文档视界 最新最全的文档下载
当前位置:文档视界 › 光电子技术的应用和发展前景

光电子技术的应用和发展前景

光电子技术的应用和发展前景
光电子技术的应用和发展前景

光电子技术的应用和发展前景

姓名:曾倬

学号:14021050128

专业:电子信息科学与技术

指导老师:黄晓莉

摘要:光电子技术确切称为信息光电子技术,本文论述了一些新型光电子器件及其发展方向

20世纪60年代激光问世以来,最初应用于激光测距等少数应用,光电子技术是继微电子技术之后近30年来迅猛发展的综合性高新技术。1962年半导体激光器的诞生是近代科学技术史上一个重大事件。经历十多年的初期探索,到70年代,由于有了室温下连续工作的半导体激光器和传输

损耗很低的光纤,光电子技术才迅速发展起来。现在全世界敷设的通信光纤总长超过1000万公里,主要用于建设宽带综合业务数字通信网。以光盘为代表的信息存储和激光打印机、复印机和发光二极管大屏幕现实为代表的信息显示技术称为市场最大的电子

产品。人们对光电神经网络计算机技术抱有很大希望,希望获得功耗的、响应带宽很大,噪音低的光电子技术。

目录

(一)光电子与光电子产业概况

(二)光电子的地位与作用

(三)二十一世纪信息光电子产业将成为支柱产业

(四)国际光电子领域的发展趋势

(五)光电子的应用

(一),光电子及光电子产业概况

光电子技术是一个比较庞大的体系,它包括信息传输,如光纤通信、空间和海底光通信等;信息处理,如计算机光互连、光计算、光交换等;信息获取,如光学传感和遥感、光纤传感等;信息存储,如光盘、全息存储技术等;信息显示,如大屏幕平板显示、激光打印和印刷等。其中信息光电子技术是光电子学领域中最为活跃的分支。在信息技术发展过程中,电子作为信息的载体作出了巨大的贡献。但它也在速率、容量和空间相容性等方面受到严峻的挑战。

采用光子作为信息的载体,其响应速度可达到飞秒量级、比电子快三个数量级以上,加之光子的高度并行处理能力,不存在电磁串扰和路径延迟等缺点,使其具有超出电子的信息容量与处理速度的潜力。充分地综合利用电子和光子两大微观信息载体各自的优点,必将大大改善电子通信设备、电子计算机和电子仪器的性能。

今天,光电子已不再局限传统意义上的用于光发射、光调制、光传输、光传感等的电子学的一

个分支,同时还包容了部分电光学、光子学和光学成分。主要光电子器件集中体现在各类半导体LED、LD,各类光探测器,收发集成模块,光放大器,调制器,波长变换器等。此外,还包括和上述器件相关的各类光波导等无源器件。

光电子产业也不是以单一形式存在,它是一个由相关的基础设施和基础技术支撑的多类

产业的结合体,可形象地比做一棵参天大树。滋养这棵大树的土壤是:制造设施,研究机构,技术力量,政府基金,风险投资,研发资源等。支撑这棵大树的脊梁是光电子技术,包括LD/LED,光探测器,图像传感器,光调制器,MOEMS,光纤,光纤连接器,光放大器,无源光器件等。这棵大树结出的丰硕果实就是光电子产业,包括光通讯,光显示,光存储,影像,光信号/照明,太阳能电池等。用一个简单的分类方法,可以把光电子产业分为信息光电子、能量光电子、娱乐光电子等部分;信息光电子包括光纤光缆、光器件、光通信设备等产品,能量光电子包括激光器、激光加工成套设备、激光医疗设备及测控仪表等,而娱乐光电子包括日常消费品制造如VCD,DVD 等等。

光电子市场主要集中在通信、显示、存储和影像等四个领域。图中给出了98年度世界各类光

电子产品所占的市场份额。那么,光电子元器件所占市场份额比例是多少呢,我们目前还拿不到

世界范围内的数据。不过,通过日本的光电子产

业调查也可可见一斑。97年为30.6%,98年为30.1%,99年预计为30.6%。这样看来,光电子元器件占整个光电子市场份额30%左右。

光电子产业的发展速度是惊人的,从日本

工业来看,近年一直呈现出一路增长的势头,98年年增长率为6.6%,99年预计年增长率为10.4%。有关预测表明,未来几年全球光电产业将有更大的增长幅度,增长速度比较快的是WDM市

场,预计年增长率为23%,其中,用于WDM的LD年增长率将在50%以上,放大器为43%左右。在微电子技术蓬勃发展的同时,人们发现可以利用光电各自的优势来为我们服务。比如激光器,光电探测器,太阳电池如等方面都需要光电结合。这就是早期的光电子学。随着光电子学的发展,人们研究完全利用光来处理信息,于是诞生了光子学。所以可以说,先有了光电子学,又有了光子学。而最终的发展会是光电的再次统一,即更

高一个层次上的光电子学。现在正在发展单电子技术和单光子技术,那时信息的载体不再是束流,而是单个的粒子。光子和电子都是利用量子力学的概念,区别只是波长不同而已。我想我们在二十一世纪肯定会走到这一步。那时既不能叫光子信息技术,也不能叫电子信息技术,应该叫量子信息技术。

(二)光电子的地位与作用

由于光子具有电子所不具备的许多特性所以光子

学有它独特的优势。尤其在信息领域。比如通信,我们现在大部分主干网用的都是光纤,信息的载体都是光。由于密集波分复用技术的发展,一根头发丝粗细的光纤就可以传输一亿门电话线路。这是电缆无法比拟的。再如信息存储技术,光盘由VCD发展到DVD,容量增大了好几倍,未来如果研制出能够商用的蓝光激光器,采用蓝光波段的光来作为信息的载体,就又可以使同样大小的光盘的容量增大近十倍。而且光具有相干性,可以实现全息存储,在不到一个平方厘米的芯片上,我们可以把北京图书馆的所有的书都存进去。在计算机方面,未来的发展趋势是光要进入计算机中,发挥光子的优势实现开关的互联,利用光来消除电子传输带来的瓶颈效应。

二十一世纪没有微电子是不可想象的,同样,没有光电子更是不可接受的。光电子目前的成就和它巨大的发展潜力已让人们无可置疑:二十一世纪一定需要光电子。

(三)二十一世纪信息光电子产业将成为支

柱产业

在微电子技术蓬勃发展的同时,人们发现可以利用光电各自的优势来为我们服务。比如激光器,光电探测器,太阳电池如等方面都需要光电结合。这就是早期的光电子学。随着光电子学的发展,人们研究完全利用光来处理信息,于是诞生了光子学。所以可以说,先有了光电子学,又有了光子学。而最终的发展会是光电的再次统一,即更高一个层次上的光电子学。现在正在发展单电子技术和单光子技术,那时信息的载体不再是束流,而是单个的粒子。光子和电子都是利用量子力学的概念,区别只是波长不同而已。我想我们在二十一世纪肯定会走到这一步。那时既不能叫光子信息技术,也不能叫电子信息技术,应该叫量子信息技术。

国际公认:21世纪是光电子与微电子紧密结合发挥作用的时代,以光通信为龙头的信息光电子产业将成为21世纪的明星产业和支柱产业。

日本工业调查会总经理志村幸雄在述及21世纪的主导产业时指出,21 世纪具有代表意义的主导产业第一是光电子产业,第二是信息通信产业,第三是健康和福利产业,第四是环境和新能源产业。同时指出“光电子产业”对其它许多产业而言,无疑将起到“基础材料”的作用。信息产业已成为我国第一支柱产

