文档视界 最新最全的文档下载
当前位置:文档视界 › 2013-2014年物理奥林匹克竞赛国家集训队 热学练习题答案解析

2013-2014年物理奥林匹克竞赛国家集训队 热学练习题答案解析

2013-2014年物理奥林匹克竞赛国家集训队   热学练习题答案解析
2013-2014年物理奥林匹克竞赛国家集训队   热学练习题答案解析

2013-2014年物理奥林匹克竞赛国家集训队 热学练习题

姓名: 所在中学: 成绩:

注意:必须写出完整步骤,否则得不到步骤分。答卷请勿涂改,无法看清的地方一律不给分。 1、(12分) 一端开口,横截面积处处相等的长管中充有压强p 的空气。先对管子加热,使它形成从开口端温度1000K 均匀变为闭端200K 的温度分布,然后把管子开口端密封,再使整体温度降为100K ,试问管中最后的压强是多大? 2、(12分)一容积为1 升的容器,盛有温度为300 K ,压强为Pa 10304

?的氩气,氩的摩尔质量为0.040 kg 。若器壁上有一面积为1.0×10-3

㎝2

的小孔,氩气将通过小孔从容器内逸出,经过多长时间容器里的原子数减少为原有原子数的 e /1? 3、(12分)若认为地球的大气是等温的, 则把所有大气分子压缩为一层环绕地球表面的、压强为一个大气压的厚度为H 的均匀气体球壳,试证:这层球壳厚度H 就是大气标高。

4、(12分) 标准状态下氦气的粘度为1η,氩气的粘度为2η,他们的摩尔质量分别为M 1和M 2.。试问:(1)氦原子和氦原子碰撞的碰撞截面1σ和氩原子与氩原子的碰撞截面2σ之比等于多少?(2)氦的导热系数1κ与氩的导热系数2κ之比等于多少?(3)氦的扩散系数1D 与氩的扩散系数2D 之比等于多少?(4)此时测得氦气的粘度

2311087.1--???=m s N η和氩气的粘度2321011.2--???=m s N η。用这些数据近似的估算碰撞截面21,σσ。

5、(12分) 在热水瓶里灌进质量为m=1.00 kg 的水,热水瓶胆的内表面S=700 cm 2

,瓶胆内外容器的间隙d=5.00 mm,间隙内气体压强p=1.00 Pa,假设热水瓶内的热量只是通过间隙内的气体的热传导而散失。试确定需要多少时间容器内的水温从90℃降为80℃,取环境温度为20℃。

6、 (12分)加热室A (1000C o

)中蒸发出来的铍原子(相对原子质量为9)经小孔逸出,再经狭缝准直器B 而形成原子束,最后进入另一真空室D 中,(1)原子束将与真空室背景分子进行碰撞,若进行1m 后其原子束强度(单位时间内通过的原子数)减少为1/e 。真空室温度为300K ,试问真空室压强多少?设铍原子与真空中分子的碰撞截面为220

10

m -,

忽略铍原子间的碰撞。(2)铍原子束的平均速率是多少?(3)铍原子进行1m 所需平均时间是多少?(4)估计铍原子束撞击容器壁所产生的压强(设铍原子束穿出狭缝时粒子数密度为)3

10

10-cm ,因真空室室温较低,所有撞击在容器壁上的铍原子均沉积在器壁上),将这一压强与真空室中气体压强进行比较。

7、 (12分) 声波可在气体管中形成驻波。现用1000Hz 的声波在碘蒸气管中做实验,在温度为400K 时,测得管内形成的驻波的相邻波节间距为6.77cm 。试问:(1)声波的波速是多少?(2)管内碘蒸气分子是单原子分子还是双原子分子?为什么?已知碘的相对原子质量为127,声波在气体中的传播速度满足s

v ρκ1

=

关系,其中ρ为气体密度,s κ为

气体的绝热压缩系数s s p

V

V )(1??-

=κ , 下标“s ”表示绝热过程。 8、(16分) 绝热壁包围的汽缸被以绝热活塞分割成A 、B 两室。活塞在汽缸内可无摩擦的自由滑动。A,B 内各有1mol 的双原子理想气体。初始时气体处于平衡态,它们的压强、体积、温度分别为p 0,V 0,T 0.A 室中有一电加热器使之徐徐加热,直到A 室中压强变为2p 0,试问:(1)最后A,B 两室内气体温度分别为多少?(2)在加热过程中,A 室气体对B 室做了多少功?加热器传给A 室气体多少热量?(4)A,B 两室的总熵变是多少?

1、(12分) 一端开口,横截面积处处相等的长管中充有压强p 的空气。先对管子加热,使它形成从开口端温度1000K 均匀变为闭端200K 的温度分布,然后把管子开口端密封,再使整体温度降为100K ,试问管中最后的压强是多大?

〖分析〗:开始时长管中气体有温度分布,所以它不处于平衡态。但是整体温度降为100K 以后,长管中气体处于平衡态了。关键是求出开始时长管中气体的总的分子数,而它是和整体温度降为100K 以后的分子数相等的。在计算分子数时要先求出长管中的温度分布,然后利用p=nkT 公式。

〖解〗:因为管子是一端开口的,所以0p p =。显然,管子中气体的温度分布应该是

x L x T 200

1000200)(-+

=

(1)由于各处温度不同,因而各处气体分子数密度不同。考虑x~x+dx 一段气体,它的分子数密度为n(x),设管子的横截面积为S,考虑到p=nkT,则这一小段中的气体分子数为

x x kT Sp

x x Sn N d )(d )(d =

=

管子中气体总分子数为

)(d 0x T x k Sp N L ??

=

利用(1)式可得

x L x k Sp N L d )800200(1

0-+?=

? 管中气体最后的压强是p 1(01

p p =),温度是T ,.则 kT SLp N /1=

由上面两式相等,最后可以计算出

020.05ln )8/1(p p p ≈??=

即:管中气体最后的压强为020.0p 。

2、(12分)一容积为1 升的容器,盛有温度为300 K ,压强为Pa 10304

?的氩气,氩的摩尔质量为0.040 kg 。若器壁上有一面积为1.0×10-3

㎝2

的小孔,氩气将通过小孔从容器内逸出,经过多长时间容器里的原子数减少为原有原子数的 e /1?

〖分析〗: 这是一个泻流问题, 可以应用气体分子碰壁数 Γ 来解。应该注意, 容器内的分子数 (或者说容器内的分子数密度) 是随时间而减少的, 所以 Γ 是个变量。或者说相等时间内流出去的分子数是不相等的,应该建立微分方程。考虑在 t 到 t t d + 时间内, 容器内的分子数由于泻流从 N 变化为 N N d -, 其中 N d 就是在 t d 时间内泻流流出去的分子数, 列出N d 和 t d 之间的关系, 这就是解本题所需要的微分方程。经过分离变量, 积分, 就可以得到所需要的结果。

〖解〗: 在 t d 时间内在面积为 A 的小孔中流出的分子数为

4/d d -t A v n N =

其中 n 为气体分子数密度。考虑到气体的流出使得分子数减少, 所以在上式中加一负号。 现在在上式两边都除以容器体积 V , 并且在 0到 t 之间进行积分

n

n t V A v n n t

d )/1(d )4/(2

1

?

?=?-

)

/ln()4/(12n n t V A v =?-

现在要求容器中的原子数最后减少到 1 / e , 即

1

)/ln(,

e /1212-==n n n n

RT M A V RT M A V

v

A V t m m π28π44??=??=?=

s

100=

即:经过100 s 容器内原子数减为原来的 e /1。.

