =+x x x

弹簧的计算公式.doc

压缩弹簧参数计算 G/(Kg/mm 许用剪切应力 [ τ]最大许用 線徑d 压力(mm) 中徑 D(mm) 有效圈數n 材质) (Mpa)Ps(Kg.f) 20 110 5 60Si2Mn 8000 740 2154.368 圆柱螺旋压缩与拉伸弹簧的设计 1圆柱弹簧的参数及几何尺寸 1、弹簧的主要尺寸(见右图) 如图所示,圆柱弹簧的主要尺寸有:弹簧丝直径d、弹簧圈外径 D、弹簧圈内径 D1,弹簧圈中径 D2,节距 t、螺旋升角 a、自由长度 H0等。 2、弹簧参数的计算 弹簧设计中,旋绕比(或称弹簧指数)C是最重要的参数之一。 C=D2/d ,弹簧指数愈小,其刚度愈大,弹簧愈硬,弹簧内外侧的应力相差愈大,材料利用率 低;反之弹簧愈软。常用弹簧指数的选取参见表。 弹簧丝直径 d (mm )0.2 ~ 0.4 0.5 ~1 1.1 ~ 2.2 2.5~6 7~ 16 18~40 C 7~14 5~ 12 5~ 10 4 ~10 4 ~8 4 ~6 弹簧总圈数与其工作圈数间的关系为: 弹簧节距 t一般按下式取: (对压缩弹簧); t=d (对拉伸弹簧); 式中:λ max ---弹簧的最大变形量; --- 最大变形时相邻两弹簧丝间的最小距离,一般不小于0.1d 。 弹簧钢丝间距: δ=t-d; 弹簧的自由长度: H=n ·δ +(n0-0.5)d(两端并紧磨平); H=n ·δ +(n0+1)d(两端并紧,但不磨 平)。弹簧螺旋升角: ,通常α取 5 ~90 。 弹簧丝材料的长度: (对压缩弹簧);

(对拉伸弹簧); 其中 l为钩环尺寸。2弹簧的强度计算 1、弹簧的受力(见右图) 图示的压缩弹簧,当弹簧受轴向压力,弯矩 M=FRsin α,切向力 Q=Fcos 螺旋角α的值不大(对于压缩弹簧为簧丝中起主要作用的外力将是扭矩 F时,在弹簧丝的任何横剖面上将作用着:扭矩T=FRcosαα和法向力 N=Fsinα(式中R为弹簧的平均半径)。由于弹簧 6~ 90 ) ,所以弯矩 M和法向力 N可以忽略不计。因此,在弹 T和切向力 Q。α的值较小时, cos α≈可1,取 T=FR 和 Q=F 。这 当拉伸弹簧受轴向拉力 F时,弹簧丝槽剖面上的受力情况和压缩弹簧相同,只是扭矩 Q均为相反的方向。所以上述两种弹簧的计算方法可以一并讲述。 T和切向力2、弹簧的强度 从受力分析可见,弹簧受到的应力主要为扭矩和横向力引起的剪应力,对于圆形弹簧丝 系数 Ks 可以理解为切向力作用时对扭应力的修正系数,进一步考虑到弹簧丝曲率的影响,可得 式中 K为曲度系数。它考虑了弹簧丝曲率和切向力对扭应力的影响。一定条件下钢丝直径 3、弹簧的刚度 圆柱弹簧受载后的轴向变形量 式中 n 为弹簧的有效圈数;G为弹簧的切变模量。 这样弹簧的圈数及刚度分别为