业,光电子产品在信息产业中占有很大比重,据有关方面统计,我国的显示器、彩电和激光视频机等几种光电子产品的产量已占世界总产量的一半以上。

我国光电子产业的迅速发展是在国际信息产业的不断增长带动下形成的。中国工程院院士许祖彦在接受《中国电子报》记者采访时强调,在“国家中长期科学和技术发展规划纲要”启动之际,我们应当在促进信息化与工业化良性互动的科学发展观指导下,本着建设创新型国家的理念,发展我国的光电子产业,抓住光电子技术更新换代迅猛发展中的机遇,寻找突破口,提高我国光电产业的竞争力。例如显示技术从上世纪30年代起,历经黑白显示、彩色显示,到现在的数字显示,基本解决了高清晰视频图像的获取、处理、存储、传输和再现技术,但还没有涉及颜色的高还原性问题,大色域覆盖率的激光显示近年的快速发展有可能促进显示产品的更新换代,形成新一代显示技术。

未来光电子产业还将继续蓬勃发展。就市场需要而言,专家认为,光电子产业主要在以下几方面可能有比较大的增长空间:光网络和光接入网,如光纤到户(FTTH);光存储中的蓝光光盘存储、光全息存储;光显示中的大尺寸LCD显示器、OLED显示器;半导体照明及太阳

能电池利用;此外,在光纤传感、医疗领域也有比较大的增长空间。

发展高清晰视频业务对光存储产业的发展很重要。中国科学院院士周炳琨介绍说,现在的DVD的容量已经很大,如果要满足消费者对更高存储量介质的需求,就必须在增加播放内容清晰度的同时降低成本。如果能够早日进入三维视频时代,光存储的市场潜力将会进一步增加。

未来社会能源缺乏,这也是光电子产业发展的契机。“平板显示、半导体照明在节约能源上非常有优势。此外,随着生活水平的提高,对于清晰度高、易于携带、健康低辐射的平板显示器的需求必然会逐渐增加。半导体照明产业则是照明的绿色革命,这一产业的发展必将一日千里。”

(四)国际光电子领域的发展趋势

在2013光纤通信发展报告会上,中科院半导体研发所副主任祝宁华发表了题为《支撑光网络发展的光电子器件研究现状与趋势》的报告,指出了光电子未来发展的四个趋势:一是光电子集成,二是微电子与光电子的相互融合,三是硅基光电集成技术,四是多维调制与复用。重点强调未来光电子的发展趋势会从单元器件向集成化芯片发展,其中40Gb/s将成为光接入的核心,另外也提出TWDM—PON将是未来发展的主流技术,而高速激光器的研发也将成为焦点。

高速光电子器件是实现高速光信息产生、传输、放大、探测、处理等功能的器件。光通信系统可分为骨干网、城域网和接入网三个层次。高速光电子器件在光通信系统的各个层次都有重要应用:高速光传输、大容量光交换、宽带光接入和微波光子技术。为了实现更高速、更宽带光通信传输系统,高速光电子器件呈现出三大发展趋势:光电子集成,光电子与微电子的融合以及多维调制与复用。高速光电子器件在光通信系统中作用以及发展趋势和现状,随着光网络和光通信技术向大容量、低功耗和智能化的方向发展,速率和能耗成为制约通信技术发展的两大技术瓶颈。为了图片这两大瓶颈,新型高速光电子器件在光传输、光信息处理与交换、光接入以及光与无线融合

等领域的关键环节发挥着越来越重要的作用。光电子集成、光电子与微电子的融合以及多维调制与复用将成为通信用光电子器件的三大发展趋势

近年来,国内光电子产业在迅猛发展,国内企业在部分光电子产品市场上已占有较大的市场份额,在竞争日趋激烈的光电子市场上争得了一席之地,初步具备了与国外大公司竞争的能力。但是,国内光电子产业发展仍然面临着不少挑战。对此,周炳琨认为,首先,除光通信外,其他光电子产业发展比较缓慢,如光存储、光显示、光照明、医疗、光传感等。其次,很多光电子产业在国内没有完整的产业链,附加值最大、科技含量最高的部件往往为国外企业所垄断,企业自主创新能力有待进一步提高;第三,大专院校、科研机构与企业和市场结合不够紧密,还没有形成以企业为主体、产学研相结合的技术创新体系。如何结合我国科技现状发展光电子产业,为建设创新型国家贡献力量是我们需要思考的问题。

(五)光电子技术的应用

光电子技术在纺织工业的应用

光电子技术与数字信号处理技术及计算机视觉技术相结合可以大大提高纺织工业的自动化生产水平。在纺织生产设备中引入光电检测设备可以随时追踪工厂的生产状况,并通过工厂的控制网络将各工序的生产质量、产量、效率等信息及时报告给相关技术人员和管理人员,为工艺调整和生产管理提供大量可靠的数据,同时为企业新产品的生产提供各类跟踪据缩短新品的开发生产进程引入光电检测技术,必将提高整个纺织生产系统的加工、监测、检验、管理的自动化、智能化及精确化水平,使纺织产品的质量得到有效控制和提高同时降低工人的劳动强度,提高工厂的生产效率,降低生产成本,提高产品质量和产量,使纺织工业向现代化、自动化、无人化方向发展。

以硅为材料的光电子技术的应用

硅光电子学(用硅做材料制造的光电子元件),作为一项新兴技术,其应用前景令人振奋。数据的超速传输对未来的众核技术能够以更低的成本提供更高速的主流计算能力。这些硅光电子学技术将为世界带来全新的数字设备,实现难以想象的性能突破。这种光感应器通过探测微弱光信号并将其放大而拥有卓越的灵敏度。此项技术也可以应用于对带宽需求高的远程医疗核3D虚拟世界等未来数据密集型计算领域。

利用光电子技术获取图像信息

人类获取视觉信息有多种手段,但最常见的是各种光学系统。为了进一步扩展视觉功能,就要借助于光电子技术。利用光电子技术人们不仅可随时看见遥远的目标和微小的目标,还可以看见人眼不可感知的微弱目标及各种辐射,甚至还可看清各种超快过程。

结论

目前,用于信息获取的光电子技术已广泛应用于各个领域:如超快现象诊断,生物医学诊断以及军事应用等。

利用光电子技术可获得各种辐射的图像信息,具有灵敏度高,响应时间快,空间分辨率高,并可实现遥感等特点。随着其工艺的不断改进,其产业化进程的不断推进,该技术在信息时代必将发挥更大的作用。

总之,光电子技术在当今信息时代愈发占有重要的关键地位,至今光电子技术的应用已涉及科技,经济,军事和社会发展的各领域。信息的探测,传输,存储,显示,运算和处理已由光子和电子共同参与来完成。

21世纪是光电子发挥作用的时代,我国也将在这方面一步步向前迈进,为把我国的光电子技术形成规模宏大的产业而不懈奋斗!

光电子技术的发展态势分析及应用

光电技术的发展态势分析及应用 学校: 班级: 学号: 姓名: 指导老师: 时间:

摘要 光电子技术指利用光子激发电子或电子跃迁产生光子的物理现象所能提供的手段和方法。作为具有比电子更高频率和速度的信息载体以其不存在电磁串扰和路径延迟的优点,光电子技术在信息领域的应用无可替代。本文首先对光电子技术的优越性做简单介绍,然后阐述了光电子技术在世界及中国的发展历程,接着叙述了光电子技术在纺织工业,数据的超速传输和获取图像信息方面等方面巨大的应用前景,表现了光电子技术在当今信息时代愈发占有重要的关键地位。 关键词:光电子技术;发展;应用 II