3、(12分)若认为地球的大气是等温的, 则把所有大气分子压缩为一层环绕地球表面的、压强为一个大气压的厚度为H 的均匀气体球壳,试证:这层球壳厚度H 就是大气标高。

〖分析〗: 在离地高为 z ~z z d + 的范围内的球壳体积为

z z R z V d )(π4)(d 2E +≈ (1)

[ 说明:这是因为地球大气标高只有 8 km , 它比地球半径 R E 要小得多, 所以那一层球壳相对于地球来讲相当于一层“纸”。而“纸”的体积就等于球面面积再乘以“纸”的高度。]

当然, 我们也可以如下更清楚地求出:

]d d )(3d )(3[π3

4

])()d [(π3

4

)(d 32E 2E 3E 3E z z R z z R z R z R z z z V +?++?+=

+-++=

忽略d z 的二次方和三次方项, 同样有

z R z z V d )(π4)(d 2E +≈

〖解〗: 若设在海平面处的气体分子数密度 为n (0) , 在球壳体积d V ( z ) 范围内的分子数

)/ex p()0(d )(π4)()(d )(d m 2E RT gz M n z R z z n z V z N -??+=?=

z

RT gz M R zR z n N d )/ex p()2(π4)0(m 2

E E 20

-?++=?

令 H g M RT =m / 称为大气标高, 设在海平面处的气体分子数密度为)0(n ,所有大气的总分子数为N ,则:

z H z z R z H z z n N E d )/ex p(2d )/ex p()[0(π40

20

-+-=?

?

z H z R d )]exp(0

2

E

-

+?

]1)(221[π4)0(2E 2E

2

E R mg kT R mg kT R mg kT n ?+?+??=

(2)

现在来估计 E /mgR kT 的数量级。设地球大气为平均温度 T = 273 K 的等温大气,而且

kg 1067.129,km 104.6276E -??=?=m R

100124.010

4.68.91067.129273

1038.16

2723E <<=???????=--mgR kT (3) 利用(3)式可以看到,(2)式的方括号中的第二项比第一项小3个数量级, 第三项又比第二项小3个数量级。我们完全可以忽略其中的第二项和第三项。 显然,用近似方法进行计算要简便得多。 这时

H R n mg

kT R n N ??==2

E 2

E π4)0()(

π4)0( 其中 H 为大气标高。由此看来,把地球的所有大气分子压缩为一层环绕地球表面的、压强为一个大气压的均匀气体球壳,这层球壳厚度就是大气标高。

4、(12分) 标准状态下氦气的粘度为1η,氩气的粘度为2η,他们的摩尔质量分别为M 1和M 2.。试问:(1)氦原子和氦原子碰撞的碰撞截面1σ和氩原子与氩原子的碰撞截面2σ之比等于多少?(2)氦的导热系数1κ与氩的导热系数2κ之比等于多少?(3)氦的扩散系数1D 与氩的扩散系数2D 之比等于多少?(4)此时测得氦气的粘度

2311087.1--???=m s N η和氩气的粘度2321011.2--???=m s N η。用这些数据近似的估算碰撞截面21,σσ。

【解】(1)因为m kT

v n

v nm πσλλη8,21,3=

==

则有 σ

σ

π

σ

ση2

1212

1212

132

23M

T m

T T km

v m ∝

?==

在温度相同情况下,原子和氦原子碰撞的碰撞截面1σ和氩原子与氩原子的碰撞截面2σ之比为

2

1

122

12

12

1

M M M M ?

=

=ηηηησσ (2)因为3

,3,λ

ηλκv nm M C v nm m m V =

?=

所以 m

m V M C ,?

=ηκ

则有

1

2

2121M M ?=ηηκκ (3)应为mn v nm v D ===

ρληλ,3

,3 所以 ρ

η

1

=D

而V

M

=

ρ 所以 1

2

2121M M D D ?=ηη (4)由(1)可以得到

2

2122

22

2111

1108.232

100.132

m N RTM m N RTM A

A

--÷=?

=

÷=?

=

ηπ

σηπ

σ

5、(12分) 在热水瓶里灌进质量为m=1.00 kg 的水,热水瓶胆的内表面S=700 cm 2

,瓶胆内外容器的间隙d=5.00 mm,间隙内气体压强p=1.00 Pa,假设热水瓶内的热量只是通过间隙内的气体的热传导而散失。试确定需要多少时间容器内的水温从90℃降为80℃,取环境温度为20℃。

【解】可以假定热水瓶胆夹层内气体充满及其稀薄的气体热传导条件,单位时间内在单位面积上传递的热量为

A

m V T N C T T v n J ,0)(61

-=

(1) 其中m

kT v π'

8=

,根式内的T'为降温过程中夹层内气体的平均温度 K K K

T 326273C ]C 20)C 80C 90(21[21'=+???+?+?=

(2) 而且有 2

5,,R

C kT p n m V =

= (3) 由于在dt 时间内漏出的热量是由水的温度降低dT 所释放的热量提供的,故 dT cm Adt J T 水=? (4) 其中1

1

3

1018.4--???=K kg J c 为水的比热容,将(1)(2)(3)代入(4)后积分有

h dT M RT R Ap cm T T dt m

t

42

'56100

=-=?

?

π水

【讨论】本题得到的结果与实际情况出入相当大。有这样的因素本题没有考虑:(1)即使在常温下,辐射传热仍

然是比较重要的传热形式。在气体热传导及对流传热一再减小的情况下,辐射传热起了主导作用。日常用的热水瓶虽然在真空夹层内镀了银,但仍然在辐射传热。(2)瓶口的传热损失。(3)实际的热水瓶夹层中的真空度一般为133~13.3Pa 的数量级,它要比21.33

10Pa

-?大4~5个数量级,因而保持温度时间要缩短数个量级。(4)即使在

21.3310Pa -?的压强下,它仍然不满足平均自由程比夹层厚度大得多的条件。气体热传导并不与夹层气体

压强严格成正比。

6、 (12分)加热室A (1000C o

)中蒸发出来的铍原子(相对原子质量为9)经小孔逸出,再经狭缝准直器B 而形成原子束,最后进入另一真空室D 中,(1)原子束将与真空室背景分子进行碰撞,若进行1m 后其原子束强度(单位时间内通过的原子数)减少为1/e 。真空室温度为300K ,试问真空室压强多少?设铍原子与真空中分子的碰撞截面为220

10

m -,

忽略铍原子间的碰撞。(2)铍原子束的平均速率是多少?(3)铍原子进行1m 所需平均时间是多少?(4)估计铍原子束撞击容器壁所产生的压强(设铍原子束穿出狭缝时粒子数密度为)3

10

10-cm ,因真空室室温较低,所有撞击在容器

壁上的铍原子均沉积在器壁上),将这一压强与真空室中气体压强进行比较。

【分析】这是泄流问题(它和气体分子碰壁数属于同一类问题),也是一个和分子束分布、自由程、气体压强等基本概念有关的综合性问题。 【解】(1)按照自由程分布,自由程分布在dx x x +~的概率为 dx x

N dN dx x P )ex p(1)(0λ

λ-=-

= (1) 由题中可知原子束的自由程出现在+∞~1m 间的概率为1/e,即

e

dx x P x 1

)(0

=?

