文档视界 最新最全的文档下载
当前位置:文档视界 › 手把手教你如何做RAID磁盘阵列

手把手教你如何做RAID磁盘阵列

手把手教你如何做RAID磁盘阵列
手把手教你如何做RAID磁盘阵列

手把手教你如何做RAID磁盘阵列

本文将以一款服务器的磁盘阵列配置实例向大家介绍磁盘阵列的具体配置方法。当然,不同的阵列控制器的具体配置方法可能不完全一样,但基本步骤绝大部分是相同的,完全可以参考。

说到磁盘阵列(RAID,Redundant Array of Independent Disks),现在几乎成了网管员所必须掌握的一门技术之一,特别是中小型企业,因为磁盘阵列应用非常广泛,它是当前数据备份的主要方案之一。然而,许多网管员只是在各种媒体上看到相关的理论知识介绍,却并没有看到一些实际的磁盘阵列配置方法,所以仍只是一知半解,到自己真正配置时,却无从下手。

在本文中给出一些关键界面,使各位对磁盘阵列的配置有一个理性认识。当然为了使各位对磁盘阵列有一个较全面的介绍,还是先来简要回顾一下有关磁盘阵列的理论知识,这样可以为实际的配置找到理论依据。

一、磁盘阵列实现方式

磁盘阵列有两种方式可以实现,那就是“软件阵列”与“硬件阵列”。

软件阵列是指通过网络操作系统自身提供的磁盘管理功能将连接的普通SCSI卡上的多块硬盘配置成逻辑盘,组成阵列。如微软的

Windows NT/2000 Server/Server 2003和NetVoll的NetWare两种操作系统都可以提供软件阵列功能,其中Windows NT/2000 Server/Server 2003可以提供RAID 0、RAID 1、RAID 5;NetWare操作系统可以实现RAID 1功能。软件阵列可以提供数据冗余功能,但是磁盘子系统的性能会有所降低,有的降代还比较大,达30%左右。

硬件阵列是使用专门的磁盘阵列卡来实现的,这就是本文要介绍的对象。现在的非入门级服务器几乎都提供磁盘阵列卡,不管是集成在主板上或非集成的都能轻松实现阵列功能。硬件阵列能够提供在线扩容、动态修改阵列级别、自动数据恢复、驱动器漫游、超高速缓冲等功能。它能提供性能、数据保护、可靠性、可用性和可管理性的解决方案。

磁盘阵列卡拥有一个专门的处理器,如Intel的I960芯片,HPT370A/372 、Silicon Image SIL3112A等,还拥有专门的存贮器,用于高速缓冲数据。这样一来,服务器对磁盘的操作就直接通过磁盘阵列卡来进行处理,因此不需要大量的CPU及系统内存资源,不会降低磁盘子系统的性能。阵列卡专用的处理单元来进行操作,它的性能要远远高于常规非阵列硬盘,并且更安全更稳定。

二、几种磁盘阵列技术

RAID技术是一种工业标准,各厂商对RAID级别的定义也不尽相同。目前对RAID级别的定义可以获得业界广泛认同的有4种,RAID 0、RAID 1、RAID 0+1和RAID 5。

RAID 0是无数据冗余的存储空间条带化,具有成本低、读写性能极高、存储空间利用率高等特点,适用于音、视频信号存储、临时文件的转储等对速度要求极其严格的特殊应用。但由于没有数据冗余,其安全性大大降低,构成阵列的任何一块硬盘的损坏都将带来灾难性的数据损失。这种方式其实没有冗余功能,没有安全保护,只是提高了磁盘读写性能和整个服务器的磁盘容量。一般只适用磁盘数较少、磁盘容易比较紧缺的应用环境中,如果在RAID 0中配置4块以上的硬盘,对于一般应用来说是不明智的。

RAID 1是两块硬盘数据完全镜像,安全性好,技术简单,管理方便,读写性能均好。因为它是一一对应的,所以它无法单块硬盘扩展,要扩展,必须同时对镜像的双方进行同容量的扩展。因为这种冗余方式为了安全起见,实际上只利用了一半的磁盘容量,数据空间浪费大。

RAID 0+1综合了RAID 0和RAID 1的特点,独立磁盘配置成RAID 0,两套完整的RAID 0互相镜像。它的读写性能出色,安全性高,但构建阵列的成本投入大,数据空间利用率低。

RAID 5是目前应用最广泛的RAID技术。各块独立硬盘进行条带化分割,相同的条带区进行奇偶校验(异或运算),校验数据平均分布在每块硬盘上。以n块硬盘构建的RAID 5阵列可以有n-1块硬盘的容量,存储空间利用率非常高。任何一块硬盘上的数据丢失,均可以通过校验数据推算出来。它和RAID 3最大的区别在于校验数据是否

平均分布到各块硬盘上。RAID 5具有数据安全、读写速度快,空间利用率高等优点,应用非常广泛,但不足之处是如果1块硬盘出现故障以后,整个系统的性能将大大降低。

RAID 1、RAID 0+1、RAID 5阵列配合热插拔(也称热可替换)技术,可以实现数据的在线恢复,即当RAID阵列中的任何一块硬盘损坏时,不需要用户关机或停止应用服务,就可以更换故障硬盘,修复系统,恢复数据,对实现高可用系统具有重要的意义。

三、磁盘阵列配置实例

当硬盘连接到阵列卡(RAID)上时,操作系统将不能直接看到物理的硬盘,因此需要创建成一个一个的被设置为RAID0、1或者5等的逻辑磁盘(也叫容器),这样系统才能够正确识别它。当然,逻辑磁盘(Logic Drive)、容器(Container)或虚拟磁盘(Virtual Drive)均表示一个意思,只是不同阵列卡产商的不同叫法。可参见以下配置的服务器有Dell Power Edge 7x0系列和Dell PowerEdge 1650服务器。

磁盘阵列的配置通常是利用磁盘阵列卡的BIOS工具进行的,也有使用第三方提供的配置工具软件去实现对阵列卡的管理,如Dell Array Manager。本文要介绍的是在DELL服务器中如何利用阵列卡的BIOS工具进行磁盘阵列配置的方法。

如果在您的DELL服务器中采用的是Adaptec磁盘阵列控制器(PERC2、PERC2/SI、PERC3/SI和PERC3/DI),在系统开机自检时将看到以下信息:

Dell PowerEdge Expandable RAID Controller 3/Di, BIOS V2.7-x [Build xxxx](c) 1998-2002 Adaptec, Inc. All Rights Reserved. <<< Press CTRL+A for Configuration Utility! >>> 如果您的DELL服务器配置的是一块AMI/LSI磁盘阵列控制器(PERC2/SC、PERC2/DC、PERC3/SC、PERC3/DC、PERC4/DI和PERC4/DC),则在系统开机自检的时候将看到以下信息:

Dell PowerEdge Expandable RAID Controller BIOS X.XX Jun 26.2001 Copyright (C) AMERICAN MEGATRENDS INC.

