文档视界 最新最全的文档下载
当前位置:文档视界 › 数学建模大作业

数学建模大作业

数学建模大作业
数学建模大作业

兰州交通大学

数学建模大作业

学院:机电工程学院

班级:车辆093

学号:200903812 姓名:刘键学号:200903813 姓名:杨海斌学号:200903814 姓名:彭福泰学号:200903815 姓名:程二永学号:200903816 姓名:屈辉

高速公路问题

1 实验案例 (2)

1.1 高速公路问题(简化) (2)

1.1.1 问题分析 (3)

1.1.2 变量说明 (3)

1.1.3 模型假设 (3)

1.1.4 模型建立 (3)

1.1.5 模型求解 (4)

1.1.6 求解模型的程序 (4)

1实验案例

1.1 高速公路问题(简化)

A城和B城之间准备建一条高速公路,B城位于A城正南20公里和正东30公里交汇处,它们之间有东西走向连绵起伏的山脉。公路造价与地形特点有关,图4.2.4给出了整个地区的大致地貌情况,显示可分为三条沿东西方向的地形带。

你的任务是建立一个数学模型,在给定三种地形上每公里的建造费用的情况下,确定最便宜的路线。图中直线AB显然是路径最短的,但不一定最便宜。而路径ARSB过山地的路段最短,但是否是最好的路径呢?

A

B

图8.2 高速公路修建地段

1.1.1 问题分析

在建设高速公路时,总是希望建造费用最小。如果要建造的起点、终点在同一地貌

中,那么最佳路线则是两点间连接的线段,这样费用则最省。因此本问题是一个典型的最优化问题,以建造费用最小为目标,需要做出的决策则是确定在各个地貌交界处的汇合点。

1.1.2 变量说明

i x :在第i 个汇合点上的横坐标(以左下角为直角坐标原点),i =1,2,…,4;x 5=30(指目的地B 点的横坐标)

x=[x 1,x 2,x 3,x 4]T

l i :第i 段南北方向的长度(i =1,2, (5)

S i :在第i 段上地所建公路的长度(i =1,2, (5)

由问题分析可知,

()

()()

()

2

542552

432442

322332212

222

1211x x l S x x l S x x l S x x l S x l S -+=-+=-+=-+=+=

C 1:平原每公里的造价(单位:万元/公里)

C 2:高地每公里的造价(单位:万元/公里) C 3:高山每公里的造价(单位:万元/公里)

1.1.3 模型假设

1、 假设在相同地貌中修建高速公路,建造费用与公路长度成正比;

2、 假设在相同地貌中修建高速公路在一条直线上。在理论上,可以使得建造费用最少,

当然实际中一般达不到。

1.1.4 模型建立

在A 城与B 城之间建造一条高速公路的问题可以转化为下面的非线性规划模型。优化目标是在A 城与B 城之间建造高速公路的费用。

()

4,3,2,1300.

.)(min 5142332211=≤≤++++=i x t s S C S C S C S C S C x f i

1.1.5模型求解

这里采用Matlab编程求解。

模型求解时,分别取C i(i=1,2,3)如下。

平原每公里的造价C1=400万元/公里;

高地每公里的造价C2=800万元/公里;

高山每公里的造价C3=1200万元/公里。

输入主程序model_p97.m,运行结果如下:

model_p97

optans =

2.2584e+004

len =

38.9350

ans =

12.1731 14.3323 15.6677 17.8269

求解程序见附录。

注:实际建模时必须查找资料来确定参数或者题目给定有数据)

6.模型结果及分析

通过求解可知,为了使得建造费用最小。建造地点的选择宜采取下列结果。

x1=12.1731,x2=14.3233,x3=15.6677,x4=17.8269

建造总费用为2.2584亿元。

总长度为38.9350公里

1.1.6求解模型的程序

(1)求解主程序

model_p97

function x=model_p97 %数学建模教材 P97 高速公路

clear all

global C L

C=[400 800 1200];

L=[4 4 4 4 4];

x=fmincon('objfun_97',[1,1,1,1],[],[],[],[],zeros(1,4),ones(1,4)* 30,'mycon_p97');

optans=objfun_97(x)

C=ones(3,1);

len = objfun_97(x)

(2)模型中描述目标函数的Matlab程序objfun_97.m

function obj=objfun_97(x)

global C L

obj=C(1)*sqrt(L(1)^2+x(1)^2) + C(2)*sqrt(L(2)^2+(x(2)-x(1))^2) + ... C(3)*sqrt(L(3)^2+(x(3)-x(2))^2)

C(2)*sqrt(L(4)^2+(x(4)-x(3))^2)+C(1)*sqrt(L(5)^2+(...30-x(4))^2); (3)模型中描述约束条件的Matlab函数mycon_p97.m

function [c,ceq]=mycon_p97(x)

c(1)=x(1)-x(2);

c(2)=x(2)-x(3);

c(3)=x(3)-x(4);

c(4)=x(4)-30;

ceq=[];

综合实验:施肥效果分析

【问题提出】

施肥效果分析(1992年全国大学生数学模型联赛题A)

某地区作物生长所需的营养素主要是氮(N)、钾(K)、磷(P)。某作物研究所在某地区对土豆与生菜做了一定数量的实验,实验数据如下列表所示,其中ha表示公顷,t表示吨,kg表示公斤。当一个营养素的施肥量变化时,总将另两个营养素的施肥量保持在第七个水平上,如对土豆产量关于N的施肥量做实验时,P与K的施肥量分别取为196kg/ha与372kg/ha。

试分析施肥量与产量之间关系,并对所得结果从应用价值与如何改进等方面做出估计。

土豆:N P K

生菜:N P K

数据拟合方法[1]在数学建模问题中常常有着重要的应用。根据实验数据来求出实际问题中变量之间的经验公式[1~2],然后再根据经验公式来讨论模型的最优解,是许多数学建模问题中的一种重要方法。下面就利用这种方法来讨论一个数学建模问题[3~4]。某地区作物生长所需的营养素主要是氮(N)、磷(P)、钾(K)。某作物研究所在该地区对土豆与生菜做了一定数量的实验,实验数据可参见文献[3],其中ha表示公顷,t表示吨,kg表示公斤。当一个营养素的施肥量变化时,总将另两个营养素的施肥量保持在第七个水平上,如对土豆产量关于N的施肥量做实验时,P与K的施肥量分别取为196kg/ha与372kg/ha。我们来分析施肥量与产量之间的关系,并对所得结果从应用价值与如何改进等方面作出估价。

首先,将题中的数据用MA TLAB软件[5]作出图形:

从图上可看出,N、P、K的取值范围不一样,可以将它们的取值范围转化成区间[0,1],这样它们的变化范围就都一样了。转化后的数据图形如下:

1模型的建立及求解

要分析施肥量与产量之间的关系,首先要建立施肥量与产量之间的函数关系。可以用数据拟合的方法来建立这种函数关系。这又需要确定拟合的函数的形式,即所谓经验公式。

施肥量与产量之间的函数可以是每一种肥料的施用量与产量的关系,也可以是三种肥料共同的施用量与产量的关系。按一般常识,N、P、K是作物生长的三种基本肥料要素,它们用量的多少将直接影响农作物的产量。这种对作物产量的“影响”通常是这三种肥料的共同影响,而不应是单一某一种肥料对作物产量的“影响”。但每一种肥料的用量对于不同的作物产量的影响效果又有不同。例如,N肥的施用量对有些农作物产量的影响是:当N肥施用量较少时,随着N肥用量的增加,农作物的产量会增加,到一定用量后产量达到最大,然后,当N肥用量继续增加时,农作物的产量反而会降低。这从上面的土豆和生菜产量与N肥用量的数据图上也可以看到这样的规律。而在一定的范围内,P肥和K肥的用量对农作物产量的影响将随着其用量的增加而一直增加,只是当P肥和K肥的用量较少时,随着其用量的增加,农作物产量增加较快,而当P肥和K肥的用量较多时,随着其用量的增加,农作物产量增加不大。从上面的土豆和生菜产量与P肥或K肥用量的数据图上可以看到这样的规律。具有这种特点的函数关系在数学上用二次多项式就能较好地反映出来。当然也可以考虑用分段函数来描述。为简单起见,下面在拟合这些函数时都用二次多项式。在实验数据中,K肥料施用量与生菜产量的实验数据波动性较大,这种产量与肥料的施用量的关系在农作物中是很少出现的现象。如果从数据图形的整体来看,其实K肥料施用量与生菜产量的实验数据的特点还是与上面所说的情况相似的,其波动性可看作是实验误差。要利用实验数据来拟合出这些函数关系,显然,如果实验数据越多、数据分布越合理,则拟合的效果就越好。这样拟合出来的函数,其所反映出来的规律就越符合实际情况。例如,应当给出充分多的数据,且这些数据应当是在N、P、K三种肥料的不同用量下的产量数据。又比如,应该有这样的数据:当N、P、K三种肥料中某两种肥料限制在不同的固定值时,相应地,第三种肥料取不同值时的产量数据,这样才有可能反映出N、P、K 三种肥料在对农作物产量的共同影响时的相互影响的规律。但事实上,这里所给出的实验数据非常有限,而且很不均匀,所以用现有的数据来拟合N、P、K的施用量与产量之间的函数关系,并根据这些函数的性质所推断出的施肥量与产量之间的关系,其可信性是有限的。