引言 当今全球范围内,已经公认光电子产业是本世纪的第一主导产业,是经济发展的制高点,光电子产业的战略地位是不言而喻的。鉴于此,光电子技术应用的开发被世界各国所关注,新的应用领域也在不断发现中。 光电子技术是继微电子技术之后近30年来迅猛发展的综合性高新技术,是由光学技术和电子学技术相结合而形成的。1962年半导体激光器的诞生是近代科学技术史上一个重大事件。经历十多年的初期探索,从70年代后期起,随着半导体光电子器件和硅基光导纤维两大基础元件在原理和制造工艺上的突破,光子技术与电子技术开始结合并形成了具有强大生命力的信息光电子技术和产业。可以说光电子学技术是电子学技术在光频波段的延伸与扩展。 我国光电子技术和发展,从“六五”起步,开始发展以激光技术为主的光电子技术。1987年科技部把信息光电子列入“863”计划,给予支持,激光科学技术的研究和发展受到国家的很大重视,在国防建设和社会应用上起了重要作用。我国光电子产业的原始基础是军事光学,军用光电子学和红外技术。自60年代以来,我国依靠自己的力量,研制出“神龙”高功率激光装置,激光分离同位素装置,军用靶场激光经纬仪,激光卫星测距仪,高速摄影机,红外扫描仪等重要的军用光电子设备,并在此过程中,形成了实力雄厚的10多个光电子技术研究基地。70年代末,光纤通信的研究和开发也在我国兴起。80年代中期光盘技术和光电平面显示技术也得到发展。我国在"八五"计划期间对一些光电器件企业进行了技术改造,已在"九五"计划中产生了效益。例如,12英寸彩色液晶显示屏已经在1996年投产。国家重大成套通信设备2.5Gbps同步数字系列(SDH)光通信系统,于1997年研制开发成功,现已广泛应用于国家通信骨干网的建设。 总之,我国的光电子技术经过“七五”入轨,“八五”攻坚和“九五”拼搏,在信息光电子方面取得了可喜的成绩。而我国光电子技术理论的迅速发展,更为该领域的可持续发展奠定了坚实的基础。理论是发展的基础,发展是理论的延续。对于较新兴的技术领域更是如此。2000-2005年,我国光电子技术理论论文发表数量从812篇增加到3103篇,6年间增长了282.14%,论文年平均增长率在光电子技术领域的所有专业中最高,这为光电子技术的进一步发展和产业化奠定了厚实的基础。 III

光电子技术的应用和发展前景

光电子技术的应用和发展前景 姓名:曾倬 学号:14021050128 专业:电子信息科学与技术 指导老师:黄晓莉

摘要:光电子技术确切称为信息光电子技术,本文论述了一些新型光电子器件及其发展方向 20世纪60年代激光问世以来,最初应用于激光测距等少数应用,光电子技术是继微电子技术之后近30年来迅猛发展的综合性高新技术。1962年半导体激光器的诞生是近代科学技术史上一个重大事件。经历十多年的初期探索,到70年代,由于有了室温下连续工作的半导体激光器和传输 损耗很低的光纤,光电子技术才迅速发展起来。现在全世界敷设的通信光纤总长超过1000万公里,主要用于建设宽带综合业务数字通信网。以光盘为代表的信息存储和激光打印机、复印机和发光二极管大屏幕现实为代表的信息显示技术称为市场最大的电子 产品。人们对光电神经网络计算机技术抱有很大希望,希望获得功耗的、响应带宽很大,噪音低的光电子技术。

目录 (一)光电子与光电子产业概况 (二)光电子的地位与作用 (三)二十一世纪信息光电子产业将成为支柱产业 (四)国际光电子领域的发展趋势 (五)光电子的应用

(一),光电子及光电子产业概况 光电子技术是一个比较庞大的体系,它包括信息传输,如光纤通信、空间和海底光通信等;信息处理,如计算机光互连、光计算、光交换等;信息获取,如光学传感和遥感、光纤传感等;信息存储,如光盘、全息存储技术等;信息显示,如大屏幕平板显示、激光打印和印刷等。其中信息光电子技术是光电子学领域中最为活跃的分支。在信息技术发展过程中,电子作为信息的载体作出了巨大的贡献。但它也在速率、容量和空间相容性等方面受到严峻的挑战。 采用光子作为信息的载体,其响应速度可达到飞秒量级、比电子快三个数量级以上,加之光子的高度并行处理能力,不存在电磁串扰和路径延迟等缺点,使其具有超出电子的信息容量与处理速度的潜力。充分地综合利用电子和光子两大微观信息载体各自的优点,必将大大改善电子通信设备、电子计算机和电子仪器的性能。 今天,光电子已不再局限传统意义上的用于光发射、光调制、光传输、光传感等的电子学的一

光电子器件与技术

《光电子器件与技术》课程教学大纲 Photoelectron Apparatus and Techniques 课程代码:26105420 课程性质:专业方向理论课(选修) 适用专业:电子信息科学与技术 开课学期:6 总学时数:32 总学分数:2.0 修订年月:2006年6月 执 笔:张学习 一、课程的性质和目的 本课程为电子信息科学与技术专业的专业方向选修课,是以应用为主的工程技术基础类课程。其任务是掌握光电子器件的基本原理以及一些典型的光电子器件的工作方式,使学生系统地掌握光电子器件与技术的基本原理和基础知识,培养学生使用和分析光电子器件的能力。 二、课程教学内容及学时分配 (一)光控器件的基础 1、光电器件的物理基础; 2、激光信号调制的理论基础; 3、波导器件的理论基础和波导器件传光的基本理论。 (二)电、磁光控器件 1、空间光调制器; 2、电光调制器; 3、磁光调制器和调制器件。 (三)典型的声光控制器件 1、声光器件的控制作用; 2、声光控制器件的类型与参数; 3、声光器件的应用。 (四)无源光波导控制器件 1、波导开关器件; 2、几何光学波导器件; 3、无源光波导调制器。 (五)半导体激光器件 1、半导体激光器的特性与分类; 2、典型的半导体激光器和半导体激光器目前的发展方向与途径。 (六) 固体激光器 1、固体激光器的基本结构、关键技术; 2、新型固体激光器的应用。 本章知识点为:固体激光器的基本结构,DPSSL的特性与关键技术。 (七) 高能激光器 1、高能激光器的特性; 2、高能化学激光器和自由电子激光器。 (八) 高速光电探测器件 1、光电二极管、分离探测器的应用; 2、多元探测器及其应用和发展。 (九) 电荷耦合固体成像器件 1、CCD电荷耦合器件的工作基本原理; 2、CCD器件的特性与应用。 总学时:32,其中:理论学时32。具体分配参见下表: 序号 课 程 内 容 理论学时

最新《光电子材料与器件》复习提纲

《光电子材料与器件》复习提纲 Sciprince 一、1、激光的原理、特点、本质P4 2、受激辐射三能级、四能级系统(为什么四能级系统效率高) 3、固体激光器如何锁模P36 4、光谱线的宽度线性函数P5 5、均匀加宽(碰撞加宽、自然加宽)线性函数P5 6、增益饱和的物质实质 二、1、红宝石激光器P18 2、Nd3+:YAG激光器P18 3、自由电子激光器P22 三、1、横模选择技术P40 2、纵模选择技术P43 3、稳频技术P46 4、兰姆凹陷稳频P48 5、Q调制原理P25 6、锁模的基本原理P33 四、1、电光调制概念P53 2、怎么调制(怎么调,计算栅极调制和正负调制) 3、光电振幅调制原理P53 4、电光效应P55 五、1、声光衍射现象P63 2、耦合波理论和耦合波方程P64 3、磁光调制P68 4、Ramman-Nath衍射图P63 5、Bragg衍射图P64 六、1、光纤衰减P75 2、光纤弧子P76 七、1、光伏探测器 2、光电池P85 八、1、光电子学研究对象F1 2、 3、爱因斯坦受激辐射理论P2 4、几种激光器工作物质和原理P15 5、声光调制概念P65 5、两种调制的区别 6、光纤衰减有哪些(09诺贝尔)P75 7、光电转换器概念P84 8、哪几种物理效应P83 9、CCD工作原理,反型层,转移,P型n型,外加电压正负,栅极电压P88