高中数学三角函数恒等变形公式

三角函数恒等变形公式 以下总结了三角函数恒等变形公式含倍角公式、辅助角公式、三角和的三角函数、两角和与差的三角函数 两角和与差的三角函数: cos(α+β)=cosα·cosβ-sinα·sinβ cos(α-β)=cosα·cosβ+sinα·sinβ sin(α±β)=sinα·cosβ±cosα·sinβ tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ) tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ) 三角和的三角函数: sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγcos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγtan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)辅助角公式: Asinα+Bcosα=(A2+B2)^(1/2)sin(α+t),其中 sint=B/(A2+B2)^(1/2) cost=A/(A2+B2)^(1/2) tant=B/A Asinα-Bcosα=(A2+B2)^(1/2)cos(α-t),tant=A/B 倍角公式: sin(2α)=2sinα·cosα=2/(tanα+cotα) cos(2α)=cos2(α)-sin2(α)=2cos2(α)-1=1-2sin2(α) tan(2α)=2tanα/[1-tan2(α)] 三倍角公式: sin(3α)=3sinα-4sin3(α)=4sinα·sin(60+α)sin(60-α) cos(3α)=4cos3(α)-3cosα=4cosα·cos(60+α)cos(60-α) tan(3α)=tan a · tan(π/3+a)· tan(π/3-a) 半角公式: sin(α/2)=±√((1-cosα)/2) cos(α/2)=±√((1+cosα)/2) tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα 降幂公式 sin2(α)=(1-cos(2α))/2=versin(2α)/2 cos2(α)=(1+cos(2α))/2=covers(2α)/2 tan2(α)=(1-cos(2α))/(1+cos(2α)) 万能公式: sinα=2tan(α/2)/[1+tan2(α/2)] cosα=[1-tan2(α/2)]/[1+tan2(α/2)] tanα=2tan(α/2)/[1-tan2(α/2)] 积化和差公式: sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]

压力弹簧计算公式

压力弹簧计算公式 压力弹簧 ·压力弹簧的设计数据,除弹簧尺寸外,更需要计算出最大负荷及变位尺寸的负荷; · 弹簧常数:以k表示,当弹簧被压缩时,每增加1mm距离的负荷(kgf/mm); · 弹簧常数公式(单位:kgf/mm): G=线材的钢性模数:琴钢丝G=8000 ;不锈钢丝G=7300 ,磷青铜线G=4500 ,黄铜线G=3500 d=线径 Do=OD=外径 Di=ID=内径 Dm=MD=中径=Do-d N=总圈数 Nc=有效圈数=N-2 弹簧常数计算范例:

线径=2.0mm , 外径=22mm , 总圈数=5.5圈 ,钢丝材质=琴钢丝 拉力弹簧 拉力弹簧的 k值与压力弹簧的计算公式相同 ·拉力弹簧的初张力:初张力等于适足拉开互相紧贴的弹簧并圈所需的力,初张力在弹簧卷制成形后发生。拉力弹簧在制作时,因钢丝材质、线径、弹簧指数、静电、润滑油脂、热处理、电镀等不同,使得每个拉力弹簧初始拉力产生不平均的现象。所以安装各规格的拉力弹簧时,应预拉至各并圈之间稍为分开一些间距所需的力称为初张力。 · 初张力=P-(k×F1)=最大负荷-(弹簧常数×拉伸长度) 扭力弹簧

·弹簧常数:以 k 表示,当弹簧被扭转时,每增加1°扭转角的负荷 (kgf/mm). ·弹簧常数公式(单位:kgf/mm): E=线材之钢性模数:琴钢丝E=21000 ,不锈钢丝E=19400 ,磷青铜线E=11200 ,黄铜线E=11200 d=线径 Do=OD=外径 Di=ID=内径 Dm=MD=中径=Do-d N=总圈数 R=负荷作用的力臂 p=3.1416 大量自学内容可能对你会有帮助https://www.docsj.com/doc/1110671380.html,/study.asp?vip=3057729