另外,拟合每一种肥料的施用量与产量的函数时,其余两种肥料的用量都是限制在一个数值上的,其结果通常也只能得到,当相应的另两肥料的用量在所限制的数值下的情况。虽然我们得到的结果可能有一定的局限性,但这里所用到的方法却是处理这类问题的常用方法,从建立模型的角度来说,还是值得讨论的。如果要想得到更精确的结果,只需要有更多的产量施肥量实验数据,再用本文中给出的模型讨论即可。

用这些函数来讨论施肥效果产量与施肥量的函数关系,有两种方式,一种是对三种肥料施用量与产量分别来拟合相应的函数,这需要拟合三个函数,每个函数都是一元函数,这种做法可以使拟合的效果较好。另一种是考虑三种肥料共同对产量的影响,这只需要拟合出一个函数,这是一个三元函数,且由于数据量偏少且不均匀等的原因,拟合效果要差一些,但这是讨论肥料施用量与产量的全局最优解所必须的。下面分别来讨论。

1.1模型1对三种肥料的用量与土豆和生菜产量分别拟合相应的函数讨论一种肥料的用量与产量的关系时,其它两种肥料的用量都固定在第7种水平,三种肥料的用量分

别是:

土豆n07=0.5499,p07=k07=0.5714;

生菜n17=0.57149,p17=0.5708,k17=0.5714。

先考虑土豆与每一种肥料用量的函数关系,我们利用所给数据来拟合这些函数关系。如果假设土豆产量与三种肥料:N、P、K的用量之间的函数关系分别是

w11=f1(n),w12=f2(p),w13=f3(k)

这些函数的形式,按照上面的讨论,都用二次多项式。下面是利用实验数据拟合的结果。

当P、K固定在第7种水平,即p07=k07=0.5714时,函数w11=f1(n)拟合的结果是:

w11=f1(n)=-75.3222n2+92.8574n+14.7416, n∈[0,1]

当N、K固定在第7种水平,即n07=0.5499,k07=0.5714时,函数w12=f2(p)拟合的结果是:

w12=f2(p)=-16.1179p2+24.5678p+32.9241,p∈[0,1]

当N、P固定在第7种水平,即n07=0.5499,p07=0.5714时,函数w13=f3(k)拟合的结果是:

w13=f3(k)=-29.6463k2+48.8088k+24.4144,k∈[0,1]

类似地,如果假设生菜与三种肥料N、P、K之间的函数关系分别是

w21=g1(n),w22=g2(p),w23=g3(k)

这些函数利用原始数据拟合的结果如下。

当P、K固定在第7种水平,即p17=0.5708,k17=0.5714时,函数w21=g1(n)拟合的结果是: w21=g1(n)=-36.5944n2+39.7175n+10.294,n∈[0,1]

当N、K固定在第7种水平,即n17=0.57149,k17=0.5714时,函数w22=g2(p)拟合的结果是:

w22=g2(p)=-25.6089p2+41.5218p+6.88196,p∈[0,1]

当N、P固定在第7种水平,即n17=0.57149,p17=0.5708时,函数w23=g3(k)拟合的结果是:

w23=g3(k)=-0.304688k2+3.33018k+16.2329,k∈[0,1]

如果用上面求出的拟合函数来表示相应的产量与施肥量的函数关系,从拟合曲线的图形来看,只有产量与N肥的用量函数有唯一极大值点。其它函数都不具有这一性质,其规律是:P、N的施用量越多,产量都会增加。如果只从增加产量的角度,就应尽量多施这两种肥料但多施肥的同时也会增加购买肥料的费用,从经济的角度来看,并不一定合算。应综合考虑产量和施肥的成本因素,以单位面积上的收益(即农作物的销售收入与施肥的费用之差)为目函数,以单位面积的收益最大为最优准则,来确定最优解。

1.1.1产量模型

考虑当0≤n,p,k≤1时的产量模型。如果只是追求高产,则只要求出上面拟合出来的函数w1i= fi(?)和w2i=g(?)(i=1,2,3)

的最大值即可。产量模型的求解可以用微分法求解,也以用MA TLAB软件很容易求出,

且只要求N对产量的最大值,因为P和K的用量取最大值时,相应地土豆和生菜的产量最大。

利用MATLAB软件求解的结果是:当P、K固定在第7种水平,即p=k=p07=k07

=0.5714,而N的用量为n1=0.6164,即N的施用量是290.3244(kg/ha)时,土豆的产量最大,最大值是43.3603(t/ha);

当P、K固定在第7种水平,即p=p17=0.5708,k=k17=0.5714,而N的用量为n2=0.5427,即N的施用量是212.7384(kg/ha)时,生菜的产量最大,最大值是21.0062(t/ha)。

1.1.2效益模型

当施用肥料所带来的收入比用于购买肥料的费用多时,就应该施肥,否则就不应该多施肥。设土豆和生菜的售价分别是a1和a2(元/t),N、P和K的售价分别为b1,b2,b3(元/kg)。

首先讨论N肥施用量的效益模型。当N肥的用量是n(kg/ha)时,土豆和生菜的产量分别是w1=f1(n)和w2=g1(n),土豆施用肥料的费用是h1=b1n+p07b2+k07b3(元/ha),生菜施用肥料的费用是h2=b1n+p17b2+k17b3(元/ha)。

单位面积上的土豆和生菜因施N肥所增加的收益分别是:

m1=a1[f1(n)-f1(0)]-h1

=a1(-75.3222n2+92.8574n)-(b1n+p07b2+k07b3)

m2=a2[g1(n)-g1(0)]-h2

=a2(-36.5944n2+39.7175n)-(b1n+p17b2+k17b3)

于是效益模型就归结为要确定N肥的施用量n使得收益m1,m2达到最大。利用微分法不难求得最优解是:

当n=n1=92.8574a1-b1150.6444a1时,土豆的最大收益是:

m31=a1(-75.3222n21+92.8574n1)-(b1n1+p07b2+k07b3)(元/ha)。

当n=n2=39.7475a2-b73.1888a2时,生菜的最大收益是:

m32=a2(-36.5944n22+39.7175n2)-(b1n2+p17b2+k17b3)(元/ha)。

同样,对于单位面积上的土豆和生菜因施P肥或K肥所增加的收益也可以类似地讨论,此处就只对于单位面积上的土豆和生菜因施P肥所增加的收益进行讨论。收益函数分别是:

m′1=a1[f2(p)-f2(0)]-h′1=a1(-16.1179p2+24.5678p)-(n07b1+pb2+k07b3)

m′2=a2[g2(p)-g2(0)]-h′2=a2(-25.6089p2+41.5218p)-(n17b1+pb2+k17b3)

利用微分法不难求得最优解是:

当p=p1=24.5678a1-b232.2358a1时,土豆的最大收益是

m′31=a1[f2(p1)-f2(0)]-h′1

=a1(-16.1179p21+24.5678p1)-(n07b1+p1b2+k07b3)(元/ha)。

当p=p2=39.7175a2-b273.1888a2时,生菜的最大收益是

m′32=a2[g2(p2)-g2(0)]-h′2

=a2(-25.6089p22+41.5218p2)-(n17b1+p2b2+k17b3)(元/ha)。

1.2模型2

将土豆和生菜的产量都看成是N、P和K的三元函数设w1=f(n,p,k)和w2=g(n,p,k)分别是土豆和生菜的产量与三种肥料的施肥量之间的函数,这里用2次多项式来拟合这两个函数下面是用MATLAB软件求得的结果,利用实验数据在求拟合函数w1=f(n,p,k)和w2=g(n,p,k)时,发现只出现n,p,k及其乘幂项,而没有n,p,k交叉相乘的项。

w1=f(n,p,k)=-12.82+89.60n+28.79p+47.82k-72.26n2-20.04p2-28.73k2

w2=g(n,p,k)=-7.496+36.57n+31.24p+16.78k-33.67n2-16.06p2-12.79k2

其中0≤n,p,k≤1。拟合效果如下图所示。

1.2.1产量模型

易知,产量模型可归结为求函数w1=f(n,p,k)和w2=g(n,p,k)的最大值。用微分法或用MATLAB软件可以求出结果是:

当N、P和K的取值分别是n=0.62,p=0.72,k=0.83时,土豆的产量最大,最大值是45.1938(t/ha);

当N、P和K的取值分别是n=0.54,p=0.97,k=0.66时,生菜的产量最大,最大值是23.1291(t/ha)。

1.2.2效益模型

同模型1,当施用肥料所带来的收入比用于购买肥料的费用多时,就应该施肥。否则就不应该多施肥。设土豆和生菜的售价分别是a1和a2(元/t),N、P和K的售价分别中b1,b2,b3(元/kg)。当N、P和K的用量分别是n,p,k(kg/ha)时,土豆和生菜的产量分别是w1=f(n,p,k)和w2=g(n,p,k),而购买肥料的费用是h=b1n+b2p+b3k(元/ha),于是单位面积上的土豆和生菜因施肥所增加的收益分别是:

m1=[f(n,p,k)-f(0,0,0)]×a1-h

=[f(n,p,k)-f(0,0,0)]×a1-(b1n+b2p+b3k)

m2=[g(n,p,k)-g(0,0,0)]×a2-h

=[g(n,p,k)-g(0,0,0)]×a2-(b1n+b2p+b3k)

模型归结为:确定n,p,k的值,使上面两个函数分别达到最大值。用微分法可求得最优解分别是:

当N、P和K的取值分别是

n1=89.60a1-b1144.52a1,

p1=28.79a1-b240.08a1,

k1=47.82a-b357.46a1

时,土豆的产量最大,最大值是

m31=[f(n1,p1,k1)-f(0,0,0)]×a1-(b1n1+b2p1+b3k1)(t/ha);

当N、P和K的取值分别是

n2=36.57a2-b167.34a2,p2

=31.24a2-b232.12a2,

k2=16.78a2-b325.58a2

时,生菜的产量最大,最大值是

m32=[g(n2,p2,k2)-g(0,0,0)]×a2-(b1n2+b2p2+b3k2)(t/ha)。

2模型的检验与改进

为了检验效益模型的求解结果,需要知道土豆和生菜的销售价,还要知道肥料N、P、K 的销售价。不同的N肥价格相差较大,例如,按照当前的市场价格,碳酸氢铵平均价格为540(元/吨),尿素价格为1760(元/吨),钾肥的价格也有1700(元/吨)至2420(元/吨)不等的情况,而P肥的价格大致为400(元/吨)。在以下讨论中,我们假设N肥价格为b1=1.76(元/kg);P肥的价格为b2=0.4(元/kg);K肥的价格为b3=2.42(元/kg)。又设土豆和生菜的批发价分别为800(元/吨)和400(元/吨)。对于模型1的效益模型,利用上面的数据,可求得单位面积上的土豆和生菜施N 肥的最优解结果分别是:

n1=0.6164,m31=2.2892×104(元)和n2=0.5426,m32=4.3081×103(元)。

同样,可求得单位面积上的土豆和生菜施P肥的最优解结果分别是:

p1=0.7621,m31=7.4869×103(元)和p2=0.8107,m32=6.7296×103(元)。

从求解的结果上可以看到,对于施N肥的效益模型求解的结果与产量模型的求解结果差别不大,这是因为,在现有的实验数据范围内,肥料的成本相对于总收益来说很小。例如每公顷面积施用N肥的成本最多为471×1.76<1000元,相对于总收益来说可忽略不计。因此,可以认为效益模型的结果与产量模型的结果相同。

这个求解的结果与农民对农作物施肥时的作法是相符合的。事实上,农民在对农作物施肥时,都是从考虑如何使农作物的产量达到最大来确定施肥量的。

在模型1中,讨论一种肥料的用量与产量的关系时,其它两种肥料的用量都固定在第7种水平,模型求解的结果较合理,但这只是当固定其中某两种肥料的用量时,考虑施用第三种肥料的施用量的最优解。而产量与肥料的施用量的全局最优解应当是模型2的解。

通常,对于用拟合方法得到的函数,只有当自变量在包含实验数据点(这里指自变量部分)的某个范围(例如,以实验数据点为顶点的所有多面体的并集)内变化时,拟合函数才可能是较合理的,而对于自变量在这个实验数据点的范围外变化时的函数值则不一定合理。例如,模型2在拟合所得到的函数

w1=f(n,p,k)=-12.82+89.60n+28.79p+47.82k-72.26n2-20.04p2-28.73k2

w2=g(n,p,k)=-7.496+36.57n+31.24p+16.78k-33.67n2-16.06p2-12.79k2

中,常数项的值为负,这是不合理的,因为f(0,0,0)和g(0,0,0)表示不施肥时的产量,这些值都应当是非负才合理。但因为原点(0,0,0)并不在实验数据的范围内,因此拟合函数的这种情况是可以出现的。这时模型2中的效益模型就需要改进一下。这可以用两种方法来处理。第一种方法,就是直接将函数f(n,p,k)和g(n,p,k)在原点(0,0,0)的某个小的邻域内的值改为0即可。也就是分别用

f1(n,p,k)=max{f(n,p,k),0}

g1(n,p,k)=max{g(n,p,k),0}

代替原来的函数f(n,p,k)和g(n,p,k)。这样处理之后,模型2的最优解和最大收益的值不变。

第二种方法,因为N、P、K三种肥料是农作物生长的基本肥料要素,如果这三种肥料都不

施用,农作物的产量通常会很低,可近似地认为产量为0。因此,在拟合函数f(n,p,k)和g(n,p,k)时,我们在实验数据中增加一个点(0,0,0,0)(即表示当N、P、K三种肥料的施用量均为0时,土豆和生菜的产量也为0),这样拟合函数f(n,p,k)和g(n,p,k)时的结果是

f(n,p,k)=89.6n+6.352p+25.38k-72.26n2-20.04p2+39.27pk-28.73k2

g(n,p,k)=23.45n+31.24p+3.659k-33.67n2-16.06p2+22.96nk-12.79k2

可以看到,这样拟合出来的函数f(n,p,k)和g(n,p,k)在原点处的值都不会出现负数。另外,在这样拟合得到的函数f(n,p,k)和g(n,p,k)的表达式中,还出现了n,p,k交叉相乘的项。用这两个函数代替模型2中的f(n,p,k)和g(n,p,k)时一样可以进行讨论。此时,用MATLAB软件可求得最优解分别是:

当N、P和K的取值分别是:

n1=0.62-0.0069b1a1

,p1=1.789-0.0755b2a1-0.0516b3a1

,k1=1.6647-0.0516b2a1-0.0527b3a1

时,土豆的产量最大,最大值是

m31=f(n1,p1,k1)×a1-(b1n1+b2p1+b3k1)(t/ha);

当N、P和K的取值分别是

n2=0.572-0.0214b1a2-0.0192b3a2

,p2=0.9723-0.0311b2a2

,k2=0.6565-0.0192b1a2-0.0563b3a2

时,生菜的产量最大,最大值是

m32=g(n2,p2,k2)×a2-(b1n2+b2p2+b3k2)(t/ha)。

[参考文献]

[1]李庆扬,王能超,易大义.数值分析(第四版)[M].北京:清华大学出版社,施普林格出版社,2003:90-98.

[2]姜启源.数学模型(第二版)[M].北京:高等教育出版社,1993:101-106.

[3]叶其孝.大学生数学建模竞赛辅导教材(二)[M].湖南:湖南教育出版社,1997:82-86.

[4]萧树铁,姜启源.大学数学—数学实验[M].北京:高等教育出版社,2003:51-74.

[5]张志涌,杨祖樱等.MATLAB教程(R2006a—R2007a)[M].北京:北京航空航天大学出版社,2007:165-168&177-192.