附件: 由光学和电子学结合形成的技术学科。电磁波范围包括X射线、紫外光、可见光和红外线。光电子学涉及将这些辐射的光图像、信号或能量转换成电信号或电能,并进行处理或传送;有时则将电信号再转换成光信号或光图像。 以光波代替无线电波作为信息载体,实现光发射、控制、测量和显示等。通常有关无线电频率的几乎所有的传统电子学概念、理论和技术,如放大、振荡、倍频、分频、调制、信息处理、通信、雷达、计算机等,原则上都可延伸到光波段。在激光领域中,激光器提供光频的相干电磁振荡源,光电子学是指光频电子学。光电子学有时也狭义地指光-电转换器件及其应用的领域。光电子学还包括光电子能谱学,它利用光电子发射带出的信息研究固体内部和表面的成分和电子结构。光电子学及其系统的发展,依赖于光-电和电-光转换、光学传输、加工处理和存储等技术的发展,其关键是光电子器件。光电子器件主要有作为信息载体的光源(半导体发光二极管、半导体激光器等)、辐射探测器(各种光-电和光-光转换器)、控制与处理用的元器件(各种反射镜、透镜、棱镜、光束分离器,滤光片、光栅、偏振片、斩光器、电光晶体和液晶等)、光学纤维(一维信息传输光纤波导、二维图像传输光纤束、光能传输光纤束、光纤传感器等)以及各种显示显像器件(低压荧光管、电子束管、白炽灯泡、发光二极管、场致发光屏、等离子体和液晶显示器件等)。将各类元器件按各种可能方式组合起来可构成各种具有重大应用价值的光电子学系统,如光通信系统、电视系统、微光夜视系统等。 由光学和电子学相结合而形成的新技术学科。电磁波范围包括 X射线、紫外线、可见光和红外线。它涉及将这些辐射的光图像、信号或能量转换成电信号或电能,并进行处理或传送;有时则将电信号再转换成光信号或光图像。它以光波代替无线电波作为信息载体,实现光发射、控制、测量和显示等。通常有关无线电频率的几乎所有的传统电子学概念、理论和技术,如放大、振荡、倍频、分频、调制、信息处理、通信、雷达、计算机等,原则上都可以延伸到光波段。在激光领域中,激光器提供光频的相干电磁振荡源,光电子学是指光频电子学。光电子学有时也狭义地专指光- 电转换器件及其应用的领域。光电子学还包括光电子能谱学。它是利用光电子发射带出的信息来研究固体内部和表面的成分和电子结构,如X射线光电子能谱学和紫外光电子能谱学。 光电子学的应用非常广泛。已制成和正在研制的光电子器件品种繁多。从能源角度来看,可将光能转换成电能,或将电能转换成光能。前者有晶态和非晶态太阳能电池,小者可用于电子表和电子计算器,大者可制成太阳能电站;后者有以电驱动的发光光源,如放电灯、霓虹灯、荧光灯、场致或阴极射线发光屏、发光二极管等。从信息角度来看,可利用光发射、放大、调制、加工处理、存储、测量、显示等技术和元件,构成具有特定功能的光电子学系统。例如,利用光纤通信可以实现迅速和大容量信息传送的目的。它使原来类似的技术水平得到大幅度的提高。 人所接受的信息,大约80%是由光通过眼睛输入的。然而,人眼的局限性大大地限制了人类获得光信息的能力,因而需要扩展人眼的功能。第一,要扩展人眼在低照度下的视觉能力,提供各种夜视装备以便能在低照度下进行科研和生产活动,或在夜间进行侦察和战斗。第二,要扩展人眼对电磁波波段的敏感范围。已制成将红外线、紫外线和 X射线的光图像转换成可见光图像的直视式或电视式光电子学装置。利用这些原理还可以扩展到观察中子和其他带电粒子所形成的图像。第三,要扩展人眼对光学过程的时间分辨本领,例如已经做到在几十飞秒(10-15秒)内就可观察到信息的变化。

光电材料与器件实验指导书

《光电材料与器件》实验指导书 何宁编 桂林电子科技大学信息与通信学院 2008年12月

实验一光电池及LED光源特性测试 一.实验目的 1 理解光电池的光电转换机理及主要特性参数。 2 理解LED光源的电光转换机理、驱动方式及主要特性参数。 3 掌握两种器件的应用及参数的测试方法。 二.实验内容 1 测量光电池的开路电压、短路电流和伏安特性。 2 测量LED光源的驱动特性及电光转换效率。 三.实验原理 光电池是由一个面积较大的PN结构成,它是一种直接将光能转换成电能的光电器件,这种器件是利用光生伏特效应,当光线照射到P-N结上时,就会在P-N结两端出现电动势(P区为正;N区为负),若负载接入PN结两端,光电池就有功率输出。光电池对不同的波长的光反映的灵敏度是不同的,按制作材料不同可分为硅光电池和硒光电池,光谱特性如图1所示。 图1 光谱特性图2 光电特性 图1中硅光电池的光谱响应范围是波长4000?——12000?,在波长为8000?时达到峰值,而硒光电池的峰值出现在5000 ?左右,波长的范围是3800——7500?,1埃=0.1nm。 图2中硅光电池的开路电压与光照是一种非线性关系,当光照强度在200勒克斯时就趋向饱和。而短路电流在很大的范围内与光照成线型关系,因此使用光电池作为测量元件使用时,应该把它当成电流源的形式来研究,因为短路电流与光强是线性的,处理起来比较方便,而不要当成电压源使用。需要说明的是这里说的短路电流与开路电压与平时意义上不同,它是指外负载电阻相对与内阻非常小时候的电流值,以及外负载很大时的端电压。实验时外负载电阻<15Ω时,就认为是短路电流,而>5.0K时,就认为是开路电压。经实验证明外负载越小线性度越好。 不同颜色的光有不同的波长,因此光电池的光照频率也不同,光电池的频率特性是指输出电流随调制光的频率变化的关系,图3分别表示硅光电池与硒光电池的频率响应曲线,可见硅光电池有较好的频率特性,而硒光电池则较差。太阳能辐射能量主要集中在1.3-32um的波长范围,表面温度近6000K的太阳能辐射出的能量95%以上的部分分布在波长小于2um的光谱范围。而对于温度为几百K的物体其辐

常用光电子器件介绍

主要光电子器件介绍 【内容摘要】 光自身固有的优点注定了它在人类历史上充当不可忽略的角色,本文从几种常见的光电子器件的介绍来展示光纤通信技术的发展。 【关键词】 光纤通信光电子器件 【正文】 光自身固有的优点注定了它在人类历史上充当不可忽略的角色,随着人类技术的发展,其应用越来越广泛,优点也越来越突出。 将优点突出的光纤通信真正应用到人类生活中去,和很多技术一样,都需要一个发展的过程。从宏观上来看,光纤通信主要包括光纤光缆、光电子器件及光通信系统设备等三个部分,本文主要介绍几种常见的光电子器件。 1、光有源器件 1)光检测器 常见的光检测器包括:PN光电二极管、PIN光电二极管和雪崩光电二极管(APD)。目前的光检测器基本能满足了光纤传输的要求,在实际的光接收机中,光纤传来的信号及其微弱,有时只有1mW左右。为了得到较大的信号电流,人们希望灵敏度尽可能的高。 光电检测器工作时,电信号完全不延迟是不可能的,但是必须限制在一个范围之内,否则光电检测器将不能工作。随着光纤通信系统的传输速率不断提高,超高速的传输对光电检测器的响应速度的要求越来越高,对其制造技术提出了更高的要求。 由于光电检测器是在极其微弱的信号条件下工作的,而且它又处于光接收机的最前端,如果在光电变换过程中引入的噪声过大,则会使信噪比降低,影响重现原来的信号。因此,光电检测器的噪声要求很小。 另外,要求检测器的主要性能尽可能不受或者少受外界温度变化和环境变化的影响。 2)光放大器 光放大器的出现使得我们可以省去传统的长途光纤传输系统中不可缺少的光-电-光的转换过程,使得电路变得比较简单,可靠性也变高。 早在1960年激光器发明不久,人们就开始了对光放大器的研究,但是真正开始实用化的研究是在1980年以后。随着半导体激光器特性的改善,首先出现了法布里-泊罗型半导体激光放大器,接着开始了对行波式半导体激光放大器的研究。另一方面,随着光纤技术的发展,出现了光纤拉曼放大器。80年代后期,掺稀土元素的光纤放大器脱颖而出,并很快达到实用水平,应用于越洋的长途光通信系统中。 目前能用于光纤通信的光放大器主要是半导体激光放大器和掺稀土金属光纤放大器,特别是掺饵光纤放大器(EDFA)倍受青睐。1985年英国南安普顿大学首次研制成掺饵光纤,1989年以后掺饵光纤放大器的研究工作不断取得重大