Press CTRL+M to Run Configuration Utility or Press CTRL+H for WebBios或者

PowerEdge Expandable RAID Controller BIOS X.XX Feb 03,2003 Copyright (C) LSI Logic Corp.

Press CTRL+M to Run Configuration Utility or Press CTRL+H for WebBios

下面对以上两种情况分别予以介绍。

1. 在Adaptec磁盘阵列控制器上创建Raid(容器)

在这种阵列卡上创建容器的步骤如下(注意:请预先备份您服务器上的数据,配置磁盘阵列的过程将会删除服务器硬盘上的所有数据!):

第1步,首先当系统在自检的过程中出现如(图1)提示时,同时按下“Ctrl+A”组合键。进入如(图2)所示的磁盘阵列卡的配置程序界面。

〈图 1 〉

〈图 2〉

第2步,然后选择“Container configuration utility”,进入如(图3)所示配置界面。

〈图 3 〉

第3步,选择“Initialize Drivers“选项去对新的或是需要重新创建容器的硬盘进行初始化(注意: 初始话硬盘将删去当前硬盘上的所有数据),按回车后进入如(图4)所示界面。在这个界面中出现了RAID 卡的通道和连接到该通道上的硬盘,使用“Insert”键选中需要被初〈图 4 〉

始化的硬盘(具体的使用方法参见界面底部的提示,下同)。第4

步,全部选择完成所需加入阵列的磁盘后,按加车键,系统键弹出如(图5)所示警告提示框。提示框中提示进行初始化操作将全部删除所选硬盘中的数据,并中断所有正在使用这些硬盘的用户。

〈图 5 〉

第5步,按“Y”键确认即可,进入如(图6)所示配置主菜单(Main Menu)界面。硬盘初始化后就可以根据您的需要,创建相应阵列级别(RAID1,RAID0等)的容器了。这里我们以RAID5为例进行说明。在主菜单界面中选择“Create container”选项。

〈图 6 〉

第6步,按回车键后进入如(图7)所示配置界面,用“insert”键选中需要用于创建Container(容器)的硬盘到右边的列表中去。然后按回车键。在弹出来的如(图8)所示配置界面中用回车选择RAID级别,输入Container的卷标和大小。其它均保持默认不变。然后在“Done”按钮上单击确认即可。

〈图 7 〉

〈图 8 〉

第7步,这是系统会出现如(图9)所示提示,提示告诉用户当所创建的容器没有被成功完成“Scrub(清除)”之前,这个容器是没有冗余功能的。

〈图 9 〉

第8步,单击回车后返回到如(图6)所示主菜单配置界面,选中“Manage containers”选项,单击回车后即弹出当前的容器配置状态,如(图10)所示。选中相应的容器,检查这个容器的“Container Status”选项中的“Scrub”进程百分比。当它变为“Ok”后,这个新创建的Container便具有了冗余功能。

〈图 10 〉第9步,容不得器创建好后,使用“ESC”键退出磁盘阵列配置界面,并重新启动计算机即可。

54master整理

详细地冠脉造影全程图解

史上最详细:冠脉造影全程图解 作为一个新手,我想大家在第一次走进导管室时,会感到莫名紧张和茫然失措,你不知道自己的位置,不知道该干什么。不要紧,当你能耐心读完以下文字后,也许结果会不一样。 学习冠脉造影,是学习介入治疗手术的前奏,是基础,是基本功,是一个飞行员在真正驾驶战斗机前,在教练机上的几千个小时的实战训练。 在接触介入造影术前,大家肯定做了不少的功课,而真正操作起来,却想不起来了。所以,今天我们将其简化,和大家一步一步地讨论单纯造影术的操作流程细节,和鲜为人知的注意事项。 就从推病人进导管室,上导管床开始学起吧!这时,你将成为助手的助手。 首先,帮助病人躺在导管床合适的位置上,头向C 型臂,现在大家越来越倾向于桡动脉入路,所以我们先从摆穿刺手,也就是固定右手开始。 将病人右臂外展45°左右,放在右手支撑板上,为了给操作者提供良好的穿刺体位,在病人右手腕下垫上绷带卷,或者纱布包,有条件最好垫上500 ml 的袋装盐水,既能支撑,病人舒服,还能充分暴露穿刺点。

把支撑板和盐水袋子用手术包的外包装袋套上,视野干净多了。 然后用绷带绕患者右手掌捆扎结实,避免其移动。自指尖一直到肘关节进行消毒,如下图。谨慎起见,建议将右股动脉穿刺点也准备好,提前消好毒。已备桡动脉穿不成功的不时之需。 消好毒,请站到一边,因为助手将铺手术巾了,这时你可以穿好铅衣,站在一旁看看肝素是怎么配置的,心电监护的联接,三联三通的联接,并学习助手操作。当你站在一旁观察上十几台造影术后,你大可以试一试助手的工作。有些工作不可能看会,比如说摇床到位! 一个合格的助手,其实不输术者,阜外医院的摇床者多是经验丰富的专家,因为一台造影做得成不成功。最关键的不是你造没造成影,而是你造的影是不是能完整将血管展开看清。这就全凭助手摇床的技术了。 关于摇床,我们下次另讲。穿上手术衣,站在助手的位置上,该从何处下手呢?就从整理手术台铺无菌巾开始。首先要帮助操作者整理手术台,可以趁机学习造影所用的基本器械了。 一个造影所需的器械有: 桡动脉穿刺包(将东西取出,放到弯盘里备用);造影导丝(一般为绿色J 头硬导丝,或者超滑又叫泥鳅导丝,它将

磁盘阵列配置安装

RAID磁盘阵列|1|1 据统计60%的企业关键数据都存储在企业内部员工的PC机和笔记本 电脑上。对这部分的数据的存储管理及备份管理本应是一个重要问题,但因为用户过于分散及管理工作过于琐碎等原因,反而疏忽了对这些机器上的数据的管理,由于各种原因造成数据丢失。 磁盘阵列的使用方式根据具体需求的不同,连接和配置的方式可谓 是多种多样,都具有各自的特点和功能。 本方案将采用IBM DS4200 磁盘阵列柜为模型,列举目前最具代表性 的配置安装方式供客户参考。 磁盘阵列配置安装

典型用户网络结构: 2.1连接示意图如下: 如图所示,公司、学校。内网有文件服务器1台、WEB 服务器1台、OA 服务器一台、MIS 服务器1台、SQL 数据库服务器1台、共有办公电脑X 台左右客户需求: 1. 公司,学校。需对企业局域网内的PC及工作站终端重要数据备份至服务器 2. 将服务器上的数据备份到磁盘阵列 3. 服务器系统备份、重要PC系统备份 4. 保证公司文件资料的安全性 硬件需求: 1. 服务器一台 2. 磁盘阵列柜一台 综合分析: 此方案硬件连接方便,只需增加存储设备,和一台服务器就能建立 硬件平台,成本小且组建迅速。 典型用户网络结构是目前大多数企业公司现行的网络结构,增加此 方案中磁盘阵列容易实现,能满足客户的多重基本需求,有立竿见影的 作用且使用效率高,硬件方面设备维护简单,数据集中管理,唯独各种 数据(邮件,myserver等)的备份都需要手动操作。但可以使用恰当的 软件弥补该缺点,智能自动备份各种数据

