文档视界 最新最全的文档下载
当前位置:文档视界 › 工程热力学的公式大全

工程热力学的公式大全

工程热力学的公式大全
工程热力学的公式大全

5.梅耶公式:

R c c v p =- R c c v p 0''ρ=-

0R MR Mc Mc v p ==-

6.比热比: v

p v

p v

p Mc Mc c c c c =

=

=

''κ

1-=

κκR

c v 1

-=κnR c p 外储存能:

1.

宏观动能:

2

2

1mc E k =

2.

重力位能:

mgz E p =

式中

g —重力加速度。

系统总储存能:

1.p k E E U E ++=

或mgz mc U E ++=2

21

2.gz c u e ++=22

1

3.U E = 或

u e =(没有宏观运动,并且高度为零)

热力学能变化:

1.dT c du v =,?=?2

1dT c u v

适用于理想气体一切过程或者实际气体定容过程 2.)(12T T c u v -=?

适用于理想气体一切过程或者实际气体定容过程(用定值比热计算) 3.10

20

121

2

2

1

t c t c dt c dt c dt c u t vm

t vm

t v t v t t v ?-?=-==????

适用于理想气体一切过程或者实际气体定容过程(用平均比热计算)

4.把

()T f c v =的经验公式代入?=?2

1

dT c u v 积分。

适用于理想气体一切过程或者实际气体定容过程(用真实比热公式计算) 5.∑∑====+++=n

i i i n

i i n u m U U U U U 1

1

21

由理想气体组成的混合气体的热力学能等于各组成气体热力学能之和,各组成气体热力学能又可表示为单位质量热力学能与其质量的乘积。

6.?-=?2

1pdv q u

适用于任何工质,可逆过程。

7.q u =?

适用于任何工质,可逆定容过程

8.?=?21

pdv u

适用于任何工质,可逆绝热过程。

9.0=?U

适用于闭口系统任何工质绝热、对外不作功的热力过程等热力学能或理想气体定温过程。

10.W Q U -=?

适用于mkg 质量工质,开口、闭口,任何工质,可逆、不可逆过程。 11.w q u -=?

适用于1kg 质量工质,开口、闭口,任何工质,可逆、不可逆过程 12.pdv q du -=δ

适用于微元,任何工质可逆过程 13.pv h u ?-?=?

热力学能的变化等于焓的变化与流动功的差值。 焓的变化:

1.pV U H += 适用于m 千克工质

2.pv u h +=

适用于1千克工质

3.()T f RT u h =+= 适用于理想气体

4.dT c dh p =,dT c h p ?=?2

1

适用于理想气体的一切热力过程或者实际气体的定压过程

5.)(12T T c h p -=?

适用于理想气体的一切热力过程或者实际气体的定压过程,用定值比热计算 6.10

20

121

2

2

1

t c t c dt c dt c dt c h t pm

t pm

t p t p t t p ?-?=-==????

适用于理想气体的一切热力过程或者实际气体的定压过程用平均比热计算

7.把()T f c p =的经验公式代入?=?2

1dT c h p 积分。

适用于理想气体的一切热力过程或者实际气体的定压过程,用真实比热公式计算 8.∑∑====+++=n

i i i n

i i n h m H H H H H 1

1

21

由理想气体组成的混合气体的焓等于各组成气体焓之和,各组成气体焓又可表示为单位质量焓与其质量的乘积。

9.热力学第一定律能量方程

CV S dE W m gz C h m gz C h Q ++??

? ?

?++-??? ?

?

++=δδδδ11211222222

12

1

适用于任何工质,任何热力过程。

10.s w gdz dc q dh δδ---

=2

2

1 适用于任何工质,稳态稳流热力过程

11.s w q dh δδ-=

适用于任何工质稳态稳流过程,忽略工质动能和位能的变化。 12.?-=?2

1vdp q h

适用于任何工质可逆、稳态稳流过程,忽略工质动能和位能的变化。 13.?-=?2

1vdp h

适用于任何工质可逆、稳态稳流绝热过程,忽略工质动能和位能的变化。 14.q h =?

适用于任何工质可逆、稳态稳流定压过程,忽略工质动能和位能的变化。 15.0=?h

适用于任何工质等焓或理想气体等温过程。

熵的变化:

1.?

=?2

1

T

q

s δ

适用于任何气体,可逆过程。

2.g f s s s ?+?=?

f s ?为熵流,其值可正、可负或为零;

g s ?为熵产,其值恒大于或等于零。 3.1

2

ln

T T c s v =?(理想气体、可逆定容过程)

4.1

2

ln

T T c s p =?(理想气体、可逆定压过程) 5.2

112ln ln

p p

R v v R s ==?(理想气体、可逆定温过程)

6.0=?s (定熵过程)

1

21212121

212ln ln

ln ln

ln ln

p p c v v c p p R T T c v v R T T c s v p p v +=-=+=?

适用于理想气体、任何过程 功量:

膨胀功(容积功): 1.pdv w =δ

或?=2

1pdv w

适用于任何工质、可逆过程 2.0=w

适用于任何工质、可逆定容过程 3.()21w p v v =-

适用于任何工质、可逆定压过程 4.1

2

ln

v v RT w = 适用于理想气体、可逆定温过程 5.u q w ?-=

适用于任何系统,任何工质,任何过程。 6.q w =

适用于理想气体定温过程。

7.u w ?-=

适用于任何气体绝热过程。 8.dT C w v ?-=2

1

适用于理想气体、绝热过程 9.

()()???

?

?????????? ??--=--=--=

?-=-k k p p k RT T T R k v p v p k u w 1

121212211111

111

适用于理想气体、可逆绝热过程 10.

()()()1111

111

1

121212211≠???

??????????? ??--=--=--=

-n p p n RT T T R n v p v p n w n n 适用于理想气体、可逆多变过程 流动功:

1122v p v p w f -=

推动1kg 工质进、出控制体所必须的功。 技术功:

1.s t w z g c w +?+?=

2

2

1 热力过程中可被直接利用来作功的能量,统称为技术功。 2.s t w gdz dc w δδ++=

2

2

1 适用于稳态稳流、微元热力过程 3.2211v p v p w w t -+=

技术功等于膨胀功与流动功的代数和。

4.vdp w t -=δ

适用于稳态稳流、微元可逆热力过程 5.?-=2

1vdp w t

适用于稳态稳流、可逆过程 热量:

1.TdS q =δ

适用于任何工质、微元可逆过程。 2.?=2

1Tds q

适用于任何工质、可逆过程 3.W U Q +?=

适用于mkg 质量任何工质,开口、闭口,可逆、不可逆过程 4.w u q +?=

适用于1kg 质量任何工质,开口、闭口,可逆、不可逆过程 5.pdv du q +=δ

适用于微元,任何工质可逆过程。 6.?+?=2

1pdv u q

适用于任何工质可逆过程。

7CV S dE W m gZ C h m gZ C h Q ++??

?

