文档视界 最新最全的文档下载
当前位置:文档视界 › 武汉大学2001-2014高数B2试题编选

武汉大学2001-2014高数B2试题编选

武汉大学2001-2014高数B2试题编选
武汉大学2001-2014高数B2试题编选

武汉大学大一上学期高数期末考试题

高数期末考试 一、填空题(本大题有4小题,每小题4分,共16分) 1. ,)(cos 的一个原函数是已知 x f x x =??x x x x f d cos )(则 . 2. lim (cos cos cos )→∞ -+++=2 2 221 n n n n n n π π ππ . 3. = -+? 2 12 12 211 arcsin - dx x x x . 二、单项选择题 (本大题有4小题, 每小题4分, 共 16分) 4.  )时( ,则当,设133)(11)(3→-=+-= x x x x x x βα. (A )()()x x αβ与是同阶无穷小,但不是等价无穷小; (B )()()x x αβ与是等价无穷小; (C )()x α是比()x β高阶的无穷小; (D )()x β是比()x α高阶的无穷小. 5. ) ( 0),sin (cos )( 处有则在设=+=x x x x x f . (A )(0)2f '= (B )(0)1f '=(C )(0)0f '= (D )()f x 不可导. 6. 若 ()()()0 2x F x t x f t dt =-?,其中()f x 在区间上(1,1) -二阶可导且'>()0f x ,则( ). (A )函数()F x 必在0x =处取得极大值; (B )函数()F x 必在0x =处取得极小值; (C )函数()F x 在0x =处没有极值,但点(0,(0))F 为曲线()y F x =的拐点; (D )函数()F x 在0x =处没有极值,点(0,(0))F 也不是曲线()y F x =的拐点。 7. ) ( )( , )(2)( )(1 =+=?x f dt t f x x f x f 则是连续函数,且设 (A )2 2x (B )2 2 2x +(C )1x - (D )2x +. 8. 三、解答题(本大题有5小题,每小题8分,共40分) 9. 设函数=()y y x 由方程 sin()1x y e xy ++=确定,求'()y x 以及'(0)y . 10. .d )1(17 7 x x x x ?+-求 11. .  求,, 设?--?????≤<-≤=1 32 )(1020 )(dx x f x x x x xe x f x 12. 设函数)(x f 连续, =?1 ()()g x f xt dt ,且 →=0 ()lim x f x A x ,A 为常数. 求'()g x 并讨论'()g x 在 =0x 处的连续性. 13. 求微分方程2ln xy y x x '+=满足 =- 1(1)9y 的 解. 四、 解答题(本大题10分) 14. 已知上半平面内一曲线)0()(≥=x x y y ,过点(,)01, 且曲线上任一点M x y (,)00处切线斜率数值上等于此曲线与x 轴、y 轴、直线x x =0所围成面积的2倍与该点纵 坐标之和,求此曲线方程. 五、解答题(本大题10分) 15. 过坐标原点作曲线x y ln =的切线,该切线与曲线 x y ln =及x 轴围成平面图形D. (1) 求D 的面积A ;(2) 求D 绕直线x = e 旋转一周所 得旋转体的体积V . 六、证明题(本大题有2小题,每小题4分,共8分) 16. 设函数)(x f 在[]0,1上连续且单调递减,证明对任意的 [,]∈01q ,1 ()()≥??q f x d x q f x dx . 17. 设函数)(x f 在[]π,0上连续,且 )(0 =?π x d x f , cos )(0 =? π dx x x f .证明:在()π,0内至少存在两个 不同的点21,ξξ,使.0)()(21==ξξf f (提示:设 ?= x dx x f x F 0 )()()

2015年武汉大学线性代数考研真题

2015年线性代数 一、 ①证明?? ????-C B C A A 可逆的充要条件是AB 可逆 ②若??????-C B C A A 可逆,求出?? ????-C B C A A 的逆。 二、r b A r A r b ==≠),()(,0,b Ax =的所有解集合为S,证明: ①S 中包含1+-r n 个线性无关的向量121,...,+-r n ηηη。 ②ξ是S 中元素充要条件是存在)1...,2,1(,+-=r n i k i , 111=∑+-=r n i i k ,使得 ∑+-==1 1r n i i i k ηξ 三、已知A 为实正交矩阵,det(A)=1,证明存在正交矩阵P ,使得 21cos ,cos sin 0sin cos 00 01 332211'-++=??????????-=a a a AP P θθθθθ 其中。 四、以下有关矩阵秩的命题在数域F 上判断正误,如正确请说明理由,如不正确请举例说明。 (1)、若)()(B r A r =,则()()* *B r A r = (2)、若())(B r AB r =,则)()(BC r ABC r = (3)、)()('AA r A r = (4)、若一个对称矩阵的秩为r ,则有一个非0 的r 阶主子式。 五、A 是n 阶实对称矩阵,其正负惯性指数分别是q p ,, AX X x f ')(=,记{} n f R x x f x N ∈==,0)(|,证明: (1)、包含于f N 的线性空间维数至多是),max(q p n - (2)、若w 是n R 的一个线性子空间,将二次型限定w 在中,得到的正负惯性指数分别是p1,q1,则有q q p p ≤≤11,。