2.2 双机热备方案: 根据ds4300磁盘阵列具有双控制卡的特定本节采用全冗余建议方案 采用2 台IBM p5 520 服务器运行应用,分别运行HACMP 软件, 保证系统的高可靠性。 采用2 台2005 -H08 光纤交换机建立存储局域网环境,分别连 接两台p5 520 服务器和磁盘阵列。2 台光纤交换机可以避免单点故障。 采用IBM DS4300 保证数据存储的可靠性和读取效率。 2 台p5 520 分别通过2 根光纤连接到2 台存储光纤交换机, DS4300 通过4 根光纤连接到2 台存储光纤交换机,如此连接即保证了可靠性,又提高了数据访问的效率。 硬件需求:(所有配置只提供参考,具体根据需求提供详细配置) 服务器:IBM p5 520 2 台;2 颗1.5GHz/1.65GHz 的power5 处 理器,4GB 内存。 2 块73GB 内置硬盘: 用于安装操作系统

引物设计基本方法

Primer 5.0搜索引物: 1.Primer Length我常设置在18-30bp,短了特异性不好,长了没有必要。当然有特殊要求的除外,如加个酶切位点什么的。 2.PCR Product size最好是100-500bp之间,小于100bp的PCR产物琼脂糖凝胶电泳出来,条带很模糊,不好看。至于上限倒也不必要求苛刻。 3.Search parameters还是选Manual吧,Search stringency应选High,GC含量一般是40-60%。其它参数默认就可以了。 4.搜索出来的引物,按Rating排序,逐个送Oligo软件里评估。当然,搜索出的引物,其扩增产物很短,你可以不选择它,或是引物3端≥2个A或T,或引物内部连续的G或C太多,或引物3端≥2个G或C,这样的引物应作为次选,没得选了就选它。对于这样的引物,如果其它各项指标还可以,我喜欢在引物末端去掉一个不满意的或加上一个碱基,看看引物的评估参数有没有变好点。 Oligo 6.0评估引物: 1.在analyze里,Duplex Formation不管是上游引物、下游引物还是上下游引物之间,The most stable 3’-Dimer绝对值应小于4.5kcal/mol, The most stable Dimer overall绝对值一般应小于多少kcal/mol跟PCR退火温度有关,我几次实验感觉在PCR退火温度在65°的时候,The most stable Dimer ove rall 6.7kcal/mol没有问题。 2.Hairpin Formation根据黄金法则 3.False priming sites: Primer的priming efficiency应该是错配地方的4倍左右,更多当然更好。 4.在PCR栏,个人感觉其所显示的optimal annealing temperature数值值得参考。在PCR摸索条件的时候,退火温度为其数值加减2的范围就可以了。 5.Internal stability很重要:我们希望引物的内部稳定性是中间高、两边低的弧形,最起码保证3端不要过于稳定。下图1引物3端过于稳定,很容易导致不适当扩增。△G参照黄金法则,这其实很好理解:把一滴水放到大海里,这滴水就会不停的扩散分布,扩散的越厉害越稳定,所以△G绝对值越大结构越稳定。 最后说一句,敢于尝试就会成功。 第二贴 --科室工作很多,小医生了,没有办法,所以肯怕不能满足很多战友的要求(qq聊或帮助设计),在此表示抱歉。就楼上的问题我试着回答一下,不一定正确,供参考吧。 --1、两个评价系统不一样,个人感觉oligo评价引物好点,primer出来的引物,我一般按效率排序,再结合退火温度和引物长度,选择引物到oligo测试。这是初步的选择,其实引物到了oligo里,退火温度也不一样。 --2、3端的二聚体应该避免,这个要看你的退火温度决定,一个50°的退火温度肯定和65°对二聚体的影响不一样了,一般来讲尽量控制在-4.5kcal/mol以下(个人观点,很多东西真得还是需要自己摸索)。 --3、个人感觉3端有A无A影响不大,3端有T的没有经验。有T是不是一定不行,个人感觉不见得。软件是评估,法则也不是没有例外,不是1+1=2那么确定。 --4、错配和二聚体谁轻谁重,个人觉得“到致命的程度”谁都重要,我也说不好。我设计的时候,尽量两个都不得罪。 --5、GC含量并非不重要,它直接影响引物各端稳定性,3端来两个G或C,稳定性就上去了,粘在模板上很牢。所以我设计的时候,尽量避免这样的情况出现。 谈一下我学这个引物设计的过程吧:

冠脉造影操作图解

冠脉造影流程操作最详细--—--—--新人入门全纪录 论坛上高手林立,介入中龙争虎斗!很多大神已经将此做到了炉火纯青,在我们一班小字辈新入行者来到论坛,看的是一头雾水.当我6个月前刚刚接触介入时,来到论坛踏雪寻贴,但是可惜,论坛帖子中对冠造最基础的东西,介绍的并不是太多,那就和大家特别是像我这样新手分享下最基础的知识吧! 作为一个新手,我想大家在第一次走进导管室时,会发现莫名的紧张和茫然失措,你不知道自己的位置,不知道该干什么.呵呵,因为我就是这个样子进入导管室的。当我作为菜鸟一枚进入到导管室时。也是面对着C型臂和大屏幕无所适从,对整个流程茫然无知。但是不要紧,当你能耐心读完以下文字后,你也可以了解冠状动脉造影术的细枝末节了,我们这次探讨的是冠脉造影术的基本操作流程,是一个基础探讨,不涉及任何策略性问题。本着给入门新手一个崭新的视角,来尽快的适应和熟悉冠脉造影的基本过程,使此过程尽可能的熟练.希望对大家特别是新手菜鸟有所帮助!。 学习冠脉造影,是学习介入治疗手术的前奏,是基础,是基本功,是一个飞行员在真正驾驶战斗机前,在教练机上的几千个小时的实战训练。在接触介入造影术前,我想大家其实也肯定做了不少的功课,去看书,看百度文库中的资料,看丁香园上的帖子,看期刊,去和前辈探讨.但是,大部分资料是雷同的,讨论的让人头昏眼花,而真正操作起来,你却一点也想不起来了。所以,我将其简化,来和大家一步一步地讨论单纯造影术的操作流程细节,和鲜为人知的注意事项。为所有新入的朋友提供下帮助,整理下头绪,因为我在这里所讲的,真的是基础中得基础。因为咱们不是在写论文,也不是出大部头,只是为新学习介入的朋友们提供下基础的讲解,所以不会按照常规出牌哟~~~,那我们就言归正传吧! 当我们第一次进入导管室,映入眼帘的是那些价值不菲的机器,一排排的支架,导管,满桌子的药品,耗材,但是作为临床已是老手的咱们。不会被吓到滴~~!因为我们的在选择介入时,肯定会做了不少前期工作,那我们的工作究竟该怎样开始呢?那就从认识导管室的布局开始吧! 认识了布局,大家起码不会在导管室中迷路了,不会再找不到你想要找的东西.不会忘记你站的地方是有放射标志的位置。那我们了解了导管室基础布局后,下一