+∞

(2)

由(1)(2)可以求出铍原子束与真空室空气碰撞的平均自由程为m 1=λ 为了求出真空室压强,利用平均自由程公式 p

kT

σλ2=

(3) 由此得到 Pa kT

p 11093.22-?==λ

σ

(2)铍原子束的平均速率可以由分子束的平均速率公式求得

1

127

23200010

67.1981273

1038.114.3989----?=????????==

s m s m m

kT v 束 (3)铍原子进行1m 所需平均时间 s v x

t 4105-?==

(4)铍原子束刚进入真空容器时,单位时间内透过单位截面积的平均分子数为束v n 0,其中n 0为该截面处铍原子

束的粒子数密度,则碰到单位面积器壁上的铍原子数为

e

v n 束0,因为从1000 高温容器中出来的铍原子束是与300K

真空容器壁相碰撞,两者温度相差非常大,可假设原子束与器壁完全非弹性碰撞,撞击粒子全部粘附在器壁上,每个分子产生的动量改变束v m ,所有这些分子撞击容器壁所产生的 压强为

Pa

e

kT n v m v n e

p 41

0103.2891

-?===π束

束束

7、 (12分) 声波可在气体管中形成驻波。现用1000Hz 的声波在碘蒸气管中做实验,在温度为400K 时,测得管内形成的驻波的相邻波节间距为6.77cm 。试问:(1)声波的波速是多少?(2)管内碘蒸气分子是单原子分子还是双原子分子?为什么?已知碘的相对原子质量为127,声波在气体中的传播速度满足s

v ρκ1

=

关系,其中ρ为气体密度,s κ为

气体的绝热压缩系数s s p

V

V )(1??-

=κ , 下标“s ”表示绝热过程。 【分析】虽然本题没有指出碘蒸气是什么气体,但是可以假定它是理想气体,否则无法解题。这是一个有关绝热过程、能量均分定理波动中的驻波的复合题。应该明确,声波在气体中的传播是满足绝热条件的,所以要利用绝热压缩系数来着手解题。

【解】绝热过程方程为 C pV =γ

两边微分得到 01

=+-dV V

dp V γγ

γ

两边同时除以dV V γ

,并且考虑到这是一个绝热过程,一下彪“s ”表示 V

p p V s γ-=??)(

由本题对绝热压缩系数的定义知 p

s γκ1

=

(1) 由理想气体物态方程nRT pV =以及对密度的定义知道 RT

pM m

=ρ (2) 代入声速公式s

v ρκ1

=

得到 m

M RT v γ=

(3)

所以 RT

v M m 2

=γ (4)

我们知道驻波两相邻波节之间的距离为2/λ ,所以声波的波长为 cm cm 54.1377.62=?=λ (5) 现在声波的频率为Hz 1000=ν,则声速为

1

4.135-?==s m v λν (6)

先假定碘蒸气为单原子分子气体,即1

127.0-?=mol kg M m ,又有T=400K ,将(6)一起代入(4)得 70.0≈γ

这和单原子分子的3/5=γ相差较大。

再假定碘蒸气为双原子分子气体,1

127.02-??=mol kg M m ,得 40.1=γ

它和能量均分定理得到的结果符合得很好。说明碘蒸气是双原子分子气体。

8、(16分) 绝热壁包围的汽缸被以绝热活塞分割成A 、B 两室。活塞在汽缸内可无摩擦的自由滑动。A,B 内各有1mol 的双原子理想气体。初始时气体处于平衡态,它们的压强、体积、温度分别为p 0,V 0,T 0.A 室中有一电加热器使之徐徐加热,直到A 室中压强变为2p 0,试问:(1)最后A,B 两室内气体温度分别为多少?(2)在加热过程中,A 室气体对B 室做了多少功?加热器传给A 室气体多少热量?(4)A,B 两室的总熵变是多少?

【分析】这是热力学第一定律和热力学第二定律相结合的题目,在通常的热力学第一定律习题中在附加求熵变,注意汽缸和活塞都是绝热的。A 对B 的影响是通过活塞的做功来实现的,而A,B 的压强始终相等。A,B 的总体积不变。

【解】(1)B 经历的是准静态绝热过程。设B 的末态温度和体积分别为T B ,V B ;A 的末态温度和体积分别为T A ,V A ,双原子理想气体的3/7=γ,则应该有

γγγ

γ0

1

010)2(T p T p B --= 所以B 室的气体温度为

007

207

222.122T T T T B ≈==

另外,γ

γB V p V p 0002=,可以得到

007561.02V T VB ==-

而 000039.161.022V V V V V V B A =-=-= 对A 利用理想气体物态方程,得到A 室气体温度为 0000

0078.239.122T T T V p V p T A

A =?=?=

(2)汽缸和活塞都是绝热的,A 室对B 室气体做的功等于B 室气体内能的增加(注意A 室气体和B 室气体都是1mol )

00055.0)22.1(2

5

)

(RT T T R T T C U W B Vm B

=-=

-=?= (3)加热器传给A 的热量等于A 室气体和B 室气体内能增量的和

000555.0)78.2(RT RT T T C U U Q Vm B

A =+-=?+?=? (4)按照理想气体熵变公式,可以知道

,108.22ln ln

885.22ln ln

30

00,000,R p p R T T C S R p p R T T C S B

m p B A

m p A -?=-=?=-=?

其总熵变为 R S S S B A 89.2=?+?=?

2013国际物理奥林匹克竞赛理论试卷(2)

Introduction In this problem we study an efficient process of steam production that has been demonstrated to work experimentally. An aqueous solution of spherical nanometer-sized silver spheres (nanoparticles) with only about particles per liter is illuminated by a focused light beam. A fraction of the light is absorbed by the nanoparticles, which are heated up and generate steam locally around them without heating up the entire water solution. The steam is released from the system in the form of escaping steam bubbles. Not all details of the process are well understood at present, but the core process is known to be absorption of light through the so-called collective electron oscillations of the metallic nanoparticles. The device is known as a plasmonic steam generator. Figure 2.1(a)A spherical charge-neutral nanoparticle of radius R placed at the center of the coordinate system. (b) A sphere with a positive homogeneous charge density (red), and containing a smaller spherical charge-neutral region (0, yellow) of radius , with its center displaced by. (c) The sphere with positive charge density of the nanoparticle silver ions is fixed in the center of the coordinate system. The center of the spherical region with negative spherical charge density –(blue) of the electron cloud is displaced by , where . (d)An external homogeneous electric field . For time-dependent , the electron cloud moves with velocity . (e) The rectangular vessel () containing the aqueous solution of nanoparticles illuminated by monochromatic light propagating along the -axis with angular frequency and intensity . A single spherical silver nanoparticle Throughout this problem we consider a spherical silver nanoparticle of radius and with its center fixed at the origin of the coordinate system, see Fig. 2.1(a). All motions, forces and driving fields are parallel to the horizontal -axis (with unit vector ). The nanoparticle contains free (conduction) electrons moving within the whole nanoparticle volume without being bound to any silver atom. Each silver atom is a positive ion that has donated one such free electron.

全国高中物理奥林匹克竞赛试卷及答案

高中物理竞赛试卷 .一、选择题.本题共5小题,每小题6分.在每小题给出的4 个项中,有的小题只有一项符合题意,有的小题有多项符合题意.把符合题意的选项前面的英文字母写在每小题后面的方括号内.全部选对的得6分,选对但不全的得3分,有选错或不答的得0分. 1.(6分)一线膨胀系数为α的正立方体物块,当膨胀量较小时,其体膨胀系数等于 A.αB.α1/3C.α3D.3α 2.(6分)按如下原理制作一杆可直接测量液体密度的秤,称为密度秤,其外形和普通的杆秤差不多,装秤钩的地方吊着一体积为1 cm3的较重的合金块,杆上有表示液体密度数值的刻度,当秤砣放在Q点处时秤杆恰好平衡,如图所示.当合金块完全浸没在待测密度的液体中时,移动秤砣的悬挂点,直至秤杆恰好重新平衡,便可直接在杆秤上读出液体的密度,下列说法中错误的是 A.密度秤的零点刻度在Q点 B.秤杆上密度读数较大的刻度在较小的刻度的左边 C.密度秤的刻度都在Q点的右侧 D.密度秤的刻度都在Q点的左侧 3.(6分)一列简谐横波在均匀的介质中沿x轴正向传播,两质点P1和 p2的平衡位置在x轴上,它们相距60cm,当P1质点在平衡位置处向上运动时,P2质点处在波谷位置,若波的传播速度为24m/s,则该波的频率可能为 A.50Hz B.60Hz C.400Hz D.410Hz 4.(6分)电磁驱动是与炮弹发射、航空母舰上飞机弹射起飞有关的一种新型驱动 方式.电磁驱动的原理如图所示,当直流电流突然加到一固定线圈上,可以将置于 线圈上的环弹射出去.现在同一个固定线圈上,先后置有分别用铜、铝和硅制成的 形状、大小和横截面积均相同的三种环,当电流突然接通时,它们所受到的推力分 别为F1、F2和F3。若环的重力可忽略,下列说法正确的是 A. F1> F2> F3 B. F2> F3> F1 C. F3> F2> F1 D. F1 = F2 = F3 5.(6分)质量为m A的A球,以某一速度沿光滑水平面向静止的B球运动,并与B球发生弹性正碰,假设B球的质量m B可选取为不同的值,则 A.当m B=m A时,碰后B球的速度最大 B.当m B=m A时,碰后B球的动能最大 C.在保持m B>m A的条件下,m B越小,碰后B球的速度越大 D.在保持m B