数学建模大作业

兰州交通大学 数学建模大作业 学院:机电工程学院 班级:车辆093 学号:200903812 姓名:刘键学号:200903813 姓名:杨海斌学号:200903814 姓名:彭福泰学号:200903815 姓名:程二永学号:200903816 姓名:屈辉

高速公路问题 1 实验案例 (2) 1.1 高速公路问题(简化) (2) 1.1.1 问题分析 (3) 1.1.2 变量说明 (3) 1.1.3 模型假设 (3) 1.1.4 模型建立 (3) 1.1.5 模型求解 (4) 1.1.6 求解模型的程序 (4) 1实验案例 1.1 高速公路问题(简化) A城和B城之间准备建一条高速公路,B城位于A城正南20公里和正东30公里交汇处,它们之间有东西走向连绵起伏的山脉。公路造价与地形特点有关,图4.2.4给出了整个地区的大致地貌情况,显示可分为三条沿东西方向的地形带。 你的任务是建立一个数学模型,在给定三种地形上每公里的建造费用的情况下,确定最便宜的路线。图中直线AB显然是路径最短的,但不一定最便宜。而路径ARSB过山地的路段最短,但是否是最好的路径呢? A B 图8.2 高速公路修建地段

1.1.1 问题分析 在建设高速公路时,总是希望建造费用最小。如果要建造的起点、终点在同一地貌 中,那么最佳路线则是两点间连接的线段,这样费用则最省。因此本问题是一个典型的最优化问题,以建造费用最小为目标,需要做出的决策则是确定在各个地貌交界处的汇合点。 1.1.2 变量说明 i x :在第i 个汇合点上的横坐标(以左下角为直角坐标原点),i =1,2,…,4;x 5=30(指目的地B 点的横坐标) x=[x 1,x 2,x 3,x 4]T l i :第i 段南北方向的长度(i =1,2, (5) S i :在第i 段上地所建公路的长度(i =1,2, (5) 由问题分析可知, () ()() () 2 542552 432442 322332212 222 1211x x l S x x l S x x l S x x l S x l S -+=-+=-+=-+=+= C 1:平原每公里的造价(单位:万元/公里) C 2:高地每公里的造价(单位:万元/公里) C 3:高山每公里的造价(单位:万元/公里) 1.1.3 模型假设 1、 假设在相同地貌中修建高速公路,建造费用与公路长度成正比; 2、 假设在相同地貌中修建高速公路在一条直线上。在理论上,可以使得建造费用最少, 当然实际中一般达不到。 1.1.4 模型建立 在A 城与B 城之间建造一条高速公路的问题可以转化为下面的非线性规划模型。优化目标是在A 城与B 城之间建造高速公路的费用。 () 4,3,2,1300. .)(min 5142332211=≤≤++++=i x t s S C S C S C S C S C x f i

数学建模作业——实验1

数学建模作业——实验1 学院:软件学院 姓名: 学号: 班级:软件工程2015级 GCT班 邮箱: 电话: 日期:2016年5月10日

基本实验 1.椅子放平问题 依照1.2.1节中的“椅子问题”的方法,将假设中的“四腿长相同并且四脚连线呈正方形”,改为“四腿长相同并且四脚连线呈长方形”,其余假设不变,问椅子还能放平吗?如果能,请证明;如果不能,请举出相应的例子。 答:能放平,证明如下: 如上图,以椅子的中心点建立坐标,O为原点,A、B、C、D为椅子四脚的初始位置,通过旋转椅子到A’、B’、C’、D’,旋转的角度为α,记A、B两脚,C、D两脚距离地面的距离为f(α)和g(α),由于椅子的四脚在任何位置至少有3脚着地,且f(α)、g(α)是α的连续函数,则f(α)和g(α)至少有一个的值为0,即f(α)g(α)=0,f(α)≥ 0,g(α)≥0,若f(0)>0,g(0)=0,

则一定存在α’∈(0,π),使得 f(α’)=g(α’)=0 令α=π(即椅子旋转180°,AB 边与CD 边互换),则 f(π)=0,g(π)>0 定义h(α)=f(α)-g(α),得到 h(0)=f(0)-g(0)>0 h(π)=f(π)-g(π)<0 根据连续函数的零点定理,则存在α’∈(0,π),使得 h(α’)=f(α’)-g(α’)=0 结合条件f(α’)g(α’)=0,从而得到 f(α’)=g(α’)=0,即四脚着地,椅子放平。 2. 过河问题 依照1.2.2节中的“商人安全过河”的方法,完成下面的智力游戏:人带着猫、鸡、米过河,船除需要人划之外,至多能载猫、鸡、米之一,而当人不在场时,猫要吃鸡、鸡要吃米,试设计一个安全过河的方案,并使渡河的次数尽量的少。 答:用i =1,2,3,4分别代表人,猫,鸡,米。1=i x 在此岸,0=i x 在对岸,()4321,,,x x x x s =此岸状态,()43211,1,1,1x x x x D ----=对岸状态。安全状态集合为 :

数学建模期末大作业

数学建模期末大作业论文 题目:A题美好的一天 组长:何曦(2014112739) 组员:李颖(2014112747)张楚良(2014112740) 班级:交通工程三班 指导老师:陈崇双

美好的一天 摘要 关键字:Dijkstra算法多目标规划有向赋权图 MATLAB SPSS

1 问题的重述 Hello!大家好,我是没头脑,住在西南宇宙大学巨偏远的新校区(节点22)。明天我一个外地同学来找我玩,TA叫不高兴,是个镁铝\帅锅,期待ing。我想陪TA在城里转转,当然是去些不怎么花钱的地方啦~~。目前想到的有林湾步行街(节点76)、郫郫公园(节点91),大川博物院(节点72)。交通嘛,只坐公交车好了,反正公交比较发达,你能想出来的路线都有车啊。另外,进城顺便办两件事,去老校区财务处一趟(节点50),还要去新东方(节点34)找我们宿舍老三,他抽奖中了两张电影票,我要霸占过来明晚吃了饭跟TA一起看。电影院嘛,TASHIWODE电影院(节点54)不错,比较便宜哈。我攒了很久的钱,订了明晚开心面馆(节点63)的烛光晚餐,额哈哈,为了TA,破费一下也是可以的哈。哦,对了,老三说了,他明天一整天都上课,只有中午休息的时候能接见我给我票。 我主要是想请教一下各位大神: 1)明天我应该怎么安排路线才能够让花在坐车上的时间最少? 2)考虑到可能堵车啊,TA比较没耐心啊,因为TA叫不高兴嘛。尤其是堵车啊,等车啊,这种事,万一影响了气氛就悲剧了。我感觉路口越密的地方越容易堵,如果考虑这个,又应该怎么安排路线呢? 3)我们城比较挫啊,连地图也没有,Z老师搞地图测绘的,他有地图,跟他要他不给,只给了我一个破表格(见附件,一个文件有两页啊),说“你自己画吧”。帮我画一张地图吧,最好能标明我们要去的那几个地方和比较省时的路线啊,拜托了~ 2 问题的分析 2.1 对问题一的分析 问题一要求安排路线使得坐车花费的时间最少。 对于问题一,假设公交车的速度维持不变,要使花费的时间最少,则将问题转化为对最短路径的求解。求解最短路径使用Dijkstra算法很容易进行求解,在运用MATLAB编程,得到最优的一条路径,则这条路径所对应的时间即为最少用时。 2.2 对问题二的分析 问题二要求在考虑堵车的情况下,路口越密越容易发生拥堵,安排路线是乘车时间最短。 对于问题二,在问题的基础上增加了附加因素,即公交车的速度会因道路的密集程度而发生改变,从而问题一建立的基本Dijkstra算法对于问题二就不再适用了,因此对问题一的基本Dijkstra算法进行改进,并结合蚁群算法的机理与特点,运用MATLAB求解出最短路径,保证了花费时间的最少性。 2.3 对问题三的分析 问题三要求根据提供的附件,画出一张地图,标明要去的那几个地方和比较省时的路线。 对于问题三,在问题一和问题二的基础上,根据求解的结果,运用SPSS软件画出地图。