光电子技术发展态势及应用

光电子技术发展态势及应用 姓名:刘鹏学号:200910711234 摘要:当今社会正在从工业化社会向信息化社会过渡,在这个社会大变革时期,光电子技术迅速发展,不断渗透到国民经济的各个方面,成为信息社会的支柱之一。本文讨论了光电子的发展历程以及光电子在不同时期的重要发明与应用,同时对光电子技术今后的发展态势做了展望。 引言:光电子技术又名信息光电子技术,是继微电子技术之后近30年来迅猛发展的综合性高新技术。20世纪60年代激光问世以来应用于光纤通信、激光、LED.等诸多领域,经历十多年的初期探索,随着半导体光电子器件和硅基光导纤维两大基础元件在原理和制造工艺上的突破,光子技术与电子技术开始结合并形成了具有强大生命力的信息光电子技术和产业。 关键词:光电子技术发展历程应用展望 一、光电子技术的概念 光电子技术是光子技术与电子技术相结合而形成的一门技术【1】。激光器的发明,解决了光频载波的产生问题,从此电子技术的各种基本概念几乎都移植到了光频段。电子学与光学之间的鸿沟在概念上消失了,产生了光频段的电子技术,习惯上简称为光电子技术。从电子学频段扩展的意义上讲,光电子技术就是电子技术在光波段的开拓和发展;从光学发展的角度讲,光电子技术发展需求的牵引,大大促进了相干光学技术的信息化进步。所以,光电子技术也是光电子技术与光学技术相结合的产物。 二、光电子技术的发展历程 最早出现的光电子器件是光电探测器,而光电探测器的基础是光电效应的发现和研究。1888年,德国H.R.赫兹观察到紫外线照射到金属上时,能使金属发射带电粒子,当时无法解释。1890年,P.勒纳通过对带电粒子的电荷质量比的测定,证明它们是电子,由此弄清了光电效应的实质【2】。1900年,德国物理学家普朗克在黑体辐射研究中引入能量量子,提出了著名的描述黑体辐射现象的普朗克公式,为量子论坚定了基础。1929年,L.R.科勒制成银氧铯光电阴极,出现了光电管。1939年,前苏联V.K.兹沃雷金制成实用的光电倍增管。20世纪30年代末,硫化铅(PbS)红外探测器问世,它可探测到3μm辐射。40年代出现用半导体材料制成的温差电型红外探测器和测辐射热计。50年代中期,可见光波段的硫化镉(CdS)、硒化镉(CdSe)、光敏电阻和短波红外硫化铅光电探测器投入使用。1958年,英国劳森等发明碲镉汞(HgCdTe)红外探测器。在军事需求牵引和半导体工艺等技术发展的推动下,红外探测器自60年代以来迅速发展。 尽管光电子技术历史可追溯到19世纪70年代,但那时期到1960年,光学和电子学仍然是两门独立的学科,因而只能算作光电子学与光电子技术的孕育期,20世纪60年代激光问世开创了光电子技术的新纪元。 激光器是光波短的相干辐射源。它的理论基础是爱恩斯坦在1916年奠定的。当时,爱恩斯坦提出光的发射与吸收可以经过受激吸收,受激辐射和自发辐射三种基本过程的假设。但是,直到1954年,美国C.H.汤斯才根据这个假设,以制

石墨烯在光电子器件中的应用

石墨烯在光电子器件中的应用 摘要:石墨烯是目前发现的唯一存在的二维自由态原子晶体,有着优异的机械性能、超高的热导率和载流子迁移率、超宽带的光学响应谱,以及极强的非线性光学特性。且因其卓越的光学与电学性能及其与硅基半导体工艺的兼容性,石墨烯受到了各领域学科的高度关注。本文重点综述了石墨烯在超快脉冲激光器、光调制器、光探测器、表面等离子体等光电子器件领域的应用研究进展,并对其未来发展趋势进行了进一步的分析。 关键字:石墨烯;光调制器;光探测器;超快脉冲激光器;表面等离子体; 1、前言 石墨烯是由单层碳原子紧密堆积成二维蜂窝状晶格结构的一种碳质新材料,具有独特的零带隙能带结构,是一种半金属薄膜材料。石墨烯不仅有特殊的二维平面结构,还有着优良的力学、热学、电学、光学性质。其机械强度很大,断裂强度比优质的钢材还要高,同时又具备良好的弹性、高效的导热性以及超强的导电性。石墨烯又是一种禁带宽度几乎为零的特殊材料,其电子迁移速率达到了1/300光速。由于石墨烯几乎是透明的,因此光的透过率可高97.7%。此外,石墨烯的加工制备可与现有的半导体CMOS(Complementary metal-oxide-semiconductor transistor)工艺兼容,器件的构筑、加工、集成简单易行,在新型光电器件的应用方面具有得天独厚的优势。 目前,人们已利用石墨烯开发出一系列新型光电器件,并显示出优异的性能和良好的应用前景。 2、石墨烯的基本性质 石墨烯具有独特的二维结构,并且能分解为零维富勒烯,也可以卷曲成一维碳纳米管,或堆积成为三维石墨。石墨烯力学性质高度稳定,碳原子连接比较柔韧,当施加外力时,碳原子面就会发生弯曲形变。 在理想的自由状态下,单层石墨烯并非完美的平面结构,表面不完全平整,在薄膜边缘处出现明显的波纹状褶皱,而在薄膜内部褶皱并不显,多层石墨烯边缘处的起伏幅度要比单层石墨烯稍小。这也说明了石墨烯在受到拉伸、弯曲等外力作用时仍能保持高效的力学稳定性。 在一定能量范围内,石墨烯中的电子能量与动量呈线性关系,所以电子可视为无质量的相对论粒子即狄拉克费米子。通过化学掺杂或电学调控的手段,可以有效地调节石墨烯的化学势,使得石墨烯的光学透过性由“介质态”向“金属态”转变。 石墨烯的功函数与铝的功函数相近,约为4.3eV,因此在有机光电器件中有望取代铝来做透明电极。近年来所观测到的显著的量子霍尔效应和分数量子霍尔效应,证实了石墨烯是未来纳米光电器件领域极有前景的材料。 3、基于石墨烯的光调制器 3.1 直波导结构石墨烯光调制器 光学调制是改变光的一个或多个特征参数,并通过外界各种能量形式实现编码光学信号的过程。对光学调制器件的评价有调制带宽、调制深度、插入损耗、比特能耗以及器件尺寸等性能指标。大多数情况下,光在