武大《高等数学》期末考试试题

2000~2001学年第二学期《 高等数学 》期末考试试题(180学时) 专业班级 学号_______________ 姓名 一、 已知一个二阶常系数线性齐次微分方程有相等的实根a ,试写出此微分方程及通解。 (8分) 二、 设幂级数∑∞=?0 )1(n n n x a 在x =3处发散,在x =1处收敛,试求出此幂级数的收敛半径。(8分) 三、 求曲面323 =+xz y x 在点(1,1,1)处的切平面方程和法线方程 。(10分) 四、 设)(,0x f x >为连续可微函数,且2)1(=f ,对0>x 的任一闭曲线L,有0)(43=+∫L dy x xf ydx x ,求)(x f 。 (10分) 五、 设曲线L (起点为A ,终点为B )在极坐标下的方程为36(,2sin πθπθ≤≤= r ,其中θ=6π 对应起点A ,3 π θ=对应终点B ,试计算∫+?L xdy ydx 。(10分) 六、 设空间闭区域Ω由曲面222y x a z ??=与平面0=z 围成,其中0>a ,Σ为Ω的 表面外侧,且假定Ω的体积V 已知,计算: ∫∫Σ=+?.)1(2222dxdy xyz z dzdx z xy dydz yz x 。(10分) 七、 函数),(y x z z =由0),(=z y y x F 所确定,F 具有连续的一阶偏导数,求dz 。 (12分) 八、 计算∫∫∫Ω +,)(22dxdydz y x 其中Ω是由平面z =2与曲面2222z y x =+所围成的闭区域。(12分) 九、 已知级数 ∑∞=1n n U 的部分和arctgn S n =,试写出该级数,并求其和,且判断级数∑∞=1n n tgU 的敛散性。(12分) 十、 设)(x f 连续,证明∫∫∫??=?A A D dt t A t f dxdy y x f |)|)(()(,其中A 为正常数。D :2||,2||A y A x ≤≤ 。(8分)

2015武汉大学数学分析考研真题

2015武汉大学数学分析 一、(40分) 1、.) 1()1)(1()1()1)(1(lim 2111------+--→k k n n n x x x x x x x 2、.sin cos cos lim 20x bx ax m n x -→ 3、).11(lim 132 n -+∑=∞→n k n k 4、已知 2 110n a a n n +≤<+,证明数列{}n a 极限存在。 二、已知曲面0)))((,))(((11=------c z y b c z x a F ,且),(t s F 二阶偏导连续,梯度处处不为零,(1)证明,曲面的切平面必过一定点;(2)()y x z z ,=,证明 .02 22222=??? ? ?????-?????y x z y z x z 三、0>n a ,01lim 1n >=??? ? ??-+∞→λa a n n n ,证明,()∑∞=--111n n n a 收敛. 四、求?????????????? ??--??-∞→t t y x t dxdy y x e e e 00t lim 的极限,或证明它不存在。 五、(1)、求积分()??+ππ 00cos dxdy y x 的值,(2)、10<<α,求积分()d t t f ?1 α的上确界,其中)t (f 是连续函数, ().110 ≤?dt t f 六、已知()dt x tx f ?∞+=0 21cos t ,证明, (1)、()x f 在()∞+∞, -上一致收敛; (2)()0lim =∞→t f t (3)()x f 在()∞+∞, -上一致连续; (4)()0dt sin 0 ≤?∞ t t f ;

大一上学期(第一学期)高数期末考试题

高等数学I 1. 当0x x →时,()(),x x αβ都是无穷小,则当0x x →时( D )不一定是 无穷小. (A) ()()x x βα+ (B) ()()x x 22βα+ (C) [])()(1ln x x βα?+ (D) )() (2x x βα 2. 极限 a x a x a x -→??? ??1sin sin lim 的值是( C ). (A ) 1 (B ) e (C ) a e cot (D ) a e tan 3. ??? ??=≠-+=001 sin )(2x a x x e x x f ax 在0x =处连续,则a =( D ). (A ) 1 (B ) 0 (C ) e (D ) 1- 4. 设)(x f 在点x a =处可导,那么= --+→h h a f h a f h )2()(lim 0( A ). (A ) )(3a f ' (B ) )(2a f ' (C) )(a f ' (D ) ) (31 a f ' 二、填空题(本大题有4小题,每小题4分,共16分) 5. 极限) 0(ln )ln(lim 0>-+→a x a a x x 的值是 a 1. 6. 由 x x y e y x 2cos ln =+确定函数y (x ),则导函数='y x xe ye x y x xy xy ln 2sin 2+++- . 7. 直线l 过点M (,,)123且与两平面x y z x y z +-=-+=202356,都平行,则直 线l 的方程为 13 121 1--=--=-z y x . 8. 求函数2 )4ln(2x x y -=的单调递增区间为 (-∞,0)和(1,+∞ ) . 三、解答题(本大题有4小题,每小题8分,共32分) 9. 计算极限10(1)lim x x x e x →+-.