数学建模作业

郑重声明: 本作业仅供参考,可能会有错误,请自己甄别。 应用运筹学作业 6.某工厂生产A,B,C,D四种产品,加工这些产品一般需要经刨、磨、钻、镗四道工序,每种产品在各工序加工时所需设备台时如表1-18所示,设每月工作25天,每天工作8小时,且该厂有刨床、磨床、钻床、镗床各一台。问:如何安排生产,才能使月利润最大?又如A,B,C,D四种产品,每月最大的销售量分别为300件、350件、200件和400件,则该问题的线性规划问题又该如何? 1234 四种产品的数量,则得目标函数: Max=(200?150)x1+(130?100)x2+(150?120)x3+(230?200)x4 =50x1+30x2+30x3+30x4 生产四种产品所用时间: (0.3+0.9+0.7+0.4)x1+(0.5+0.5+0.5+0.5)x2+(0.2+0.7+0.4+ 0.8)x3+(0.4+0.8+0.6+0.7)x4≤25×8 即:2.3x1+2.0x2+2.1x3+2.5x4≤200 又产品数量不可能为负,所以:x i≥0(i=1,2,3,4) 综上,该问题的线性规划模型如下: Max Z=50x1+30x2+30x3+30x4 S.T.{2.3x1+2.0x2+2.1x3+2.5x4≤200 x i≥0(i=1,2,3,4) 下求解目标函数的最优解: max=50*x1+30*x2+30*x3+30*x4; 2.3*x1+2.0*x2+2.1*x3+2.5*x4<200; Global optimal solution found. Objective value: 4347.826 Total solver iterations: 0 Variable Value Reduced Cost X1 86.95652 0.000000 X2 0.000000 13.47826 X3 0.000000 15.65217

数学建模论文大作业-打车软件竞争问题

打车软件的竞争问题 班级:电子科学与技术1102班组员: 二零一四年五月

打车软件的竞争问题 摘要:随着打车软件的日趋火热,越来越多的出行者使用打车软件预约出租车。基于移动互联网的打车软件相对于已往的传统的统一出租车电招平台庞杂的预定流程,显示出了很大的便捷优势,这种约车新形式服务正在悄然改变人们传统打车模式,它的新颖性、神奇性、创新性、高效性以及便利性在一定程度上迎合了人们现代化的生活方式。消费者每次使用打车软件预约出租车,被使用的软件公司都会给予司机和消费者相应的补贴,而且随着竞争的升级,补贴的力度越来越大。打车软件给一部分人带来了便捷,同时也带来了很多的社会问题,如拒载、爽约、空车不停等。正是这些争议性问题使得人们对这种新事物的出现产生一些疑虑。因此,国内一些城市开始对这类打车软件紧急进行“叫停”,使得目前这些打车软件的发展陷入迷茫状态。 本文通过建立科学的数学模型,论述了打车软件目前发展模式和存在的问题,并阐述了如何对打车软件进行安全管理与标准化的建议;同时,通过模型分析讨论了打车软件之间的竞争问题;最后指出打车软件企业需要不断地完善自己的软件产品,提高用户体验,使打车软件更符合出租车营运行业市场的需求。 关键词:打车软件;软件补贴;竞争;发展前景

一、打车软件市场发展状况 随着移动互联网的飞速发展,打车软件开始变得异常的火热,开始成为了越来越多的年轻时尚人士出行必备的工具。随着竞争的深入,各家打车软件公司依托于背后强大的母公司支撑和金元的后盾,开始了现金补贴的营销战略,消费者每次使用打车软件预约出租车,被使用的软件公司都会给予司机和消费者相应的补贴,而且随着竞争的升级,补贴的力度越来越大。如表1所示。 表1 补贴政策 时间事件 1月10日 嘀嘀打车软件在32个城市开通微信支付,使用微信支付,乘客车费立减10元、 司机立奖10元。 1月20日“快的打车”和支付宝宣布,乘客车费返现10元,司机奖励10元。 1月21日快的和支付宝再次提升力度,司机奖励增至15元。 2月10日嘀嘀打车宣布对乘客补贴降至5元。 2月10日快的打车表示奖励不变,乘客每单仍可得到10元奖励。 2月17日嘀嘀打车宣布,乘客奖10元,每天3次;北京、上海、深圳、杭州的司机每单奖10元,每天10单,其他城市的司机每天前5单每单奖5元,后5单每单奖10元。新乘客首单立减15元,新司机首单立奖50元。 2月17日支付宝和快的也宣布,乘客每单立减11元。司机北京每天奖10单,高峰期每单奖11元(每天5笔),非高峰期每单奖5元(每天5笔);上海、杭州、广州、深圳每天奖10单。 2月18日 嘀嘀打车开启“游戏补贴”模式:使用嘀嘀打车并且微信支付每次能随机获得 12至20元不等的补贴,每天3次。 2月18日快的打车表示每单最少给乘客减免13元,每天2次。 随之而来的是出租车行业的怪相:出租车司机的主要收入变成了软件公司的补贴,一个司机一个月保守的收入增加都在800~1800元;而消费者打车的费用也同样基本变由打车软件承担,有些短途的打车变成了免费甚至还赚钱。与此同时,问题和矛盾也出现了:不使用打车软件的消费者无法打到车,拒载、空车不停等投诉也比比皆是;司机开车时频频使用手机看打车软件,也产生了潜在交通

数学建模作业

习 题 1 1. 请编写绘制以下图形的MA TLAB 命令,并展示绘得的图形. (1) 221x y +=、224x y +=分别是椭圆2241x y +=的内切圆和外切圆. (2) 指数函数x y e =和对数函数ln y x =的图像关于直线y=x 对称. (3) 黎曼函数 1, (0)(0,1) 0 , (0,1), 0,1 q x p q q x y x x x =>∈?=? ∈=?当为既约分数且当为无理数且或者 的图像(要求分母q 的最大值由键盘输入). 3. 两个人玩双骰子游戏,一个人掷骰子,另一个人打赌掷骰子者不能掷出所需点数,输赢的规则如下:如果第一次掷出3或11点,打赌者赢;如果第一次掷出2、7或12点,打赌者输;如果第一次掷出4、5、6、8、9或10点,记住这个点数,继续掷骰子,如果不能在掷出7点之前再次掷出该点数,则打赌者赢. 请模拟双骰子游戏,要求写出算法和程序,估计打赌者赢的概率. 你能从理论上计算出打赌者赢的精确概率吗?请问随着试验次数的增加,这些概率收敛吗?

4. 根据表1.14的数据,完成下列数据拟合问题: (1) 如果用指数增长模型0()0()e r t t x t x -=模拟美国人口从1790年至2000年的变化过程,请用MATLAB 统计工具箱的函数nlinfit 计算指数增长模型的以下三个数据拟合问题: (i) 取定0x =3.9,0t =1790,拟合待定参数r ; (ii) 取定0t =1790,拟合待定参数0x 和r ; (iii) 拟合待定参数0t 、0x 和r . 要求写出程序,给出拟合参数和误差平方和的计算结果,并展示误差平方和最小的拟合效果图. (2) 通过变量替换,可以将属于非线性模型的指数增长模型转化成线性模型,并用MA TLAB 函数polyfit 进行计算,请说明转化成线性模型的详细过程,然后写出程序,给出拟合参数和误差平方和的计算结果,并展示拟合效果图. (3) 请分析指数增长模型非线性拟合和线性化拟合的结果有何区别?原因是什么? (4) 如果用阻滞增长模型00 () 00()()e r t t Nx x t x N x --= +-模拟美国人口从1790年至2000年的变化过程,请用MA TLAB 统计工具箱的函数nlinfit 计算阻滞增长模型的以下三个数据拟合问题: (i) 取定0x =3.9,0t =1790,拟合待定参数r 和N ; (ii) 取定0t =1790,拟合待定参数0x 、r 和N ; (iii) 拟合待定参数0t 、0x 、r 和N . 要求写出程序,给出拟合参数和误差平方和的计算结果,并展示误差平方和最小的拟合效果图. 年份 1790 1800 1810 1820 1830 1840 1850 1860 1870 1880 1890

《数学模型》作业解答(第一章)

《数学模型》作业解答 第二章(1)(2008年9月16日) 1. 学校共1000名学生,235人住在A 宿舍,333人住在B 宿舍,432人住在C 宿舍.学生们 要组织一个10人的委员会,试用下列办法分配各宿舍的委员数: (1). 按比例分配取整数的名额后,剩下的名额按惯例分给小数部分较大者; (2). §1中的Q 值方法; (3).d ’Hondt 方法:将A 、B 、C 各宿舍的人数用正整数n=1,2,3,……相除,其商数如下表: 将所得商数从大到小取前10个(10为席位数),在数字下标以横线,表中A 、B 、C 行有横线的数分别为2,3,5,这就是3个宿舍分配的席位.你能解释这种方法的道理吗? 如果委员会从10个人增至15人,用以上3种方法再分配名额,将3种方法两次分配的结果列表比较. 解:先考虑N=10的分配方案, ,432 ,333 ,235321===p p p ∑==3 1 .1000i i p 方法一(按比例分配) ,35.23 1 11== ∑=i i p N p q ,33.33 1 22== ∑=i i p N p q 32.43 1 33== ∑=i i p N p q 分配结果为: 4 ,3 ,3321===n n n 方法二(Q 值方法) 9个席位的分配结果(可用按比例分配)为: 4 ,3 ,2321===n n n

