文档视界 最新最全的文档下载
当前位置:文档视界 › 机械设备振动标准75662

机械设备振动标准75662

机械设备振动标准75662
机械设备振动标准75662

机械设备振动标准

它是指导我们的状态监测行为的规范

最终目标:我们要建立起自己的每台设备的标准(除了新安装的设备)。

?监测点选择、图形标注、现场标注。

?振动监测参数的选择:做一些调整:长度、频率范围

?状态判断标准和报警的设置

1 设备振动测点的选择与标注

1.1监测点选择

测点最好选在振动能量向弹性基础或系统其他部分进行传递的地方。对包括回转质量的设备来说,建议把测点选在轴承处或机器的安装点处。也可以选择其他的测点,但要能够反映设备的运行状态。在轴承处测量时,一般建议测量三个方向的振动。铅垂方向标注为V,水平方向标注为H,轴线方向标注为A,见图6-1。

图6-1 监测点选择

6-2在机器壳体上测量振动时,振动传感器定位的示意图

1.2 振动监测点的标注

(1)卧式机器

这个数字序列从驱动器非驱动侧的轴承座赋予数字001开始,朝着被驱动设备,按数字次序排列,直到第一根轴线的最后一个轴承。在多根轴线的(齿轮传动)机器上,轴承座的次序从驱动器开始,按数字次序继续沿着第二根轴线到被驱动器往下排列,接着再沿着第三根轴线往下排列,直到机组的末端为止。常见的几种标注方法见图6-3~6-5。

图6-3 振动监测点的标注

图6-4 振动监测点的标注

图6-5 振动监测点的标注

(2)立式机器

遵循与卧式机器同样的约定。

1.3 现场机器测点标注方法

机壳振动测点的标注可以用油漆标注,也可以在机壳上粘贴钢盘来标注振动测点,最好采用后一种方法标注。采用钢盘时,机壳要得到很好的处理。钢盘规格为厚度5mm,直径30mm,用强度较好的粘接剂粘接,以保证良好的振动传递特性。

2 设备振动监测周期的确定

振动监测周期设置过长,容易捕捉不到设备开始劣化信息,周期设置过短,又增加了监测的工作量和成本。因此应根据设备的结构特点、传动方式、转速、功率以及故障模式等因素,合理选定振动监测周期。当设备处于稳定运行期时,监测周期可以长一些;当设备出现缺陷和故障时,应缩短监测周期。在确定设备监测周期时,应遵守以下原则;

1)安装设备或大规模维修后的设备运行初期,周期要短(如每天监测一次),待设备进入稳定运行期后,监测周期可以适当延长。

2)检测周期应尽量固定。

3)对点检站专职设备监测,多数设备监测周期一般可定为7至14天;对接近或高于3000转/分的高速旋转设备,应至少每周监测1次。

4)对车间级设备监测,监测周期一般可定为每天1次或每班1次。

5)实测的振动值接近或超过该设备报警标准值时,要缩短监测周期。如果实测振动值接近或超过该设备停机值,应及时停机安排检修。如果因生产原因不能停机时,要加强监测,监测周期可缩短为1天或更短。

3 设备振动监测信息采集

3.1 振动监测参数的选择

对于超低频振动,建议测量振动位移和速度;对于低频振动,建议测量振动速度和加速度;对于中高频振动和高频振动,建议测量振动加速度。说明如下:(1)设备振动按频率分类。根据振动的频率,设备振动可以分为以下几种:

1)超低频振动,振动频率在10Hz以下。2)低频振动,振动频率在10Hz至1000Hz。3)中高频振动,振动频率在1000Hz至10000Hz。4)高频振动,振动频率在10000Hz 以上。

(2)位移为峰峰值;速度为有效值;加速度为有效值;有时根据需要,速度和加速度还要测量峰值。

3.2 振动监测中的几个“同”

为保证测量结果的可比性,在振动监测中要注意做到以下几个“同”:

1)测量仪器同;2)测量仪器设置同;3)测点位置、方向同;4)设备工况同;5)背景振动同。并尽量由同一个人测量。

3.3 振动数据采集

应严格按监测路径和监测周期对设备进行定期监测。采集设备振动数据时,通常还需要记录设备的其他过程参数,如温度、压力和流量等,以便于比较和趋势管理。设备监测人员要及时作好测试记录的整理、备份;对存在疑义的数据记录,要及时核准;及时分析处理测量数据;作好趋势预测和简易诊断。

4 评价机器状态的方法

机器状态的评价是设备简易诊断的重要内容之一,就是根据一些振动标准或方法判断机器处于什么状态,为设备有序运行和适时维修提供依据。

由于机器振动特性之间存在较大差异,在类似运行状况下机器的振动水平会出现较大的差异。一种振动水平在一台机器上可能很好,而在另一台机器上可能会导致严重的后果,因此应对不同的设备建立不同的振动标准。

由前所述,设备振动监测劣化倾向管理的方法有三种,即振动值(振幅)、无量纲参数和频谱图的劣化倾向管理。利用振动测量评价机器状态大体上也分为这几类。

实际工作中建立评价机器状态标准的方法有许多,常见的有振动标准法、类比判断法、趋势图法等等。建立振动的标准还可以参考机器制造商的建议,当然最好是长期监测设备,创建特定设备的标准。

4.1 绝对判断标准

绝对判断标准是评价机器状态最常用的方法。绝对标准有国际标准、国家标准、行业标准等。

(1)在非旋转部件上测量和评价机器

ISO2372(表6-1)、ISO10186(表6-2)等国际振动标准是最常用的振动判断标准。

注:

第一类小型机械(如15Kw以下的电机);第二类中型机械(如15~75Kw 的电机以及300Kw以下的机械);第三类大型机械(刚性基础);第四类大型机械(柔性基础);转速:600~12000rpm;振动测量范围:10~1000Hz。

需要说明的是,ISO2372标准仅适用于机壳或轴承座的振动;对于复杂振动来说,振动速度有效值(RMS)的测量更为重要,RMS值说明了设备振动的能量大小;对于600rpm以下的设备,可能更关心峰值的测试;振动值是所测量的各个轴承各个方向的最大值;应选取机器在额定转速和各种负荷下的最大振动烈度作为判断依据;所谓刚性基础是指机器支承系统的固有频率高于激振力的频率,柔性支承指机器支承系统的固有频率低于激振力的频率。

注:1)适合条件:额定功率大于15KW和额定转速在120 rpm~15000rpm在现场测量的工业机器;2)区域说明:区域A:优质;区域B:良好;区域C:注意;区域D:危险。

(2)ISO7919轴振动评价标准

表6-3为ISO7919-1旋转机器轴振动标准。

使用说明:1)振动幅值是在稳态运行工况下额定转速时的振动幅值;并且两个选定的相互垂直的测量方向上位移峰峰值的较大者,如果只使用一个方向,那么应注意确保它可以提供足够的信息。2)区域A:振动良好,可以长期运行,新交付使用的机器的验收区域。区域B:振动合格,可以长期运行。区域C:振动报警,可以短期运行,必须采取措施。区域D:停机极限、危险,立即停机。3)振动幅值的变化,可以是瞬时的或者是随时间逐渐发展的,振动变化意味着机组可能有故障。振动幅值变化量报警设定值为:基线值+区域B上限值的25%。