磁盘阵列三大关键部件

磁盘阵列三大关键部件 【IT168 资讯】磁盘阵列的主要部件包括阵列控制器、磁盘及磁盘扩展柜、电源系统等,图1是一个典型双控制器盘阵结构示意图。根据不同的市场定位,不同型号的盘阵结构和各项技术指标会有或大或小的区别,如控制器数量、缓存容量、管理终端、接口类型等。 ●阵列控制器(或者存储处理器) 阵列控制器采用专门处理数据存储和系统管理的单片机、工控机、服务器,前端提供对服务器的连接,后端连接磁盘及磁盘扩展柜,采用优化的通用或专用操作系统,以及独有的控制软件实现数据的存储转发和整个阵列的管理(有些磁盘阵列采用专门的管理终端)。控制器所带缓存可暂存外部服务器向盘阵读写的数据,或者暂存控制器向后端磁盘读写的数据,能大大提高访问的效率。 盘阵根据控制器数量可分为无控制器、单控制器、双控制器和多控制器几种,它们各自有不同的市场定位。 其中无控制器的盘阵JBOD(Just Bundle of Disk的缩写,意即“只是一串磁盘的组合”),被称为“傻盘阵列”。 JBOD内部既没有控制器,也没有缓存,磁盘之间更没有提高性能和安全性的任何手段。每个磁盘都独立地接收来自主机的数据访问,主机既要负担磁盘读写等操作,还要进行RAID算法的处理,对主机资源的占用率较大,因此JBOD适用于对性能要求不高的环境。 单控制器阵列能够满足那些对性能有较高要求、又能容忍因控制器故障导致盘阵停机一定时间的需求,在实际应用中,由于采用冗余链路、内部容错等技术,单控制器盘阵能够很好地满足一般的高可靠性要求,因此双控制器盘阵只采购一个控制器的案例也为数不少。

双控制器阵列能够实现控制器级的冗余,进一步提高系统的性能和稳定性、可靠性。 多控制器盘阵采用4个或以上的控制器,采用多级冗余结构,既能使系统的稳定性和可靠性达到更高标准,又能使整体处理能力成倍提高,常用于大型关键业务及数据中心。 控制器的核心是运行其中的一系列软件,如盘阵管理软件、SAN管理软件、快照软件等。 ●磁盘及磁盘扩展柜 磁盘是盘阵存储数据的物理介质,它装在磁盘柜或磁盘扩展柜中,目前用于盘阵的主要硬盘类型如表1所示。作为盘阵中风扇之外的第二个持续运转的部件,硬盘是盘阵中的易损物,为了减少或防止磁盘故障导致的数据丢失,一般都会采用RAID技术来容错。磁盘扩展柜用于安装磁盘,扩展存储容量。磁盘扩展柜提高了系统扩容的灵活性和方便性,实现按需分步的扩展。 ●电源 电源为整个磁盘阵列供电,包括控制器、磁盘及扩展柜、管理终端。根据对可靠性要求的不同来选择单电源或者多电源。为防止冗余电源同时发生故障,中高端盘阵还需配备电池,能够确保外部电源出现故障后,系统能继续维持一段时间运转,让系统能将缓存中数据写入磁盘中。

磁盘阵列配置全程解

磁盘阵列配置全程解(图) 说到磁盘阵列(RAID,Redundant Array of Independent Disks),现在几乎成了网管员所必须掌握的一门技术之一,特别是中小型企业,因为磁盘阵列应用非常广泛,它是当前数据备份的主要方案之一。然而,许多网管员只是在各种媒体上看到相关的理论知识介绍,却并没有看到一些实际的磁盘阵列配置方法,所以仍只是一知半解,到自己真正配置时,却无从下手。本文要以一个具体的磁盘阵列配置方法为例向大家介绍磁盘阵列的一些基本配置方法,给出一些关键界面,使各位对磁盘阵列的配置有一个理性认识。当然为了使各位对磁盘阵列有一个较全面的介绍,还是先来简要回顾一下有关磁盘阵列的理论知识,这样可以为实际的配置找到理论依据。 一、磁盘阵列实现方式 磁盘阵列有两种方式可以实现,那就是“软件阵列”与“硬件阵列”。 软件阵列是指通过网络操作系统自身提供的磁盘管理功能将连 接的普通SCSI卡上的多块硬盘配置成逻辑盘,组成阵列。如微软的Windows NT/2000 Server/Server 2003和NetVoll的NetWare两种操作系统都可以提供软件阵列功能,其中Windows NT/2000 Server/ Server 2003可以提供RAID 0、RAID 1、RAID 5;NetWare操作系统

可以实现RAID 1功能。软件阵列可以提供数据冗余功能,但是磁盘子系统的性能会有所降低,有的降代还比较大,达30%左右。 硬件阵列是使用专门的磁盘阵列卡来实现的,这就是本文要介绍的对象。现在的非入门级服务器几乎都提供磁盘阵列卡,不管是集成在主板上或非集成的都能轻松实现阵列功能。硬件阵列能够提供在线扩容、动态修改阵列级别、自动数据恢复、驱动器漫游、超高速缓冲等功能。它能提供性能、数据保护、可靠性、可用性和可管理性的解决方案。磁盘阵列卡拥有一个专门的处理器,如Intel的I960芯片,HPT370A/372 、Silicon Image SIL3112A等,还拥有专门的存贮器,用于高速缓冲数据。这样一来,服务器对磁盘的操作就直接通过磁盘阵列卡来进行处理,因此不需要大量的CPU及系统内存资源,不会降低磁盘子系统的性能。阵列卡专用的处理单元来进行操作,它的性能要远远高于常规非阵列硬盘,并且更安全更稳定。 二、几种磁盘阵列技术 RAID技术是一种工业标准,各厂商对RAID级别的定义也不尽相同。目前对RAID级别的定义可以获得业界广泛认同的有4种,RAID 0、RAID 1、RAID 0+1和RAID 5。 RAID 0是无数据冗余的存储空间条带化,具有成本低、读写性能极高、存储空间利用率高等特点,适用于音、视频信号存储、临时文件的转储等对速度要求极其严格的特殊应用。但由于没有数据冗