大学物理热学总结

大学物理热学总结 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

大学物理热学总结 (注:难免有疏漏和不足之处,仅供参考。 ) 教材版本:高等教育出版社《大学物理学》热力学基础 1、体积、压强和温度是描述气体宏观性质的三个状态参量。 ①温度:表征系统热平衡时宏观状态的物理量。摄氏温标,t表示,单位摄氏度(℃)。热力学温标,即开尔文温标,T表示,单位开尔文,简称开(K)。 热力学温标的刻度单位与摄氏温标相同,他们之间的换算关系: T/K=273.15℃+ t 温度没有上限,却有下限,即热力学温标的绝对零度。温度可以无限接近0K,但永远不能达到0K。 ②压强:气体作用在容器壁单位面积上指向器壁的垂直作用力。单位帕斯卡,简称帕(Pa)。其他:标准大气压(atm)、毫米汞高(mmHg)。 1 atm =1.01325×105 Pa = 760 mmHg ③体积:气体分子运动时所能到达的空间。单位立方米(m3)、升(L) 2、热力学第零定律:如果两个热力学系统中的每一个都与第三个热力学系统处于热平衡,则这两个系统也必处于热平衡。 该定律表明:处于同一热平衡状态的所有热力学系统都具有一个共同的宏观特征,这一特征可以用一个状态参量来表示,这个状态参量既是温度。3、平衡态:对于一个孤立系统(与外界不发生任何物质和能量的交换)而言,如果宏观性质在经过充分长的时间后保持不变,也就是系统的状态参量不再岁时间改变,则此时系统所处的状态称平衡态。 通常用p—V图上的一个点表示一个平衡态。(理想概念) 4、热力学过程:系统状态发生变化的整个历程,简称过程。可分为: ①准静态过程:过程中的每个中间态都无限接近于平衡态,是实际过程进行的无限缓慢的极限情况,可用p—V图上一条曲线表示。 ②非准静态过程:中间状态为非平衡态的过程。

历届国际物理奥林匹克竞赛试题及解答

历届国际物理奥林匹克竞赛试题与解答 第1届 (1967年于波兰的华沙) 【题1】质量M=0.2kg 的小球静置于垂直柱上,柱高h=5m 。一粒质量m=0.01kg 、以速度0=500m/s 飞行的子弹水平地穿过球心。球落在 距离柱s =20m 的地面上。问子弹落在地面何处?子弹动能中有多少转换为热能? 解:在所有碰撞情况下,系统的总动量均保持不变: MV mv mv +=0 其中v 和V 分别是碰撞后子弹的速度和小球的速 度. 两者的飞行时间都是01.12== g h t s 球在这段时间沿水平方向走过20m 的距离,故它在水平方向的速度为: 8.1901 .120 == V (m/s ) 由方程0.01×500=0.01v +0.2×19.8 可求出子弹在碰撞后的速度为:v =104m/s 子弹也在1.01s 后落地,故它落在与柱的水平距离为S =vt =104×1.01=105m 的地面上。 碰撞前子弹的初始动能为=2 02 1mv 1250 J 球在刚碰撞后的动能为 =22 1 MV 39.2 J 子弹在刚碰撞后的动能为=2 2 1mv 54 J 与初始动能相比,两者之差为1250 J -93.2 J =1156.8 J 这表明原来动能的92.5%被系统吸收而变为热能。这种碰撞不是完全非弹性碰撞。在完全弹性碰撞的情形下,动能是守恒的。而如果是完全非弹性碰撞,子弹将留在球内。 【题2】右图(甲)为无限的电阻网络,其中每个电阻均为r ,求A、B两点 间的总电阻。 解:如图(乙)所示 A、B两点间的总电阻应等于C、D 两点间的总电阻与电阻r的并联,再与r串联 图(甲) 后的等效电阻。 如果网络是无限的,则A、B 两点间的总电阻应等于C、D 两点间的总电阻,设为Rx 。 根据它们的串并联关系有: m M h S s υ A B r r r r r r r r A B r r r r r r r r C D

高中物理竞赛练习7 热学一08

高中物理竞赛练习7 热学一08.5 1.证明理想气体的压强p = k n ε32,其中n 为单位体积内的分子数,k ε是气体分子的平均动能. 2.已知地球和太阳的半径分别为R 1=6×106m 、R 2=7× 108m ,地球与太阳的距离d =1.5×1011m .若地球与太阳均可视为黑体,试估算太阳表面温度. 3.如图所示,两根金属棒A 、B 尺寸相同,A 的导热系数是B 的两倍,用它们来导热,设高温端和低温端温度恒定,求将A 、B 并联使用与串联使用的能流之比.设棒侧面是绝热的. 4.估算地球大气总质量M 和总分子数N . 5.一卡诺机在温度为27℃和127℃两个热源之间运转.(1)若在正循环中,该机从高温热源吸热1.2×103 cal , 则将向低温热源放热多少?对外作功多少?(2)若使该机反向运转(致冷机),当从低温热源吸热1.2×103cal 热量,则将向高温热源放热多少?外界作功多少? 6.一定质量的单原子理想气体在一密闭容器中等压膨胀到体积为原来的1.5倍,然后又被压缩,体积和压强均减为1/3,且过程中压强与体积始终成正比,比例系数不变,在此压缩过程中气体向外放热Q o ,压缩后气体重新等压膨胀到原体积(气体在第一次等压膨胀前的状态),为使气体等容回到上面提到的原状态(第一次膨胀前的状态),需要传递给气体的热量Q 1是多少?

7.1 moI单原子理想气体初始温度为T o,分别通过等压和绝热(即不吸热也不放热)两种方式使其膨胀,且膨胀后末体积相等.如果已知两过程末状态气体的压强相比为1.5,求在此两过程中气体所做的功之和. 8.如图所示,两块铅直的玻璃板部分浸入水中,两板平行,间距d=0.5 mm,由于水的表面张力的缘故,水沿板上升一定的高度h,取水的表面张力系数σ =7.3×10-2N·m-1,求h的大小. 9.内径均匀的U形玻璃管,左端封闭,右端开口,注入水银后;左管封闭的气体被一小段长为h1=3.0cm 的术银柱分成m和n两段.在27℃时,L m=20 cm,L n=10 cm,且右管内水银面与n气柱下表面相平,如图所示.现设法使n上升与m气柱合在一起,并将U形管加热到127℃,试求m和n气柱混合后的压强和长度.(p o=75cmHg) 10.在密度为ρ=7.8 g·cm-3的钢针表面上涂一薄层不能被水润湿的油以后,再把它轻轻地横放在水的表面,为了使针在0℃时不掉落水中,不考虑浮力,问该钢针的直径最大为多少? 11.已知水的表面张力系数为σ1=7.26×10-2N·m-1,酒精的表面张力系数为σ2=2.2×10-2N·m-1.由两个内径相等的滴管滴出相同质量的水和酒精,求两者的液滴数之比.