4.2 相对判断标准

是对同一设备的同一测点、在同一方向(V/H/A/NON)、同一工况下的振动值进行定期测定。将机器的正常值作为初始值,后来的实测值与初始值进行比较。表6-4为ISO2372相对振动标准。

在实际工作中常用的趋势图法与此类似,可以根据设备运行经验、或经过计算模拟,判断设备的状态,估计或推断设备的剩余寿命。

4.3 类比判断标准(纵向对比看发展)

数台机型相同、规格相同和工况相同的机器,对它们进行测定,通过相互比较做出判断,表6-5为推荐的类比判断标准。

4.4 波峰因数评价法

波峰因数是无量纲参数的一种,其定义为:峰值与有效值之比。该参数适合于滚动轴承和齿轮箱的早期诊断。设备无故障时,该值为3左右;随故障的出现和发展,该值逐步增大,可达到10~15;当故障发展到一定程度,它又逐步变小,并接近于3。

齿轮轴承故障的峭度检测也有类似的规律。

4.5 频谱图报警法

频谱图报警有两种,宽频带报警和窄频带报警。宽频带报警是选择设备正常状态的频谱图作为基准谱,在监测的整个频带上设定若干报警线,一旦某些谱线超过报警线设备即处于报警状态。窄频带报警与宽频带报警不同之处是,窄频带报警的报警线仅针对某些谱线,这些谱线常常是设备的转频或转频的倍频或零部件的故障频率或倍频等,一旦某些谱线超过报警线设备即处于报警状态。报警线的设置要以大量的监测实践为基础才能有效建立。

评价设备状态还有很多种方法,对于齿轮和滚动轴承还可以根据其它一些监测量和方法(如冲击脉冲法等)进行判断。当然感官评价也是最常用的基本评价方法,在实际工作中应综合运用各种方法,以便作出准确判断。

5 设备状态监测和故障诊断成效评价

5.1 设备状态监测诊断工作绩效评价

设备监测和故障诊断必然存在成本。安排人员,添置仪器。客观地讲,设备监测诊断的成本在设备总成本中占的比例很小,而且还将逐步减小。如何评价设备状态监测和诊断效果是此项工作能否健康发展的重要因素。对于群检和专业点检来说,要考察点检是否严格按照标准化进行作业,点检是否到位、点检是否有效、点检是否发现问题等等。表6-6为宝钢公司曾使用的设备监测成效的一种评价方法。

表6-6 设备监测成效的评价

周期性监测诊断对设备状态的把握率D C B A C

A ++++=

5.2 设备故障诊断效益评价

设备状态监测和故障诊断贯穿于设备寿命周期的各个阶段,它对于改善设计(设计本身的问题、可诊断性设计)、改进制造工艺和质量、减少库存、指导和评价设备安装和检修效果、保证设备长周期安全经济运行等均有重要作用。

根据实践经验,设备状态监测和故障诊断的经济效益主要体现在避免设备事故、依据诊断结果适时适度维修(适当的时机、用最短的时间、有针对性进行检修;同步维修,确保系统整体效益;延长设备寿命周期等)而产生的产量效益和降低成本效益。诊断实践中有大量例子,下文将给出实例说明,通过典型实例,最能说明设备监测诊断工作的重要性。

此外根据设备状态加油/换油产生的降低油耗、降低无为能量消耗产生的节电效益等等方面都为企业带来巨大的收益。 5.3 统计结果

根据美国CSI 公司提供的数据,在“RBM 优秀奖”统计结果中一些行业在设备监测诊断方面的投入产出比,如表6-7。

另据英国工业界的统计,设备状态监测带来的收益的65%与产量有关,35%与维修费有关。统计结果显示,最适宜开展状态监测的行业有:能源、动力、煤炭、电力、石油、化工、交通运输、冶金、建材、造纸、纺织、卷烟、造船、汽车等等。

6 机械设备常用振动标准

6.1 绝对评价标准的范围(适用中/高速滚动轴承)×100%

6.2 风机类振动标准

6.3 压缩机振动标准

6.4 电动机振动标准

(15kw以下、15kw以上、90kw以上的电动机)

图6-6电动机振动标准(15kw以下的电动机)

图6-7 电动机振动标准(15kw以上的电动机)

图6-8 电动机振动标准(90kw以上的电动机)

枯藤老树昏鸦,小桥流水人家,古道西风瘦马。夕阳西下,断肠人在天涯。

振动诊断标准

第十章参考标准 为了方便现场诊断查找使用,我们把收集到的各类有代表性的诊断标准,按照国际标准化组织、国际电工委员会、相关国家标准和诊断对象分类列出,同时把属于同类设备的有关标准排列在一起,它们在数值上可能有些差异,我们可以根据诊断对象的具体情况参照选用。在每个标准后面,以“注”的形式简要说明了该标准的主要特点、约束条件及应用范围。 第一节国际标准化组织(ISO)的相关标准文件 一、可予采用的国际标准 ISO 1925机械振动——平衡——名词术语 ISO 1940(全部)机械振动——刚性转子的平衡品质要求 ISO 2017-1机械振动与冲击——弹性安装系统——第一部分:主动与被动隔离的应用 ISO 2041振动与冲击——名词术语 ISO 2954旋转与往复机器的机械振动——对振动烈度测量仪的要求 ISO 5348 机械振动与冲击——加速度计的机械安装 ISO 7919(全部),非往复机械的振动——在转轴上的测量及评价准则 ISO 8528-9由往复式内内燃机驱动的交流发电机组——第九部分:机械振动的测量与评定 ISO 8569机械振动与冲击——振动与冲击对室内敏感设备影响的测量与评价 ISO 10816(全部),机械振动——在非旋转部件上测量和评价机器的机械振动 ISO 11342:1998,机械振动——挠性转子机械平衡的方法与准则 ISO 13372,机器的状态监测及诊断——名词术语 ISO 13373-1,机器的状态监测及诊断——振动状态监测与诊断——第一部分:总则 ISO 13379,机器的状态监测及诊断——数据解释及诊断技术的一般指南ISO 14694,工业风机——平衡品质与振动水平技术要求

设备振动标准

“刚性连接”中,相对的连接件之间不得有位移,在大多数的紧固中都是这样的连接。 “挠性连接”中,相对的连接件既有约束或传递动力的关系,又可以有一定程度的相对位移。 如常见的联轴器,刚性联轴器将两个部分用螺栓紧固,这样的安装要求同心度极高,稍有误差,机械就会震动,而且寿命不长。 挠性联轴器就有措施,在联轴器的两部分之间,使用滑块、弹性柱销、木销或万向节等,即传递了动力,也满足了设备的使用要求。 刚性联轴器不具有补偿被联两轴轴线相对偏移的能力,也不具有缓冲减震性能;但结构简单,价格便宜。只有在载荷平稳,转速稳定,能保证被联 两轴轴线相对偏移极小的情况下,才可选用刚性联轴器。属于刚性联轴器的 有套筒联轴器、夹壳联轴器和凸缘联轴器等。其它联轴器都是挠性联轴器了. 企业设备振动故障诊断 相对标准的建立及应用 陈兆虎李兰儒张红 摘要本文结合克拉玛依石化厂实际情况,从安全性、经济性出发,叙述建立适合现代企业设备管理维修的动设备振动故障诊断相对标准的方法,以及相对标准应用效果。 一、设备振动故障诊断标准 1.标准的类型及理论依据 标准有绝对标准和相对标准两大类型。绝对标准就是人们常说的国际标准。各种转动机械的振源主要来自结构设计,制造、安装质量,调试情况和环境本身。振动的存在必然不同程度引起设备自身及其附属管线的结构疲劳和损伤。美国齿轮制造协会(AGMA)提出在低频域(10Hz以下),以位移作为振动标准;中频域(10Hz~1kHz),以速度作为振动标准;而高频域(1kHz以上)则以加速度作为标准。 理论已经证明,振动部件的疲劳与振动速度成正比,振动所产生的能量与振动速度的平方成正比,能量传递的结果必然造成磨损或其它缺陷。因此,在振动判断标准中,无论从疲劳损伤还是磨损等缺陷来说,以振动速度标准最为适宜。 )标准mm/s 表1 电动机器振动(v rms