怎样计算弹簧的力

怎样计算弹簧的力? 已有一根弹簧,长度是38mm,最大直径是11.7mm,线径是1.7mm,每一圈的距离是5.5mm,要把它的高度垂直挤压到17mm,请问要用多少公斤的力? 1. 压力弹簧 压力弹簧的设计数据,除弹簧尺寸外,更需要计算出最大负荷及变位尺寸的负荷; 弹簧常数:以k表示,当弹簧被压缩时,每增加1mm距离的负荷(kgf/mm); 弹簧常数公式(单位:kgf/mm):K=(G×d4)/(8×Dm3×Nc) G=线材的钢性模数:琴钢丝G=8000 ;不锈钢丝G=7300;磷青铜线G=4500 ;黄铜线 G=3500 d=线径Do=OD=外径Di=ID=内径Dm=MD=中径=Do-d N=总圈数Nc=有效圈数=N-2 弹簧常数计算范例:线径=2.0mm , 外径=22mm , 总圈数=5.5圈,钢丝材质=琴钢丝 K=(G×d4)/(8×Dm3×Nc)=(8000×24)/(8×203×3.5)=0.571kgf/mm K=(G×d4)/(8×Dm3×Nc)=(8000×0.84)/(8×6.63×2)=1.34kgf/mm 3276.8/4599.936=0.712358 预压量0.65 固定时的压缩量为2mm 2. 拉力弹簧 拉力弹簧的k值与压力弹簧的计算公式相同。 拉力弹簧的初张力:初张力等于适足拉开互相紧贴的弹簧并圈所需的力,初张力在弹簧卷制成形后发生。 拉力弹簧在制作时,因钢丝材质、线径、弹簧指数、静电、润滑油脂、热处理、电镀等不同,使得每个拉力弹簧初始拉力产生不平均的现象。所以安装各规格的拉力弹簧时,应预拉至各并圈之间稍为分开一些间距所需的力称为初张力。 初张力=P-(k×F1)=最大负荷-(弹簧常数×拉伸长度) 3. 扭力弹簧 弹簧常数:以k 表示,当弹簧被扭转时,每增加1°扭转角的负荷(kgf/mm). 弹簧常数公式(单位:kgf/mm): K=(E×d4)/(1167×Dm×p×N×R) E=线材之钢性模数:琴钢丝E=21000 ,不锈钢丝E=19400 ,磷青铜线E=11200,黄铜线 E=11200 d=线径Do=OD=外径Di=ID=内径Dm=MD=中径=Do-dN=总圈数R=负荷作用的力臂 p=3.1416。

三角恒等变换所有公式

WOIRD格式 三角恒等变换所有公式 两角和与差的三角函数: cos(α+β)=cosα·cosβ-sinα·sinβ cos(α-β)=cosα·cosβ+sinα·sinβ sin(α+β)=sinα·cosβ+cosα·sinβ sin(α-β)=sinα·cosβ-cosα·sinβ tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ) tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ) 二倍角公式: sin(2α)=2sinα·cosα cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α) tan(2α)=2tanα/[1-tan^2(α)] 三倍角公式: sin3α=3sinα-4sin^3(α) cos3α=4cos^3(α)-3cosα 半角公式: sin^2(α/2)=(1-cosα)/2 cos^2(α/2)=(1+cosα)/2 tan^2(α/2)=(1-cosα)/(1+cosα) tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα 万能公式: 半角的正弦、余弦和正切公式(降幂扩角公式) sinα=2tan(α/2)/[1+tan^2(α/2)] cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)] tanα=2tan(α/2)/[1-tan^2(α/2)] 积化和差公式: sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)] cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)] cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)] sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)] 和差化积公式: sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2] sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2] cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2] cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2] 专业资料整理

弹簧的强度计算 1、弹簧的受力 图示的压缩弹簧,当弹簧受轴向压力

弹簧的强度计算 1、弹簧的受力 图示的压缩弹簧,当弹簧受轴向压力F时,在弹簧丝的任何横剖面上将作用着:扭矩 T= FRcosα ,弯矩 M= FRsinα,切向力F Q = Fcosα和法向力 N F = Fsinα (式中R为弹簧的平均半径)。由于弹簧螺旋角α的值不大(对于压缩弹簧为6~90 ),所以弯矩M和法向力N 可以忽略不计。因此,在弹簧丝中起主要作用的外力将是扭矩T和切向力Q。α的值较小时,cosα≈ 1,可取T = FR 和 Q = F。这种简化对于计算的准确性影响不大。 当拉伸弹簧受轴向拉力F时,弹簧丝横剖面上的受力情况和压缩弹簧相同,只是扭矩T 和切向力Q均为相反的方向。所以上述两种弹簧的计算方法可以一并讲述。 2、弹簧的强度 从受力分析可见,弹簧受到的应力主要为扭矩和横向力引起的剪应力,对于圆形弹簧丝