第10个席位:计算Q 值为 ,17.92043223521=?=Q ,75.92404333322=?=Q 2.9331544322 3=?=Q 3Q 最大,第10个席位应给C.分配结果为 5 ,3 ,2321===n n n 方法三(d ’Hondt 方法) 此方法的分配结果为:5 ,3 ,2321===n n n 此方法的道理是:记i p 和i n 为各宿舍的人数和席位(i=1,2,3代表A 、B 、C 宿舍). i i n p 是每席位代表的人数,取,,2,1Λ=i n 从而得到的i i n p 中选较大者,可使对所有的,i i i n p 尽量接近. 再考虑15=N 的分配方案,类似地可得名额分配结果.现将3种方法两次分配的结果列表如下: 2. 试用微积分方法,建立录像带记数器读数n 与转过时间的数学模型. 解: 设录像带记数器读数为n 时,录像带转过时间为t.其模型的假设见课本. 考虑t 到t t ?+时间内录像带缠绕在右轮盘上的长度,可得,2)(kdn wkn r vdt π+=两边积分,得 ?? +=n t dn wkn r k vdt 0 )(2π )22 2 n wk k(r n πvt +=∴ .2 22n v k w n v rk t ππ+=∴ 第二章(2)(2008年10月9日) 15.速度为v 的风吹在迎风面积为s 的风车上,空气密度是ρ ,用量纲分析方法确定风车

数学建模创新思维大作业

数学建模创新思维课大作业 一、使用MATLAB 求解一下问题,请贴出代码. 1. cos 1000x mx y e =,求''y >>clear >>clc >> syms x m; >> y=exp(x)*cos(m*x/1000); >> dfdx2=diff(y,x,2) dfdx2 = exp(x)*cos((m*x)/1000) - (m*exp(x)*sin((m*x)/1000))/500 - (m^2*exp(x)*cos((m*x)/1000))/1000000 >> L=simplify(dfdx2) L = -(exp(x)*(2000*m*sin((m*x)/1000) - 1000000*cos((m*x)/1000) + m^2*cos((m*x)/1000)))/1000000 2.计算22 1100x y e dxdy +?? >> clear >> clc; >> syms x y >> L=int(int(exp(x^2+y^2),x,0,1),y,0,1) L = (pi*erfi(1)^2)/4 3. 计算4 224x dx m x +? >> clear; >> syms x m; >> f=x^4/(m^2+4*x^2); >> intf=int(f,x) intf =

(m^3*atan((2*x)/m))/32 - (m^2*x)/16 + x^3/12 >> L=simplify(intf) L = (m^3*atan((2*x)/m))/32 - (m^2*x)/16 + x^3/12 4. (10)cos ,x y e mx y =求 >> clear; >> syms x m; >> y=exp(x)*cos(m*x); >> L=diff(y,x,10); >> L=simplify(L) L = -exp(x)*(10*m*sin(m*x) - cos(m*x) + 45*m^2*cos(m*x) - 210*m^4*cos(m*x) + 210*m^6*cos(m*x) - 45*m^8*cos(m*x) + m^10*cos(m*x) - 120*m^3*sin(m*x) + 252*m^5*sin(m*x) - 120*m^7*sin(m*x) + 10*m^9*sin(m*x)) 5. 0x =的泰勒展式(最高次幂为4). >> clear; >> syms m x; >> y=sqrt(m/1000.0+x); >> y1=taylor(y,x,'order',5); >> L=simplify(y1) L = (10^(1/2)*(m^4 + 500*m^3*x - 125000*m^2*x^2 + 62500000*m*x^3 - 39062500000*x^4))/(100*m^(7/2)) 6. Fibonacci 数列{}n x 的定义是121,1x x ==12,(3,4, )n n n x x x n --=+=用循环语句编程 给出该数列的前20项(要求将结果用向量的形式给出)。 >> x=[1,1]; >> for n=3:20

数学建模作业

分析,我们仅利用1x 和2x 来建立y 的预测模型。 四、模型建立 (显示模型函数的构造过程) (1)为了大致地分析y 与1x 和2x 的关系,首先利用表一的数据分别作出y 对1x 和2x 的散点图 y 与x1的关系 程序代码: x1=[ 0 0 ]; y=[ ]; A=polyfit(x1,y,1) y1=polyval(A,x1); plot(x1,y1,x1,y,'go') y 与x2的关系 x2=[ ]; y=[ ]; A=polyfit(x2,y,2) x3=::; y2=polyval(A,x3); plot(x2,y,'go',x3,y2)

图1 y 对x1的散点图 图2 y 与x2的散点图 从图1 可以发现,随着1x 的增加,y 的值有比较明显的线性增长趋势,图中的直线是用线性模型 011y x ββε=++ (1) 拟合的(其中ε是随机误差),而在图2中,当2x 增大时,y 有向上弯曲增长的趋势,图中的曲 线是用二次函数模型 2 01122y x x βββε=+++ (2) 拟合的。 综合上面的分析,结合模型(1)和(2)建立如下的回归模型 2 0112232y x x x ββββε=++++ (3) (3)式右端的1x 和2x 称为回归变量(自变量),2 0112232x x x ββββ+++是给定价格差1x ,广告费 用2x 时,牙膏销售量y 的平均值,其中的参数0123,,,ββββ称为回归系数,由表1的数据估计,影响y 的其他因素作用都包含在随机误差ε中,如果,模型选择的合适,ε应大致服从均值为0的正态分布。 五、模型求解 (2)确定回归模型系数,求解出教程中模型(3); 程序代码:

2015年数学建模作业题

数学模型课程期末大作业题 要求: 1)选题方式:共53题,每个同学做一题,你要做的题目编号是你的学号mod52所得的值+1。(例如:你的学号为119084157,则你要做的题为mod(119084157,52)+1=50)。 2)该类题目基本为优划问题,要求提交一篇完整格式的建模论文,文字使用小四号宋体,公式用word的公式编辑器编写,正文中不得出现程序以及程序冗长的输出结果,程序以附录形式附在论文的后面,若为规划求解必须用lingo 集合形式编程,其它可用Matlab或Mathmatica编写。 3)论文以纸质文档提交,同时要交一份文章和程序电子文档,由班长统一收上来,我要验证程序。 1、生产安排问题 某厂拥有4台磨床,2台立式钻床,3台卧式钻床,一台镗床和一台刨床,用以生产7种产品,记作p1至p7。工厂收益规定作产品售价减去原材料费用之余。每种产品单件的收益及所需各机床的加工工时(以小时计)列于下表(表1): 表 到6月底每种产品有存货50件。 工厂每周工作6天,每天2班,每班8小时。 不需要考虑排队等待加工的问题。 在工厂计划问题中,各台机床的停工维修不是规定了月份,而是选择最合

适的月份维修。除了磨床外,每月机床在这6个月中的一个月中必须停工维修;6个月中4台磨床只有2台需要维修。扩展工厂计划模型,以使可作上述灵活安排维修时间的决策。停工时间的这种灵活性价值若何? 注意,可假设每月仅有24个工作日。 5、生产计划 某厂有4台磨床,2台立钻,3台水平钻,1台镗床和1台刨床,用来生产7种产品,已知生产单位各种产品所需的有关设备台时以及它们的利润如表所示: 台镗床,4月—1台立钻,5月—1台磨床和1台立钻,6月—1台刨床和1台水平钻,被维修的设备在当月内不能安排生产。又知从1月到6月份市场对上述7种产品最大需求量如表所示: 量均不得超过100件。现在无库存,要求6月末各种产品各贮存50件。若该厂每月工作24天,每天两班,每班8小时,假定不考虑产品在各种设备上的加工顺序,要求: (a)该厂如何安排计划,使总利润最大; (b)在什么价格的条件下,该厂可考虑租用或购买有关的设备。 34、瓶颈机器上的任务排序 在工厂车间中,经常会出现整个车间的生产能力取决于一台机器的情况(例如,仅有一台的某型号机床,生产线上速度最慢的机器等)。这台机器就称为关键机器或瓶颈机器。此时很重要的一点就是尽可能地优化此机器将要处理的任务计划。