旋转机械振动的基本特性 (DEMO)

旋转机械振动的基本特性 一、转子的振动基本特性 大多数情况下,旋转机械的转子轴心线是水平的,转子的两个支承点在同一水平线上。设转子上的圆盘位于转子两支点的中央,当转子静止时.由于圆盘的重量使转子轴弯曲变形产生静挠度,即静变形。此时,由于静变形较小,对转子运动的影响不显著,可以忽略不计,即认为圆盘的几何中心O′与轴线AB上O点相重合,如图7—l所示。转子开始转动后,由于离心力的作用,转子产生动挠度。此时,转子有两种运动:一种是转子的自身转,即圆盘绕其轴线AO′B的转动;另一种是弓形转动,即弯曲的轴心线AO′B与轴承联线AOB组成的平面绕AB轴线的转动。 转子的涡动方向与转子的转动角速度ω同向时,称为正进动;与ω反方向时,称为反进动。 二、临界转速及其影响因素 随着机器转动速度的逐步提高,在大量生产实践中人们觉察到,当转子转速达到某一数值后,振动就大得使机组无法继续工作,似乎有一道不可逾越的速度屏障,即所谓临界转速。Jeffcott用—个对

称的单转子模型在理论上分析了这一现象,证明只要在振幅还未上升到危险程度时,迅速提高转速,越过临界转速点后,转子振幅会降下来。换句话说,转子在高速区存在着一个稳定的、振幅较小的、可以工作的区域。从此,旋转机械的设计、运行进入了一个新时期,效率高、重量轻的高速转子日益普遍。需要说明的是,从严格意义上讲,临界转速的值并不等于转子的固有频率,而且在临界转速时发生的剧烈振动与共振是不同的物理现象。 在正常运转的情况下: (1)ω<n ω时, 振幅A>0,O′点和质心G 点在O 点的同一侧,如图7—3(a)所示; (2)ω>n ω时,A<0,但A>e,G 在O 和O′点之间,如图 7—3(c)所示; 当ω≥n ω时,A e -≈或O O′≈-O′G,圆盘的质心G 近似 地落在固定点O,振动小。转动反而比较平稳。这种情况称为“自动对心”。 (3)当ω=n ω时,A ∞→,是共振情况。实际上由于存在阻尼,振幅A 不是无穷大而是较大的有限值,转轴的振动非常剧烈,以致有可 能断裂。n ω称为转轴的“临界角速度” ;与其对应的每分钟的转数则称为“临阶转速”。 如果机器的工作转速小于临界转速,则称为刚性轴;如果工作转速高于临界转速,则称为柔性轴。由上面分析可知,只有柔性轴的旋转机器运转时较为平稳 但在启动过程中,要经过临界转速。如果缓

机械设备振动标准

机械设备振动标准 它是指导我们的状态监测行为的规范 最终目标:我们要建立起自己的每台设备的标准(除了新安装的设备)。 监测点选择、图形标注、现场标注。 振动监测参数的选择:做一些调整:长度、频率范围状态判断标准和 报警的设置 1设备振动测点的选择与标注 1.1监测点选择 测点最好选在振动能量向弹性基础或系统其他部分进行传递的地方。对包括回转质量的设备来说,建议把测点选在轴承处或机器的安装点处。也可以选择其他的测点,但要能够反映设备的运行状态。在轴承处测量时,一般建议测量三个方向的振动。铅垂方向标注为V ,水平方向标注为H ,轴线方向标注为A,见图6-1 < 图6-1监测点选择

图6-2在机器壳体上测量振动时,振动传感器定位的示意图 1.2振动监测点的标注 (1)卧式机器 这个数字序列从驱动器非驱动侧的轴承座赋予数字001开始,朝着被驱动设备,按数字次序排列,直到第一根轴线的最后一个轴承。在多根轴线的(齿轮传动) 机器上,轴承座的次序从驱动器开始,按数字次序继续沿着第二根轴线到被驱动器往下排列,接着再沿着第三根轴线往下排列,直到机组的末端为止。常见的几种标注方法见图6-3?6-5。 图6-3振动监测点的标注 图6-4振动监测点的标注

001 002 003 0C4 005 QOG 图6-5振动监测点的标注 (2)立式机器 机壳振动测点的标注可以用油漆标注,也可以在机壳上粘贴钢盘来标注振动测点,最好采用后一种方法标注。采用钢盘时,机壳要得到很好的处理。钢盘规格为厚度5mm,直径30mm,用强度较好的粘接剂粘接,以保证良好的振动传递特性。 2设备振动监测周期的确定 振动监测周期设置过长,容易捕捉不到设备开始劣化信息,周期设置过短,又增加了监测的工作量和成本。因此应根据设备的结构特点、传动方式、转速、功率以及故障模式等因素,合理选定振动监测周期。当设备处于稳定运行期时,监测周期可以长一些;当设备出现缺陷和故障时,应缩短监测周期。在确定设备监测周期时,应遵守以下原则; 1)安装设备或大规模维修后的设备运行初期,周期要短(如每天监测一次) :待设备进入稳定运行期后,监测周期可以适当延长。 2)检测周期应尽量固定。 3)对点检站专职设备监测,多数设备监测周期一般可定为7至14天;对接 近或高于3000转/分的高速旋转设备,应至少每周监测1次。 4)对车间级设备监测,监测周期一般可定为每天1次或每班1次。 5)实测的振动值接近或超过该设备报警标准值时,要缩短监测周期。如果实测振动值接近或超过该设备停机值,应及时停机安排检修。如果因生产原因不能停机时,要加强监测,监测周期可缩短为1天或更短。 3设备振动监测信息采集 3.1振动监测参数的选择 对于超低频振动,建议测量振动位移和速度;对于低频振动,建议测量振动速度和加速度;对于中高频振动和高频振动,建议测量振动加速度。说明如下:

泵类振动标准

泵类振动标准 泵类也是状态监测与故障诊断工作中接触较多的设备,我国国家标准GB-10889-1989“泵的振动测量与评价方法”等效采用ISO2373-1974来评定泵的振动烈度等级,见表19和表20。 表19 GB 10889-1989泵的分类 注:1.卧式泵的中心高规定为由泵的轴线到泵的底座上平面间的距离。 2.立式泵本来没有中心高,为了评价它的振动级别,取一个相当尺寸当做立式泵的中心高:即把立式泵的出口法兰密封面到泵轴线间的投影距离规定为它的相当中心高。 表20 GB 10889-1989泵的振动标准 分类 中心高/mm ≤225 >225-550 >550 转速/(r/min ) 第一类 ≤180 ≤1000 - 第二类 >1800-4500 >1800-1800 >600-1500 第三类 >4500-12000 >1800-4500 >1500-3600 第四类 - >4500-12000 >3600-12000