系数K s可以理解为切向力作用时对扭应力的修正系数,进一步考虑到弹簧丝曲率的影响,可得到扭应力 式中K为曲度系数。它考虑了弹簧丝曲率和切向力对扭应力的影响。一定条件下钢丝直径 3、弹簧的刚度 圆柱弹簧受载后的轴向变形量 式中n为弹簧的有效圈数;G为弹簧的切变模量。 这样弹簧的圈数及刚度分别为 对于拉伸弹簧,n>20时,一般圆整为整圈数,n<20时,可圆整为1/2圈;对于压缩弹簧总圈数n的尾数宜取1/4、1/2或整圈数,常用1/2圈。为了保证弹簧具有稳定的性能,通常弹簧的有效圈数最少为2圈。C值大小对弹簧刚度影响很大。若其它条件相同时,C值愈小的弹簧,刚度愈大,弹簧也就愈硬;反之则愈软。不过,C值愈小的弹簧卷制愈困难,且在工作时会引起较大的切应力。此外,k值还和G、d、n有关,在调整弹簧刚度时,应综合考虑这些因素的影响。

(完整版)三角恒等变换所有公式

三角恒等变换所有公式 两角和与差的三角函数: cos(α+β)=cosα·cosβ-sinα·sinβ cos(α-β)=cosα·cosβ+sinα·sinβ sin(α+β)=sinα·cosβ+cosα·sinβ sin(α-β)=sinα·cosβ-cosα·sinβ tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ) tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ) 二倍角公式: sin(2α)=2sinα·cosα cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α) tan(2α)=2tanα/[1-tan^2(α)] 三倍角公式: sin3α=3sinα-4sin^3(α) cos3α=4cos^3(α)-3cosα 半角公式: sin^2(α/2)=(1-cosα)/2 cos^2(α/2)=(1+cosα)/2 tan^2(α/2)=(1-cosα)/(1+cosα) tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα 万能公式: 半角的正弦、余弦和正切公式(降幂扩角公式) sinα=2tan(α/2)/[1+tan^2(α/2)] cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)] tanα=2tan(α/2)/[1-tan^2(α/2)] 积化和差公式: sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)] cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)] cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)] sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)] 和差化积公式: sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2] sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2] cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2] cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]

弹簧计算公式

胡克弹性定律指出,在弹性极限范围内,弹簧的弹性力f 与弹簧的长度x 成正比,即f =-kx,k 是一个物体的质量弹性系数,该系数由材料的性质决定,负号表示弹簧产生的弹性力与其延伸(或压缩)方向相反弹簧常数: 以k 表示,当弹簧被压缩时,载荷(kgf/mm)增加1mm 的距离,弹簧常数公式(单位: kgf/mm) : k = (g d4)/(8dm3 nc) g = 钢丝的刚度模量: 钢琴丝g = 8000; 不锈钢丝g = 7300; 磷青铜丝g = 4500;黄铜丝g = 3500d = 线径= 0d = 外径= id = 内径= md = 中径= do-dn = 转速总数弹簧常数的计算例子: 线径= 2.0 mm,外径= 22 mm,总匝数= 5。5圈,钢丝材料= 钢琴钢丝k = (gxd4)/(8xdm3xnc) = (8000x24)/(8x203x3.5) = 0.571 kg f/mmpull,张力弹簧的k 值与压力弹簧的k 值相同。 张力弹簧的初始张力: 初始张力等于拉开彼此接近的弹簧所需的力,并发生在弹簧轧制成型之后。在制作张力弹簧时,由于钢丝材质、线径、弹簧指数、静电现象、油脂、热处理、电镀等的不同,使得各张力弹簧的初始张力不均匀。因此,在安装各种规格的张力弹簧时,应该预张力到平行弯道之间一定距离的力称为初张力。 初始张力= p-(kxf1) = 最大载荷-(弹簧常数x 拉伸长度)扭转弹簧常数: 以k 表示,当弹簧扭转时,载荷(kgf/m)增加1个扭转角。弹簧常数(单位: kgf/mm) : k = (exd #)/(1167 xdmxpnxr) e = 钢丝的刚度模量: 钢琴线e = 21000,不锈钢线e = 19400,磷青铜线e =