大学物理热力学论文[1]

《大学物理》课程论文 热力学基础 摘要: 热力学第一定律其实是包括热现象在内的能量转换与守恒定律。热力学第二定律则是指明过程进行的方向与条件的另一基本定律。热力学所研究的物质宏观性质,特别是气体的性质,经过气体动理论的分析,才能了解其基本性质。气体动理论,经过热力学的研究而得到验证。两者相互补充,不可偏废。人们同时发现,热力学过程包括自发过程和非自发过程,都有明显的单方向性,都是不可逆过程。但从理想的可逆过程入手,引进熵的概念后,就可以从熵的变化来说明实际过程的不可逆性。因此,在热力学中,熵是一个十分重要的概念。关键词: (1)热力学第一定律(2)卡诺循环(3)热力学第二定律(4)熵 正文: 在一般情况下,当系统状态变化时,作功与传递热量往往是同时存在的。如果有一个系统,外界对它传递的热量为Q,系统从内能为E1 的初始平衡状态改变到内能为E2的终末平衡状态,同时系统对外做功为A,那么,不论过程如何,总有: Q= E2—E1+A 上式就是热力学第一定律。意义是:外界对系统传递的热量,一部分

是系统的内能增加,另一部分是用于系统对外做功。不难看出,热力学第一定律气其实是包括热量在内的能量守恒定律。它还指出,作功必须有能量转换而来,很显然第一类永动机违反了热力学第一定律,所以它根本不可能造成的。 物质系统经历一系列的变化过程又回到初始状态,这样的周而复始的变化过程称为循环过程,或简称循环。经历一个循环,回到初始状态时,内能没有改变,这是循环过程的重要特征。卡诺循环就是在两个温度恒定的热源(一个高温热源,一个低温热源)之间工作的循环过程。在完成一个循环后,气体的内能回到原值不变。卡诺循环还有以下特征: ①要完成一次卡诺循环必须有高温和低温两个热源: ②卡诺循环的效率只与两个热源的温度有关,高温热源的温 度越高,低温热源的温度越低,卡诺循环效率越大,也就 是说当两热源的温度差越大,从高温热源所吸取的热量Q1 的利用价值越大。 ③卡诺循环的效率总是小于1的(除非T2 =0K)。 那么热机的效率能不能达到100%呢?如果不可能到达100%,最大可能效率又是多少呢?有关这些问题的研究就促进了热力学第二定律的建立。 第一类永动机失败后,人们就设想有没有这种热机:它只从一个热源吸取热量,并使之全部转变为功,它不需要冷源,也没有释放热量。这种热机叫做第二类永动机。经过无数的尝试证明,第二类永动

物理竞赛热学专题40题刷题练习(带答案详解)

物理竞赛热学专题40题刷题练习(带答案详解) 1.潜水艇的贮气筒与水箱相连,当贮气筒中的空气压入水箱后,水箱便排出水,使潜水艇浮起。某潜水艇贮气简的容积是2m 3,其上的气压表显示内部贮有压强为2×107Pa 的压缩空气,在一次潜到海底作业后的上浮操作中利用简内的压缩空气将水箱中体积为10m 3水排出了潜水艇的水箱,此时气压表显示筒内剩余空气的压强是9.5×106pa ,设在排水过程中压缩空气的温度不变,试估算此潜水艇所在海底位置的深度。 设想让压强p 1=2× 107Pa 、体积V 1=2m 3的压缩空气都变成压强p 2=9.5×106Pa 压缩气体,其体积为V 2,根据玻-马定律则有 p 1V 1=p 2V 2 排水过程中排出压强p 2=9.5× 106Pa 的压缩空气的体积 221V V V '=-, 设潜水艇所在处水的压强为p 3,则压强p 2=9.5×106Pa 、体积为2V '的压缩空气,变成压强为p 3的空气的体积V 3=10m 3。 根据玻马定律则有 2233p V p V '= 联立可解得 p 3=2.1×106Pa 设潜水艇所在海底位置的深度为h ,因 p 3=p 0+ρ gh 解得 h =200m 2.在我国北方的冬天,即便气温很低,一些较深的河 流、湖泊、池塘里的水一般也不会冻结到底,鱼类还可以在水面结冰的情况下安全过冬,试解释水不会冻结到底的原因? 【详解】 由于水的特殊内部结构,从4C ?到0C ?,体积随温度的降低而增大,达到0C ?后开始结冰,冰的密度比水的密度小。 入秋冬季节,气温开始下降,河流、湖泊、池塘里的水上层的先变冷,密度变大而沉到水底,形成对流,到达4C ?时气温如果再降低,上层水反而膨胀,密度变小,对流停止,“漂浮”在水面上,形成一个“盖子”,而下面的水主要靠热传导散失内能,但由于水

物理竞赛之国际物理奥林匹克竞赛赛事流程

国际物理奥林匹克竞赛赛事流程 每一代表队包括5名年龄在20岁以下的中学生、1名领队和1名副领队,国际间旅费自负,东道国负责竞赛期间各队的食宿和旅游费用。各国可自派观察员参加,费用由派出国自筹。 赛期一般为9天。第1天报到后,队员和领队分开居住,住地一般相距几公里以上。东道国为每一参赛队学生配备1名翻译兼导游,这对东道国来说是一种很大的负担,有些国家难以承办IPhO活动,其部分原因也在于此。因华裔子弟遍布世界各地,东道国为我们代表队配备的翻译几乎都是在该国读研究生的华人学子。 第2天上午是开幕式,常在大学礼堂举行,气氛淡雅肃穆,学术气氛浓厚。开幕式后领队与队员暂不往来,且自觉地互不通电话联系,有事均通过翻译转达。第2天下午学生由主办者组织旅游或参观,领队们则参加本届国际委员会正式会议并集体讨论、修改和通过理论赛题,再由各国领队将题文翻译成本国文字,交由组委会复印。会议开始时,各国领队与观察员分别就座,组委会执行主席及其助手们的座位安排在正前方。东道国将3道理论题的题文和题解,以及评分标准的4种文本(英、俄、德、法)之一发给各国领队。大约一小时后,命题者代表用英语向大家介绍该题的命题思想及解题思路等,然后大会讨论,提出修改意见,最后通过这道理论题。3道题逐题进行,若其中某道题被否决,组委会便公开备用的第4道题。 3道题通过后常已近深夜,这期间除晚餐外,还供应饮料和点心。中国领队们而后所做的翻译工作,一般都会持续到次日清晨6点左右,真可谓"通宵达旦"。

第3天上午8点开始,学生们进行5小时的理论考试,其间有饮料和点心供应,学生们用本国文字答卷。组委会为领队们安排旅游或参观活动;尽管大多数人已经非常疲乏,也许因为身临异国他乡,仍是游兴十足。第3天下午东道国安排的休息性活动常能使领队与学生有机会见面,然而师生间很少谈及上午的考试,为的是不在情绪上影响后面的实验考试。 第4天讨论、修改、通过及翻译实验赛题。实验赛题为1-2道,2道居多。 第5天学生分为两组,分别在上、下午进行5小时的实验考试。若有2道题,则每题2。5小时。实验考试后学生们的紧张情绪骤然间消失,队与队之间频繁交往,学生们"挨门串户"地互赠小礼品,最受欢迎的当数各国硬币。此时,领队们开始悉心研究由组委会送来的本队队员的试卷复印件,上面有评分结果。分数由东道国专设的阅卷小组评定,在评定我国学生试卷时,常请另一位懂中文的研究生协助阅读试卷上的中文内容。 东道国通常在第6、7天安排各国领队与阅卷小组成员面谈,商讨和解决评分中可能出现的差错和意见分歧。第7天的下午或晚上举行最后一次国际委员会会议,多数领队借此机会互赠小礼品。会议最重要的议程是通过学生的获奖名单。理论题每题10分,满分30分;实验题若有2道,则每题10分,满分20分。按现在的章程规定,前三名选手的平均积分计为100%,积分达90%者,授予一等奖(金牌);积分低于90%而达78%者,授予二等奖(银牌);积分低于78%而达65%者,授予三等奖(铜牌);积分低于65%而达50%者,授予表扬奖;积分低于50%者,发给参赛证书。上述评奖积分界限均舍尾取整。例如第24届IPhO前三名平均积分为40。53分,其90%为36。48,取整为36分,即成金牌分数线。通常得奖人数占参赛人数的一半。金牌第1名被授予特别奖。此外,还可由东道国自设各种特别奖,例如女生最佳奖、