该标准适用于除潜液泵、往复泵以外的各种形式的泵和泵用调速液力耦合器,转速范围为600-1200r/min。标准规定将主要测点上在三种不同的流量工况下测得的振动速度有效值中的最大的一个定为泵的振动烈度。 对石油化工用离心式压缩机及汽轮机,API617、API612标准规定,在制造厂进行机械运转试验时,转子振动位移的峰峰值不应超过A 值或μm 中的较小值,A=(12000/n)1/2,n为最大连续工作转速。对石化大机组,转子实际运行中振幅的许可值应该遵照制造商的规定。在无制造商规定时,也可以认为: 小于A值时为优良状态,A为(12000/n)1/2 或μm中的较小值; 大于A值、小于B值时为合格状态,B=~A,转速较低时取大值,转速高时取小值,B值可设为低报警值;

振动监测参数及标准(特选参考)

机械设备振动监测参数及标准 一、振动诊断标准的制定依据 1、振动诊断标准的参数类型 通常,我们用来描述振动的参数有三个:位移、速度、加速度。一般情况下,低频振动采用位移,中频振动采用速度,高频振动采用加速度。 诊断参数在选择时主要应根据检测目的而选择。如需要关注的是设备零部件的位置精度或变形引起的破坏时、应选择振动位移的峰值,因为峰值反映的是位置变化的极限值;如需关注的是惯性力造成的影响时,则应选择加速度,因为加速度与惯性力成正比;如关注的是零件的疲劳破坏则应选择振动速度的均方根值,因为疲劳寿命主要取决于零件的变形能量与载荷的循环速度,振动速度的均方根值正好是它们的反映。 2、振动诊断标准的理论依据 各种旋转机械的振动源主要来自设计制造、安装调试、运行维修中的一些缺陷和环境影响。振动的存在必然引起结构损伤及材料疲劳。这种损伤多属于动力学的振动疲劳。它在相当短的时间产生,并迅速发展扩大,因此,我们应十分重视振动引起的疲劳破坏。

美国的齿轮制造协会(AGMA )曾对滚动轴承提出了一条机械发生振动时的预防损伤曲线,如下图所示。 图中可见,在低频区(10Hz 以下),是以位移作为振动标准,中频(10~1000Hz )是以速度作为振动标准,而在高频区(1KHz 以上)则以加速度作为振动标准。 理论证明,振动部件的疲劳与振动速度成正比,而振动所产生的能量与振动的平方成正比。由于能量传递的结果造成了磨损好其他缺陷,因此,在振动诊断判定标准中,是以速度为准比较适宜。 而对于低频振动,,主要应考虑由于位移造成的破坏,其实质是疲劳强度的破坏,而非能量性的破坏。但对于1KHz 以上的高频振动,则主要考虑冲击脉冲以及原件共振的影位移恒定 一定的速度 加速度恒 定

机械共振时的9大特征及其解决措施

机械共振时的9大特征及其解决措施 机械共振特征 1. 对动平衡的努力没有效果 一般,对于处于或接近共振的机器,想平衡好是很难的;如果机器处于共振区域,那么即使很小的转速,也会导致相位发生剧烈的变化,变化幅度有可能接近180°;因此需要把动平衡的转子从机器上拆下来,在固定的动平衡机上进行动平衡。 2. 高度定向振动 在正交的三个方向上有一个方向与其他两个方向相比较共振振动在这个方向引起更大的振动(例如,水平方向振动可能比垂直方向或轴向方向振动大10倍)。如果发生共振,通常共振方向的振动比其它正交的两个方向的振动大5到15倍。现在许多专家诊断软件系统利用这一事实查找可能的共振。这也就是为什么在定期的预测维修巡检中要在每个轴承的所有三个方向测量振动的重要性。 3. 共振测量方向的相位特征 共振频率将表明,在机器共振方向,相位随转速变化很大,因为在自振频率处相位将变化90度,完全通过共振时相位几乎变化180度,其与存在的阻尼值有关。另一方面,同时,非共振测量方向相位的变化可能很小,因为它们未经受自振频率共振。 4. 与共振测量方向垂直的测量方向大致的相位差 如果一个径向方向共振,振动传感器转过90度测量其他方向的振动时,相位差将接近或0度或180度,与设置振动传感器的侧面有关(不是像在不平衡占优势的情况中那样相位差约90度)。即,如果水平方向共振,则水平方向相位与垂直方向相位或是相等或是相差约180度。这是由于在自振频率处运转时引入另外附加的90度相位变化之故。在任何一种情况下,水平与垂直方向相位差0度或180度代表共振高度定向的振动特性(或者偏心)。5. 共振尖峰特征形状 通常,共振尖峰在其基础处有较宽的裙围,而非共振的尖峰的裙围更窄。即,共振尖峰的基础通常比非共振尖峰的基础宽。 6. 出现共振时的频率 共振不仅发生在1X转速频率。它可以是对与自振频率一致的任何强迫振动频率的响应。这些情况下,比较这个方向这个频率的振动幅值和其他两个正交方向的相同频率的振动幅值很有用。如果共振,这个频率应该比这三个方向之一的振动频率更高。这个频率可能是4X,5X,或6X转速频率处的尖峰(或者甚至更高频率),这些频率相应于叶片通过频率(BPF),轴承故障频率,齿轮啮合频率(GMF),或者甚至机器松动状态的振动频率。如果导致强迫振动频率本身振动幅值的降低的这个激振频率源起作用,它也可能把这个自振频率的响应降低到迫振动频率。请记住,共振频率幅值=静振幅×放大因子Q。 7. 任何共振体的过大的振动和动应力 不仅必须研究机器转子(旋转件)的共振,还应研究激起支承框架,基础甚至连接管道的自振频率。疲劳故障经常发生在连接框架或管道上,这是因为它们对来自机器的强迫振动频率发生共振。解决问题要求或是降低机器中强迫振动频率源,把共振框架体与机器隔离,改变转子转速或者改变框架体本身的自振频率。 8. 以前从未发生共振的机器长期运行中突然发生共振 多年没有共振故障的机器没有什么警告或先兆突然发生共振。例如,轴承磨损可能降低轴和轴承系统的刚性,降低自振频率,使之与强迫振动频率一致而发生共振。还有,简单地更换滑动轴承可以引起自振频率的变化,如果树轴承不恰当地制造和刮削以与轴很好地连续地接触,使转子发生共振。这种情况下,您适当地安装轴承,检查要求的间隙指标和适当地对中

机械设备振动标准

机械设备振动标准 1 设备振动测点的选择与标注 1.1 监测点选择 测点最好选在振动能量向弹性基础或系统其他部分2进行传递的地方。对包括回转质量的设备来说,建议把测点选在轴承处或机器的安装点处。也可以选择其他的测点,但要能够反映设备的运行状态。在轴承处测量时,一般建议测量三个方向的振动。水平方向标注为H,铅垂方向标注为V ,轴线方向标注为A,见图6-1。 图6-1 监测点选择 图6-2 在机器壳体上测量振动时,振动传感器定位的示意图