武汉大学数学分析考试解答

武汉大学2004年攻读硕士学位研究生入学考试试题 科目名称:数学分析 科目代码:369 一、计算下列各题: 1. 2. 2212lim(...),(1)11()1lim()11(1)1n n n n n n a a a a n a a a a a a →∞→∞+++>-=-=---lim(sin 1sin ) 11lim 2sin()cos 2211lim 2sin cos 22(1) x x x x x x x x x x x x x →∞ →∞→∞+-+-++=++=++= 3. 4. 20 30 220sin()lim sin()lim (')313x x x t dt x x L Hospital x →→==?法则2 1 11 arctan 2arctan(21)arctan(21)244 k k k k k πππ∞ =∞ ==+--=-=∑∑ 5. 4812 4812323 3 1... ()59!13!1()...3!11!15! ()()sin ()4()()()24x x A B e e A x B x x A e e e e B A x B x π π πππππππππππππππππππ---+ +++= ++++-?-=??==?--+= ??!7! 6. " '2"22' 2(,)()(),()(,) (,)()()()() (,)()(23)()(1)()xy x xy y xy x y y xy F x y x yz f z dz f z F x y F x y z f z dz x xy xf xy x x F x y f x y f xy xy y f xy y y =-=-+-= +-+-??设:其中为可微函数,求

武汉大学2019-2020第二学期高等数学A2期末试卷(A卷)

武汉大学2019-2020学年 第二学期期末《高等数学A2》考试试卷(A 卷) 一、试解下列各题(每小题5分,共50分)1.讨论二重极限00 11lim()sin x y x y x y →→+的存在性。2.设级数11()n n n a a ∞-=-∑收敛,1(0)n n n b b ∞=≥∑收敛,证明:1n n n a b ∞ =∑绝对收敛。 3.设(,,)u f x y z =有连续偏导数,函数(,)z z x y =由方程x y z xe ye ze -=所确定,函数()y y x =由0sin x y x t e dt t -=?确定,求du dx .4.设2[,()]z f x y xy ?=-,其中(,)f u v 具有二阶连续偏导数,)(u ?二阶可导,求y x z ???2.5.已知全微分()()y y xy x x y xy x y x f d 2d 2),(d 2222--+-+=,求),(y x f 的表达式。 6.设曲面方程为0),(=--by z ax z F (b a ,为正常数),(,)F u v 具有一阶连续的偏导数,且02 2≠+v u F F ,试证明此曲面上任一点处法线恒垂直于一常向量。7.求22(,)f x y x y y =++在区域222 22:4,12x D x y y +≤+≥上的平均值。8.求2(,,)F x y z yzi z k =+ 穿出曲面∑的通量,∑为柱面:221,0y z z +=≥被平面 0,1x x ==截下部分。9.计算积分333x dydz y dzdx z dxdy ∑ ++?? ,其中∑为球面:2222x y z R ++=的外侧。10.设∑ 为半球面z =(23)x y z dS ∑++??. 二、(10分)已知空间曲线Γ:22223620 x y z x y z ?+-=?--=?,且空间曲线Γ在xoy 坐标面的投影曲线为L ,若取L 为顺时针方向,求曲线积分22 223L ydx xdy x y -+?.三、(8分)考察两直线111: 213 x y z l +-==-和2:42,3,24l x t y t z t =+=-+=-,是否相交?如相交,求出其交点,如不相交,求出两直线之间的距离d . 四、(本题24分,其中(1)8分,(2)8分,(3)4分,(4)4分,)已知某座小山的表面形状曲面方程为2275z x y xy =--+,取它的底面所在的平面为xoy 坐标面。(1)设点00(,)M x y 为这座小山底部所占的区域D 内的一点,问高函数(,)h x y ,在该点沿平面