全国中学生物理竞赛真题汇编热学

全国中学生物理竞赛真题汇编---热学 1.(19Y4) 四、(20分)如图预19-4所示,三个绝热的、容积相同的球状容器A 、B 、C ,用带有阀门K 1、K 2的绝热细管连通,相邻两球球心的高度差 1.00m h =.初始时,阀门是关闭的,A 中装有1mol 的氦(He ),B 中装有1mol 的氪(Kr ),C 中装有lmol 的氙(Xe ),三者的温度和压强都相同.气体均可视为理想气体.现打开阀门K 1、K 2,三种气体相互混合,最终每一种气体在整个容器中均匀分布,三个容器中气体的温度相同.求气体温度的改变量.已知三种气体的摩尔质量分别为 31He 4.00310kg mol μ--=?? 在体积不变时,这三种气体任何一种每摩尔温度升高1K ,所吸收的热量均为 3/2R ,R 为普适气体常量. 2.(20Y3)(20分)在野外施工中,需要使质量m =4.20 kg 的铝合金构件升温;除了保温瓶中尚存有温度t =90.0oC 的1.200kg 的热水外,无其他热源。试提出一个操作方案,能利用这些热水使构件从温度t 0=10.0oC 升温到66.0oC 以上(含66.0oC),并通过计算验证你的方案. 已知铝合金的比热容c =0.880×103J ·(k g·oC)-1 , 水的比热容c = 4.20×103J ·(kg ·oC)-1 ,不计向周围环境散失的热量. 3.(22Y6)(25分)如图所示。两根位于同一水平面内的平行的直长金属导轨,处于恒定磁场中。 磁场方向与导轨所在平面垂直.一质量为m 的均匀导体细杆,放在导轨上,并与导轨垂 直,可沿导轨无摩擦地滑动,细杆与导轨的电阻均可忽略不计.导轨的左端与一根阻值为 尺0的电阻丝相连,电阻丝置于一绝热容器中,电阻丝的热容量不计.容器与一水平放置的开口细管相通,细管内有一截面为S 的小液柱(质量不计),液柱将l mol 气体(可视为理想气体)封闭在容器中.已知温度升高1 K 时,该气体的内能的增加量为5R /2(R 为普适气体常量),大气压强为po ,现令细杆沿导轨方向以初速V 0向右运动,试求达到平衡时细管中液柱的位移. 4.(16F1)20分)一汽缸的初始体积为0V ,其中盛有2mol 的空气和少量的水(水的体积可以忽略)。平衡时气体的总压强是3.0atm ,经做等温膨胀后使其体积加倍,在膨胀结束时,其中的水刚好全部消失,此时的总压强为2.0atm 。若让其继续作等温膨胀,使体积再次加倍。试计算此时: 1.汽缸中气体的温度; 2.汽缸中水蒸气的摩尔数; 3.汽缸中气体的总压强。 假定空气和水蒸气均可以当作理想气体处理。 5.(17F1)在一大水银槽中竖直插有一根玻璃管,管上端封闭,下端开口.已知槽中水银液面以上的那部分玻璃管 的长度l=76cm,管内封闭有n=1.0×10-3 mol的空气,保持水银槽与玻璃管都不动而设法使玻璃管内空气的温度缓慢地降低10℃,问在此过程中管内空气放出的热量为多少?已知管外大气的压强为76cmHg,每摩尔空 气的内能U=CVT,其中T为绝对温度,常量CV=20.5J·(mol·K)-1 ,普适气体常量R=8.31J·(m ol·K)-1 31Kr 83.810kg mol μ--=??31Xe 131.310kg mol μ--=??

第16届国际物理奥林匹克竞赛试题及答案汇总

第十六届国际中学生物理奥林匹克竞赛试题(理论部分) (1985 南斯拉夫波尔托罗日) 题1 一位年青的业余无线电爱好者用无线电与住在两个镇上的两位女孩保持联系。他放置两根竖直的天线棒,使得当住在A镇的女孩接收到最大信号时,住在B镇的女孩接收不到信号,反之也一样。这个天线阵由两根竖直的天线棒构成,它们在水平面内均匀地向各个方向发射同等强度的信号。 (a)求此天线阵的参数,即两棒间距离及它们的方位和馈入两棒电信号之间的位相差,使得 两棒间距离为最小。 (b)求上述数值解。如果男孩的无线电台发射27MH Z的电磁波,该天线阵位于波尔托罗日, 利用地图,他发现正北方与A方向(科佩尔)和B方向(位于伊斯特拉半岛上的小镇布热)的夹角分别为158°和72°。 〔解〕a)如图16-1所示,设A方向和B方向的夹角为φ,两棒间距为r,棒间连线与A方向夹角为a。 A方向最小位相差为: ΔA=2πcosα+Δφ B方向的最小位相差为: ΔB=2πcos(ψ-α)+Δφ Δφ为两根天线之间的相位差。当A方向强度最小,B方向强度最大时, ΔA=(2n+1)π,ΔB=2κπ。 则 ΔB-ΔA=(2(κ-n)-1)π=2π。〔cos(ψ-α)-cosα〕 得到 r. 当ψ一定时,只有k=n,α-=-时,r为最小,或者k=n+1, α-=时,r也为最小。 此时,

r最小= 把上述结果代入含有Δφ的方程中,可得 Δφ=π/2(k=n时),或Δφ=-时,(k=n+1时) 当Δφ从变为-时,产生的效应正好相反,即A方向强度最大,B方向强度为0。 b)如图16-2所示,A方向和B方向夹角为 ψ=157°-72°=85° 则棒间距最小为 r最小== ==4.1(米) 两棒连线与A方向夹角为 α=+90°=132.5° 题2一根边长为a、b、c(a>>b>>c)的矩形截面长棒,是由半导体锑化铟制成的。棒中有平行于a边的电流I流过。该棒放在平行于c边的外磁场B中,电流I所产生的磁场可以忽略。该电流的载流子为电子。在只有电场存在时,电子在半导体中的平均速度是v=μE,其中μ为迁移率。如果磁场也存在的话,则总电场不再与电流平行,这个现象叫做霍尔效应。 (a)确定在棒中产生上述电流的总电场的大小和方向。 (b)计算夹b边两表面上相对两点间的电势差。 (c)如果电流和磁场都是交变的,且分别为I=I0sinωt,B=B0sin(ωt+φ)。写出b)情形中电势差的直流分量解析表达式。 (d)利用c)的结果,设计一个电子线路,使其能测量连接于交流电网的电子设备所消耗的功率,并给出解释。 利用下列数据: 锑化铟中的电子迁移率为7.8m2/V·s 锑化铟中的电子密度为2.5×1022m-3 I=1.0A B=1.0T b=1.0cm c=1.0mm e=1.6×10-19C 〔解〕a)