引物设计的11条黄金法则

引物设计的11条黄金法则

PCR引物设计的11条黄金法则 1.引物最好在模板cDNA的保守区内设计。DNA序列的保守区是通过物种间相似序列的比较确定的。在NCBI上搜索不同物种的同一基因,通过序列分析软件(比如DNAman)比对(Alignment),各基因相同的序列就是该基因的保守区。 2.引物长度一般在15~30碱基之间。 引物长度(primerlength)常用的是18-27bp,但不应大于38,因为过长会导致其延伸温度大于74℃,不适于TaqDNA聚合酶进行反应。 3.引物GC含量在40%~60%之间,Tm值最好接近72℃。 GC含量(composition)过高或过低都不利于引发反应。上下游引物的GC含量不能相差太大。另外,上下游引物的Tm值(meltingtemperature)是寡核苷酸的解链温度,即在一定盐浓度条件下,50%寡核苷酸双链解链的温度。有效启动温度,一般高于Tm值

5~10℃。若按公式Tm=4(G+C)+2(A+T)估计引物的Tm值,则有效引物的Tm为55~80℃,其Tm值最好接近72℃以使复性条件最佳。 4.引物3′端要避开密码子的第3位。 如扩增编码区域,引物3′端不要终止于密码子的第3位,因密码子的第3位易发生简并,会影响扩增的特异性与效率。 5.引物3′端不能选择A,最好选择T。 引物3′端错配时,不同碱基引发效率存在着很大的差异,当末位的碱基为A时,即使在错配的情况下,也能有引发链的合成,而当末位链为T 时,错配的引发效率大大降低,G、C错配的引发效率介于A、T之间,所以3′端最好选择T。 6.碱基要随机分布。 引物序列在模板内应当没有相似性较高,尤其是3’端相似性较高的序列,否则容易导致错误引发(Falsepriming)。降低引物与模板相似性的一种方法是,引物中四种碱基的分布最好是随机的,不要有聚嘌呤或聚嘧啶的存在。尤其3′端

带你全面认识磁盘阵列柜性能

带你全面认识磁盘阵列柜性能 ChinaITLab 收集整理 2006-1-5 保存本文推荐给好友 QQ上看本站收藏本站 -------------------------------------------------------------------------------- 一个SCSI 硬盘的平均故障间隔时间〈MTBF, Mean Time Between Failure〉,都在数万小时以上,在正常使用情况下,要坏掉一个硬盘已经很不容易了;在同一系统内,两个磁盘驱动器同时坏掉的机率,更是微乎其微。但是,如果把磁盘驱动器放在布满杀手的环境内,就另当别论了。 构建一个磁盘阵列储存系统,可靠度远比速度来的重要。因此,不但要选一个高性能的阵列控制器,更要慎重地挑一个高可靠度的磁盘阵列柜。因为,宝贵的数据不是存在数组控制器里,而是存放在磁盘驱动器里;而磁盘驱动器又是放在磁盘阵列柜内。所以,要仔细挑选一个可靠的磁盘阵列柜,来当磁盘驱动器的神盾,千万不要挑一个磁盘驱动器杀手! 磁盘阵列柜的设计挑战 由于磁盘驱动器的技术以及传输接口的技术不断的发展,磁盘阵列系统的设计随时都面临新的挑战,以便符合与日俱增的要求。一个优质的磁盘阵列柜,必须在设计阶段,就要考虑到其规格必须符合更大容量、更高转速磁盘驱动器的需求,提供: 稳定、高容量、容错的电源供应系统 可靠、高性能、容错的冷却系统 能够克服震动的机械结构 支持SCA2 热抽换接头之被动背板 一体成型、无主动组件之磁盘载盒 数组柜环境监控与警示功能

直接热抽换且方便的维护操作功能 最佳的空间利用 以下我们就针对这些规格和功能,提供一些建议。 稳定、高容量、容错的电源供应系统 如果各位仔细看看磁盘驱动器的规格书,您会发现磁盘驱动器马达启动时,需要很大的启动电流〈约2A〉,约为平常读写时〈约0.66A〉的3 倍;磁盘驱动器在SEEK 时,需要很大的瞬间电流〈约2.1A〉,约为读写时〈约0.66A〉之 3 倍。因此,电源供应系统必须能提供足够、稳定之瞬间电流,否则会造成磁盘驱动器无法启动,甚至造成数据写入错误〈此为导致 RAID 磁盘驱动器被 RAID 控制器判定为Down,但磁盘驱动器送回原厂测试却无故障之原因〉。当磁盘驱动器转速越来越快,SEEK 速度也越来越快时,电源供应器必须提供足够的容量,以因应将来扩充的需求。 具备容错,热抽换、负载分享之双电源供应器,是不可或缺的,更重要的是,如果电源供应器发生故障,要能不必下螺丝就能热抽换电源供应〈使用螺丝起子解螺丝会造成震动及摇摆,会损害工作中之磁盘驱动器〉。 有了双电源供应器,更要具备两组电源输入,一个接到市电,一个接到UPS。如此,无论突然断电,或UPS 故障,都不会造成RAID 当机。 好的电源供应系统,还须具备交流电压与频率自动选择及调整,以适用不同电压及频率,更重要的是,要能克服电压及频率不稳之状况。在用电尖峰时段,市电电压可能降到100伏特以下,而在非用电尖峰时段,市电电压可能升到120伏特以上,因此电源供应系统必须能够容忍这些电压变化,提供磁盘驱动器稳定的电压和电流,否则可能造成磁盘驱动器故障,甚至数据写入错误。磁盘阵列柜的电源供应系统,最好能够提供从85到260伏特无段自动调整,如此,无论插到哪种插座,市电品质如何变化,都不会影响磁盘阵列的功能。 可靠、高性能、容错的冷却系统

【定量数据分析】荧光定量PCR_完整版

08 年第一期螺旋课堂--“荧光定量 PCR 技术”
螺旋网(https://www.docsj.com/doc/0d9094678.html,/)
是一个以分子生物学实验及对实验结果进行处理为核心,以生物技术前沿发 展为导向的一个专业型科学技术讨论社区。 本着“共分享,同成长”的理念,给广大生物科研工作者一个交流经验、分 享资料的平台。
螺旋网版块设置主要分为三个部分:
实验技术交流(实验互助) 实验结果处理(生物信息学) 实验之余的生活 螺旋网的特色: 1、毕赤酵母表达系统; 2、发酵工艺 3、螺旋课堂; 4、Seminar; 5、生物学科研究进展; 6、实验交流及生物信息学。
欢迎广大生物专业的同学和爱好生物学的朋友加盟,共同学习, 共同进步!
螺旋网:https://www.docsj.com/doc/0d9094678.html,
祝大家新年快乐,万事如意!

08 年第一期螺旋课堂--“荧光定量 PCR 技术”
2008 年螺旋课堂的课程计划!
2007 年已悄然逝去,2008 年已向我们扑面而来。08 年是共和国发展的关键 一年,也是螺旋网抓住机遇,加快发展的关键一年。今年螺旋网将为各位螺友提 供大量的关于生命科学的讨论主题,让各位螺友对生命科学的灵感相互碰撞,达 到共鸣。还有螺旋网将联合一批一线生命科学人员为您的研究保驾护航。同时还 将为大家提供各种资源包括各类电子书、生命科学研究进展、生物软件等。 为此,螺旋课堂 08 年的课程将围绕着最新的研究方法、研究进展进行课程 设置。具体安排如下: 第一期:荧光定量 PCR 技术 第二期:原位杂交技术 第三期:引物的设计原理及方法 第四期:BAC 库的构建技术 第五期:手把手教你进行序列分析
..................... 除以上技术外,欢迎大家点播!
以上讲座的具体时间详见论坛通知!
螺旋网:https://www.docsj.com/doc/0d9094678.html,
祝大家新年快乐,万事如意!