大一第一学期期末高等数学(上)试题及答案

第一学期期末高等数学试卷 一、解答下列各题 (本大题共16小题,总计80分) 1、(本小题5分) 求极限 lim x x x x x x →-+-+-233 21216 29124 2、(本小题5分) . d )1(2 2x x x ? +求 3、(本小题5分) 求极限limarctan arcsin x x x →∞ ?1 4、(本小题5分) ? -.d 1x x x 求 5、(本小题5分) . 求dt t dx d x ? +2 21 6、(本小题5分) ??. d csc cot 46x x x 求 7、(本小题5分) . 求? ππ 212 1cos 1dx x x 8、(本小题5分) 设确定了函数求.x e t y e t y y x dy dx t t ==?????=cos sin (),2 2 9、(本小题5分) . 求dx x x ?+30 1 10、(本小题5分) 求函数 的单调区间 y x x =+-422Y 11、(本小题5分) .求? π +20 2 sin 8sin dx x x 12、(本小题5分) .,求设 dx t t e t x kt )sin 4cos 3()(ωω+=- 13、(本小题5分) 设函数由方程所确定求 .y y x y y x dy dx =+=()ln ,226 14、(本小题5分) 求函数的极值y e e x x =+-2 15、(本小题5分) 求极限lim ()()()()()()x x x x x x x →∞++++++++--121311011011112222 16、(本小题5分)

[考试必备]武汉大学数学分析考研试题集锦(1992,1994-2012年)

武汉大学数学分析1992 1.给定数列如下: }{n x 00>x ,?? ? ???+?=?+11)1(1k n n n x a x k k x ,",2,1,0=n (1)证明数列收敛。 }{n x (2)求出其极限值。 2.设函数定义在区间)(x f I 上,试对“函数在)(x f I 上不一致连续”的含义作一肯定语气的(即不用否定词的)叙述,并且证明:函数在区间x x ln ),0(+∞上不一致连续。 3.设函数在区间上严格递增且连续,)(x f ],0[a 0)0(=f ,为的反函数,试证明成立等式: 。 )(x g )(x f []x x g a x x f a f a d )(d )()(0 0∫ ∫?=4.给定级数∑+∞ =+01 n n n x 。 (1)求它的和函数。 )(x S (2)证明广义积分 x x S d )(10 ∫ 收敛,交写出它的值。 5.对于函数??? ????=+≠++=0,00,),(222 22 22y x y x y x y x y x f ,证明: (1)处处对),(y x f x ,对可导; y (2)偏导函数,有界; ),(y x f x ′),(y x f y ′(3)在点不可微。 ),(y x f )0,0((4)一阶偏导函数,中至少有一个在点不连续。 ),(y x f x ′),(y x f y ′)0,0(6.计算下列积分: (1)x x x x a b d ln 10 ?∫ ,其中为常数,b a ,b a <<0。 (2),其中为平面上由直线∫∫?D y y x e d d 2 D x y =及曲线31 x y =围成的有界闭区域。 武汉大学数学分析1994 1.设正无穷大数列(即对于任意正数}{n x M ,存在自然数,当时,成立), N N n >M x n >E 为的一切项组成的数集。试证必存在自然数}{n x p ,使得E x p inf =。 2.设函数在点的某空心邻域内有定义,对于任意以为极限且含于的数列 ,极限都存在(有限数)。 )(x f 0x 0 U 0x 0 U }{n x )(lim n n x f ∞ →(1)试证:相对于一切满足上述条件的数列来说,数列的极限是唯一确定的, 即如果和是任意两个以为极限且含于的数列,那么总有 }{n x )}({n x f }{n x }{n x ′0x 0 U )(lim )(lim n n n n x f x f ′=∞ →∞ →。 (2)记(1)中的唯一确定的极限为,试证:)}({n x f A A x f x x =→)(lim 0 。 3.设函数在点的邻域)(x f 0x I 内有定义,证明:导数)(0x f ′存在的充要条件是存在这样的函数,它在)(x g I 内有定义,在点连续,且使得在0x I 内成立等式:

武汉大学2010-2011第一学期《高等数学B1》期末考试试题解

2010-2011第一学期《高等数学B1》期末考试试题解 一、计算题(7?8分) 1、求由方程ln()x y xy e +=确定的隐函数()y y x =的导数dy dx 。 2 、求x →3、求3002 0sin lim cos x x x t dt t dt →??。 4、求1242lim n n x x x n n n n →∞????????++++++ ? ? ???? ??????? 。 5 、求不定积分 。 6、求定积分2 0(1sin )x x dx π-?。 7、求方程22x y xy xe -'+=的通解。 8、设2(),lim ()0x x f x e f x -→+∞'==求20()x f x dx +∞?。 解、1、(1),x y x y x y y xy dy y xye e y xy dx xye x +++'+-'=+=-。 2 、 0000222184lim lim lim 111222 x x x x x x x →→→→??==== 3、330200 20sin sin lim lim 0cos cos x x x x t dt x x t dt →→==??。 4、101242lim (2)1n n x x x x t dt x n n n n →∞????????++++++=+=+ ? ? ???? ???????? 。 5 、) 2212(1)11ln ln 121x e t t u v v dt dv v v v C x C v ====--=+=-++?。