光电子材料与器件课后习题答案

3.在未加偏置电压的条件下,由于截流子的扩散运动,p 区和n 区之间的pn 结附近会形成没有电子和空穴分布的耗尽区。在pn 结附近,由于没有电子和空穴,无法通过电子-空穴对的复合产生光辐射。加上正向偏置电压,驱动电流通过器件时,p 区空穴向n 区扩散,在pn 结附近形成电子和空穴同时存在的区域。电子和空穴在该区通过辐射复合,并辐射能量约为Eg 的光子,复合掉的电子和空穴由外电路产生的电流补充。 5要满足以下条件a 满足粒子数反转条件,即半导体材料的导带与价带的准费米能级之差不小于禁带宽度即B.满足阈值条件,半导体由于粒子数产生的增益需要能够补偿工作物质的吸收、散射造成的损耗,以及谐振腔两个反射面上的透射、衍射等原因产生的损耗。即 第二章课后习题 1、工作物质、谐振腔、泵浦源 2、粒子数反转分布 5a.激光介质选择b.泵浦方式选择c 、冷却方式选择d 、腔结构的选择e 、模式的选择f 、整体结构的选择 第三章课后习题 10.要求:对正向入射光的插入损耗值越小越好,对反向反射光的隔离度值越大越好。原理:这种光隔离器是由起偏器与检偏器以及旋转在它们之间的法拉第旋转器组成。起偏器将输入光起偏在一定方向,当偏振光通过法拉第旋转器后其偏振方向将被旋转45度。检偏器偏振方向正好与起偏器成45度,因而由法拉第旋转器出射的光很容易通过它。当反射光回到隔离器时,首先经过起偏器的光是偏振方向与之一至的部分,随后这些这些光的偏振方向又被法拉第旋转器旋转45度,而且与入射光偏振方向的旋转在同一方向上,因而经过法拉第旋转器后的光其偏振方向与起偏器成90度,这样,反射光就被起偏器所隔离,而不能返回到入射光一端。 15.优点:A 、采用光纤耦合方向,其耦合效率高;纤芯走私小,使其易于达到高功率密度,这使得激光器具有低的阈值和高的转换效率。B 、可采用单模工作方式,输出光束质量高、线宽窄。C 、可具有高的比表面,因而散热好,只需简单风冷即可连续工作。D 、具有较多的可调参数,从而可获得宽的调谐范围和多种波长的选择。E 、光纤柔性好,从而使光辉器使用方便、灵巧。 由作为光增益介质的掺杂光纤、光学谐振腔、抽运光源及将抽运光耦合输入的光纤耦合器等组成。 原理:当泵浦激光束通过光纤中的稀土离子时,稀土离子吸收泵浦光,使稀土原子的电子激励到较高激发态能级,从而实现粒子数反转。反转后的粒子以辐射跃迁形式从高能级转移到基态。 g v c E F F 211ln 21R R L g g i th

《光电子技术》狄红卫版..

光电子技术又是一个非常宽泛的概念,它围绕着光信号的产生、传输、处理和接收,涵盖了新材料(新型发光感光材料,非线性光学材料,衬底材料、传输材料和人工材料的微结构等)、微加工和微机电、器件和系统集成等一系列从基础到应用的各个领域。光电子技术科学是光电信息产业的支柱与基础,涉及光电子学、光学、电子学、计算机技术等前沿学科理论,是多学科相互渗透、相互交叉而形成的高新技术学科。 光子学也可称光电子学,它是研究以光子作为信息载体和能量载体的科学,主要研究光子是如何产生及其运动和转化的规律。所谓光子技术,主要是研究光子的产生、传输、控制和探测的科学技术。现在光子学和光子技术在信息、能源、材料、航空航天、生命科学和环境科学技术中的广泛应用,必将促进光子产业的迅猛发展。光电子学是指光波波段,即红外线、可见光、紫外线和软X射线(频率范围3×1011Hz~3×1016Hz或波长范围1mm~10nm)波段的电子学。光电子技术在经过80年代与其相关技术相互交叉渗透之后,90年代,其技术和应用取得了飞速发展,在社会信息化中起着越来越重要的作用。光电子技术研究热点是在光通信领域,这对全球的信息高速公路的建设以及国家经济和科技持续发展起着举足轻重的推动作用。国内外正掀起一股光子学和光子产业的热潮。 1.1可见光的波长、频率和光子的能量范围分别是多少? 波长:380~780nm 400~760nm 频率:385T~790THz 400T~750THz 能量:1.6~3.2eV 1.2辐射度量与光度量的根本区别是什么?为什么量子流速率的计算公式中不能出现光度量? 为了定量分析光与物质相互作用所产生的光电效应,分析光电敏感器件的光电特性,以及用光电敏感器件进行光谱、光度的定量计算,常需要对光辐射给出相应的计量参数和量纲。辐射度量与光度量是光辐射的两种不同的度量方法。根本区别在于:前者是物理(或客观)的计量方法,称为辐射度量学计量方法或辐射度参数,它适用于整个电磁辐射谱区,对辐射量进行物理的计量;后者是生理(或主观)的计量方法,是以人眼所能看见的光对大脑的刺激程度来对光进行计算,称为光度参数。因为光度参数只适用于0.38~0.78um的可见光谱区域,是对光强度的主观评价,超过这个谱区,光度参数没有任何意义。而量子流是在整个电磁辐射,所以量子流速率的计算公式中不能出现光度量.光源在给定波长λ处,将λ~λ+d λ范围内发射的辐射通量dΦe,除以该波长λ的光子能量hν,就得到光源在λ处每秒发射的光子数,称为光谱量子流速率。 1.3一只白炽灯,假设各向发光均匀,悬挂在离地面1.5m的高处,用照度计测得正下方地面的照度为30lx,求出该灯的光通量。 Φ=L*4πR^2=30*4*3.14*1.5^2=848.23lx 1.4一支氦-氖激光器(波长为63 2.8nm)发出激光的功率为2mW。该激光束的平面发散角为1mrad,激光器的放电毛细管为1mm。 求出该激光束的光通量、发光强度、光亮度、光出射度。 若激光束投射在10m远的白色漫反射屏上,该漫反射屏的发射比为0.85,求该屏上的光亮度。

光电子材料与器件题库

《光电子材料与器件》题库 选择题: 1. 如下图所示的两个原子轨道沿z轴方向接近时,形成的分子轨道类型为( A ) (A) *σ(B) σ(C) π(D) *π 2. 基于分子的对称性考虑,属于下列点群的分子中不可能具有偶极矩的为(C)(A)C n(B)C n v(C)C2h(D)C s 3. 随着温度的升高,光敏电阻的光谱特性曲线的变化规律为(B)。 (A)光谱响应的峰值将向长波方向移动 (B)光谱响应的峰值将向短波方向移动 (C)光生电流减弱 (D)光生电流增强 4. 利用某一CCD来读取图像信息时,图像积分后每个CCD像元积聚的信号在同一时刻先转移到遮光的并行读出CCD中,而后再转移输出。则该CCD的类型为(B ) (A)帧转移型CCD (B)线阵CCD (C)全帧转移型CCD (D)行间转移CCD 5. 对于白光LED器件,当LED基片发射蓝光时,其对应的荧光粉的发光颜色应该为(D) (A)绿光(B)紫光(C)红光(D)黄光 6. 在制造高效率太阳能电池所采取的技术和工艺中,下列不属于光学设计的为(C) (A)在电池表面铺上减反射膜; (B)表面制绒; (C)把金属电极镀到激光形成槽内; (D)增加电池的厚度以提高吸收 7. 电子在原子能级之间跃迁需满足光谱选择定则,下列有关跃迁允许的表述中,不正确的是(B ): (A)总角量子数之差为1 (B)主量子数必须相同 (C)总自旋量子数不变