中学生物理奥林匹克竞赛第试卷及答案

2008年第25届全国中学生物理竞赛复赛试卷 本卷共八题,满分160分 一、(15分) 1、(5分)蟹状星云脉冲星的辐射脉冲周期是0.033s 。假设它是由均匀分布的物质构成的球体,脉冲周期是它的旋转周期,万有引力是唯一能阻止它离心分解的力,已知万有引力常量 113126.6710G m kg s ---=???,由于脉冲星表面的物质未分离,故可估算出此脉冲星密度的 下限是 3 kg m -?。 2、(5分)在国际单位制中,库仑定律写成12 2 q q F k r =,式中静电力常量9228.9810k N m C -=???,电荷量q 1和q 2的单位都是库仑,距离r 的单位是米,作用力F 的单位是牛顿。若把库仑定律写成更简洁的形式12 2q q F r = ,式中距离r 的单位是米,作用力F 的单位是牛顿。若把库仑定律写成更简洁的形式122q q F r =,式中距离r 的单位是米,作用 力F 的单位是牛顿,由此式可这义一种电荷量q 的新单位。当用米、千克、秒表示此新单位时,电荷新单位= ;新单位与库仑的关系为1新单位= C 。 3、(5分)电子感应加速器(betatron )的基本原理如下:一个圆环真空 室处于分布在圆柱形体积内的磁场中,磁场方向沿圆柱的轴线,圆柱的轴线过圆环的圆心并与环面垂直。圆中两个同心的实线圆代表圆环的边界,与实线圆同心的虚线圆为电子在加速过程中运行的轨道。已知磁场的磁感应强度B 随时间t 的变化规律为0cos(2/)B B t T π=,其中T 为 磁场变化的周期。B 0为大于0的常量。当B 为正时,磁场的方向垂直 于纸面指向纸外。若持续地将初速度为v 0的电子沿虚线圆的切线方向注入到环内(如图),则电子在该磁场变化的一个周期内可能被加速的时间是从t= 到t= 。

上海物理竞赛热学

上海物理竞赛热学 The Standardization Office was revised on the afternoon of December 13, 2020

8.质量相等的甲、乙两金属块,其材质不同。将它们放入沸水中,一段时间后温度均达到100℃,然后将它们按不同的方式投入一杯冷水中,使冷水升温。第一种方式:先从沸水中取出甲,将其投入冷水,当达到热平衡后将甲从杯中取出,测得水温升高20℃;然后将乙从沸水中取出投入这杯水中,再次达到热平衡,测得水温又升高了20℃。第二种方式:先从沸水中取出乙投入冷水,当达到热平衡后将乙从杯中取出;然后将甲从沸水中取出,投入这杯水中,再次达到热平衡。则在第二种方式下,这杯冷水温度的变化是()A.升高不足40℃ B.升高超过40℃ C.恰好升高了40℃ D.条件不足,无法判断 5.食用冻豆腐时,发现豆腐内存在许多小孔,在小孔形成的过程中,发生的主要物态变 化是 ( ) A.凝固和熔化。 B.液化和升华。 C.凝华和熔化。 D.凝固和汽化。 7.如图24-3所示,从温度与室温(20℃左右)相同的酒精里取出温度计。温度计的示数会 ( ) A.减小。 B.增大。 C.先减小后增大。 D.先增大后减小。

14.星期天,小林同学在父母的协助下,从早上6:00开始每隔半小时分别对他家附近的气 温和一个深水池里的水温进行测量,并根据记录的数据绘成温度一时刻图线,如图24-9 所示。则可以判断 ( ) A.甲是“气温”图线,乙是“水温”图线,因为水的比热容比空气的大。B.甲是“气温”图线,乙是“水温”图线,因为水的比热容比空气的小。C.甲是“水温”图线,乙是“气温”图线,因为水的比热容比空气的大。D.甲是“水温”图线,乙是“气温”图线,因为水的比热容比空气的小。 21.将质量为m、温度为O℃的雪(可看成是冰水混合物)投入装有热水的容器中,热水的质量为M,平衡后水温下降了t;向容器中再投入质量为2m上述同样性质的雪,平衡后容器中的水温恰好又下降了t。则m:M为 ( ) A. 1:2 :3 C.1:4 :5。 5.现有一扇形的均质金属物体,该材料具有热胀冷缩的性质,如图所示。室温状 态下AB、CD边所成的圆心角为α。若使物体温度均匀升高,则α角的变化情况是:( ) (A)变大 (B)不变

第31届国际物理奥林匹克竞赛试题

第31届国际物理奥林匹克竞赛试题 理论试题 英国莱斯特2000年7月10日时间5小时 题1 A 某蹦迪运动员系在一根长弹性绳子的一端,绳的另一端固定在一座高桥上,他自静止高桥向下面的河流下落,末与水面相触,他的质量为m,绳子的自然长度为L,绳子的力常数(使绳子伸长lm所需的力)为k,重力场强度为g。求出下面各量的表达式。 (a)运动员在第一次达到瞬时静止前所落下的距离y。 (b)他在下落过程中所达到的最大速率v。 (c)他在第一次达到瞬时静止前的下落过程所经历的时间t。 设运动员可以视为系于绳子一端的质点,与m相比绳子的质量可忽略不计,当绳子在伸长时服从胡克定律,在整个下落过程中空气的阻力可忽略不计。 B 一热机工作于两个相同材料的物体之间,两物体的温度分别为T A和T B(T A>T B),每个物体的质量均为m,比热恒定,均为s。设两个物体的压强保持不变,且不发生相变。 (a)假定热机能从系统获得理论上允许的最大机械能,求出两物体A和B最终达到的温度T?的表达式,给出解题全部过程。 (b)由此得出允许获得的最大功的表达式。 (c)假定热机工作于两箱水之间,每箱水的体积为2.50m3,一箱水的温度为350K,另一箱水的温度为300K。计算可获得的最大机械能。 已知水的比热容= 4.19×103kg-1K-1,水的密度=1.00 x 103kgm.-3 C 假定地球形成时同位素238U和235U已经存在,但不存在它们的衰变产物。238U和235U的衰变被用来确定地球的年龄T。 (a)同位素238U以4.50×109年为半衰期衰变,衰变过程中其余放射性衰变产物的半衰期比这都短得多,作为一级近似,可忽略这些衰变产物的存在,衰变过程终止于铅的同位素206Ph。用238U的半衰期、现在238U的数目238N表示出由放射衰变产生的206Pb原子的数目206n。(运算中以109年为单位为宜) (b)类似地,235U在通过一系列较短半衰期产物后,以0.710×109年为半衰期衰变,终止于稳定的同位素207Pb。写出207n与235N和235U半衰期的关系式。 (c)一种铅和铀的混合矿石,用质谱仪对它进行分析,测得这种矿石中铅同位素204Pb,206Pb和207Pb的相对浓度比为1.00:29.6:22.6。由于同位系204Pb不是放射性的,可以用作分析时的参考。分析一种纯铝矿石,给出这三种同位素的相对浓度之比为1.00:17.9:15.5。已知比值238N:235N为137:1,试导出包含T的关系式。 (d)假定地球的年龄T比这两种钢的半衰期都大得多,由此求出T的近似值。 (e)显然上述近似值并不明显大于同位素中较长的半衰期,但用这个近似值可以获得精确度更高的T值。由此在精度2%以内估算地球的年龄T。 D真空中电荷Q均匀分布在半径为R的球体内。 (a)对r≤R和r>R两种情况导出距球心r处的电场强度。 (b)导出与这一电荷分布相联系的总电能表示式。 E 用细铜线构成的园环在地磁场中绕其竖直直径转动,铜坏处的地磁场的磁感应强度为44.5μT,其方向与水平方向向下成60°角。已知铜的密度为8.90×103kgm-3,电阻率为1.70×10-8Ωm,计算其角速度从初始值降到其一半所需的时间。写出演算步骤,此时间比转动一次的时间长得多。没空气和轴承处的摩擦忽略不计,并忽略自感效应(尽管这些效应本不应忽略)。 题2