1.2 振动监测点的标注(1)卧式机器 这个数字序列从驱动器非驱动侧的轴承座赋予数字001 开始,朝着被驱动设备,按数字次序排列,直到第一根轴线的最后一个轴承。在多根轴线的(齿轮传动)机器上,轴承座的次序从驱动器开始,按数字次序继续沿着第二根轴线到被驱动器往下排列,接着再沿着第三根轴线往下排列,直到机组的末端为止。常见的几种标注方法见图6-3 ~6-5 。 图6-3 振动监测点的标注 图6-4 振动监测点的标注 (2)立式机器遵循与卧式机器同样的约定 1.3 现场机器测点标注方法机壳振动测点的标注可以用油漆标注(最简单的一种方 法),标注大小与传感 器磁座大小相似;也可以在机壳上粘贴钢盘来标注振动测点,最好采用后一种方法标

注。采用钢盘时,机壳要得到很好的处理。钢盘规格为厚度5mm,直径 30mm, 用强度较好的粘接剂粘接,以保证良好的振动传递特性。 2 设备振动监测周期的确定振动监测周期设置过长,容易捕捉不到设备开始劣化信息,周期设置过短,又增加了监测的工作量和成本。因此应根据设备的结构特点、传动方式、转速、功率以及故障模式等因素,合理选定振动监测周期。当设备处于稳定运行期时,监测周期可以长一些;当设备出现缺陷和故障时,应缩短监测周期。在确定设备监测周期时,应遵守以下原则; 1)安装设备或大规模维修后的设备运行初期,周期要短(如每天监测一次),待设备进入稳定运行期后,监测周期可以适当延长。 2)检测周期应尽量固定。 3)对点检站专职设备监测,多数设备监测周期一般可定为7 至14 天;对接 近或高于3000转/ 分的高速旋转设备,应至少每周监测 1 次。 4)对车间级设备监测(指运行人员),监测周期一般可定为每天1 次或每班1 次。 5)实测的振动值接近或超过该设备报警标准值时,要缩短监测周期配件;如果实测振动值接近或超过该设备停机值,应及时停机安排检修;如果因生产原因不能停机时,要加强监测,监测周期可缩短为 1 天或更短。 3 设备振动监测信息采集 3.1 振动监测参数的选择对于超低频振动,建议测量振动位移和速度;对于低频振动, 建议测量振动 速度和加速度;对于中高频振动和高频振动,建议测量振动加速度。说明如下:(1)设备振动按频率分类。根据振动的频率,设备振动可以分为以下几种:1)超低频振动,振动频率在10Hz 以下。 2)低频振动,振动频率在10Hz 至1000Hz。 3)中高频振动,振动频率在1000Hz至10000Hz。 4)高频振动,振动频率在10000Hz以上。 (2)位移为峰峰值;速度为有效值;加速度为有效值;有时根据需要,速度和加速度还要测量峰值。 3.2 振动监测中的几个“同” 为保证测量结果的可比性,在振动监测中要注意做到以下 几个“同” : 1 )测量仪器同; 2 )测量仪器设置同; 3 )测点位置、方向同; 4 )设备工况同; 5 )背景振动同。并尽量由同一个人测量。 3.3 振动数据采集应严格按监测路径和监测周期对设备进行定期监测。采集设备振动数据时,通常还需要记录设备的其他过程参数,如温度、压力和流量等,以便于比较和趋

石油化工旋转机械振动标准

第三章.石油化工旋转机械振动标准 (SHS01003-2004) 1总则 1.1主题内容与适用范围 1.1.1本标准规定了石油化工旋转机械振动评定的现场测量方法(包括测量参数、测量仪器、测点布置、测试技术要求、机器分类等)及评定准则。石油化工旋转机械振动分析的现场测量方法应满足本标准的规定但不仅限于此。 1.1.2本标准适用的设备包括电动机、发电机、蒸汽轮机、烟气轮机、燃气轮机、离心压缩机、离心泵和风机等类旋转机械。 按照本标准规定的方法进行测试得到的振动数据,可作为设备状态评定和设备验收的依据。经买卖双方协商认可,亦可采用制造厂标准或其他标准。 1.1.3本标准不适用于主要工作部件为往复运动的原动机及其传动装置。 本标准也不适用于振动环境中的旋转机械的振动测量。振动环境是指环境传输的振动值大于运行振动值1/3的情况。 1.1.4未能纳入本标准范围的其他旋转机械,暂按设备出厂标准进行检验和运行。 1.2编写修订依据 GB/T 6075.1-1999 在非旋转部件上测量和评价机器的机械振动第1部分:总则 GB/T 6075.3-2001 在非旋转部件上测量和评价机器的机械振动第3部分:额定功率大于15kw、额定转速在120~15000r/min之间的现场测量的工业机器 GB 11348.1-1999 旋转机械转轴径向振动的测量和评定第一部分:总则 1.3本标准提供两种振动评定方法,即机壳表面振动及轴振动 的评定方法。 在机壳表面,例如轴承部位测得的振动是机器内部应力或运动状态的一种反映。现场应用的多数机泵设备(电动机、各种油泵、水泵等),由

机壳表面测得的振动速度,可为实际遇到的大多数情况提供与实践经验相一致的可信评定。 汽轮机、离心压缩机等大型旋转机械(如炼油催化三机、化肥五大机组、乙烯三大机组和空分装置的空压机等)通常含有挠性转子轴系,在固定构件上(如轴承座)测得的振动响应不足以表征机器的运转状态,对这类设备必须测量轴振动,根据实际需要,结合固定构件上的振动情况评定设备的振动状态。 2机壳表面振动 2.1本标准适用于转速为10~200r/s(600~12000r/min)旋转机 械振动烈度的现场测量与评定。 2.2测量参数 本标准规定在机壳表面(例如轴承盖处)测得的、频率在10~1000Hz 范围内的振动速度的均方根(Vrms)作为表征机械振动状态的测量参数,在规定点和规定的测量方向上测得的最大值作为机器的振动烈度。 2.3测量点的布置 测点一般布置在每一主轴承或主轴承座上,并在径向和轴向两个方向上进行测量,如图1所示。对于立式或倾斜安装的机器,测量点应布置在能得出最大振动读数的位置或规定的位置上,并将测点位置和测量值一同记录。测点位置应固定,一般应作明显标记。机器护罩、盖板等零件不适宜作测点。 2.4测量仪器 2.4.1一般采用由传感器、滤波放大器、指示器和电源装置等组成的测量仪表。允许采用能取得同样结果的其他仪器。 2.4.2测量登记表滤波放大器的带通频率为10~1000Hz。 2.4.3测量仪表系统误差不超过±10%。 2.4.4传感器振动速度线性响应的最大值至少为感受方向上满量程振动速度的3倍,传感器横向灵敏度应小于10%。 2.4.5直读仪器应能指示或记录振动速度的均方根值。 2.4.6测量登记表尽可能采用电池为电源装置。 2.4.7测量仪表需定期校准,保证它具有可靠的测量结果。 2.5测量技术要求