三角恒等变形公式大全

和角差角: cos(α±β)=cosαcosβ干sinαsinβ sin(α±β)=sinαcosβ±cosαsinβ tan(α±β)=(tanα±tanβ)/(1干tanαtanβ) 二倍角公式: sin(2α)=2sinαcosα=2tan^2(α)/[1+tan^2(α)] cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1 =1-2sin^2(α)=(1-tan^2(α))/(1+tan^2(α)) tan(2α)=2tanα/[1-tan^2(α)] 半角公式: sin^2(α/2)=(1-cosα)/2 cos^2(α/2)=(1+cosα)/2 tan^2(α/2)=(1-cosα)/(1+cosα) tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα 三倍角公式: sin3α=3sinα-4sin^3(α) cos3α=4cos^3(α)-3cosα tan3α=(3tanα-tan^3(α))÷(1-3tan^2(α)) sin3α=4sinα×sin(60-α)sin(60+α) cos3α=4cosα×cos(60-α)cos(60+α) tan3α=4tanα×tan(60-α)tan(60+α) 万能代换公式: 半角的正弦、余弦和正切公式(降幂扩角公式)sinα=2tan(α/2)/[1+tan^2(α/2)] cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)] tanα=2tan(α/2)/[1-tan^2(α/2)] 积化和差公式: sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)] cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)] cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)] sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)] 和差化积公式: sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2] sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2] cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2] cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2] 和角差角: cos(α±β)=cosαcosβ干sinαsinβ sin(α±β)=sinαcosβ±cosαsinβ tan(α±β)=(tanα±tanβ)/(1干tanαtanβ) 二倍角公式: sin(2α)=2sinαcosα=2tan^2(α)/[1+tan^2(α)] cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1 =1-2sin^2(α)=(1-tan^2(α))/(1+tan^2(α)) tan(2α)=2tanα/[1-tan^2(α)] 半角公式: sin^2(α/2)=(1-cosα)/2 cos^2(α/2)=(1+cosα)/2 tan^2(α/2)=(1-cosα)/(1+cosα) tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα 三倍角公式: sin3α=3sinα-4sin^3(α) cos3α=4cos^3(α)-3cosα tan3α=(3tanα-tan^3(α))÷(1-3tan^2(α)) sin3α=4sinα×sin(60-α)sin(60+α) cos3α=4cosα×cos(60-α)cos(60+α) tan3α=4tanα×tan(60-α)tan(60+α) 万能代换公式: 半角的正弦、余弦和正切公式(降幂扩角公式)sinα=2tan(α/2)/[1+tan^2(α/2)] cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)] tanα=2tan(α/2)/[1-tan^2(α/2)] 积化和差公式: sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)] cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)] cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)] sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)] 和差化积公式: sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2] sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2] cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2] cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2] 和角差角: cos(α±β)=cosαcosβ干sinαsinβ sin(α±β)=sinαcosβ±cosαsinβ tan(α±β)=(tanα±tanβ)/(1干tanαtanβ) 二倍角公式: sin(2α)=2sinαcosα=2tan^2(α)/[1+tan^2(α)] cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1 =1-2sin^2(α)=(1-tan^2(α))/(1+tan^2(α)) tan(2α)=2tanα/[1-tan^2(α)] 半角公式: sin^2(α/2)=(1-cosα)/2 cos^2(α/2)=(1+cosα)/2 tan^2(α/2)=(1-cosα)/(1+cosα) tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα 三倍角公式: sin3α=3sinα-4sin^3(α) cos3α=4cos^3(α)-3cosα tan3α=(3tanα-tan^3(α))÷(1-3tan^2(α)) sin3α=4sinα×sin(60-α)sin(60+α) cos3α=4cosα×cos(60-α)cos(60+α) tan3α=4tanα×tan(60-α)tan(60+α) 万能代换公式: 半角的正弦、余弦和正切公式(降幂扩角公式)sinα=2tan(α/2)/[1+tan^2(α/2)] cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)] tanα=2tan(α/2)/[1-tan^2(α/2)] 积化和差公式: sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)] cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)] cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)] sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)] 和差化积公式: sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2] sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2] cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2] cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2] 和角差角: cos(α±β)=cosαcosβ干sinαsinβ sin(α±β)=sinαcosβ±cosαsinβ tan(α±β)=(tanα±tanβ)/(1干tanαtanβ) 二倍角公式: sin(2α)=2sinαcosα=2tan^2(α)/[1+tan^2(α)] cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1 =1-2sin^2(α)=(1-tan^2(α))/(1+tan^2(α)) tan(2α)=2tanα/[1-tan^2(α)] 半角公式: sin^2(α/2)=(1-cosα)/2 cos^2(α/2)=(1+cosα)/2 tan^2(α/2)=(1-cosα)/(1+cosα) tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα

相关文档