冠脉造影操作规范

操作规范 选择性冠状动脉造影(Coronary artery angiography) 冠状动脉造影术是目前诊断冠心病的“金指标”,为冠心病病人的确诊提供了最好的手段。它利用穿刺针经皮穿刺动脉血管(股动脉或桡动脉)后置入细小造影导管于心脏冠状动脉开口,造影显示全部冠状动脉内情况。具有准确、直观、微创、痛苦少的特点,目前是冠状动脉疾病最准确的确诊方法。通过它可了解冠脉内情况,有无冠脉病变、部位、严重程度,同时为下一步药物治疗方案的确定、能否可以行冠状动脉成形术(Percutaneous transluminal coronary angioplasty, PTCA)及冠脉内支架术重新疏通病变冠状动脉血管、还是需要外科搭桥手术等决策做准备,并对病人的预后做评估。 一、适应证 1、典型心绞痛发作,无创检查提示心肌缺血。 2、原因不明的胸痛,需除外冠心病。 3、原因不明的心脏扩大、心律失常、心功能不全。 4、冠状动脉病变介入治疗术前或外科手术前明确病变特征;术后症状复发。 5、原发心脏骤停经心肺复苏者。 6、特殊职业人员疑似冠心病者(飞行员、高空作业人员等)。 7、冠状动脉先天性畸形。 二、禁忌证 AHA/ACC对选择性冠状动脉造影术的禁忌证未作特殊规定。一般认为,下列情况属于相对禁忌。 1、不能控制的充血性心力衰竭。 2、严重心律失常。 3、发热及急性感染。 4、严重肝肾功能损害。 5、严重肺部疾病。 6、周身动脉硬化。 7、凝血功能障碍。 8、碘制剂过敏。 9、低钾血症。 10、预后不良的心理或躯体疾病。 11、桡动脉穿刺禁忌证:无桡动脉搏动;Allen试验阴性,提示掌弓侧支循环欠佳。肾透析的动静脉短路。

磁盘阵列详解配置

磁盘阵列(Disk Array) 1.为什么需要磁盘阵列 如何增加磁盘的存取(access)速度,如何防止数据因磁盘的故障而失落及如何有效的利用磁盘空间,一直是电脑专业人员和用户的困扰;而大容量磁盘的价格非常昂贵,对用户形成很大的负担。磁盘阵列技术的产生一举解决了这些问题。 1 过去十年来,CPU的处理速度增加了五十倍有多,内存(memory)的存取速度亦大幅增加,而数据储存装置--主要是磁盘(hard disk)--的存取速度只增加了三、四倍,形成电脑系统的瓶颈,拉低了电脑系统的整体性能(throughput),若不能有效的提升磁盘的存取速度,CPU、内存及磁盘间的不平衡将使CPU及内存的改进形成浪费。 目前改进磁盘存取速度的的方式主要有两种。一是磁盘快取控制(disk cache controller),它将从磁盘读取的数据存在快取内存(cache memory)中以减少磁盘存取的次数,数据的读写都在快取内存中进行,大幅增加存取的速度,如要读取的数据不在快取内存中,或要写数据到磁盘时,才做磁盘的存取动作。这种方式在单工环境(single-tasking environment)如DOS之下,对大量数据的存取有很好的性能(量小且频繁的存取则不然),但在多工(multi-tasking)环境之下(因为要不停的作数据交换(swapping)的动作)或数据库(database)的存取(因为每一记录都很小)就不能显示其性能。这种方式没有任何安全保障。其二是使用磁盘阵列的技术。磁盘阵列是把多个磁盘组成一个阵列,当作单一磁盘使用,它将数据以分段(striping)的方式储存在不同的磁盘中,存取数据时,阵列中的相关磁盘一起动作,大幅减低数据的存取时间,同时有更佳的空间利用率。磁盘阵列所利用的不同的技术,称为RAID level,不同的level针对不同的系统及应用,以解决数据安全的问题。 一般高性能的磁盘阵列都是以硬件的形式来达成,进一步的把磁盘快取控制及磁盘阵列结合在一个控制器(RAID controller)?或控制卡上,针对不同的用户解决人们对磁盘输出入系统的四大要求: (1)增加存取速度, (2)容错(fault tolerance),即安全性 (3)有效的利用磁盘空间; (4)尽量的平衡CPU,内存及磁盘的性能差异,提高电脑的整体工作性能。 2.磁盘阵列原理 磁盘阵列中针对不同的应用使用的不同技术,称为RAID level, RAID是Redundant Array of Inexpensive Disks的缩写,而每一level代表一种技术,目前业界公认的标准是RAID 0~RAID 5。这个level并不代表技术的高低,level 5并不高于level 3,level 1也不低过level 4,至于要选择那一种RAID level的产品,纯视用户的操作环境(operating environment)及应用(application)而定,与level的高低没有必然的关系。RAID 0及RAID 1适用于PC及PC相关的系统如小型的网络服务器(network server)及需要高磁盘容量与快速磁盘存取的工作站等,因为比较便宜,但因一般人对磁盘阵列不了解,没有看到磁盘阵列对他们价