数学建模作业43950

题目: 某种电子系统由三种元件组成,为了使系统正常运转,每个元件都必须工作良好,如果一个或多个元件安装备用件将会提高系统的可靠性,已知系统运转的可靠性为各元件可靠性的乘积,而每一个元件的可靠性是备用元件函数,具体数值见下表。 若全部备用件费用限制为150元,重量限制为20公斤,问每个元件安装多少备用件可使系统可靠性达到极大值? 要求:①作出全局最优解 ②列出这个问题的整数规划模型

假设:系统在运转过程中相互间没有影响,并且系统在增加备用件后 可靠性可以相互叠加。 建模: 设原件1,2,3需要的备用件各为x,y,z,可靠性为p分别为xp,yp,zp,整 个设备的可靠性为p,则由题意可得到: p=xp*yp*zp; 2x+4y+6z<=20; 20x+30y+40z<=150; x,y,z均为整数; 求出适当的x,y,z使p的值最大。 运用穷举法,编写C++程序如下: #include void main() { using namespace std; int x=0,y=0,z=0;//备à?用??零¢?件t数oy目? double xp[6]={0.5,0.6,0.7,0.8,0.9,1},yp[4]={0.6,0.75,0.95,1},zp[3]={0.7,0.9,1}; double p=0,temp=0;//可¨|靠?性? int i=0,j=0,k=0; cout<<"x\ty\tz\tp\n"; for(i=0;i<6;i++) { y=0; for(j=0;j<4;j++) { z=0; for(k=0;k<3;k++) {if((x+2*y+3*z<=10)&&(2*x+3*y+4*z<=15)) {temp=p; p=xp[x]*yp[y]*zp[z]; cout<

数学建模作业

数学建模作业 :成靖 学号:1408030311 班级:计科1403班 日期:2015.12.30

1.某班准备从5名游泳队员中选4人组成接力队,参加学校的4×100m混合泳接力比赛,5名队员4种泳姿的百米平均成绩如下表所示,问应如何选拔队员组成接力队? 如果最近队员丁的蛙泳成绩有较大的退步,只有1′15"2;而队员戊经过艰苦训练自由泳成绩有所进步,达到57"5,组成接力队的方案是否应该调整? 名队员4种泳姿的百米平均成绩 ij 若参选择队员i加泳姿j 的比赛,记x ij=1, 否则记x ij=0 目标函数: 即 min=66.8*x11+75.6*x12+87*x13+58.6*x14+57.2*x21+66*x22+66.4*x23+53*x24 +78*x31+67.8*x32+84.6*x33+59.4*x34+70*x41+74.2*x42+69.6*x43+57.2*x44+ 67.4*x51+71*x52+83.8*x53+62.4*x54; 约束条件: x11+x12+x13+x14<=1; x21+x22+x23+x24<=1; x31+x32+x33+x34<=1; x41+x42+x43+x44<=1; x51+x52+x53+x54<=1; x11+x21+x31+x41+x51=1; x12+x22+x32+x42+x52=1; x13+x23+x33+x43+x53=1; x14+x24+x34+x44+x54=1; ∑∑ == = 4 1 5 1 j i ij ij x c Z Min

lingo模型程序和运行结果 因此,最优解为x14=1,x21=1,x32=1,x43=1,其余变量为0 成绩为253.2(秒)=4′13"2 即:甲~ 自由泳、乙~ 蝶泳、丙~ 仰泳、丁~ 蛙泳.

数学建模期末大作业-2013年

期末大作业题目 一、小行星的轨道问题 一天文学家要确定一颗小行星绕太阳运行的轨道,他在轨道平面内建立了以太阳为原点的直角坐标系,在两坐标轴上取天文观测单位。在5个不同的时间对 (1 ) 建立小行星运行的轨道方程并画出其图形; (2) 求出近日点和远日点及轨道的中心(是太阳吗?); (3) 计算轨道的周长。 二、发电机使用计划 为了满足每日电力需求(单位:兆瓦),可以选用四种不同类型的发电机。每日电力需求如下所示: 一最小输出功率。所有发电机都存在一个启动成本,以及工作于最小功率状态时的固定的每小时成本,并且如果功率高于最小功率,则超出部分的功率每兆瓦每小时还存在一个成本,即边际成本。这些数据均列于下表中。 电机不需要付出任何代价。我们的问题是: (1)在每个时段应分别使用哪些发电机才能够使每天的总成本最小? (2)如果增加表3中的关闭成本,那么在每个时段应分别使用哪些发电机才能够使每天的总成本最小?

(3)如果增加表4中的关闭成本,那么在每个时段应分别使用哪些发电机才能够使每天的总成本最小? 三、合理计税问题

所以此人一年上税为: 245×12+11445=14385元 在实际的执行过程中,每月的岗位津贴和年末一次性奖金实际上是放在一起结算给个人的,而具体每月发放多少岗位津贴和年末一次性发放多少奖金可以由职工本人在年初根据自己的需要进行选择。显然,不同的选择发放方式所缴纳的税是不同的,这就产生一个合理计税的问题。假定该事业单位一年中的津贴与奖金之和的上限是160000元,试解决下面这个问题: 四、光伏电池的选购问题 早在1839年,法国科学家贝克雷尔(Becqurel)就发现,光照能使半导体材料的不同部位之间产生电位差。这种现象后来被称为“光生伏特效应”,简称“光伏效应”。1954年,美国科学家恰宾和皮尔松在美国贝尔实验室首次制成了实用的单晶硅太阳电池,诞生了将太阳光能转换为电能的实用光伏发电技术。据预测,太阳能光伏发电在未来会占据世界能源消费的重要席位,不但要替代部分常规能源,而且将成为世界能源供应的主体。 现有一家公司欲在面积为30平方米的一片向阳的屋顶安装光伏电池以解决部分电力紧张的问题。请你利用附件提供的数据通过建立数学模型解决下面三个问题: (1)如果该公司准备投资6万5千元购买A或者B两种类型的光伏电池,请你为该公司确定购买方案使得发电总功率最大。 (2)如果购买的光伏电池的开路电压之间的差不能超过2V,请你为该公司重新确定购买方案。 (3)实际中还要考虑电池串并联后并网发电的要求,即如果要购买两种或者两种类型以上的电池时,不同型号的电池的购买数量应该相等。请你在满足(1)

数学建模大作业

《建模基础》习题 1.超市进货问题 一家大型超市每天需要储存大量物品以满足顾客的需要。现在只考虑其中一种物品的销售和进货情况。 (1)假设需求是随机的,不考虑缺货损失的情况下,确定最佳进货策略。 (2)考虑缺货损失情况下的最佳进货策略。 (3)可进一步考虑有替代品的情况下的最佳进货策略。 注:测试数据可以自己设置。 2.城市快速交通线项目问题 随着经济和社会的快速发展,我们不得不面对城市快速交通线项目问题。城市快速交通线项目的建设与运营涉及公众利益,政府通常要对票价实行管制。票价的高低影响到公众的利益、项目投资者的利益和政府的财政支出。因此,应兼顾公众利益、投资者利益和政府的财政支付能力。 要求: (1)试建立最优票价模型,从而为乘客选择交通工具提供指导。 (2)城市快速交通线项目票价和运量之间存在着相关关系,对于城市快速交通线项目,需要兼顾公众的利益、项目投资者的利益和政府的承受能力。请建立数学模型,结合运量预测研究票价的合理水平。 (3)当项目的票款收入不足于维持正常运营或不足于使民间投资者获得合理的投资回报时,政府需要采取适当的方式给予投资者以合理的经济补偿。试分析并确定合理的年经济补偿或一次性的经济补偿。 3.电梯控制问题 学校某楼北楼有两台电梯。等电梯的人给出要上下的信号,电梯只有在空闲或同方向行进时才接受这个指令。然而,电梯经常出现十分拥挤的状况,特别在上下课的时候,要等很长的时间,所以埋怨声很多。你能否为电梯设计一个调度方案,减少大家的等待时间,减少师生的不满。 4传染病的疫情分析 假设某直接接触性高危型传染病是经由近距离接触已被传染病人,或在病源存活时间内直接接触受病源感染的物件才有可能感染。以往研究已有结果显示一个人的人际关系及活动范围大部分是固定不变的,也就是一个人大部分时间会近接触的人都是以前的熟识,到访的地点大多以前曾去过。而且一个人熟识常往来的亲友数目不多,常去的地点也不太多。只有一些很小的机会会近距离接触到不熟识的人和去以前较少去过的地点。请以上述讨论为出发点,建立一个模型,分析一个正在蔓延中的传染病。在模型建立时可以再参考以下事项: (1)可以H1N1为实例,搜集相关资料;

数学建模作业(三)