??++-??? ??++=δδδδ112112222

22121 适用于任何工质,任何系统,任何过程。 8.

s w gdz dc dh q δδ+++=22

1

适用于微元稳态稳流过程 9.t w h q +?= 适用于稳态稳流过程 10.u q ?=

适用于任何工质定容过程 11.()12T T c q v -= 适用于理想气体定容过程。 12.h q ?=

适用于任何工质定压过程

13.()12T T c q p -= 适用于理想气体、定压过程 14. 0=q

适用于任何工质、绝热过程 15. ()()11

12≠---=

n T T c n k

n q v 适用于理想气体、多变过程

过程 定容过程

定压过程

定温过程

定熵过程

多变过程

过程指数n ∞ 0 1 к n 过程方程

v=常数

p=常数

pv=常数

pv к

=常数

pv n =常数

P 、v 、T 关

系 2211T p T p =

22

11

T v T v = 1122p v p v =

2

112p v p v κκ

= 1

2211T v T v κ-??= ???

121p p κκ

-??= ???

2

112n n p v p v = 1

2211n T v T v -??= ???

121n n

p p -??= ???

u S ???、h

、计算式

21()

v u c T T ?=-21()p h c T T ?=-21

ln v T

S c T ?=

21()

v u c T T ?=-21()

p h c T T ?=-21

ln

P T S c T ?= 0u ?=

0h ?=

2112

ln ln

v S R v p R p ?==

21()v u c T T ?=- 21()p h c T T ?=-

0S ?=

21()

v u c T T ?=-21()

p h c T T ?=-221122

112211

ln ln ln ln ln

ln v p p v T v S c R T v T p c R T p v p c c v p ?=+=-=+ 膨胀功

2

1

w pdv =?

w =0

2121()()

w p v v R T T =-=-

2112

ln

ln

v w RT v p RT p ==

1122

121

1211

()11()1

11w u p v p v R T T RT P P κκ

κκκ-=-?=

--=?--??

????

=- ???-??????

1122121

1211()

11()1

11n n w p v p v n R T T n RT P n P -=

--=?--??????=- ?

??-?????? 热量

2

12

1

q cdT

Tds

==??

21()

v q u

c T T =?=-

21()

p q h c T T =?=-

q T s

w

=?=

0q =

211()(1)

v n q n c T T n κ-=-?-≠

比热容

v c p c

1

n v n c c n κ

-=

- 备注 表中比热容为定值比热容

干度:

湿蒸汽的总质量

湿蒸汽中含干蒸汽的质干度=

x

湿蒸汽的参数:

)()1(x v v x v v x v x v '-''+'='-+''= v x v ''≈x (当p 不太大,x 不太小时) xr h h h x h h x h x h +'='-''+'='-+''=)()1(x s

x )()1(T r x

s s s x s s x s x s +'='-''+'='-+''= x x x pv h u -=

过热蒸汽的焓:

)(s pm t t c h h -+''=

其中)(s pm t t c -是过热热量,t 为过热蒸汽的温度,c pm 为过热蒸汽由t 到t s 的平均比定压热容。

过热蒸汽的热力学能:

pv h u -=

过热蒸汽的熵:

s

pm s p s ln d s T T

c T r s T T c T r s s T

T ++'=++'=?

水蒸气定压过程:

12h h h q -=?=

)(1212v v p h h u ---=?

u q w ?-=或)(12v v p w -=

0d t =-=?p

p

p v w

s

pm s p s ln d s T T

c T r s T T c T r s s T

T ++'=++'=?

水蒸气定容过程:

?==v

v

v p w 0d

u q ?=

)(1212p p v h h u ---=?

)(d 21t 2

1

p p v p v w p p -=-=?

水蒸气定温过程:

)(12s s T q -=

u q w ?-= h q w ?-=t

)(112212v p v p h h u ---=?

水蒸气绝热过程:

0=q

u w ?-=

h w ?-=t

)(112212v p v p h h u ---=?

湿空气的总压力p :a v p p p =+

湿空气的平均分子量:M=28.97-(28.97-18.02)Pv/B 湿空气的气体常数:

83148314287

28.9710.9510.378v v R p p M B B

=

==

-- 绝对湿度:

v v v v m p

V R T

ρ=

= 饱和绝对湿度s ρ: s

s v p R T

ρ=

相对湿度?: v

s

ρ?ρ=

含湿量(或称比湿度) d : v v

a a

m d m ρρ=

= 622

(/()s

s

p d g kg a B p ??=-

饱和度D : 622

622v v s s s v s

p B p B p d

D p d B p B p ?

--===-- 湿空气比体积: 3

(/())a a

V v v m k g a m =

= (10.001)a v a a

R T R V

v d m p R =

=+? (10.001606)a R T

v d p

=

+ 3/()m kg a 湿空气的焓:0.001a v h h dh =+ (kJ/kg(a))

1.010.001(2501 1.85)h t d t =++(/())kJ kg a

统计学原理常用公式汇总

2.加权算术平均数 X =- X h X 3调和平均数: 式中: m = Xf , f X 统计学原理常用公式汇总 第2章统计整理 a ) 组距=上限—下限 b ) 组中值=(上限+下限)—2 c ) 缺下限开口组组中值=上限-1/2邻组组距 d ) 缺上限开口组组中值=下限+1/2邻组组距 e ) 组数k=1+3.322Lg n n 为数据个数 第3章综合指标 i. 相对指标 1.结构相对指标=各组(或部分)总量/总体总量 2?比例相对指标=总体中某一部分数值/总体中另一部分数值 3?比较相对指标=甲单位某指标值/乙单位同类指标值 4. 强度相对指标=某种现象总量指标/另一个有联系而性质不 同的现象总量指标 5. 计划完成程度相对指标=实际数/计划数 =实际完成程度(%) /计划规定的完成程度(%) ii. 平均指标 1.简单算术平均数:; 丄 iii. 标志变动度 1.全距=最大标志值-最小标志值 加权 或 ? f ? Xf ? Xf

3.标准差系数:”= iiii抽样推 断 1.抽样平均误差: 重复抽样: p(1 P) n 不重复抽样: 2 ( 1 2.抽样极限误差 3.重复抽样条件下: 平均数抽样时必要的样本数目 n 成数抽样时必要的样本数目不重复抽样条件下: t2 2 2- x t2P(1 p) 平均数抽样时必要的样本数目第4 章动态数列分析一、平均发展水平的计算方法:(1)由总量指标动态数列计算序时平均数 ①由时期数列计算 a a n Nt2 2 N 2x t2 2 ②由时点数列计算 在间断时点数列的条件下计算: 若间断的间隔相等,则米用“首末折半法”计算。公式为: 1 1 a i a2 a n a. 1 a 2—— n 1 若间断的间隔不等,则应以间隔数为权数进行加权平均计算。公式为:

工程热力学基本概念及重要公式

第一章基本概念 1.基本概念 热力系统:用界面将所要研究的对象与周围环境分隔开来,这种人为分隔的研究对象,称为热力系统,简称系统。 边界:分隔系统与外界的分界面,称为边界。 外界:边界以外与系统相互作用的物体,称为外界或环境。 闭口系统:没有物质穿过边界的系统称为闭口系统,也称控制质量。 开口系统:有物质流穿过边界的系统称为开口系统,又称控制体积,简称控制体,其界面称为控制界面。 绝热系统:系统与外界之间没有热量传递,称为绝热系统。 孤立系统:系统与外界之间不发生任何能量传递和物质交换,称为孤立 系统。 单相系:系统中工质的物理、化学性质都均匀一致的系统称为单相系。 复相系:由两个相以上组成的系统称为复相系,如固、液、气组成的三 相系统。 单元系:由一种化学成分组成的系统称为单元系。 多元系:由两种以上不同化学成分组成的系统称为多元系。 均匀系:成分和相在整个系统空间呈均匀分布的为均匀系。 非均匀系:成分和相在整个系统空间呈非均匀分布,称非均匀系。 热力状态:系统中某瞬间表现的工质热力性质的总状况,称为工质的热力状态,简称为状态。 平衡状态:系统在不受外界影响的条件下,如果宏观热力性质不随时间而变化,系统内外同时建立了热的和力的平衡,这时系统的状态称为热力平衡状态,简称为平衡状态。 状态参数:描述工质状态特性的各种物理量称为工质的状态参数。如温度(T)、压力(P)、比容(υ)或密度(ρ)、内能(u)、焓(h)、熵(s)、自由能(f)、自由焓(g)等。 基本状态参数:在工质的状态参数中,其中温度、压力、比容或密度可以直接或间接地用仪表测量出来,称为基本状态参数。

温度:是描述系统热力平衡状况时冷热程度的物理量,其物理实质是物质内部大量微观分子热运动的强弱程度的宏观反映。 热力学第零定律:如两个物体分别和第三个物体处于热平衡,则它们彼此之间也必然处于热平衡。 压力:垂直作用于器壁单位面积上的力,称为压力,也称压强。 相对压力:相对于大气环境所测得的压力。如工程上常用测压仪表测定系统中工质的压力即为相对压力。 比容:单位质量工质所具有的容积,称为工质的比容。 密度:单位容积的工质所具有的质量,称为工质的密度。 强度性参数:系统中单元体的参数值与整个系统的参数值相同,与质量多少无关,没有可加性,如温度、压力等。在热力过程中,强度性参数起着推动力作用,称为广义力或势。 广延性参数:整个系统的某广延性参数值等于系统中各单元体该广延性参数值之和,如系统的容积、内能、焓、熵等。在热力过程中,广延性参数的变化起着类似力学中位移的作用,称为广义位移。 准静态过程:过程进行得非常缓慢,使过程中系统内部被破坏了的平衡有足够的时间恢复到新的平衡态,从而使过程的每一瞬间系统内部的状态都非常接近平衡状态,整个过程可看作是由一系列非常接近平衡态的状态所组成,并称之为准静态过程。 可逆过程:当系统进行正、反两个过程后,系统与外界均能完全回复到初始状态,这样的过程称为可逆过程。 膨胀功:由于系统容积发生变化(增大或缩小)而通过界面向外界传递的机械功称为膨胀功,也称容积功。 热量:通过热力系边界所传递的除功之外的能量。 热力循环:工质从某一初态开始,经历一系列状态变化,最后又回复到初始状态的全部过程称为热力循环,简称循环。 第二章气体的热力性质 1.基本概念

工程热力学概念.doc

绪论 工程热力学与传热学分两部分,热力学与传热学,这两部分都是与热有关的学科。 我们先讲热力学,第二部分再讲传热学。 热力学中热指的是热能,力在我们工程热力学中主要指的是用它来做功,也就是机械能,简单地理解工程热力学主要研究的是热能和机械能之间的相互转 化。也就是说由热产生力,进而对物体做功的过程,所以热力学主要研究的是热能和机械能之间的相互转化。 举个例子:比如汽车的发动机(内燃机),它是利用燃料(汽油)在汽缸中燃烧,燃烧后得到高温高压的烟气,烟气此时温度高,压力高,具有热能,那么 高压的燃气会推动气缸的活塞做水平往复运动,活塞又通过曲柄连杆机构把水平往复运动转化成圆周运动,进而带动汽车运动,这就是一个热力学的例子。 工程热力学的研究重点是热能与机械能之间的转化规律,那么下面我们来详细的看一下工程热力学的研究内容: ①研究热力学中的一些基本概念和基本定律。基本概念像热力学系统、热力学状态、平衡过程、可逆过程等。基本定律有热力学第一定律和热力学第二定律,第一定律和第二定律是工程热力学的理论基础,其中热力学第一定律主要研究热能与机械能之间转化时的数量关系,热力学第二定律主要研究热能和机械能转换 时的方向、条件、限度问题。 ②研究工质的性质。我们热能和机械能之间的转化需要依靠一定的工作物质 才能实现,因此,我们要研究热能和机械能之间的相互转化,我们首先要研实现这一工作的工质的性质。 ③研究工质参与下,遵循热力学第一定律和第二定律在热力设备中进行的实 际热力过程。 第一章基本概念 在我们研究工程热力学的过程中会用到许多术语,如工质、热力学系统、热力学状态、平衡状态、状态参数等。因此,要学好工程热力学我们首先要知道这 些术语指的是什么。

统计学常用公式汇总 (2)

统计学常用公式汇总 项目三 统计数据的整理与显示 组距=上限-下限 a) 组中值=(上限+下限)÷2 b) 缺下限开口组组中值=上限-邻组组距/2 c) 缺上限开口组组中值=下限+1/2邻组组距 例 按完成净产值分组(万元) 10以下 缺下限: 组中值=10—10/2=5 10—20 组中值=(10+20)/2=15 20—30 组中值=(20+30)/2=25 30—40 组中值=(30+40)/2=35 40—70 组中值=(40+70)/2=55 70以上 缺上限:组中值=70+30/2=85 项目四 统计描述 i. 相对指标 1. 结构相对指标=各组(或部分)总量/总体总量 2. 比例相对指标=总体中某一部分数值/总体中另一部分数值 3、 比较相对指标=甲单位某指标值/乙单位同类指标值 4、 动态相对指标=报告期数值/基期数值 5、 强度相对指标=某种现象总量指标/另一个有联系而性质不同的现 象总量指标 6、 计划完成程度相对指标K =计划数实际数 =% %计划规定的完成程度实际完成程度 7、 计划完成程度(提高率):K=%10011?++计划提高百分数 实际提高百分数 计划完成程度(降低率):K=%10011?--计划提高百分数 实际提高百分数 ii. 平均指标 1、简单算术平均数: 2、加权算术平均数 或

iii. 变异指标 1. 全距=最大标志值-最小标志值 2、标准差: 简单σ= ; 加权 σ= 成数的标准差(1) p p p σ=- 3、标准差系数: 项目五 时间序列的构成分析 一、平均发展水平的计算方法: (1)由总量指标动态数列计算序时平均数 ①由时期数列计算 n a a ∑= ②由时点数列计算 在连续时点数列的条件下计算(判断标志按日登记):∑∑=f af a 在间断时点数列的条件下计算(判断标志按月/季度/年等登记): 若间断的间隔相等,则采用“首末折半法”计算。公式为: 1 212 1121-++++=-n a a a a a n n 若间断的间隔不等,则应以间隔数为权数进行加权平均计算。公式为: ∑ --++++++=f f a a f a a f a a a n n n 11232121222 (2) (选用)由相对指标或平均指标动态数列计算序时平均数 基本公式为: b a c = 式中:c 代表相对指标或平均指标动态数列的序时平均数; a 代表分子数列的序时平均数; b 代表分母数列的序时平均数;