大学物理第九章热力学基础历年考题

第9章热力学基础 一、选择题 1. 对于准静态过程和可逆过程, 有以下说法.其中正确的是 [] (A>准静态过程一定是可逆过程 (B>可逆过程一定是准静态过程 (C>二者都是理想化的过程 (D>二者实质上是热力学中的同一个概念 2. 对于物体的热力学过程, 下列说法中正确的是 [] (A>内能的改变只决定于初、末两个状态, 与所经历的过程无关 (B>摩尔热容量的大小与所经历的过程无关 (C>在物体内, 若单位体积内所含热量越多, 则其温度越高 (D>以上说法都不对 3. 有关热量, 下列说法中正确的是 [](A>热是一种物质 (B>热能是物质系统的状态参量 (C>热量是表征物质系统固有属性的物理量 (D>热传递是改变物质系统内能的一种形式 4. 关于功的下列各说法中, 错误的是 [](A>功是能量变化的一种量度 (B>功是描写系统与外界相互作用的物理量 (C>气体从一个状态到另一个状态, 经历的过程不同, 则对外作的功也不一样 (D>系统具有的能量等于系统对外作的功 5. 理想气体状态方程在不同的过程中有不同的微分表达式, 式表示 [](A>等温过程(B>等压过程 (C>等体过程(D>绝热过程 6. 理想气体状态方程在不同的过程中可以有不同的微分表达式, 式表示 [](A>等温过程(B>等压过程 (C>等体过程(D>绝热过程 7. 理想气体状态方程在不同的过程中可以有不同的微分表达式, 式表示 [](A>等温过程(B>等压过程 (C>等体过程(D>绝热过程 8. 理想气体状态方程在不同的过程中可以有不同的微分表达式,

则式表示 [](A>等温过程(B>等压过程 (C>等体过程(D>任意过程 9. 热力学第一定律表明: [](A>系统对外作的功不可能大于系统从外界吸收的热量 (B>系统内能的增量等于系统从外界吸收的热量 (C>不可能存在这样的循环过程, 在此过程中, 外界对系统所作的功 不等于系统传给外界的热量 (D>热机的效率不可能等于1 10. 对于微小变化的过程, 热力学第一定律为d Q= d E d A.在以下过程中, 这三者同时为正的过程是 [](A>等温膨胀(B>等容膨胀 (C>等压膨胀(D>绝热膨胀 11. 对理想气体的等压压缩过程,下列表述正确的是 [](A> d A>0, d E>0, d Q>0 (B> d A<0, d E<0, d Q<0 (C> d A<0, d E>0, d Q<0 (D> d A = 0, d E = 0, d Q = 0 12. 功的计算式适用于 [](A>理想气体(B>等压过程 (C>准静态过程(D>任何过程 13. 一定量的理想气体从状态出发, 到达另一状态.一次是等温压缩到, 外界作功A;另一次为绝热压缩到, 外界作功W.比较这两个功值的大小是 [](A>A>W(B>A = W(C>A<W (D>条件不够,不能比较 14. 1mol理想气体从初态(T1、p1、V1 >等温压缩到体积V2, 外界对气体所作的功为 [](A>(B> (C>(D> 15. 如果W表示气体等温压缩至给定体积所作的功, Q表示在此过程中气体吸收的热量, A表示气体绝热膨胀回到它原有体积所作的功, 则整个过程中气体内能的变化为 [](A>W+Q-A(B>Q-W-A (C>A-W-Q(D>Q+A-W

历届国际物理奥林匹克竞赛试题与解答

历届国际物理奥林匹克竞赛试题与解答 第1届 (1967年于波兰的华沙) 【题1】质量M=0.2kg 的小球静置于垂直柱上,柱高h=5m 。一粒质量m=0.01kg 、以速度0=500m/s 飞行的子弹水平地穿过球心。球落在 距离柱s =20m 的地面上。问子弹落在地面何处?子弹动能中有多少转换为热能? 解:在所有碰撞情况下,系统的总动量均保持不变: MV mv mv +=0 其中v 和V 分别是碰撞后子弹的速度和小球的速 度. 两者的飞行时间都是01.12== g h t s 球在这段时间沿水平方向走过20m 的距离,故它在水平方向的速度为: 8.1901 .120 == V (m/s ) 由方程0.01×500=0.01v +0.2×19.8 可求出子弹在碰撞后的速度为:v =104m/s 子弹也在1.01s 后落地,故它落在与柱的水平距离为S =vt =104×1.01=105m 的地面上。 碰撞前子弹的初始动能为=2 02 1mv 1250 J 球在刚碰撞后的动能为 =22 1 MV 39.2 J 子弹在刚碰撞后的动能为=2 2 1mv 54 J 与初始动能相比,两者之差为1250 J -93.2 J =1156.8 J 这表明原来动能的92.5%被系统吸收而变为热能。这种碰撞不是完全非弹性碰撞。在完全弹性碰撞的情形下,动能是守恒的。而如果是完全非弹性碰撞,子弹将留在球。 【题2】右图(甲)为无限的电阻网络,其中每个电阻均为r ,求A、B两点 间的总电阻。 解:如图(乙)所示 A、B两点间的总电阻应等于C、D 两点间的总电阻与电阻r的并联,再与r串联 图(甲) 后的等效电阻。 如果网络是无限的,则A、B 两点间的总电阻应等于C、D 两点间的总电阻,设为Rx 。 根据它们的串并联关系有: m M h S s υ A B r r r r r r r r A B r r r r r r r r C D

全国物理奥林匹克竞赛

全国物理奥林匹克竞赛-活动简介 中国物理学会决定举办中学生物理竞赛的过程(暨第一届全国中学生物理竞赛) 中国物理学会有重视教学和培养青少年学生的传统,20世纪30年代就设有教学委员会。1978年在庐山举行拨乱反正的中国物理学会年会上,就讨论过举办物理竞赛事宜。1979年全国有20多个省、自治区、直辖市分别举行了物理竞赛。1983年中国物理学会科学普及工作委员会提出在全国举行物理竞赛的倡议,1983年11月13日举行预备会议讨论有关竞赛的指导思想、目的、组织办法等一系列问题。1984年1月中国物理学会常务理事会正式任命全国中学生物理竞赛委员会正副主任,并通过“举办第一届中学生物理竞赛的计划”(征求意见稿)。随之即开始有关物理竞赛的活动。2月在中国物理学会全国普及工作会议上酝酿和布置有关竞赛的具体事项,4月召开第一届全国中学生物理竞赛委员会全体会议,通过了举办竞赛的计划,对指导思想、命题原则、组织领导以及具体办法均做了具体的阐述与规定。这保证了我国物理竞赛健康地发展。开始时中学生物理竞赛是由普及工作委员会和教学研究委员会共同主持的活动,后因普及工作委员会其他活动较多而改为由教学研究委员会主持。 第一届竞赛于1984年11月18日开始,1985年2月26日至3月2日在北京举行决赛。中国科协主席、中国物理学会名誉理事长周培源教授和副理事长周光召教授以及副秘书长兼教学研究委员会主任、全国中学生物理竞赛委员会主任北京大学副校长沈克琦教授出席颁奖会,并就物理竞赛活动发表了有指导意义的讲话。周培源主席还建议每年举行一次,由各省、自治区、直辖市轮流承办。1985年8月10日中国物理学会常务理事会通过《全国中学生物理竞赛暂行办法》,决定每年举行一次,使竞赛的进行进一步规范化。通过时原拟称为章程,在讨论时理事长钱三强教授提出,先叫“暂行办法”,经过实践取得经验并进一步修改后再名为章程。经过七届竞赛的实践,1991年2月通过《全国中学生物理竞赛章程》和《全国中学生物理竞赛内容提要》。以后随着客观条件的变化又对章程和内容提要进行过几次修订。 竞赛概况 全国中学生物理竞赛是由中国科协主管,由中国物理学会主办,各省(自治区、直辖市,下同)高中学生自愿参加的课外学科竞赛活动。这项活动得到国家教育部的同意和支持。 全国中学生物理竞赛的目的、指导思想和遵循的原则、竞赛程序和组织机构,详见“竞赛章程”栏目。竞赛内容详见“重要文件”栏目。 竞赛分为预赛、复赛和决赛。预赛由全国竞赛委员会统一命题,采取笔试的

相关文档
相关文档 最新文档