数学建模作业(三)第三章习题 2013/04/09

速度为v 的风吹在迎风面积为s 的风车上,空气的密度是ρ,用量纲分析法确定风车获得的功率p 与v ,s ,ρ的关系。 ● 对于风车获得的功率p 与v ,s ,ρ的关系我们假设: 1.忽略其它因素对功率的影响 2.将其视为理想化模型 ● 在这些假设下,风车获得的功率与以下物理量有关: 风车获得的功率p ,风速v ,迎风面积s ,空气密度ρ。 ● 它们的量纲分别是 23[]p ML T -=,1[]v LT -=,23[],].[L L s M ρ-== ● 设1234=p v s ααααπρ,有 1234 1412341223123+2++2-3-3-[]()()()()MLT LT L ML M L T ααααααααααααπ---== 由[]1π=得到以下线性方程组 141234********* αααααααα?+=?++-=??--=? 不难验证,这个方程组的秩为3. 因此方程组的解空间是4维。 由 ()()1 =1α 可得方程组的基本解: 1(1,3,1,1),=---e 于是,与这四个参数有关的量纲乘积为 3111=,pv s πρ--- ● 四个物理量之间的关系为()10.f π=即 () 3110.f pv s ρ---= ● 根据隐函数运算法则,得

● 3p s v λρ=, 其中λ为无单位的常比例系数。 俗话说“大饺子能装馅”,试自建一个“包饺子”的数学模型并进行分析,判断这一说法是否正确。 ● “大饺子能装馅”考虑到实际是相同面积的饺子皮可以用掉更多体积的饺子馅。 ● 为了简化模型,我们做出以下假设 1. 饺子都是标准球形 2. 3. 饺子大小全部一致 4. 5. 饺子皮的厚度相同 6. 饺子皮的厚度忽略不计 ● 涉及到的物理量: 饺子皮总面积S ,一个饺子皮的面积s ,饺子数n ,饺子半径r ,所包馅的总体积V ,一个饺子包含馅的体积v ● ● 这些物理量有以下关系: 2 3 s=443 /r v r n S s V nv ππ=== 可得S V =● 因此,大饺子能装馅,这一说法正确。

数学模型作业

数学模型(第四版)第11 章(博弈模型)习题 1. “田忌赛马”是一个家喻户晓的故事:战国时期,齐国将军田忌经常与齐王赛马,设重金赌注。孙膑发现他们的马脚力都差不多,可分为上、中、下三等。于是孙膑对田忌说:“您只管下大赌注,我能让您取胜。”田忌相信并答应了他,与齐王用千金来赌胜。比赛即将开始,孙膑对田忌说:“现在用您的下等马对付他的上等马,拿您的上等马对付他的中等马,拿您的中等马对付他的下等马。” 三场比赛完后,田忌只有一场不胜而两场胜,最终赢得齐王的千金赌注。 (1)分析这个故事中还隐含了哪些信息,并思考何时可以建模为一个博弈问题,何时只是一个简单的单人决策问题。 (2)如果齐王和田忌约定比赛开始前双方同时决定马的出场顺序,并且以后不可改变,这个博弈是否存在纯战略纳什均衡?如果不存在,求出该博弈模型的混合战略纳什均衡。 2. 1943 年2 月,第二次世界大战新几内亚战争处于关键阶段,日军决定从新不列颠附近的岛屿调派援兵。日军运输船可以沿新不列颠北侧航行,但是可能会遇上下雨,能见度也较差;或者沿岛屿的南侧航行,天气会比较好。不论那种路线都需要三天时间。如果他们希望有个好天气,当然应该选择沿南部走的路线。但是战争期间日军指挥部希望运输船暴露在由西南太平洋盟军空军司令肯尼将军指挥的美军攻击火力下的时间尽可能少。在这样的条件下日军应该选择哪条路线? 不列颠远侧集结。肯尼将军当然希望轰炸日军船队的天数达到最大。但是美军没有足够的侦察机兼顾南北两条路线,从而尽早侦察到日本运输船的航行路线。因此,肯尼将军只能将大量的侦察机集中在南部或者北部路线上。肯尼将军应该怎么做呢? 如果盟军将侦察机集中在南部路线上,日军也选择南部路线,则盟军可以轰炸日军三天;而若日军选择北部路线,则盟军只能轰炸日军一天。如果盟军将侦察机集中在北部路线上,则无论日军选择哪条路线,盟军可以轰炸日军两天。 (1)建立博弈模型描述双方指挥官的决策问题。 (2)求出该博弈模型的纯战略纳什均衡,并查阅当时的历史,看看双方的行动是否确实与此一致。 3. 2004 年美国总统选举即将开始前,两位候选人布什和克里都把拉票的重点转移到了竞争异常激烈的宾夕法尼亚、俄亥俄、弗罗里达三个州。民意调查显示,当时布什在这三个州赢得选举的可能性分别是20%,60%和80%。为了赢得整个选举,布什必须至少赢得其中两个州。假设如果两人同时到某个州拉票,则对每个州获胜的概率没有影响;如果两人到不同州拉票,则候选人在其所到访的州获胜的概率将增加10%。由于剩余的时间只能允许每位候选人到其中一个州拉票,那么他们应该分别选择到哪个州? (1)建立博弈模型描述两位候选人的决策问题。 (2)求出博弈模型的纯战略纳什均衡。 4. 我们经常见到媒体报道:一些不文明现象或违法行为发生在众目睽睽之下,却无人出面阻止或干预。如果不考虑这类事件的复杂社会、道德等因素,你能否完全从数学的角度通过建立博弈模型来定量分析一下这种“人多未必势众”的现象?具体来说,希望你的模型回答下面的问题:假设有多个人正在目睹某个不文明现象或违法行为,那么当目睹人数增加时,有人出面阻止或干预的可能性是增加了还是减少了? 5. 同类型的商家经常会出现“扎堆”现象,形成各式各样的商品城,如“书城”、“灯具城” 等。人们有时不得不跑很远的路去这类商品城,于是会抱怨:如果他们大致均匀地分布到城市的不同地点,难道不是对商家更为有利可图,也更方便顾客?请你以下面的问题为例,做出适当的假设,进行建模分析:某海滨浴场准备设立两个售货亭,以供海滩上游泳和休闲的人购买饮用水和小食品等。那么,这两个售货亭的店主将会分别将售货亭设立在哪里? 6. 分析两个完全类似的国家对某种商品的关税税率设定问题,假设每个国家对该商品的需求与 价格间成线性减函数关系,两国博弈的顺序为:(1)两个国家的政府各自制定关于该商品的进口关 税税率;(2)两个国家各有一家企业决定生产该商品的数量(设两家企业的单件生产成本相同,并且不考虑固定成本),其中一部分供国内消费,一部分供出口(设运输成本可忽略不计)。每家企业

数学模型作业

数学模型作业 第一章 1、对于大多数工薪阶层的人士来说,想买 房,简直是天方夜谭.现在有这样一栋住宅楼, 每套只需自备款七万元,其余由公司贷款,可分期付款,每月只需付800元,十年还清.那么, 这对您还有什么问题呢!” 现在的问题是:这房子究竟值多少钱,即如果 一次付款要付多少钱?如果没有能力一次付款,实际 上,相当于借了多少钱?为什么要每月付800元? 对上述问题进行研究,供购房者参考. 2、0至17岁的儿童都可以参加这种保险,投 保金额可以崑交,也可以按年交,每份保险金额为1000元,保险公司要求各年龄的儿童需交 投保金额如下表1-1. 表1T

保险公司应对保险人的保险项目和金额为: (1) 教育保险金:被保险人到18、 19、20、21周岁时每年可领取一份保险金 1000 元. (2) 创业保险金:被保险人到22周岁时可 以领取保险金额的4. 7倍的创业保险金. (3) 结婚保险金:被保险人到25周岁时可 以领取保险金额的5. 7倍的结婚保险金. (4) 养老保险金:被保险人到60周岁时 可以领取保险金额的60倍的养老保险金. 现在的问题是:如果被保险人能活到60岁时, 贝!I (1) 如果按现行的存款年利率4.5%计算, 投保是 否合算? 险公司从中获利多少? 首先假设投保人都能活到60岁;投保人的 交款和保险公司的返回保险金均在年初进行;银 行现行的存、 贷款利率不变;这里均按一份投保 金额(1000元)计算. 年龄为砍“丄2,. ");按年袞趣为坠 % =(18-叭 伙=0,1,2,…,14);崑交款额为 (2) 如果按现行的贷款年利率8%计算,保 总交

相关文档