工程热力学概念公式

第一部分(第一章~第五章) 一、概念 (一)基本概念、基本术语 1、工程热力学:工程热力学是从工程的观点出发,研究物质的热力性质、能量转换以及热 能的直接利用等问题。 2、热力系统:通常根据所研究问题的需要,人为地划定一个或多个任意几何面所围成的空 间作为热力学研究对象。这种空间的物质的总和称为热力系统,简称系统。 3、闭口系统:没有物质穿过边界的系统称为闭口系统。系统包含的物质质量为一不变的常 量,所以有时又称为控制质量系统。 4、开口系统:有物质流穿过边界的系统称为开口系统。开口系统总是一种相对固定的空间, 故又称开口系统为控制体积系统,简称控制体。 5、绝热系统:系统与外界之间没有热量传递的系统,称为绝热系统。 6、孤立系统:系统与外界之间不发生任何能量传递和物质交换的系统,称为孤立系统。 7、热力状态:我们把系统中某瞬间表现的工质热力性质的总状况,称为工质的热力状态, 简称为状态。 8、状态参数:我们把描述工质状态特性的各种物理量称为工质的状态参数。 9、强度性状态参数:在给定的状态下,凡系统中单元体的参数值与整个系统的参数值相同, 与质量多少无关,没有可加性的状态参数称为强度性参数。 10、广延性状态参数:在给定的状态下,凡与系统所含物质的数量有关的状态参数称为广延 性参数。 11、平衡状态:在不受外界影响(重力场除外)的条件下,如果系统的状态参数不随时间变 化,则该系统所处的状态称为平衡状态。 12、热力过程:把工质从某一状态过渡到另一状态所经历的全部状态变化称为热力过程。 13、准静态过程:理论研究可以设想一种过程,这种过程进行得非常缓慢,使过程中系统部 被破坏了的平衡有足够的时间恢复到新的平衡态,从而使过程的每一瞬间系统部的 状态都非常接近平衡状态,于是整个过程就可看作是由一系列非常接近平衡态的状 态所组成,并称之为准静态过程。 14、可逆过程:当系统进行正、反两个过程后,系统与外界均能完全回复到初始状态,而不 留下任何痕迹,这样的过程称为可逆过程。 15、热力循环:把工质从某一初态开始,经历一系列状态变化,最后又回复到初始状态的全 部过程称为热力循环,简称循环。 16、循环热效率:正循环中热转换功的经济性指标用循环热效率表示,循环热效率等于循环 中转换为功的热量除以工质从热源吸收的总热量。 17、卡诺循环:由两个可逆定温过程与两个可逆绝热过程组成的,我们称之为卡诺循环。

工程热力学基本概念

第一章 1.基本概念 热力系统:用界面将所要研究的对象与周围环境分隔开来,这种人为分隔的研究对象,称为热力系统,简称系统。 边界:分隔系统与外界的分界面,称为边界。 外界:边界以外与系统相互作用的物体,称为外界或环境。 闭口系统:没有物质穿过边界的系统称为闭口系统,也称控制质量。 开口系统:有物质流穿过边界的系统称为开口系统,又称控制体积,简称控制体,其界面称为控制界面。 绝热系统:系统与外界之间没有热量传递,称为绝热系统。 孤立系统:系统与外界之间不发生任何能量传递和物质交换,称为孤立系统。 单相系:系统中工质的物理、化学性质都均匀一致的系统称为单相系。 复相系:由两个相以上组成的系统称为复相系,如固、液、气组成的三相系统。 单元系:由一种化学成分组成的系统称为单元系。 多元系:由两种以上不同化学成分组成的系统称为多元系。 均匀系:成分和相在整个系统空间呈均匀分布的为均匀系。 非均匀系:成分和相在整个系统空间呈非均匀分布,称非均匀系。 热力状态:系统中某瞬间表现的工质热力性质的总状况,称为工质的热力状态,简称为状态。 平衡状态:系统在不受外界影响的条件下,如果宏观热力性质不随时间而变化,系统内外同时建立了热的和力的平衡,这时系统的状态称为热力平衡状态,简称为平衡状态。 状态参数:描述工质状态特性的各种物理量称为工质的状态参数。如温度(T)、压力(P)、比容(υ)或密度(ρ)、内能(u)、焓(h)、熵(s)、自由能(f)、自由焓(g)等。 基本状态参数:在工质的状态参数中,其中温度、压力、比容或密度可以直接或间接地用仪表测量出来,称为基本状态参数。 温度:是描述系统热力平衡状况时冷热程度的物理量,其物理实质是物质内部大量微观分子热运动的强弱程度的宏观反映。 热力学第零定律:如两个物体分别和第三个物体处于热平衡,则它们彼此之间也必然处于热平衡。 压力:垂直作用于器壁单位面积上的力,称为压力,也称压强。 相对压力:相对于大气环境所测得的压力。如工程上常用测压仪表测定系统中工质的压力即为相对压力。 比容:单位质量工质所具有的容积,称为工质的比容。 密度:单位容积的工质所具有的质量,称为工质的密度。 强度性参数:系统中单元体的参数值与整个系统的参数值相同,与质量多少无关,没有可加性,如温度、压力等。在热力过程中,强度性参数起着推动力作用,称为广义力或势。

统计学原理常用公式汇总

统计学原理常用公式汇总 第2章统计整理 a)组距=上限-下限 b)组中值=(上限+下限)÷2 c)缺下限开口组组中值=上限-1/2邻组组距 d)缺上限开口组组中值=下限+1/2邻组组距 e)组数k=1+3.322Lg n n为数据个数 第3章综合指标 i.相对指标 1.结构相对指标=各组(或部分)总量/总体总量 2.比例相对指标=总体中某一部分数值/总体中另一部分数值 3.比较相对指标=甲单位某指标值/乙单位同类指标值 4.强度相对指标=某种现象总量指标/另一个有联系而性质不 同的现象总量指标 5.计划完成程度相对指标=实际数/计划数 =实际完成程度(%)/计划规定的完成程度(%) ii.平均指标 1.简单算术平均数: 2.加权算术平均数或 3调和平均数: ? ? = f X f X h 1 1 式中:, h Xf Xf m X X m f Xf X X m m Xf f X ==== == ??? ??? iii.标志变动度 1.全距=最大标志值-最小标志值 2.标准差: 简单σ= ;加权σ=

3.标准差系数: iiii 抽样推断 1. 抽样平均误差: 重复抽样: n x σ μ= n p p p ) 1(-= μ 不重复抽样: )1(2 N n n x - = σμ 2.抽样极限误差 x x t μ=? 3.重复抽样条件下: 平均数抽样时必要的样本数目 2 22x t n ?= σ 成数抽样时必要的样本数目2 2)1(p p p t n ?-= 不重复抽样条件下: 平均数抽样时必要的样本数目 2222 2σσt N Nt n x +?= 第4章 动态数列分析 一、平均发展水平的计算方法: (1)由总量指标动态数列计算序时平均数 ①由时期数列计算 n a a ∑= ②由时点数列计算 在间断时点数列的条件下计算: 若间断的间隔相等,则采用“首末折半法”计算。公式为: 1 212 11 21-++++=-n a a a a a n n Λ 若间断的间隔不等,则应以间隔数为权数进行加权平均计算。公式为:

工程热力学的公式大全

5.梅耶公式: R c c v p =- R c c v p 0''ρ=- 0R MR Mc Mc v p ==- 6.比热比: v p v p v p Mc Mc c c c c ===''κ 1-= κκR c v 1 -=κnR c p 外储存能: 1. 宏观动能: 221mc E k = 2. 重力位能: mgz E p = 式中 g —重力加速度。 系统总储存能: 1.p k E E U E ++= 或mgz mc U E ++ =221 2.gz c u e ++=221 3.U E = 或u e =(没有宏观运动,并且高度为零) 热力学能变化: 1.dT c du v =,?=?2 1dT c u v 适用于理想气体一切过程或者实际气体定容过程 2.)(12T T c u v -=? 适用于理想气体一切过程或者实际气体定容过程(用定值比热计算) 3.102000121221t c t c dt c dt c dt c u t vm t vm t v t v t t v ?-?=-==???? 适用于理想气体一切过程或者实际气体定容过程(用平均比热计算)

4.把()T f c v =的经验公式代入?=?2 1dT c u v 积分。 适用于理想气体一切过程或者实际气体定容过程(用真实比热公式计算) 5.∑∑====+++=n i i i n i i n u m U U U U U 1121Λ 由理想气体组成的混合气体的热力学能等于各组成气体热力学能之和,各组成气体热力学能又可表示为单位质量热力学能与其质量的乘积。 6.?-=?21pdv q u 适用于任何工质,可逆过程。 7.q u =? 适用于任何工质,可逆定容过程 8.?=?21pdv u 适用于任何工质,可逆绝热过程。 9.0=?U 适用于闭口系统任何工质绝热、对外不作功的热力过程等热力学能或理想气体定温过程。 10.W Q U -=? 适用于mkg 质量工质,开口、闭口,任何工质,可逆、不可逆过程。 11.w q u -=? 适用于1kg 质量工质,开口、闭口,任何工质,可逆、不可逆过程 12.pdv q du -=δ 适用于微元,任何工质可逆过程 13.pv h u ?-?=? 热力学能的变化等于焓的变化与流动功的差值。 焓的变化: 1.pV U H += 适用于m 千克工质 2.pv u h += 适用于1千克工质 3.()T f RT u h =+= 适用于理想气体 4.dT c dh p =,dT c h p ?=?2 1 适用于理想气体的一切热力过程或者实际气体的定压过程

工程热力学知识点总结

工程热力学大总结 '

… 第一章基本概念 1.基本概念 热力系统:用界面将所要研究的对象与周围环境分隔开来,这种人为分隔的研究对象,称为热力系统,简称系统。 边界:分隔系统与外界的分界面,称为边界。 外界:边界以外与系统相互作用的物体,称为外界或环境。 闭口系统:没有物质穿过边界的系统称为闭口系统,也称控制质量。 ) 开口系统:有物质流穿过边界的系统称为开口系统,又称控制体积,简称控制体,其界面称为控制界面。 绝热系统:系统与外界之间没有热量传递,称为绝热系统。 孤立系统:系统与外界之间不发生任何能量传递和物质交换,称为孤立系统。 单相系:系统中工质的物理、化学性质都均匀一致的系统称为单相系。 复相系:由两个相以上组成的系统称为复相系,如固、液、气组成的三相系统。 单元系:由一种化学成分组成的系统称为单元系。 多元系:由两种以上不同化学成分组成的系统称为多元系。 } 均匀系:成分和相在整个系统空间呈均匀分布的为均匀系。 非均匀系:成分和相在整个系统空间呈非均匀分布,称非均匀系。 热力状态:系统中某瞬间表现的工质热力性质的总状况,称为工质的热力状态,简称为状态。 平衡状态:系统在不受外界影响的条件下,如果宏观热力性质不随时间而变化,系统内外同时建立了热的和力的平衡,这时系统的状态称为热力平衡状态,简称为平衡状态。 状态参数:描述工质状态特性的各种物理量称为工质的状态参数。如温度(T)、压力(P)、比容(υ)或密度(ρ)、内能(u)、焓(h)、熵(s)、自由能(f)、自由焓(g)等。 基本状态参数:在工质的状态参数中,其中温度、压力、比容或密度可以直接或间接地用仪表测量出来,称为基本状态参数。

工程热力学概念公式复习过程

工程热力学概念公式

第一部分 (第一章~第五章) 一、概念 (一)基本概念、基本术语 1、工程热力学:工程热力学是从工程的观点出发,研究物质的热力性质、能量 转换以及热能的直接利用等问题。 2、热力系统:通常根据所研究问题的需要,人为地划定一个或多个任意几何面 所围成的空间作为热力学研究对象。这种空间内的物质的总和称为热力 系统,简称系统。 3、闭口系统:没有物质穿过边界的系统称为闭口系统。系统内包含的物质质量 为一不变的常量,所以有时又称为控制质量系统。 4、开口系统:有物质流穿过边界的系统称为开口系统。开口系统总是一种相对 固定的空间,故又称开口系统为控制体积系统,简称控制体。 5、绝热系统:系统与外界之间没有热量传递的系统,称为绝热系统。 6、孤立系统:系统与外界之间不发生任何能量传递和物质交换的系统,称为孤 立系统。 7、热力状态:我们把系统中某瞬间表现的工质热力性质的总状况,称为工质的 热力状态,简称为状态。 8、状态参数:我们把描述工质状态特性的各种物理量称为工质的状态参数。 9、强度性状态参数:在给定的状态下,凡系统中单元体的参数值与整个系统的 参数值相同,与质量多少无关,没有可加性的状态参数称为强度性参 数。

10、广延性状态参数:在给定的状态下,凡与系统内所含物质的数量有关的状 态参数称为广延性参数。 11、平衡状态:在不受外界影响(重力场除外)的条件下,如果系统的状态参 数不随时间变化,则该系统所处的状态称为平衡状态。 12、热力过程:把工质从某一状态过渡到另一状态所经历的全部状态变化称为 热力过程。 13、准静态过程:理论研究可以设想一种过程,这种过程进行得非常缓慢,使 过程中系统内部被破坏了的平衡有足够的时间恢复到新的平衡态,从而 使过程的每一瞬间系统内部的状态都非常接近平衡状态,于是整个过程 就可看作是由一系列非常接近平衡态的状态所组成,并称之为准静态过 程。 14、可逆过程:当系统进行正、反两个过程后,系统与外界均能完全回复到初 始状态,而不留下任何痕迹,这样的过程称为可逆过程。 15、热力循环:把工质从某一初态开始,经历一系列状态变化,最后又回复到 初始状态的全部过程称为热力循环,简称循环。 16、循环热效率:正循环中热转换功的经济性指标用循环热效率表示,循环热 效率等于循环中转换为功的热量除以工质从热源吸收的总热量。 17、卡诺循环:由两个可逆定温过程与两个可逆绝热过程组成的,我们称之为 卡诺循环。 18、卡诺定理:卡诺定理可表达为:①所有工作于同温热源与同温冷源之间的 一切热机,以可逆热机的热效率为最高。②在同温热源与同温冷源之间 的一切可逆热机,其热效率均相等。