6、2222 00 (1sin )cos sin 128x x x dx x x x π ππ??-=+-=- ????。 7、222 2,,,,2Pdx x x P x Q xe Pdx x Qe dx -?====??通解:222x x y e C -??=+ ???。 8、2 344()()lim lim lim 0939x x x x x f x f x x e x -→+∞→+∞→+∞'==-=-,()22 3233000000()11()()333111(1)666 x x t t t x f x x f x dx x f x dx x e dx te dt t e +∞+∞ +∞+∞-=+∞+∞--'=-=-=-=---=-????。 二、(7分)证明当02x π<<时2sin x x π >。 证、记sin ()12x f x x π=-。2(cos sin )()2x x x f x x π-'=。记()c o s s i n g x x x x =-。()sin 0(0)2g x x x x π'=-<<<,()g x 在02 x π≤≤严格单调下降。()(0)0,()0(0)2g x g f x x π'<=<<<。()f x 在02x π≤≤严格单调下降。()0(0)22f x f x ππ??>=<< ???。故当02x π<<时2sin x x π>。 三、(10分)设抛物线2y ax bx c =++过原点,当01x ≤≤时0y ≥,又已知该抛物线与x 轴及直线1x =所围成图形的面积为 13 。试确定,,a b c 使此图形绕x 轴旋转一周而成的旋转体的体积V 最小。 解、由抛物线2 y ax bx c =++过原点得0c =。 120 ()32a b A ax bx dx =+=+?。令13A =得223a b -=。 2222120224(1)4()()352712a a a a a V a ax x dx ππ??---??=+=++ ? ????? ?。 28(1)12()5 273a a a V a π--??'=-+ ???。()V a 有唯一聚点54a =-。根据问题的实际,54a =-时旋转体的体积V 最小。 53,,042 a b c =-==。

大一上学期高数期末考试题

大一上学期高数期末考试 一、单项选择题 (本大题有4小题, 每小题4分, 共16分) 1.. (A)(B)(C)(D)不可导. 2.. (A)是同阶无穷小,但不是等价无穷小;(B)是等价无穷小; (C)是比高阶的无穷小;(D)是比高阶的无穷小. 3.若,其中在区间上二阶可导且,则(). (A)函数必在处取得极大值; (B)函数必在处取得极小值; (C)函数在处没有极值,但点为曲线的拐点; (D)函数在处没有极值,点也不是曲线的拐点。 4. (A)(B)(C)(D). 二、填空题(本大题有4小题,每小题4分,共16分) 5. . 6. . 7. . 8. . 三、解答题(本大题有5小题,每小题8分,共40分) 9.设函数由方程确定,求以及. 10. 11. 12.设函数连续,,且,为常数. 求并讨论在处的连续性. 13.求微分方程满足的解. 四、解答题(本大题10分) 14.已知上半平面内一曲线,过点,且曲线上任一点处切线斜率数值上等于此 曲线与轴、轴、直线所围成面积的2倍与该点纵坐标之和,求此曲线方程. 五、解答题(本大题10分) 15.过坐标原点作曲线的切线,该切线与曲线及x轴围成平面图形D. (1)求D的面积A;(2) 求D绕直线x = e 旋转一周所得旋转体的体积 V. 六、证明题(本大题有2小题,每小题4分,共8分) 16.设函数在上连续且单调递减,证明对任意的,. 17.设函数在上连续,且,.证明:在内至少存在两个不同的点,使(提示: 设) 解答 一、单项选择题(本大题有4小题, 每小题4分, 共16分)

1、D 2、A 3、C 4、C 二、填空题(本大题有4小题,每小题4分,共16分) 5. . 6.. 7. . 8.. 三、解答题(本大题有5小题,每小题8分,共40分) 9.解:方程两边求导 , 10.解: 11.解: 12.解:由,知。 ,在处连续。 13.解: , 四、解答题(本大题10分) 14.解:由已知且, 将此方程关于求导得 特征方程:解出特征根: 其通解为 代入初始条件,得 故所求曲线方程为: 五、解答题(本大题10分) 15.解:(1)根据题意,先设切点为,切线方程: 由于切线过原点,解出,从而切线方程为: 则平面图形面积 (2)三角形绕直线x = e一周所得圆锥体体积记为V1,则 曲线与x轴及直线x = e所围成的图形绕直线x = e一周所得旋转体体积为V2 D绕直线x = e旋转一周所得旋转体的体积 六、证明题(本大题有2小题,每小题4分,共12分) 16.证明: 故有: 证毕。