(D)内量子数之差不大于2 8. 物质吸收一定波长的光达到激发态之后,又跃迁回基态或低能态,发射出的荧光波长小于激发光波长,称为(B)。 (A)斯托克斯荧光(B)反斯托克斯荧光(C)共振荧光(D)热助线荧光9. 根据H2+分子轨道理论,决定H原子能否形成分子的主要因素为H原子轨道的(A ) (A)交换积分(B)库仑积分(C)重叠积分(D)置换积分 10. 下列轨道中,属于分子轨道的是(C) (A)非键轨道(B)s轨道(C)反键轨道(D)p 轨道 11. N2的化学性质非常稳定,其原因是由于分子中存在(D ) (A)强σ 键(B)两个π键(C)离域的π键(D)N N≡三键12. 测试得到某分子的光谱处于远红外范围,则该光谱反映的是分子的(B )能级特性。 (A)振动(B)转动(C)电子运动(D)电声子耦合 13.下列的对称元素中,所对应的对称操作属于虚动作的是(C ) (A)C3 (B)E(C)σh(D)C6 14. 某晶体的特征对称元素为两个相互垂直的镜面,则其所处的晶系为(C)(A)四方晶系(B)立方晶系(C)正交晶系(D)单斜晶系 15. 砷化镓是III-V族化合物半导体,它的晶体结构是(D)。 (A)NaCl 结构(B)纤锌矿结构(C)钙钛矿结构(D)闪锌矿结构16. 原子轨道经杂化形成分子轨道时,会发生等性杂化或非等性杂化。下列物质中化学键属于不等性杂化的是(B)。 (A)CH4(B)H2O (C)石墨烯(D)金刚石 17. 关于金属的特性,特鲁德模型不能成功解释的是(A ) (A)比热(B)欧姆定律(C)电子的弛豫时间(D)电子的平均自由程18. 下列有关半导体与绝缘体在能带上的说法中,正确的是(B )。 (A)在绝缘体中,电子填满了所有的能带 (B)在0 K下,半导体中能带的填充情况与绝缘体是相同的 (C)半导体中禁带宽度比较大 (D)绝缘体的禁带宽度比较小 19. 在非本征半导体中,载流子(电子和空穴)的激发方式为(B)? (A)电(B)热(C)磁(D)掺杂 20.在P型半导体材料中,杂质能级被称之为(C)。 (A)施主能级(B)深陷阱能级(C)受主能级(D)浅陷阱能级

光电子与微电子器件及集成重点专项2019年度项目申报指南

附件4 “光电子与微电子器件及集成”重点专项 2019年度项目申报指南 为落实《国家中长期科学和技术发展规划纲要(2006—2020年)》《2006—2020年国家信息化发展战略》提出的任务,国家重点研发计划启动实施“光电子与微电子器件及集成”重点专项(以下简称“本重点专项”)。根据本重点专项实施方案的部署,现提出2019年度项目申报指南。 本重点专项的总体目标是:发展信息传输、处理与感知的光电子与微电子集成芯片、器件与模块技术,构建全链条光电子与微电子器件研发体系,推动信息领域中的核心芯片与器件研发取得重大突破,支撑通信网络、高性能计算、物联网等应用领域的快速发展,满足国家发展战略需求。 本重点专项按照硅基光子集成技术、混合光子集成技术、微波光子集成技术、集成电路与系统芯片、集成电路设计方法学和器件工艺技术6个创新链(技术方向),共部署49个重点研究任务。专项实施周期为5年(2018—2022年)。 2019年度项目申报指南在核心光电子芯片、光电子芯片共性支撑技术、集成电路与系统芯片、集成电路设计方法学和器件工 —1—

艺技术5个技术方向启动19个研究任务,拟安排国拨总经费概算6.75亿元。凡企业牵头的项目须自筹配套经费,配套经费总额与专项经费总额比例不低于1:1。 各研究任务要求以项目为单元整体组织申报,项目须覆盖所申报指南方向二级标题(例如:1.1)下的所有研究内容并实现对应的研究目标。除特殊说明外,拟支持项目数均为1~2项。指南任务方向“1.核心光电子芯片”和“2.光电子芯片共性支撑技术”所属任务的项目实施周期不超过3年;指南任务方向“3.集成电路与系统芯片”、“4.集成电路设计方法学”和“5.器件与工艺技术”所属任务的项目实施周期为4年。基础研究类项目,下设课题数不超过4个,参研单位总数不超过6个;共性关键技术类和应用示范类项目,下设课题数不超过5个,参与单位总数不超过10个。项目设1名项目负责人,项目中每个课题设1名课题负责人。 指南中“拟支持项目数为1~2项”是指:在同一研究方向下,当出现申报项目评审结果前两位评分评价相近、技术路线明显不同的情况时,可同时支持这2个项目。2个项目将采取分两个阶段支持的方式。建立动态调整机制,第一阶段完成后将对2个项目执行情况进行评估,根据评估结果确定后续支持方式。 1.核心光电子芯片 1.1多层交叉结构的光子集成芯片(基础研究类) 研究内容:聚焦基于硅基多维度交叉结构的光子集成芯片,—2—

光电子技术发展态势分析.doc

光电子技术发展态势分析 2020年4月

光电子技术发展态势分析本文关键词:光电子,技术发展,态势,分析 光电子技术发展态势分析本文简介:摘要:随着科技的不断进步,光电子技术应运而生,并且在社会发展过程中发挥着越来越重要的作用。虽然光电子技术应用的领域越来越广泛,人们对于“光电子技术”这一名词听到的频率越来越大,然而光电子技术到底是怎样一种技术、是如何发展起来、又将朝着什么方向继续发展,这些问题对于人们来说则是相对陌生的。为了加强人们 光电子技术发展态势分析本文内容: 摘要:随着科技的不断进步,光电子技术应运而生,并且在社会发展过程中发挥着越来越重要的作用。虽然光电子技术应用的领域越来越广泛,人们对于“光电子技术”这一名词听到的频率越来越大,然而光电子技术到底是怎样一种技术、是如何发展起来、又将朝着什么方向继续发展,这些问题对于人们来说则是相对陌生的。为了加强人们对光电子技术的认识并且促进我国光电子技术水平的提高,文章将对光电子技术的发展进行概述,指出光电子技术在各领域的实际应用,进而对于光电子技术的发展前景进行分

关键词:光电子技术;技术应用;发展态势 前言 光电子技术是一项非常复杂的技术,其涉及的学科领域非常多,如电子学、光学、光电子学、计算机学等。光电子技术作为当代科技的重要内容之一,其在社会信息化过程中发挥着举足轻重的作用。光电子技术作为推动社会向前发展的力量,其存在意义重大,值得各国投入大量的资本进行研究。伴随着光电子技术应用的广泛化,国内外学者都加大了对光电子技术的研究,推动着光电子技术的不断创新与发展。加强光电子技术的应用,对于促进社会经济的发展有着非常重大的影响。

光电子技术题库

选择题 1.光通量的单位是( B ). A.坎德拉 B.流明 C.熙提 D.勒克斯 2. 辐射通量φe的单位是( B ) A 焦耳 (J) B 瓦特 (W) C每球面度 (W/Sr) D坎德拉(cd) 3.发光强度的单位是( A ). A.坎德拉 B.流明 C.熙提 D.勒克斯 4.光照度的单位是( D ). A.坎德拉 B.流明 C.熙提 D.勒克斯 5.激光器的构成一般由( A )组成 A.激励能源、谐振腔和工作物质 B.固体激光器、液体激光器和气体激光器 C.半导体材料、金属半导体材料和PN结材料 D. 电子、载流子和光子 6. 硅光二极管在适当偏置时,其光电流与入射辐射通量有良好的线性关系,且 动态范围较大。适当偏置是(D) A 恒流 B 自偏置 C 零伏偏置 D 反向偏置 7.2009年10月6日授予华人高锟诺贝尔物理学奖,提到光纤以SiO2为材料的主要是由于( A ) A.传输损耗低 B.可实现任何光传输 C.不出现瑞利散射 D.空间相干性好

8.下列哪个不属于激光调制器的是( D ) A.电光调制器 B.声光调制器 C.磁光调制器 D.压光调制器 9.电光晶体的非线性电光效应主要与( C )有关 A.内加电场 B.激光波长 C.晶体性质 D.晶体折射率变化量 10.激光调制按其调制的性质有( C ) A.连续调制 B.脉冲调制 C.相位调制 D.光伏调制 11.不属于光电探测器的是( D ) A.光电导探测器 B.光伏探测器 C.光磁电探测器 D.热电探测元件 https://www.docsj.com/doc/0c9256222.html,D 摄像器件的信息是靠( B )存储 A.载流子 B.电荷 C.电子 D.声子 13.LCD显示器,可以分为( ABCD ) A. TN型 B. STN型 C. TFT型 D. DSTN型 14.掺杂型探测器是由( D )之间的电子-空穴对符合产生的,激励过程是使半导体中的载流子从平衡状态激发到非平衡状态的激发态。 A.禁带 B.分子 C.粒子 D.能带