工程热力学 名词解释

1. 第一章 基本概念及定义 2. 热能动力装置:从燃料燃烧中得到热能,以及利用热能所得到动力的整套设备(包括辅助设备)统称热能动力装置。 3. 工质:热能和机械能相互转化的媒介物质叫做工质,能量的转换都是通过工质状态的变化实现的。 4. 高温热源:工质从中吸取热能的物系叫热源,或称高温热源。 5. 低温热源:接受工质排出热能的物系叫冷源,或称低温热源。 6. 热力系统:被人为分割出来作为热力学分析对象的有限物质系统叫做热力系统。 7. 闭口系统:如果热力系统与外界只有能量交换而无物质交换,则称该系统为闭口系统。(系统质量不变) 8. 开口系统:如果热力系统与外界不仅有能量交换而且有物质交换,则称该系统为开口系统。(系统体积不变) 9. 绝热系统:如果热力系统和外界间无热量交换时称为绝热系统。(无论开口、闭口系统,只要没有热量越过边界) 10. 孤立系统:如果热力系统和外界既无能量交换又无物质交换时,则称该系统为孤立系统。 11. 表压力:工质的绝对压力>大气压力时,压力计测得的差数。 12. 真空度:工质的绝对压力<大气压力时,压力计测得的差数,此时的压力计也叫真空计。 13. 平衡状态:无外界影响系统保持状态参数不随时间而改变的状态。充要条件是同时到达热平衡和力平衡。 14. 稳定状态:系统参数不随时间改变。(稳定未必平衡) 15. 准平衡过程(准静态过程):过程进行的相对缓慢,工质在平衡被破环后自动恢复平衡所需的时间很短,工质有足够的时间来恢复平衡,随时都不致显著偏离平衡状态,那么这样的过程就称为准平衡过程。它是无限接近于平衡状态的过程。 16. 可逆过程:完成某一过程后,工质沿相同的路径逆行回复到原来的状态,并使相互作用所涉及的外界亦回复到原来的状态,而不留下任何改变。可逆过程=准平衡过程+没有耗散效应(因摩擦机械能转变成热的现象)。 17. 准平衡与可逆区别:准平衡过程只着眼工质内部平衡;可逆过程是分析工质与外界作用产生的总效果,不仅要求工质内部平衡,还要求工质与外界作用可以无条件逆复。 18. 功:功是热力系统通过边界而传递的能量,且其全部效果可表现为举起重物。 19. 热量:热力系统与外界之间仅仅由于温度不同而通过边界传递的能量。 20. 两者不同:功是有规则的宏观运动的能量传递,在做功的过程中往往伴随着能量形态的转化。热量则是大量微观粒子杂乱热运动的能量传递,传递过程中不出现能量形态的转化。功转变成热量是无条件的而热量转变成功是有条件的。 21. 正向循环(热动力循环):热能转化成机械能的循环叫做正循环,它使外界得到功Wnet 。 22. 逆向循环:工质在循环中消耗机械能(或其他能量)把热量从低温热源传给高温热源的过程称为逆循环,消耗外功。 23. 第二章 热力学第一定律 24. 热力学第一定律:自然界中的一切物质都具有能量,能量不可能被创造,也不可能被消灭,但可以从一种形态转变为另一种形态,在能量的转换过程中能量的总量保持不变。(热力学第一定律就是能量守恒和转换定律在热现象中的体现)。内能的改变方式有两个:做功和热传递 ΔU = W + Q 。 25. 第一类永动机:不消耗能量便可以永远对外做功的动力机械。 26. 热力学能(内能):分子间的不规则运动的内动能,分子间的相互作用的内位能,维持分子结构的化学能,原子核内部的原子能,电磁场作用下的电磁能等一起构成热力学能。 27. 总能(总存储能):内能(热力学能),外能(宏观运动动能及位能)的总和称总能。 28. 推动功:工质在开口系统中流动而传递的功称为推动功mpv 。 29. 流动功:系统为维持工质流动所需的功称为流动功(推动功差p2V2-p1V1)。 30. 技术功:机械能可以全部转变为技术上可以利用的功,称为技术功(技术上可资利用的功)。 31. 体积功:工质因体积的变化与外界交换的功。 32. 焓:在热力设备中,工质总是不断的从一处流到另一处,随着工质的移动而转移的能量,即热力学能和推动功之和u+pv 。 33. 稳定流动过程:流动过程中,开口系统内部及其边界上各点工质的热力参数及运动参数都不随时间而变,则这种流动过程称为稳定流动过程。反之,则为不稳定流动过程或瞬变流动过程。 34. 节流:工质流过阀门等设备时,流动界面突然收缩,压力下降,这种现象称为节流。 35. 第三章 气体和蒸汽的性质 36. 标准大气压:在纬度45°的海平面上,当温度为0℃时,760毫米高水银柱产生的压强叫做标准大气压。 37. 理想气体:1.分子间是弹性的、不具有体积的质点;2.分子间相互没有作用力。 38. 摩尔气体常数:R=MRg=8.314 5 J/(mol ·K),与气体种类状态都无关。Rg 与气体种类有关,状态无关。Rg 物理意义是1 kg 某种理想气体定压升高1 K 对外作的功。 39. 定压比热容Cp :压力不变的条件下,1kg 物质在温度升高1K 所需的热量称为定压比热容。 40. 定容比热容Cv :体积不变的条件下,1kg 物质在温度升高1K 所需的热量称为定容比热容。Cp- Cv=Rg 气体常数。Cp/Cv=γ比热容比。 41. 湿饱和蒸汽:水蒸气和水的混合物称为湿饱和蒸汽。 42. 干饱和蒸汽:即饱和蒸汽,水全部变成蒸汽,这个时候的蒸汽称为干饱和蒸汽 43. 过热蒸汽:对饱和蒸汽继续定压加热,蒸汽温度升高,比体积增大,此时的蒸汽称为过热蒸汽。 44. 饱和状态:当汽化速度=液化速度时,系统处于动态平衡,宏观上气、液两相保持一定的相对数量。 45. 饱和温度:处于饱和状态的汽、液的温度相同称为饱和温度。 46. 饱和压力:处于饱和状态的蒸汽的压力称为饱和压力。 47. 过冷水:水温低于饱和温度时称为过冷水或未饱和水。 48. 过热度:温度超过饱和温度之值称为过热度 49. 汽化潜热:1kg 质量的某种液相物质在汽化过程中所吸收的热量。简称汽化潜热(液体蒸发吸收的热量)。 50. 第四章 气体与蒸汽的基本热力 51. 第五章 热力学第二定律 52. 热力学第二定律(克劳修斯说法):热不可能自发的、不付代价的从低温物体传至高温物体。 53. 热力学第二定律(开尔文说法):不可能制造出从单一热源吸热,使之全部转化为功而不留下其他任何变化的热力发动机。 54. 造成过程不可逆的两大因素:1、耗散效应。2、有限势差作用下的非准平衡变化。 55. 卡诺循环:工作于温度分别为1T 和2T 的两个热源之间的正向循环,由两个可逆定温过程和两个可逆绝热过程组成。 56. 概况性卡诺循环:双热源间的极限回热循环称为概括性卡诺循环。 57. 回热:用工质原本排出的热量加热工质本身的方法。 58. 熵产:由耗散热产生的熵增量叫做熵产。(闭口系内不可逆绝热过程中,存在不可逆因素引起耗散效应,使损失的机械能转化为热能被工质吸收,导致熵增大)。 59. 熵流:系统与外界换热量与热源温度的比值,称为熵流。 60. 孤立系统的熵增原理:孤立系统中的各种不可逆因素表现为系统的机械功损失,产生机械功不可逆地转化为热的效果,使孤立系统的熵增大。称为孤立系统的