双服务器加磁盘阵列柜CLUSTER集群模式配置

双服务器加磁盘阵列柜CLUSTER集群模式配置 配置环境:两台服务器(Server1, Server2)连接一个PV220S磁盘阵列柜。 1. 将PV220系列阵列柜上的拔动开关打到CLUSTER模式, 这个开关如果是开机时改的, 需重启一次盘柜更改才能生效。开关的位置在盘柜背面中间的一块卡上。 2. 连接两个服务器与磁盘阵列柜的连线:两个服务器需各配一块阵列卡,各连接一根SCSI线到盘柜后面的EMM卡上。如果服务器上的阵列卡是双通道的,两个服务器连接SCSI线的通道要一致。(如果Server1是连接通道1,则Server2也需要连接通道1) 注:服务器连接内部硬盘与连接外部阵列柜不能使用同一块RAID卡,如果服务器没有板载的阵列控制器,本机硬盘也要做阵列的话,则需要配置两块阵列卡。 Adapter,将Disable BIOS改成Enable BIOS, 这个选项是将RAID的启动BIOS选项关闭,目的是不从这块RAID启动操作系统(页面上会显示是ENABLE BIOS,实际上BIOS已经被DISABLE了)。 3. 启动Server1, 第二节点服务器为Server2),按Ctrl + M进入RAID控制器的BIOS,选择Object 4. 将Cluster Mode设置为Enable, 服务器会重启。重启过后再按Ctrl + M进入RAID卡的BIOS,将RAID控制器的Initiator ID设为7(默认即为7)。 New Configuration配置盘柜硬盘的阵列。(注:此选项会清除原盘柜上所有的阵列信息。) 5. 配置磁盘阵列:退到第一层菜单,选择Configure Adapter,将显示的Disable BIOS改成Enable BIOS。 6. Server1关机,启动Server2, 按Ctrl + M 进入RAID控制器的BIOS,选择Object 7. 将Cluster Mode设置为Enable,服务器会重启。重启过后再按Ctrl + M进入RAID卡的BIOS,将RAID控制器的Initiator ID(默认为7)改为6。(Server1设为6,Server2为7也可以,目的是只要两台服务器的ID不一致就行) View Disk,在选择了Vidw/Add Configuration时,系统会提示两个选择View Disks或者是 View NVRAM, 这时要选择View Disk, 检查所有的阵列配置是否与Server1相同,确认无误时按Esc,系统会提示是否要保存,选择”Yes”保存。因为硬盘上的阵列已经在Server1上配好,所以这里不需要重新配置,只要把硬盘上的阵列信息读出来再保存到RAID卡上就可以了。 View/Add Configuration 8. 读取磁盘阵列信息:退到第一层菜单,选择Configure 9. 这时硬件过程配置完毕!

磁盘阵列技术详解

由磁盘阵列角度来看 磁盘阵列的规格最重要就在速度,也就是CPU的种类。我们知道SCSI的演变是由SCSI 2 (Narrow, 8 bits, 10MB/s), SCSI 3 (Wide, 16bits, 20MB /s), Ultra Wide (16bits, 40MB/s), Ultra 2 (Ultra Ultra Wide, 80MB /s), Ultra 3 (Ultra Ultra Ultra Wide, 160MB/s),在由SCSI到Serial I/O,也就是所谓的 Fibre Channel (FC- AL, Fibre Channel - Arbitration Loop, 100 – 200MB/s), SSA (Serial Storage Architecture, 80 – 16 0 MB /s), 在过去使用 Ultra Wide SCSI, 40MB/s 的磁盘阵列时,对CPU的要求不须太快,因为SCSI本身也不是很快,但是当SCSI演变到Ultra 2, 80MB/s时,对CPU的要求就非常关键。一般的CPU, (如 586)就必须改为高速的RISC CPU, (如 Intel RISC CPU, i960RD 32bits, i960RN 64 bits),不但是RISC CPU, 甚至于还分 32bits, 64 bits RISC CPU 的差异。586 与 RISC CPU 的差异可想而知 ! 这是由磁盘阵列的观点出发来看的。 由服务器的角度来看 服务器的结构已由传统的 I/O 结构改为 I2O ( Intelligent I/O, 简称 I2O ) 的结构,其目的就是为了减少服务器CPU的负担,才会将系统的 I/O 与服务器CPU负载分开。Intel 因此提出 I2O 的架构,I2O 也是由一颗 RISC CPU ( i960RD 或I960RN ) 来负责 I/O 的工作。试想想若服务器内都已是由 RISC i960 CPU 来负责 I/O,结果磁盘阵列上却仍是用 586 CPU,速度会快吗 ? 由操作系统的角度来看 在操作系统都已由 32 bits 转到 64 bits,磁盘阵列上的CPU 必须是 Intel i960 RISC CPU 才能满足速度的要求。586 CPU 是无法满足的! 磁盘阵列的功能 使用磁盘阵列的好处,在于数据的安全、存取的速度及超大的存储容量。如何确保数据的安全,则取决于磁盘阵列的设计与品质。其中几个功能是必须考虑的:是否有环境监控器针对温度、电压、电源、散热风扇、硬盘状态等进行监控。磁盘阵列内的硬盘连接方式是用SCA-II整体后背板还是只是用SCSI 线连的?在 SCA-II整体后背板上是否有隔绝芯片以防硬盘在热插拔时所产生的高/低电压,使系统电压回流,造成系统的不稳定,产生数据丢失的情形。我们一定要重视这个问题,因为在磁盘阵列内很多硬盘都是共用这同一SCSI 总线!一个硬盘热插拔,可不能引响其它的硬盘!甚幺是热插拔或带电插拔?硬盘有分热插拔硬盘, 80针的硬盘是热插拔硬盘,68针的不是热插拔硬盘,有没有热插拔,在电路上的设计差异就在于有没有保护线路的设计,同样的硬盘拖架也是一样有分真的热插拔及假的热插拔的区别。磁盘阵列内的硬盘是否有顺序的要求?也就是说硬盘可否不按次序地插回阵列中,数据仍能正常的存取?很多人认为不是很重要,不太会发生,但是可能会发生的,我们就要防止它发生。假如您用六个硬盘做阵列,在最出初始化时,此六个硬盘是有顺序放置在磁盘阵列内,分为第一、第二…到第六个硬盘,是有顺序的,如果您买的磁盘阵列是有顺序的要求,则您要注意了:有一天您将硬盘取出,做清洁时一定要以原来的摆放顺序插

QPCR原理及应用

QPCR原理及应用 由于Real-time qPCR的众多优点,现在已经是生命科学领域的一项常规技术。越来越多的研究文章中涉及RT-PCR的实验,也基本上被real-time qPCR 所代替。由于real-time aPCR 输出的数据不同于常规的PCR 电泳检测,很多没有做过real-time qPCR的研究者常常感到高深莫测,不知从何入手;甚至一些做过次实验的研究者也会对数据处理分析感到迷惑,不知所措。 本文就从real-time qPCR的发展史说起,包括real-time qPCR的原理,实验设计,实际操作,数据分析,常见问题解答五个方面,手把手教你从各个方面了解real-time qPCR,彻底的从菜鸟到高手! 一、Real-time qPCR发展史 Real-time qPCR就是在PCR扩增过程中,通过荧光信号,对PCR进程进行实时检测。由于在PCR扩增的指数时期,模板的Ct 值和该模板的起始拷贝数存在线性关系,所以成为定量的依据。由于常规的PCR的缺点,real-time qPCR 由于其操作简便,灵敏度高,重复性好等优点发展非常迅速。现在已经涉及到生命科学研究的各个领域,比如基因的差异表达分析,SNP检测,等位基因的检测,药物开发,临床诊断,转基因研究等。 在Real-time qPCR技术的发展过程中,定量PCR仪的发展起了至关重要的作用。1995年,美国PE公司(已经并入Invitrogen公司)成功研制了Taqman 技术,1996年推出了首台荧光定量PCR检测系统,通过检测每个循环的荧光强度,通过Ct值进行数据分析。从而荧光定量PCR获得广泛应用。现在的定量PCR 仪有ABI7000、7300、7500,7700、7900HT、StepOnePlusTM、StepOneTM、PRISM@StepOneTM系列;BIO-RAD的CFX96、iCycler iQ5@、MyiQ@、MJ Research Chromo4TM Opticon 系列;Stratagene MxTM系列;Roche LightCycler@系列;Eppendorf Masercycler@;Corbett Rotor-GeneTM;Cepheid SmartCycler@和BIOER的LineGene系列。 随国内生命科学的快速发展,科研水平不断提高,发高水平文章已不再是新鲜事。与其同时,国内公司经过长期不懈的努力,也有自主研发的real-time PCR