武汉大学2008级数学物理方程试题

武汉大学2009 —2010 学年度第 一 学期 《数学物理方法》试卷(A ) 学院 专业 班 学号 姓名 分数 一.求解下列各题(10分×4=40分) 1.一条弦绳被张紧于点(0,0)与(1,0)两端之间,固定其两端,把它拉成x A πsin 的形状之后,由静止状态被释放而作自由振动。写出此物理问题的定解问题,并写出本征值和本征函数。 2.写出一维无界波动问题的达朗贝尔公式,利用达朗贝尔公式求解一维无界波动问题 ???????==>+∞<<-∞=-==x u x u t x u u t t t xx tt sin cos )0,(0200 并画出t =2时的波形。 3.定解问题???????==+==><<=-====2 ,sin 1,)0,0(000202t t t l x x xx tt u x u t u t u t l x u a u ,若要使边界条件齐次化,求其辅助函数,并写出边界条件齐次化后相应的定解问题。 4.计算积分?-=1 12)(dx x P x I l 二.(本题15分)用分离变量法求定解问题 ???? ?????===><<=-===x l u u u t l x Du u t l x x x x xx t π2cos 0 )0,0(000 三.(本题15分)有一内半径为a ,外半径为2a 的均匀球壳,其内、外表面的温度分 布分别保持为零和θcos ,试求此均匀球壳的稳定温度分布。

四.(本题15分)计算和证明下列各题: (1) (10分) dx x J x I ?=)(03 (将计算结果中的贝塞尔函数化为零阶和一阶的,因为工程上有零阶、一阶贝塞尔函数表可查。) (2) (5分)利用递推关系证明: )(1)()('0''02x J x x J x J -= 五.(本题15分)设有一长为l 的圆柱,其半径为R 。若圆柱的侧面及下底面(0=z )接地,而上底面(l z =)保持电势分布为f (ρ)。1)写出该圆柱的电势分布的定解问题;2)本征值和本征值函数;3)定解问题的通解。 参考公式 .

高等数学学期期末考试题(含答案全)

05级高数(2-3)下学期期末试题 (A 卷) 专业 ____________ 姓名 ______________ 学号 ________________ 《中山大学授予学士学位工作细则》第六条:“考试作弊不授予学士学位” 一,填空题 (每题4分,共32分) 1. 213______4 x y kx y z k π +-=-==若平面与平面成 角,则 1/4 2. 曲线20 cos ,sin cos ,1t u t x e udu y t t z e = =+=+? 在t = 0处的切线方程为________________ 3. 方程z e xyz =确定隐函数z = f (x,y )则z x ??为____________ 4. ( ),dy f x y dx ?1 交换的积分次序为_________________________ 5.()2221,L x y x y ds +=-=?L 已知是圆周则 _________π- 6. 收敛 7. 设幂级数0 n n n a x ∞ =∑的收敛半径是2,则幂级数 21 n n n a x ∞ +=∑的收敛半径是 8. ()211x y ''+=微分方程的通解是 ()2121 arctan ln 12 y x x c x c =-+++_______________________ 二.计算题 (每题7分,共63分) 1.讨论函数 f ( x, y ) = 221 ,x y + 220x y +≠, f ( 0 , 0 ) = 0 在点( 0 , 0 )处的连续性,可导性及可微性。 P 。330 2.求函数2 222z y x u ++=在点)1,1,1(0P 处沿P 0方向的方向导数,其中O 为坐 标原点。 3.2 1 2.1n n n n n ∞ =?? ?+?? ∑判别级数的敛散性 P .544 4.设u=),(z y xy f +,),(t s f 可微,求du dz f dy f x f dx y f '+??? ??'+'+?'2211. 012 112x y z ---==z z yz x e xy ?=?-211sin ____________1 n n n ∞ =++∑级数的敛散性为

武汉大学大一上学期高数期末考试题

高数期末考 试 一、填空题(本大题有4小题,每小题4分,共16分) 1. ,)(cos 的一个原函数是已知 x f x x =??x x x x f d cos )(则 . 2. lim (cos cos cos )→∞-+++=2 2 221 n n n n n n π π ππ . 3. = -+? 2 1 2 12 211 arcsin -dx x x x . 二、单项选择题 (本大题有4小题, 每小题4分, 共16分) 4.  )时( ,则当,设133)(11)(3→-=+-=x x x x x x βα. (A )()()x x αβ与是同阶无穷小,但不是等价无穷小; (B )()()x x αβ与是等价无穷小; (C )()x α是比()x β高阶的无穷 小; (D )()x β是比()x α高阶的无穷小. 5. )(0),sin (cos )( 处有则在设=+=x x x x x f . (A )(0)2f '= (B )(0)1 f '=(C )(0)0f '= (D )()f x 不可导. 6. 若()()()02x F x t x f t dt =-? ,其 中()f x 在区间上(1,1)-二阶可导 且'>()0f x ,则( ). (A )函数()F x 必在0x =处取得极大值; (B )函数()F x 必在0x =处取得极小值; (C )函数()F x 在0x =处没有极值,但点(0,(0))F 为曲线()y F x =的拐 点; (D )函数()F x 在0x =处没有极 值,点(0,(0))F 也不是曲线()y F x =的 拐点。 7. (2)( )(1 +=?t f x x f x f 是连续函数,且设(A )2 2 x (B )2 2 2x +(C )1x - (D )2x +. 8. 三、解答题(本大题有5小题, 每小题8分,共40分) 9. 设函数=()y y x 由方程 sin()1x y e xy ++=确定,求'() y x 以及 '(0)y . 10. .d )1(177 x x x x ?+-求 11.  求,, 设?- -?????≤<-≤=1 2 1020)(x x x x xe x f x 12. 设函数)(x f 连续, =?1 0()()g x f xt dt ,且→=0()lim x f x A x ,A 为常数. 求'()g x 并讨论'()g x 在=0x 处的连续性. 13. 求微分方程2ln xy y x x '+=满足