工程热力学的公式大全

5.梅耶公式: R c c v p =- R c c v p 0''ρ=- 0R MR Mc Mc v p ==- 6.比热比: v p v p v p Mc Mc c c c c = = = ''κ 1-= κκR c v 1 -=κnR c p 外储存能: 1. 宏观动能: 2 2 1mc E k = 2. 重力位能: mgz E p = 式中 g —重力加速度。 系统总储存能: 1.p k E E U E ++= 或mgz mc U E ++=2 21 2.gz c u e ++=22 1 3.U E = 或 u e =(没有宏观运动,并且高度为零) 热力学能变化: 1.dT c du v =,?=?2 1dT c u v 适用于理想气体一切过程或者实际气体定容过程 2.)(12T T c u v -=? 适用于理想气体一切过程或者实际气体定容过程(用定值比热计算) 3.10 20 121 2 2 1 t c t c dt c dt c dt c u t vm t vm t v t v t t v ?-?=-==???? 适用于理想气体一切过程或者实际气体定容过程(用平均比热计算)

4.把 ()T f c v =的经验公式代入?=?2 1 dT c u v 积分。 适用于理想气体一切过程或者实际气体定容过程(用真实比热公式计算) 5.∑∑====+++=n i i i n i i n u m U U U U U 1 1 21 由理想气体组成的混合气体的热力学能等于各组成气体热力学能之和,各组成气体热力学能又可表示为单位质量热力学能与其质量的乘积。 6.?-=?2 1pdv q u 适用于任何工质,可逆过程。 7.q u =? 适用于任何工质,可逆定容过程 8.?=?21 pdv u 适用于任何工质,可逆绝热过程。 9.0=?U 适用于闭口系统任何工质绝热、对外不作功的热力过程等热力学能或理想气体定温过程。 10.W Q U -=? 适用于mkg 质量工质,开口、闭口,任何工质,可逆、不可逆过程。 11.w q u -=? 适用于1kg 质量工质,开口、闭口,任何工质,可逆、不可逆过程 12.pdv q du -=δ 适用于微元,任何工质可逆过程 13.pv h u ?-?=? 热力学能的变化等于焓的变化与流动功的差值。 焓的变化: 1.pV U H += 适用于m 千克工质 2.pv u h += 适用于1千克工质 3.()T f RT u h =+= 适用于理想气体 4.dT c dh p =,dT c h p ?=?2 1 适用于理想气体的一切热力过程或者实际气体的定压过程

工程热力学概念

绪论 工程热力学与传热学分两部分,热力学与传热学,这两部分都就是与热有关得学科。 我们先讲热力学,第二部分再讲传热学。 热力学中热指得就是热能,力在我们工程热力学中主要指得就是用它来做功,也就就是机械能,简单地理解工程热力学主要研究得就是热能与机械能之间得相互转化。也就就是说由热产生力,进而对物体做功得过程,所以热力学主要研究得就是热能与机械能之间得相互转化。 举个例子:比如汽车得发动机(内燃机),它就是利用燃料(汽油)在汽缸中燃烧,燃烧后得到高温高压得烟气,烟气此时温度高,压力高,具有热能,那么高压得燃气会推动气缸得活塞做水平往复运动,活塞又通过曲柄连杆机构把水平往复运动转化成圆周运动,进而带动汽车运动,这就就是一个热力学得例子。 工程热力学得研究重点就是热能与机械能之间得转化规律,那么下面我们来详细得瞧一下工程热力学得研究内容: ①研究热力学中得一些基本概念与基本定律。基本概念像热力学系统、热力学状态、平衡过程、可逆过程等。基本定律有热力学第一定律与热力学第二定律,第一定律与第二定律就是工程热力学得理论基础,其中热力学第一定律主要研究热能与机械能之间转化时得数量关系,热力学第二定律主要研究热能与机械能转换时得方向、条件、限度问题。 ②研究工质得性质。我们热能与机械能之间得转化需要依靠一定得工作物质才能实现,因此,我们要研究热能与机械能之间得相互转化,我们首先要研实现这一工作得工质得性质。 ③研究工质参与下,遵循热力学第一定律与第二定律在热力设备中进行得实际热力过程。 第一章基本概念 在我们研究工程热力学得过程中会用到许多术语,如工质、热力学系统、热力学状态、平衡状态、状态参数等。因此,要学好工程热力学我们首先要知道这些术语指得就是什么。 我们先来瞧第一个概念:工质

工程热力学基本概念

第一章 工质:实现热能和机械能之间转换的媒介物质。 系统:热设备中分离出来作为热力学研究对象的物体。 状态参数:描述系统宏观特性的物理量。 热力学平衡态:在无外界影响的条件下,如果系统的状态不随时间发生变化,则系统所处的状态称为热力学平衡态。 压力:系统表面单位面积上的垂直作用力。 温度:反映物体冷热程度的物理量。 温标:温度的数值表示法。 状态公理:对于一定组元的闭口系统,当其处于平衡状态时,可以用与该系统有关的准静态功 形式的数量n 加上一个象征传热方式的独立状态参数,即(n+1 )个独立状态参数来确定。 热力过程:系统从初始平衡态到终了平衡态所经历的全部状态。 准静态过程:如过程进行的足够缓慢,则封闭系统经历的每一中间状态足够接近平衡态,这样的过程称为准静态过程。 可逆过程:系统经历一个过程后如果系统和外界都能恢复到各自的初态,这样的过程称为可逆过程。无任何不可逆因素的准静态过程是可逆过程。 循环:工质从初态出发,经过一系列过程有回到初态,这种闭合的过程称为循环。 可逆循环:全由可逆过程粘组成的循环。 不可逆循环:含有不可逆过程的循环。 第二章 热力学能:物质分子运动具有的平均动能和分子间相互作用而具有的分子势能称为物质的热力学能体积功:工质体积改变所做的功热量:除功以外,通过系统边界和外界之间传递的能量。焓:引进或排出工质输入或

输出系统的总能量。 技术功:工程技术上将可以直接利用的动能差、位能差和轴功三项之和称为技术功。功:物质间通过宏观运动发生相互作用传递的能量。 轴功:外界通过旋转轴对流动工质所做的功。 流动功:外界对流入系统工质所做的功。 第三章 热力学第二定律: 克劳修斯说法:不可能使热量从低温物体传到高温物体而不引起其他变化。 开尔文说法:不可能从单一热源吸热使之完全转化为有用功而不引起其他变化。卡诺循环:两热源间的可逆循环,由定温吸热、绝热膨胀、定温放热、绝热压缩四个可逆过程组成。 卡诺定理:在温度为T1 的高温热源和温度为T2 的低温热源之间工作的一切可逆热机,其热效 率相等,与工质的性质无关;在温度为T1的高温热源和温度为T2的低温热源之间工作的热机 循环,以卡诺循环的热效率为最高。 熵:沿可逆过程的克劳修斯积分,与路径无关,由初、终状态决定。 熵流:沿任何过程(可逆或不可逆)的克劳修斯积分,称为“熵流” 。 熵产:系统熵的变化量与熵流之差。 熵增原理:在孤立系统和绝热系统中,如进行的过程是可逆过程,其系统总熵保持不变;如为不可逆过程,其熵增加;不论什么过程,其熵不可能减少。 第四章