全面认识磁盘阵列柜性能

全面认识磁盘阵列柜性能 -------------------------------------------------------------------------------- 一个SCSI 硬盘的平均故障间隔时间〈MTBF, Mean Time Between Failure〉,都在数万小时以上,在正常使用情况下,要坏掉一个硬盘已经很不容易了;在同一系统内,两个磁盘驱动器同时坏掉的机率,更是微乎其微。但是,如果把磁盘驱动器放在布满杀手的环境内,就另当别论了。 构建一个磁盘阵列储存系统,可靠度远比速度来的重要。因此,不但要选一个高性能的阵列控制器,更要慎重地挑一个高可靠度的磁盘阵列柜。因为,宝贵的数据不是存在数组控制器里,而是存放在磁盘驱动器里;而磁盘驱动器又是放在磁盘阵列柜内。所以,要仔细挑选一个可靠的磁盘阵列柜,来当磁盘驱动器的神盾,千万不要挑一个磁盘驱动器杀手! 磁盘阵列柜的设计挑战 由于磁盘驱动器的技术以及传输接口的技术不断的发展,磁盘阵列系统的设计随时都面临新的挑战,以便符合与日俱增的要求。一个优质的磁盘阵列柜,必须在设计阶段,就要考虑到其规格必须符合更大容量、更高转速磁盘驱动器的需求,提供: 稳定、高容量、容错的电源供应系统 可靠、高性能、容错的冷却系统 能够克服震动的机械结构 支持SCA2 热抽换接头之被动背板 一体成型、无主动组件之磁盘载盒 数组柜环境监控与警示功能 直接热抽换且方便的维护操作功能 最佳的空间利用 以下我们就针对这些规格和功能,提供一些建议。 稳定、高容量、容错的电源供应系统 如果各位仔细看看磁盘驱动器的规格书,您会发现磁盘驱动器马达启动时,需要很大的启动电流〈约2A〉,约为平常读写时〈约0.66A〉的3 倍;磁盘驱动器在SEEK 时,需要很

引物设计OLIGO图解

在专门的引物设计软件中,“Oligo”是最著名的。它的使用并不十分复杂,但初学者容易被其复杂的图表吓倒。Oligo 5.0的初始界面是两个图:Tm图和ΔG图;Oligo 6.0的界面更复杂,出现三个图,加了个Frq图。“Oligo”的功能比“Premier”还要单一,就是引物设计。但它的引物分析功能如此强大以至于能风靡全世界。oligo的下载和安装我就不多说了,打开oligo相信也无需多讲。打开oligo的页面如下: 单击file菜单再点open或点击“打开”快捷图标或者用快捷键“CTrl+O”可打开下面的窗口:在打开的OPEN窗口内选择FreqSeq再点“打开”: 选择drosfr或者其它一个文件点击“打开”:

出现以下窗口,点击“window”再点击“Tile”: 出现以下窗口,图中显示的三个指标分别为Tm、ΔG和Frq,其中Frq是6.0版本的新功能,为邻近6至7个碱基组成的亚单位在一个指定数据库文件中的出现频率。该频率高则可增加错误 引发的可能性。因为分析要涉及多个指标,起动窗口的cascade排列方式不太方便,可从 windows菜单改为tile方式。如果觉得太拥挤,可去掉一个指标,如Frq,这样界面的结构同于Oligo 5.0,只是显示更清楚了: ?G值反映了序列与模板的结合强度,最好引物的?G值在5'端和中间值比较高,而在3'端相 对低(如图)。Tm值曲线以选取72℃附近为佳,5'到3'的下降形状也有利于引物引发聚合反应。Frq曲线为“Oligo 6”新引进的一个指标,揭示了序列片段存在的重复机率大小。选取引物时,宜选 用3'端Frq值相对较低的片段: 再点击Search再点“Fo'r Primers and probes”或使用快捷键F3:

冠脉造影操作现用图解

冠脉造影流程操作最详细--------新人入门全纪录 论坛上高手林立,介入中龙争虎斗!很多大神已经将此做到了炉火纯青,在我们一班小字辈新入行者来到论坛,看的是一头雾水。当我6个月前刚刚接触介入时,来到论坛踏雪寻贴,但是可惜,论坛帖子中对冠造最基础的东西,介绍的并不是太多,那就和大家特别是像我这样新手分享下最基础的知识吧! 作为一个新手,我想大家在第一次走进导管室时,会发现莫名的紧张和茫然失措,你不知道自己的位置,不知道该干什么。呵呵,因为我就是这个样子进入导管室的。当我作为菜鸟一枚进入到导管室时。也是面对着C型臂和大屏幕无所适从,对整个流程茫然无知。但是不要紧,当你能耐心读完以下文字后,你也可以了解冠状动脉造影术的细枝末节了,我们这次探讨的是冠脉造影术的基本操作流程,是一个基础探讨,不涉及任何策略性问题。本着给入门新手一个崭新的视角,来尽快的适应和熟悉冠脉造影的基本过程,使此过程尽可能的熟练。希望对大家特别是新手菜鸟有所帮助!。 学习冠脉造影,是学习介入治疗手术的前奏,是基础,是基本功,是一个飞行员在真正驾驶战斗机前,在教练机上的几千个小时的实战训练。在接触介入造影术前,我想大家其实也肯定做了不少的功课,去看书,看百度文库中的资料,看丁香园上的帖子,看期刊,去和前辈探讨。但是,大部分资料是雷同的,讨论的让人头昏眼花,而真正操作起来,你却一点也想不起来了。所以,我将其简化,来和大家一步一步地讨论单纯造影术的操作流程细节,和鲜为人知的注意事项。为所有新入的朋友提供下帮助,整理下头绪,因为我在这里所讲的,真的是基础中得基础。因为咱们不是在写论文,也不是出大部头,只是为新学习介入的朋友们提供下基础的讲解,所以不会按照常规出牌哟~~~,那我们就言归正传吧! 当我们第一次进入导管室,映入眼帘的是那些价值不菲的机器,一排排的支架,导管,满桌子的药品,耗材,但是作为临床已是老手的咱们。不会被吓到滴~~!因为我们的在选择介入时,肯定会做了不少前期工作,那我们的工作究竟该怎样开始呢?那就从认识导管室的布局开始吧! 认识了布局,大家起码不会在导管室中迷路了,不会再找不到你想要找的东西。不会忘记你站的地方是有放射标志的位置。那我们了解了导管室基础布局后,下

相关文档
相关文档 最新文档