(精选)大一高数期末考试试题

一.填空题(共5小题,每小题4分,共计20分) 1. 2 1 lim() x x x e x →-= .2. ()()1 2005 1 1x x x x e e dx --+-= ? .3.设函数()y y x =由方程 2 1 x y t e dt x +-=? 确定,则 x dy dx == .4. 设()x f 可导,且1 ()()x tf t dt f x =?,1)0(=f , 则()=x f .5.微分方程044=+'+''y y y 的通解 为 . 二.选择题(共4小题,每小题4分,共计16分) 1.设常数0>k ,则函数 k e x x x f +- =ln )(在),0(∞+内零点的个数为( ). (A) 3个; (B) 2个; (C) 1个; (D) 0个. 2. 微分 方程43cos2y y x ''+=的特解形式为( ). (A )cos2y A x *=; (B )cos 2y Ax x * =; (C )cos2sin 2y Ax x Bx x * =+; (D ) x A y 2sin *=.3.下列结论不一定成立的是( ). (A )若[][]b a d c ,,?,则必有()()??≤b a d c dx x f dx x f ;(B )若0)(≥x f 在[]b a ,上可积, 则()0b a f x dx ≥?;(C )若()x f 是周期为T 的连续函数,则对任意常数a 都有 ()()?? +=T T a a dx x f dx x f 0 ;(D )若可积函数()x f 为奇函数,则()0 x t f t dt ?也为奇函数.4. 设 ()x x e e x f 11 321++= , 则0=x 是)(x f 的( ). (A) 连续点; (B) 可去间断点; (C) 跳跃间断点; (D) 无穷间断点. 三.计算题(共5小题,每小题6分,共计30分) 1. 计算定积分 2 30 x e dx - 2.2.计算不定积分dx x x x ? 5cos sin . 求摆线???-=-=),cos 1(),sin (t a y t t a x 在 2π= t 处的切线的方程.

武汉大学2005数学分析试题解答.doc

2005 年攻读硕士学位研究生入学考试试题解答(武 汉 大 学) 一、设{}n x 满足: 11||||||n n n n n x x q x x +--=-,||1n q r ≤< ,证明{}n x 收敛。 证明:(分析:压缩映像原理) 1111 11 11 11 2121211,|12 ||||||||, ||||(1...)|| ||1||111ln || l n n n n n n n n n p p n p n i i n n i n n p n r m q m x x q x x m x x Cauchy x x x x m m x x m x x m m x x m m m x x N εε+--+--+-+=+--+= <<-=-<-?-≤ -<+++---=-<----=∑令:则显然|(此即压缩映像原理证明)以下证明压缩映像原理利用收敛准则,对取n ||n p n n N m x x ε+>-≤+1,对任意的。从而知命题收敛 二、对任意δ > 0。证明级数01 n n x +∞ =∑ 在(1,1+δ)上不一致收敛。 证明:(利用反证法,Cauchy 收敛准则和定义证明。) 10,(1,1),,,1 1()11111(1,{1(1,1),M N M n n n n N x N n M N x x x x x x min εδεδδ-+=?>?∈+?>->=>-∈+?+∑如果级数收敛, 那么对于当时 只需令代入上式,矛盾 从而知非一致收敛 三、设1 ()||sin ,"()f x x y f x =-?求 解,(本题利用莱布尼兹求导法则:)