机械振动理论基础及其应用

旋转机械振动与故障诊断研究综述 1.前言 工业生产离不开回转机械,随着装置规模不断扩大,越来越多的高速回转机械应用于工业生产,诸如高速离心压缩机、汽轮机发电机组。动态失稳造成的重大恶性事故屡见不鲜。急剧上升的振动可在几十秒之内造成机组解体,甚至祸及厂房,造成巨大的经济损失和人员伤亡。此外,机械振动可能降低设备机械性能,加速机械零部件的磨损,发出的噪声损害操作者的健康。但是振动也能合理运用,如工业上常用的振动筛、振动破碎等都是振动的有效利用。工程技术人员必须认真对待机械振动问题,当机组产生有害的振动时,及时分析原因,坚持用合理的振动测试标准,采取科学的防治措施。 2.旋转机械振动标准 ●旋转机械分类: Ⅰ类:为固定的小机器或固定在整机上的小电机,功率小于15KW。 Ⅱ类:为没有专用基础的中型机器,功率为15~75KW。刚性安装在专用基础上功率小于300KW的机器。 Ⅲ类:为刚性或重型基础上的大型旋转机械,如透平发电机组。 Ⅳ类:为轻型结构基础上的大型旋转机械,如透平发电机组。 ●机械振动评价等级: 好:振动在良好限值以下,认为振动状态良好。 满意:振动在良好限值和报警值之间,认为机组振动状态是可接受的(合格),可长期运行。 不满意:振动在报警限值和停机限值之间,机组可短期运行,但必须加强监测并采取措施。 不允许:振动超过停机限值,应立即停机。 3.振动产生的原因 旋转机械振动的产生主要有以下四个方面原因,转子不平衡,共振,转子不对中和

机械故障。 4.旋转机械振动故障诊断 4.1转子不平衡振动的故障特征 当发生不平衡振动时,其故障特征主要表现在如下方面: 1 )不平衡故障主要引起转子或轴承径向振动,在转子径向测点上得到的频谱图, 转速频率成分具有突出的峰值。 2 )单纯的不平衡振动,转速频率的高次谐波幅值很低,因此在时域上的波形是一个正弦波。 3 )转子振幅对转速变化很敏感,转速下降,振幅将明显下降。 4 )转子的轴心轨迹基本上为一个圆或椭圆,这意味着置于转轴同一截面上相互垂直的两个探头,其信号相位差接近90°。 4.2旋转机械振动模糊诊断 4.2.1 振动模糊诊断基本原理 振动反映了系统状态及变化规律的主要信息,统计资料表明:机械设备的故障有67 % 左右是由于振动引起的,并且能从振动和振动辐射出的噪声反映出来。回转机械的振动信息尤其明显,且振动诊断具有快速、简便、准确和在线诊断等一系列优点,所以振动诊断法是旋转机械状态识别和故障诊断的最有效、最常用的方法。 但是,由于机械系统本身的复杂性以及所摄取的振动信号强烈的模糊性,使故障之间没有清晰的界限,这时利用传统的振动频谱分析,对一个故障可能有多个征兆来表现,一个征兆也可能有多个故障原因的复杂现象,往往难定两者的对应关系进行指导维修。振动模糊法,将模糊数学与振动诊断相结合,利用模糊综合评判技术,较好地处理了回转机械故障的不确定性问题。 4.2.2旋转机械振动模糊诊断法的实现 隶属函数的确定

设备振动标准

设备振动评定标准 一、ISO2372振动标准 国际标准ISO2372规定了转速为10~200r/s的机器在10~1000Hz的频率范围内机械振动烈度的范围,根据振动烈度量级将机器运行质量划分为四个等级。A级---机械设备正常运转时的振级,此时称机器的运行状态“良好”; B级---已超过正常运转时的振级,但对机器的工作尚无显著的影响,此种运行状态是“容许”的; C级---机器的振动已达到相当剧烈的程度,致使机器职能勉强维持工作,此时机器的运行状态称为“可容忍”的; D级---机器的振级已大到使机器不能运转、工作,此种机器的振级是“不允许”的。 另外为便于实用,ISO2372将常用的机械设备分为六大类,另每一类的机械设备用同一标准来衡量运行质量。 第一类:在其正常工作条件下与整机连接成一整体的的发动机和机器的发动机和机器的零件(如15KW以下发电机)。 第二类:没有专用基础的中等尺寸的机器(如15~75KW的发电机)及刚性固定在专用基础上的发动机和机器(300KW以下)。 第三类:安装在测振方向上相对较硬的、刚性的和重的基础上的具有旋转质量的大型原动机和其它大型机器。 第四类:安装在测振方向上相对较软的基础上具有旋转质量的大型原动机和其它大型机器(如透平发电机)。 第五类:安装在测振方向上相对较硬的基础上具有不平衡惯性力的往复式机器和

机器驱动系统。 第六类:安装在测振方向上相对较软的基础上具有不平衡惯性力的往复式机器和机器驱动系统。 ISO2372推荐的各类机器的振动标准 备注:1、A级-优秀,B级-良好,C级-及格,D级-不允许 2、一类指小型设备 第二类没有专用基础的中等尺寸的机器(如15~75KW的发电机)及刚性固定在

机械设备振动标准

机械设备振动标准设备振动测点的选择与标注1 1.1监测点选择对包括进行传递的地方。测点最好选在振动能量向弹性基础或系统其他部分2回转质量的设备来说,建议把测点选在轴承处或机器的安装点处。也可以选择其他的测点,但要能够反映设备的运行状态。在轴承处测量时,一般建议测量三个,见图A V,轴线方向标注为H方向的振动。水平方向标注为,铅 垂方向标注为。6-1 择图6-1 监测点选 在机器壳体上测量振动时,振动传感器定位的示意图图6-2 1.2 振动监测点的标注(1)卧式机器开始,朝着被驱动设这个数字序列从驱动器非驱动侧的轴承座赋予数字001)齿轮传动直到第一根轴线的最后一个轴承。备,按数字次序排列,在多根轴线的(机器上,轴承座的次序从驱动器开始,按数字次序继续沿着第二

根轴线到被驱动器往下排列,接着再沿着第三根轴线往下排列,直到机组的末端为止。常见的几。6-56-3种标注方法见图~ 图6-3 1 / 11 振动监测点的标注 图6-4 振动监测点的标注 图6-5 振动监测点的标注(2)立式机器遵循与卧式机器同样的约定。1.3 现场机器测点标注方法标注大小与传感器,最简单的一种方法)漆机壳振动测点的标注可以用油标注(磁座大小相似;也可以在机壳上粘贴钢盘来标注振动测点,最好采用后一种方法,,直径30mm标注。采用钢盘时,机壳要得到很好的处理。钢盘规格为厚度5mm 用强度较好的粘接剂粘接,以保证良好的振动传递特性。设备振动监测周期的确定 2