统计学原理公式及应用

《统计学原理》常用公式汇总及计算题目分析 第一部分常用公式 第三章统计整理 a)组距=上限-下限 b)组中值=(上限+下限)÷2 c)缺下限开口组组中值=上限-1/2邻组组距 d)缺上限开口组组中值=下限+1/2邻组组距 第四章综合指标 i.相对指标 1.结构相对指标=各组(或部分)总量/总体总量 2.比例相对指标=总体中某一部分数值/总体中另一部分数值 3.比较相对指标=甲单位某指标值/乙单位同类指标值 4.强度相对指标=某种现象总量指标/另一个有联系而性质不同的现象 总量指标 5.计划完成程度相对指标=实际数/计划数 =实际完成程度(%)/计划规定的完成程度(%) ii.平均指标

1.简单算术平均数: 2.加权算术平均数或 iii.变异指标 1.全距=最大标志值-最小标志值 2.标准差: 简单σ= ;加权σ= 3.标准差系数: 第五章抽样估计 1.平均误差: 重复抽样: 不重复抽样: 2.抽样极限误差 3.重复抽样条件下: 平均数抽样时必要的样本数目

成数抽样时必要的样本数目 4.不重复抽样条件下: 平均数抽样时必要的样本数目 第七章相关分析 1.相关系数 2.配合回归方程y=a+bx 3.估计标准误: 第八章指数分数 一、综合指数的计算与分析 (1)数量指标指数

此公式的计算结果说明复杂现象总体数量指标综合变动的方向和程度。 (-) 此差额说明由于数量指标的变动对价值量指标影响的绝对额。 (2)质量指标指数 此公式的计算结果说明复杂现象总体质量指标综合变动的方向和程度。 (-) 此差额说明由于质量指标的变动对价值量指标影响的绝对额。 加权算术平均数指数= 加权调和平均数指数= (3)复杂现象总体总量指标变动的因素分析 相对数变动分析: = × 绝对值变动分析:

工程热力学知识点

工程热力学复习知识点 一、知识点 基本概念的理解和应用(约占40%),基本原理的应用和热力学分析能力的考核(约占60%)。 1. 基本概念 掌握和理解:热力学系统(包括热力系,边界,工质的概念。热力系的分类:开口系,闭口系,孤立系统)。 掌握和理解:状态及平衡状态,实现平衡状态的充要条件。状态参数及其特性。制冷循环和热泵循环的概念区别。 理解并会简单计算:系统的能量,热量和功(与热力学两个定律结合)。 2. 热力学第一定律 掌握和理解:热力学第一定律的实质。 理解并会应用基本公式计算:热力学第一定律的基本表达式。闭口系能量方程。热力学第一定律应用于开口热力系的一般表达式。稳态稳流的能量方程。 理解并掌握:焓、技术功及几种功的关系(包括体积变化功、流动功、轴功、技术功)。 3. 热力学第二定律 掌握和理解:可逆过程与不可逆过程(包括可逆过程的热量和功的计算)。 掌握和理解:热力学第二定律及其表述(克劳修斯表述,开尔文

表述等)。卡诺循环和卡诺定理。 掌握和理解:熵(熵参数的引入,克劳修斯不等式,熵的状态参数特性)。 理解并会分析:熵产原理与孤立系熵增原理,以及它们的数学表达式。热力系的熵方程(闭口系熵方程,开口系熵方程)。温-熵图的分析及应用。 理解并会计算:学会应用热力学第二定律各类数学表达式来判定热力过程的不可逆性。 4. 理想气体的热力性质 熟悉和了解:理想气体模型。 理解并掌握:理想气体状态方程及通用气体常数。理想气体的比热。 理解并会计算:理想气体的内能、焓、熵及其计算。理想气体可逆过程中,定容过程,定压过程,定温过程和定熵过程的过程特点,过程功,技术功和热量计算。 5. 实际气体及蒸气的热力性质及流动问题 理解并掌握:蒸汽的热力性质(包括有关蒸汽的各种术语及其意义。例如:汽化、凝结、饱和状态、饱和蒸汽、饱和温度、饱和压力、三相点、临界点、汽化潜热等)。蒸汽的定压发生过程(包括其在p-v和T-s图上的一点、二线、三区和五态)。 理解并掌握:绝热节流的现象及特点 6. 蒸汽动力循环

统计学常用公式汇总

《统计学原理》常用公式汇总 组距=上限-下限组中值=(上限+下限)÷2 缺下限开口组组中值=上限-1/2邻组组距缺上限开口组组中值=下限+1/2邻组组距 111平均指标 1.简单算术平均数: 2.加权算术平均数 或 iii.变异指标 1.全距=最大标志值-最小标志值 2.标准差: 简单σ= ;加权σ= 3.标准差系数: 第五章抽样估计 1.平均误差:重复抽样: 不重复抽样: 2.抽样极限误差 3.重复抽样条件下:平均 数抽样时必要的样本数目 成数抽样时必要的样本数目 4.不重复抽样条件下:平均数抽样时必要的样本数目 第七章相关分析 1.相关系数 2.配合回归方程y=a+bx

3.估计标准误: 第八章指数分数一、综合指数的计算与分析 (1)数量指标指数 此公式的计算结果说明复杂现象总体数量指标综合变动的方向和程度。 ( - ) 此差额说明由于数量指标的变动对价值量指标影响的绝对额。 (2)质量指标指数 此公式的计算结果说明复杂现象总体质量指标综合变动的方向和程度。 ( - ) 此差额说明由于质量指标的变动对价值量指标影响的绝对额。 加权算术平均数指数= 加权调和平均数指数= (3)复杂现象总体总量指标变动的因素分析 相对数变动分析: = × 绝对值变动分析: - = ( - )×( - ) 第九章动态数列分析 一、平均发展水平的计算方法:

(1)由总量指标动态数列计算序时平均数 ①由时期数列计算 ②由时点数列计算 在间断时点数列的条件下计算: a.若间断的间隔相等,则采用“首末折半法”计算。公式为: b.若间断的间隔不等,则应以间隔数为权数进行加权平均计算。公式为: (2)由相对指标或平均指标动态数列计算序时平均数 基本公式为: 式中:代表相对指标或平均指标动态数列的序时平均数; 代表分子数列的序时平均数; 代表分母数列的序时平均数; 逐期增长量之和累积增长量 二. 平均增长量=─────────=───────── 逐期增长量的个数逐期增长量的个数 (1)计算平均发展速度的公式为: (2)平均增长速度的计算 平均增长速度=平均发展速度-1(100%)

相关文档
相关文档 最新文档