本科2015-2016-1高数A1期末试题A卷

考试科目:高等数学A 考试时间: 120 分钟试卷总分: 100 分 1.设函数)(x f y =在点0x x =处可导,则 000 (3)() lim h f x h f x h h →+--= ( ) (A)'0()f x (B)' 04()f x (C)' 0()f x - (D) '03()f x 2、 若()f u 可导,且()3ln y f x =,则 d d y x = ( ) (A) ()3ln f x '; (B) ()233ln ln x f x '; (C) ()23 3ln ln x f x x '? ???; (D) ()233ln ln x f x x '、 3、 2 cos d lim x x t t t x →=? ( ) (A) 0 ( B)1 (C) 1 2 (D) 13 4、 曲线 322313y x x x =--+ 得凸区间就是 ( ) (A) 1 (,)2 -∞ (B)1(,)2 -∞- (C)1(,)2 +∞ (D) 11( ,)22 - 5、 下列反常积分收收敛得就是 ( ) (A) 31 d x e x +∞ -? (B) 4 x +∞ ? (C) 11d 1x x +∞+? (D) 11 d ln x x x +∞? 6、 设()f x 连续,且 ()d ()f x x F x C =+?,则下面正确得就是 ( ) (A) ln (ln )d (ln )x f x x F x C ?=+? (B)(2)d (2)x f x x F x C ?=+ ? (C) f x F C =+ (D) sin (cos )d (cos )x f x x F x C ?=+? 二、填空题(本大题共6个小题,每小题3分,共18分) 1. x =? ; 2.32 0y y y '''-+=得通解为 ; 3、设()2cos x y x =+,则d d y x = ; 4.定积分 (2 1 1 d =x x -? ;

武汉大学 2016-2017学年第2 学期 高等数学A期末考试试卷

武汉大学高等数学A 期末考试试卷 2016~2017学年第2 学期 考试科目:高等数学A 考试类型:(闭卷)考试 考试时间: 120 分钟 学号 姓名 年级专业 一、填空题(本大题共5小题,每小题3分,共15分) 1.二元函数2ln(21)z y x =-+的定义域为 。 2. 设向量(2,1,2)a =,(4,1,10)b =-,c b a λ=-,且a c ⊥,则λ= 。 3.经过(4,0,2)-和(5,1,7)且平行于x 轴的平面方程为 。 4.设yz u x =,则du = 。 5.级数11 (1)n p n n ∞ =-∑,当p 满足 条件时级数条件收敛。 二、单项选择题(本大题共5小题,每小题3分,共15分) 1.微分方程2()'xy x y y +=的通解是 ( ) A .2x y Ce = B .22x y Ce = C .22y y e Cx = D .2y e Cxy = 2.求极限 (,)(0,0)lim x y →= ( ) A . 14 B .12- C .1 4 - D .12 3 .直线: 327 x y z L ==-和平面:327 80x y z π-+-=的位置关系是 ( ) A .直线L 平行于平面π B .直线L 在平面π上

C .直线L 垂直于平面π D .直线L 与平面π斜交 4.D 是闭区域2222{(,)|}x y a x y b ≤+≤, 则D σ= ( ) A .33()2 b a π - B .332()3b a π- C .334()3b a π- D .333()2b a π- 5.下列级数收敛的是 ( ) A .11(1)(4)n n n ∞ =++∑ B .2111n n n ∞=++∑ C .1121n n ∞=-∑ D .1 n ∞ = 三、计算题(本大题共7小题,每小题7分,共49分) 1. 求微分方程'x y y e +=满足初始条件0x =,2y =的特解。 2. 计算二重积分22 D x y dxdy x y ++?? ,其中22{(,)1,1}D x y x y x y =+≤+≥。 3.设(,)z z x y =为方程2sin(23)43x y z x y z +-=-+确定的隐函数,求z z x y ??+??。

专升本高等数学试卷(A卷)doc资料

专升本高等数学试卷 (A卷)

武汉大学网络教育入学考试 高等数学模拟试题 一、单项选择题 1、在实数范围内,下列函数中为有界函数的是( ) A.x y e = B.1sin y x =+ C.ln y x = D.tan y x = 2、函数23()32 x f x x x -=-+的间断点是( ) A.1,2,3x x x === B.3x = C.1,2x x == D.无间断点 3、设()f x 在0x x =处不连续,则()f x 在0x x =处( ) A. 一定可导 B. 必不可导 C. 可能可导 D. 无极限 4、当x →0时,下列变量中为无穷大量的是( ) A.sin x x B.2x - C.sin x x D. 1sin x x + 5、设函数()||f x x =,则()f x 在0x =处的导数'(0)f = ( ) A.1 B.1- C.0 D.不存在. 6、设0a >,则2(2)d a a f a x x -=? ( ) A.0()d a f x x -? B.0()d a f x x ? C.02()d a f x x ? D.02()d a f x x -? 7、曲线2 3x x y e --= 的垂直渐近线方程是( ) A.2x = B.3x = C.2x =或3x = D.不存在 8、设()f x 为可导函数,且()()000lim 22h f x h f x h →+-=,则0'()f x = ( ) A. 1 B. 2 C. 4 D.0 9、微分方程''4'0y y -=的通解是( ) A. 4x y e = B. 4x y e -= C. 4x y Ce = D. 412x y C C e =+ 10、级数1(1)34 n n n n ∞=--∑的收敛性结论是( ) A. 发散 B. 条件收敛 C. 绝对收敛 D. 无法判定 11 、函数()f x ( ) A. [1,)+∞ B.(,0]-∞ C. (,0][1,)-∞?+∞ D.[0,1]

相关文档
相关文档 最新文档