振动监测周期设置过长,容易捕捉不到设备开始劣化信息,周期设置过短,又增加了监测的工作量和成本。因此应根据设备的结构特点、传动方式、转速、功率以及故障模式等因素,合理选定振动监测周期。当设备处于稳定运行期时,监测周期可以长一些;当设备出现缺陷和故障时,应缩短监测周期。在确定设备监测周期时,应遵守以下原则;,1)安装设备或大规模维修后的设备运行初期,周期要短(如每天监测一次)待设备进入稳定运行期后,监测周期可以适当延长。)检测周期应尽量固定。2天;对接至)对点检站专职设备监测,多数设备监测周期一般可定为37142 / 11 近或高于3000转/分的高速旋转设备,应至少每周监测1次。 4)对车间级设备监测(指运行人员),监测周期一般可定为每天1次或每班1次。 5)实测的振动值接近或超过该设备报警标准值时,要缩短监测周期配件;如果实测振动值接近或超过该设备停机值,应及时停机安排检修;如果因生产原因不能停机时,要加强监测,监测周期可缩短为1天或更短。 3 设备振动监测信息采集 3.1 振动监测参数的选择 对于超低频振动,建议测量振动位移和速度;对于低频振动,建议测量振动速度和加速度;对于中高频振动和高频振动,建议测量振动加速度。说明如下:(1)设备振动按频率分类。根据振动的频率,设备振动可以分为以下几种:1)超低频振动,振动频率在10Hz以下。 2)低频振动,振动频率在10Hz至1000Hz。 3)中高频振动,振动频率在1000Hz至10000Hz。 4)高频振动,振动频率在10000Hz以上。 (2)位移为峰峰值;速度为有效值;加速度为有效值;有时根据需要,速度和加速度还要测量峰值。 3.2 振动监测中的几个“同” 为保证测量结果的可比性,在振动监测中要注意做到以下几个“同”: 1)测量仪器同; 测量仪器设置同;)2测点位置、方向同;3) 设备工况同;)4背景振动同。并尽量由同一个人测量。)5 3.3 振动数据采集 应严格按监测路径和监测周期对设备进行定期监测。采集设备振动数据时,通常还需要记录设备的其他过程参数,如温度、压力和流量等,以便于比较和趋势管理。设备监测人员要及时作好测试记录的整理、备份;对存在疑义的数据记录,要及时核准;及时分析处理测量数据;作好趋势预测和简易诊断。 对于变转速设备采集必须在设备进入稳定阶段,不要在设备升降速时进行; 4 评价机器状态的方法 机器状态的评价是设备简易诊断的重要内容之一,就是根据一些振动标准或方法以及相关日志和文档记录:运行日志、维修记录、前期设备状态检测报告等来判断机器处于什么状态。为设备有序运行和适时维修提供依据。

机械振动的概念

机械振动的概念 The Standardization Office was revised on the afternoon of December 13, 2020

第一章绪论 1-1 机械振动的概念 振动是一种特殊形式的运动,它是指物体在其平衡位置附近所做的往复运动。如果振动物体是机械零件、部件、整个机器或机械结构,这种运动称为机械振动。 振动在大多数情况下是有害的。由于振动,影响了仪器设备的工作性能;降低了机械加工的精度和粗糙度;机器在使用中承受交变载荷而导致构件的疲劳和磨损,以至破坏。此外,由于振动而产生的环境噪声形成令人厌恶的公害,交通运载工具的振动恶化了乘载条件,这些都直接影响了人体的健康等等。但机械振动也有可利用的一面,在很多工艺过程中,随着不同的工艺要求,出现了各种类型利用振动原理工作的机械设备,被用来完成各种工艺过程,如振动输送、振动筛选、振动研磨、振动抛光、振动沉桩等等。这些都在生产实践中为改善劳动条件、提高劳动生产率等方面发挥了积极作用。研究机械振动的目的就是要研究产生振动的原因和它的运动规律,振动对机器及人体的影响,进而防止与限制其危害,同时发挥其有益作用。 任何机器或结构物,由于具有弹性与质量,都可能发生振动。研究振动问题时,通常把振动的机械或结构称为振动系统(简称振系)。实际的振系往往是复杂的,影响振动的因素较多。为了便于分析研究,根据问题的实际情况抓住主要因素,略去次要因素,将复杂的振 系简化为一个力学模型,针对力学模型

来处理问题。振系的模型可分为两大类:离散系统(或称集中参数系统)与连续系统(或称分布参数系统),离散系统是由集中参数元件组成的,基本的集中参数元件有三种:质量、弹簧与阻尼器。其中质量(包括转动惯量)只具有惯性;弹簧只具有弹性,其本身质量略去不计,弹性力只与变形的一次方成正比的弹簧称为线性弹簧;在振动问题中,各种阻力统称阻尼,阻尼器既不具有惯性,也不具有弹性,它是耗能元件,在有相对运动时产生阻力,其阻力与相对速度的一次方成正比的阻尼器称为线性阻尼器。连续系统是由弹性元件组成的,典型的弹性元件有杆、梁、轴、板、壳等,弹性体的惯性、弹性与阻尼是连续分布的。严格的说,实际系统都是连续系统,所谓离散系统仅是实际连续系统经简化而得的力学模型。例如将质量较大、弹性较小的构件简化为不计弹性的集中质量;将振动过程中产生较大弹性变形而质量较小的构件,简化为不计质量的弹性元件;将构件中阻尼较大而惯性、弹性小的弹性体也可看成刚体。这样就把分布参数的连续系统简化为集中参数的离散系统。 例如图1-1(a)所示的安装在混凝土基础上的机器,为了隔振的目的,在基础下面一般还有弹性衬垫,如果仅研究这一系统在铅垂方向的振动,在振动过程中弹性衬垫起着弹簧作用,机器与基础可看作一个刚体,起着质量的作用,衬垫本身的内摩擦以及基础与周围约束之间的摩擦起着阻尼的作用(阻尼用阻尼器表示,阻尼器由一个油缸和活塞、油液组成。活塞上下运动时,油液从间隙中挤过,从而造成一定的阻尼)。这样图1-1(a)所示的系统可简化为1-1(b)所示的力学模型。又如图1-2中假想线表示的是一辆汽车,若研究的

机械设备振动标准汇总

------------------------------------------精品文档------------------------------------- 机械设备振动标准它是指导我们的状态监测行为的规范 。最终目标:我们要建立起自己的 每台设备的标准(除了新安装的设备) 监测点选择、图形标注、现场标注。? 振动监测参数的选择:做一些调整:长度、频率范围? 状态判断标准和报警的设置? 设备振动测点的选择与标注1 监测点选择1.1对包括回测点最好选在振动能量向弹性基础或系统其他部分进行传递的地方。转质量的设备来说,建议把测点选在轴承处或机器的安装点处。也可以选择其他的测点,但要能够反映设备的运行状态。在轴承处测量时,一般建议测量三个方。见图A,6-1,V向的振动。铅垂方向标注为,水平方向标注为H轴线方向标注为

图6-1 监测点选择1 图6-2在机器壳体上测量振动时,振动传感器定位的示意图1.2 振动监测点的标注(1)卧式机器开始,朝着被驱动设这个数字序列从驱动器非驱动侧的轴承座赋予数字001)(齿轮传动备,按数字次序排列,直到第一根轴线的最后一个轴承。在多根轴线的机器上,轴承座的次序从驱动器开始,按数字次序继续沿着第二根轴线到被驱动器往下排列,接着再沿着第三根轴线往下排列,直到机组的末端为止。常见的几。种标注方法见图6-3~6-5 振动监测点的标注图6-3

图6-4 振动监测点的标注2 振动监测点的标注图6-5 )立式机器(2 遵循与卧式机器同样的约定。现场机器测点标注方法1.3 机壳振动测点的标注可以用油漆标注,也可以在机壳上粘贴钢盘来标注振动测点,最好采用后一种方法标注。采用钢盘时,机壳要得到很好的处理。钢盘规,用强度较好的粘接剂粘接,以保证良好的振动传递,直径30mm格为厚度5mm 特性。设备振动监测周期的确定2 振动监测周期设置过长,容易捕捉不到设备开始劣化信息,周期设置过短,又增加了监测的工作量和成本。因此应根据设备的结构特点、传动方式、转速、功率以及故障模式等因素,合理选定振动监测周期。当设备处于稳定运行期时,监测