异质结在光电子器件中的应用

异质结在光电子器件中的应用 在实际的光电子器件中,往往包含一个或多个异质结。这是因为异质结是由具有不同的电学性质和光学性质的半导体组成的,还可以通过适当的晶体生长技术控制异质结势垒的性状,因此异质结在扩大光电子器件的使用范围,提高光电子器件性能,控制某些特殊用途的器件等方面起到了突出的作用。在光纤通信、光信息处理等方面的具体应用如下: 1异质结光电二极管 光电二极管是利用光生伏打效应工作的器件,工作时要加上反向偏压,光照使结的空间电荷区和扩散区内产生大量的非平和载流子,这些非平衡载流子被内建电场和反向偏压电场漂移,就会形成很大的光电流。其工作特性曲线如下图所示: 图2.1 光电二极管的工作特性曲线 光电二极管往往作为光电探测器使用,此时希望它有宽的光谱响应范围和高的光电转化率。在包含有异质结的光电二极管中,宽带隙半导体成为窄带隙半导体的入射窗口,利用此窗口效应,可以使光电二极管的光谱响应范围加宽。图2.2(a)画的是由宽带隙E g1和窄带隙E g2两种半导体组成的异质结,在入射光子能量满足E g1>hv> E g2的条件下,入射光就能透过半导体1而被半导体2吸收。显然,透过谱与吸收谱的曲线重叠部分是该光电探测器的工作波段范围。图2.2(b)是同质结光电探测器响应的情况,

显然同质结的工作波段范围是很窄的。 光子能量/ev 12 E =E 入射光光子能量/ev 12E >E 入射光 (a )(b ) 图2.2 异质结光带二极管和同质结光电二极管的光谱特性 2异质结光电晶体管 图2.3分别是InP/InGaAs 异质结光电晶体管的典型结构图和能带图。发射区由宽禁带的n 型InP 材料做成,基区和收集区由窄禁带的InGaAs 材料做成。光电晶体管工作时一般采用基区浮置的方式,以减少引线分布电容。在集电极和发射极之间加电压,使发射极对基区正向偏置,而集电极对基区反向偏置。入射光子流照在宽带发射区上,当光的波长合适时发射区基本是透明的,光在窄带区中靠近宽带一侧被吸收而产生电子-空穴对。电子被发射结的自建电场所吸引从基区向发射区漂移,而空穴将流向基区。如果光在宽带区中也部分吸收的话,电子和空穴的流动方向也是这样的。因为基区是浮置的,电子和空穴这样的流动将促使发射极的电位更负,而基区的电位更正。这相当于发射结的p-n 正向偏置更加强。也就是说,光的吸收和光生载流子的流动等效于在光电晶体管的发射结上加了一个正向的信号。从而是发射区向基区注入更多的电子。这些电子以扩散的方式通过基区到达基区和集电区的边界,被方向偏置的集电极收集成为集电极电流,从而完成放大的目的。所以,光电晶体管不但能用于检测光信号,还能将光信号转换成的电信号放大。

光电子技术的发展及态势分析

光电子技术的发展及态势分析 王亚涛 目录 摘要 (1) 引言 (1) 一,光电子技术的概念和内容 (2) 二,光电子材料的类型及发展 (2) 三,激光技术的应用 (3) 五,光机电一体化 (4) 六,光电的发展及结论 (5) 参考文献: (6) 摘要:光电子技术由光子技术和电子技术结合而成的新技术,涉及光显示、 光存储、激光等领域,是未来信息产业的核心技术。光电子技术激光在电子信息技术中的应用形成的技术。光电子技术确切称为信息光电子技术。20世纪60年代激光问世以来,最初应用于激光测距等少数应用,到70年代,由于有了室温下连续工作的半导体激光器和传输损耗很低的光纤,光电子技术才迅速发展起来。全世界铺设的通信光纤总长超过1000万公里,主要用于建设宽带综合业务数字通信网。以光盘为代表的信息存储和激光打印机、复印机和发光二极管大屏幕现实为代表的信息显示技术称为市场最大的电子产品。人们对光电神经网络计算机技术抱有很大希望,希望获得功耗低、响应带宽很大,噪音低的光电子技术。 【关键词】:光电子、信息、光纤、光显示、光储存、光机电一体化。 引言:随着科学的进步,光电子技术得到了蓬勃的发展。他不仅由多科学 互相融合和互相渗透,而且在各个科学领域的应用也十分广泛,如信息光电子技术、通信光电子技术、生物科学和医用光电子技术、军用光电子技术等。随着光电子技术应用的快速发展以及在其他科技领域的渗透,又形成了许多

市场可观、发展潜力巨大的光电子产业,它包括光纤通信产业、光显示产业、光储存产业、光电子材料产业、光电子检测产业、军用光电子产业以及光机电一体化产业。毋庸置疑,光电子技术对推动21世纪信息技术的发展至关重要。 一,光电子技术的概念和内容 光电子技术又是一个非常宽泛的概念,它围绕着光信号的产生、传输、处理和接收,涵盖了新材料(新型发光感光材料,非线性光学材料,衬底材料、传输材料和人工材料的微结构等)、微加工和微机电、器件和系统集成等一系列从基础到应用的各个领域。光电子技术科学是光电信息产业的支柱与基础,涉及光电子学、光学、电子学、计算机技术等前沿学科理论,是多学科相互渗透、相互交叉而形成的高新技术学科。 光子学也可称光电子学,它是研究以光子作为信息载体和能量载体的科学,主要研究光子是如何产生及其运动和转化的规律。所谓光子技术,主要是研究光子的产生、传输、控制和探测的科学技术。现在光子学和光子技术在信息、能源、材料、航空航天、生命科学和环境科学技术中的广泛应用,必将促进光子产业的迅猛发展。光电子学是指光波波段,即红外线、可见光、紫外线和软X射线(频率范围3×1011Hz~3×1016Hz或波长范围1mm~10nm) 波段的电子学。光电子技术在经过80年代与其相关技术相互交叉渗透之后,90年代,其技术和应用取得了飞速发展,在社会信息化中起着越来越重要 的作用。光电子技术研究热点是在光通信领域,这对全球的信息高速公路的建设以及国家经济和科技持续发展起着举足轻重的推动作用。国内外正掀起一股光子学和光子产业的热潮。光电子技术是光学技术和电子学技术的融合,靠光子和电子的共同行为来执行其功能,是世纪之交继微电子技术之后迅速兴起的一个高科技领域,在当今信息时代愈发占有重要的关键地位。它围绕着光信号的产生、传输、处理和接收,涵盖了新材料(新型发光感光材料,非线性光学材料,衬底材料、传输材料和人工材料的微结构等)、微加工和微机电、器件和系统集成等一系列从基础到应用的各个领域。光电子技术科学是光电信息产业的支柱与基础,涉及光电子学、光学、电子学、计算机技术等前沿学科理论,是多学科相互渗透、相互交叉而形成的高新技术学科。光电子技术是继微电子技术之后近30年来迅猛发展的综合性高新技术。1962年半导体激光器的诞生是近代科学技术史上一个重大事件。经历十多 年的初期探索,从70年代后期起,随着半导体光电子器件和硅基光导纤维两大基础元件在原理和制造工艺上的突破,光子技术与电子技术开始结合并形成了具有强大生命力的信息光电子技术和产业。 二,光电子材料的类型及发展 光电子材料是在光电子技术领域应用的,以光子、电子为载体,处理、存储和传递信息的材料。光电子技术是结合光学和电子学技术而发展起来的一门新技术,主要应用于信息领域,也用于能源和国防领域。已使用的光电子材

相关文档