旋转设备振动管理实施细则

旋转设备振动管理实施细则 1 目的 1.1 为加强我公司旋转设备振动管理(简称振动管理)工作,保证旋转设备质量及其技术性能,减少设备的损耗,避免损坏设备事故,提高电厂经济效益。根据振动管理标准、《防止电力生产重大事故的二十五项重点要求》和公司运行、检修等有关规程,制定本细则。 1.2 振动管理工作深入到设计、产品选型、出厂验收、基建安装、调试、运行、停用、检修及技术改造等各个环节,达到设备全过程的质量监督与管理。执行汽轮机及辅机的国家标准及各项反事故措施的相关规定;掌握设备的健康变化规律,振动情况,及时发现和消除设备缺陷;分析振动及事故的原因;参与制订反事故措施,始终保持各旋转设备振动值合格。 2 适用范围 本细则规定了振动管理机构的组成、管理职责、管理内容、检查与考核等,适用于公司生产岗位的振动管理。 3 组织机构与职责 3.1 成立在生产副总经理领导下的振动管理工作三级管理体系。振动管理领导小组以生产副总经理为组长、副生产副总经理为副组长,维护部副主任为协管人,在安全监察部设振动管理专责。公司各有关生产部门指定兼职振动管理人员。 3.2 公司振动管理组织机构,详见公司技术监督网络。 3.3 公司振动管理领导小组和协管人主要职责:

3.3.1 组织贯彻执行国家、行业有关振动管理的政策、法规、标准、规程、规范、制度以及本地区有关汽轮机安全技术监督规程、标准、制度、措施等,修定本公司有关振动管理规定的实施细则。 3.3.2 负责召集公司各级振动管理网成员,研究本公司汽轮机及旋转设备的重大缺陷,分析原因、制定对策、监督落实;发生设备重大故障应及时提出技术措施并组织实施。 3.3.3 组织本公司汽轮机及旋转设备振动重大事故的调查、分析、处理。 3.3.4 组织采用和推广成熟、可靠、实用的振动管理技术和故障诊断技术;不断完善检测手段,推广应用振动管理新技术、新工艺。 3.3.5 负责本公司新建、扩建、技改工程设计审查和安装质量监督,加强对新设备的检查验收,严把设备调试等质量关。 3.3.6 认真做好年度振动管理工作总结,年度计划,对运行、检修等生产部室振动管理工作进行检查、监督和考核。 3.4 振动管理专责主要职责: 3.4.1 认真贯彻执行有关规程、制度与反事故措施,按规定做好监管工作,努力提高监管质量,认真分析设备振动状况并且结论明确。 3.4.2 掌握设备振动状况,参加事故分析,提出改进意见和防止措施,并配合运行、检修人员消除缺陷. 3.4.3 负责定期对主、辅机在线监测系统的振动数据筛选、分析记录进行监督检查及意见汇总、落实。对严重影响机组安全运行的故障,应及时上报振动管理协管人及上级领导,并提出分析、处理意见。

设备振动标准78521

设备振动标准78521 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

“刚性连接”中,相对的连接件之间不得有位移,在大多数的紧固中都是这样的连接。 “挠性连接”中,相对的连接件既有约束或传递动力的关系,又可以有一定程度的相对位移。 如常见的联轴器,刚性联轴器将两个部分用螺栓紧固,这样的安装要求同心度极高,稍有误差,机械就会震动,而且寿命不长。 挠性联轴器就有措施,在联轴器的两部分之间,使用滑块、弹性柱销、木销或万向节等,即传递了动力,也满足了设备的使用要求。 刚性联轴器不具有补偿被联两轴轴线相对偏移的能力,也不具有缓冲减震性能;但结构简单,价格便宜。只有在载荷平稳,转速稳定,能保证被联 两轴轴线相对偏移极小的情况下,才可选用刚性联轴器。属于刚性联轴器的 有套筒联轴器、夹壳联轴器和凸缘联轴器等。其它联轴器都是挠性联轴器 了. 企业设备振动故障诊断 相对标准的建立及应用 陈兆虎李兰儒张红 摘要本文结合克拉玛依石化厂实际情况,从安全性、经济性出发,叙述建立适合现代企业设备管理维修的动设备振动故障诊断相对标准的方法,以及相对标准应用效果。 一、设备振动故障诊断标准 1.标准的类型及理论依据 标准有绝对标准和相对标准两大类型。绝对标准就是人们常说的国际标准。各种转动机械的振源主要来自结构设计,制造、安装质量,调试情况和环境本身。振动的存在必然不同程度引起设备自身及其附属管线的结构疲劳和损伤。美国齿轮制造协会(AGMA)提出在低频域(10Hz 以下),以位移作为振动标准;中频域(10Hz~1kHz),以速度作为振动标准;而高频域(1kHz以上)则以加速度作为标准。 理论已经证明,振动部件的疲劳与振动速度成正比,振动所产生的能量与振动速度的平方成正比,能量传递的结果必然造成磨损或其它缺陷。因此,在振动判断标准中,无论从疲劳损伤还是磨损等缺陷来说,以振动速度标准最为适宜。 表1电动机器振动(v rms

设备振动标准样本

“刚性连接”中,相对连接件之间不得有位移,在大多数紧固中都是这样连接。 “挠性连接”中,相对连接件既有约束或传递动力关系,又可以有一定限度相对位移。 如常用联轴器,刚性联轴器将两个某些用螺栓紧固,这样安装规定同心度极高,稍有误差,机械就会震动,并且寿命不长。 挠性联轴器就有办法,在联轴器两某些之间,使用滑块、弹性柱销、木销或万向节等,即传递了动力,也满足了设备使用规定。 刚性联轴器不具备补偿被联两轴轴线相对偏移能力,也不具备缓冲减震性能;但构造简朴,价格便宜。只有在载荷平稳,转速稳定,能保证被联两 轴轴线相对偏移极小状况下,才可选用刚性联轴器。属于刚性联轴器有套筒 联轴器、夹壳联轴器和凸缘联轴器等。其他联轴器都是挠性联轴器了. 公司设备振动故障诊断 相对原则建立及应用 陈兆虎李兰儒张红 摘要本文结合克拉玛依石化厂实际状况,从安全性、经济性出发,论述建立适合当代公司设备管理维修动设备振动故障诊断相对原则办法,以及相对原则应用效果。 一、设备振动故障诊断原则 1.原则类型及理论根据 原则有绝对原则和相对原则两大类型。绝对原则就是人们常说国际原则。各种转动机械振源重要来自构造设计,制造、安装质量,调试状况和环境自身。振动存在必然不同限度引起设备自身及其附属管线构造疲劳和损伤。美国齿轮制造协会(AGMA)提出在低频域(10Hz如下),以位移作为振动原则;中频域(10Hz~1kHz),以速度作为振动原则;而高频域(1kHz以上)则以加速度作为原则。 理论已经证明,振动部件疲劳与振动速度成正比,振动所产生能量与振动速度平方成正比,能量传递成果必然导致磨损或其他缺陷。因而,在振动判断原则中,无论从疲劳损伤还是磨损等

相关文档