文档视界 最新最全的文档下载
当前位置:文档视界 › 什么是载金炭灰

什么是载金炭灰

什么是载金炭灰

什么是载金炭灰

在含有溶解金的低品位废液矿浆中,含有可溶性金的废渣(如土氰化矿渣)中,在采用氰化物作抑制剂的含金多金属分离的浮选矿浆中,因含金品位低,用活性炭经济上不合算,可用煤焦炭吸附金,然后将吸附金的焦炭焚烧,得到的炭灰叫载金炭灰。

矿石中金的测定(碘量法)

矿石中金的测定 ——碘量法(活性炭吸附) 一、方法原理: 此法基于用王水溶解试样中的金,以活性炭富集,然后用碘量法完成测定。 1、对试样要求: 金在试样中一般呈单质状态,分布极不均匀,故欲得准确分析结果,试样必须有足够的细度和均匀性,以增加其代表性。本法要求一般的矿的试样必须通过180网目。 2、测定原理: 试样中的金溶于王水后生成三氯化金,它再与NaCl作用生成易离解的氯金酸盐: Au+3HCl+HNO3== AuCl3+2H2O+NO↑ AuCl3+NaCl==Na AuCl4或AuCl3 +HCl== HAuCl4 Na AuCl4== Na++ AuCl4— 氯金酸根络离子经活性炭吸附后达到了富集金并使金与多数金属离子分离的目的。活性炭经过灰化灼烧AuCl3又被还原为单质金。 2 AuCl3+3C+ 3 H2O==2 Au+6 HCl+3CO↑ 三氯化合物又能够氧化碘化钾而析出等当量的碘。 AuCl3+3KI==AuI+I2+3KCl 最后用Na2S2O3标液滴定析出的碘,间接计算出Au的含量。 3、干扰与分离: 活性炭富集Au后,虽使Au与大多数金属元素和残渣已经分离,但少量的硅酸及部分的Cu、Pb、Fe也被吸附并对测定有影响。硅酸、Fe、Pb可用NH4HF2洗脱。残余的Fe和Cu、Pb可分别与I-及EDTA络合而消除其影响。 Fe3++6F-==FeF63- Cu2++H2Y2-==Cu Y2-+2H + Pb2++H2Y2-==Pb Y2-+2H + 4、适用范围: 经过方法考查和生产实践检验,本法对本地矿的地质样试样和选矿各种产品适用。测

定范围为可测定含金在0.3g/t以上的试样。 二、试剂的配制与标定: 1、HCl(分析纯)比重1.19 2、HNO3(分析纯)比重1.42 3、正王水(1∶1) HCl∶HNO3∶H2O=3∶1∶4 4、反王水(1∶1) HCl∶HNO3∶H2O=1∶3∶4 王水(1∶1) HCl∶HNO3 =3∶1 5、NaCl 分析纯固体及饱和溶液 6、KI 分析纯固体 7、稀醋酸(7%) 93ml H2O加7 ml冰醋酸 8、氟化氢氨分析纯固体及5%的水溶液 9、1%淀粉指示剂 1 g可溶性淀粉溶于100 ml H2O中,煮沸至透明,冷却后即可。 10、KF或NaF 分析纯固体 11、EDTA的提纯1%EDTA溶液的配制: ⑴将10 gEDTA溶于100 ml的H2O中,加热至60—80℃,加1∶1的H2SO480 ml,立即 加4%的KMnO4溶液30—40 ml,冷却后EDTA结晶析出,打开真空泵,将清液逐渐倒入布氏漏斗中,以倾析法用水洗烧杯中的结晶物数次,将结晶物全部倒入漏斗中,以水洗至白色,在100—102℃的干燥箱中烘干备用。 ⑵将提纯后的EDTA称取1g于烧杯中,加H2O100ml,加热至60—80℃,用10%的NaOH 使EDTA恰好溶解为止。 12、活性炭分析纯粉状无灰,对购买的活性炭要进行提纯,方法:在400ml的塑料瓶 中加入5%氟化氢氨400ml,加活性炭调至稀糊状,浸泡二天以上,抽滤,用温热的5%HCl 洗柱内活性炭8—10次,再用温热的水洗8—10次,停止抽气将活性炭转入塑料瓶中加盖备用。 13、滤纸浆:将滤纸撕烂用热水浸泡,捣碎备用。 14、NaCO3分析纯固体 15、金标准溶液:称取99.99%金属金0.5000g于100ml瓷坩埚中,加王水10ml,在水溶液中 溶解后,立刻加入1gNaCl,在水浴上蒸至无酸味,再加浓盐酸2ml,蒸干后以水溶解,倒入1000ml容量瓶中,加浓盐酸9ml,用水稀释至刻度,摇匀,置阴凉处保存备用,此溶液1ml含500μgAu。取上述溶液100ml于500ml容量瓶中,用1N的HCl准确稀释至刻度,摇匀备用,此溶液1ml含100μgAu。

金的测定

獨嶺倚雲‰寒本空间文章均来自于网络或书籍,只用于传阅、学习、参考,“不确保其实用性”。如侵犯了你的权益请告之,我会尽快删除!如你在浏览过程中发现错误或不足之处,请在评论框中标明,谢谢! 主页博客相册|个人档案|好友|i贴吧查看文章 金矿金品位测定的实用方法简谈测定金矿品位的方:2.湿法—酸溶解法试金法简谈:2011-01-03 17:36本文转自:https://www.docsj.com/doc/0714943120.html,/?32716 金矿金品位测定的实用方法简谈 (二)测定金矿品位的方法简谈: 2.湿法—酸溶解法试金 (一)金和银在自然界的分布及存在形式、金和银的矿石工业品位、金银用途、金和银主要的物理性质和化学性质及提炼方法: 金和银在自然界含量极少金在地壳中含量为5310-7%,银多些也只有1310-5%,但分布极广,金在各种岩石或矿石中金约含6310-7%~10-7%银6310-6%~10-7%不等。海水中含金浓度平均0.000004mg/L含银浓度平均0.0003mg/L。海水中的金和银是以卤化物的形式存在金为AuCl43+银为AgCl2-、AgCl32-的形式。所以有人在海边用泡沫塑料吸附提取海水里的金。和海水不同地壳中各种岩石、矿石或沙砾中的金绝大多数是单质金形式存在,它常常与各种矿物或矿石伴生,既是以金为主的矿石也常常伴生着银、铜、铅、锌、锑、钼、铋、铁、锰、砷、碲、硫和钇等。在沙矿床中常伴生着有金红石、钛铁矿、磁铁矿、镜铁矿、白钨矿、独居石、刚玉等重矿物。 金矿的工业要求:原生金矿边界品位1310-6(1g/t),沙矿边界品位0。07g/m3。银亦有单质形式存在的,但量很少,绝大多数以氯化物及硫化物形式存在,银矿大多和铜矿、铜铅锌多金属矿、铜镍矿、或金矿伴生。单独存在的银矿少见例辉银矿(Ag2S)等成大矿的少见。银边界品位50310-6(50g/t),综合利用为5310-6(5 g/t)。 金、银的主要用途是制造货币和装饰品,电子工业中做高导电材料,做实验室有特殊用途的容器,高纯度金银很软、少有单独使用的。常用的金银试剂几乎不含结晶水,银盐除AgF、AgClO4、、AgNO3外,都不溶于水,银盐还广泛用于感光材料中,金、银还可以用于装饰性电镀或电子工业中印刷电路电镀金、银增加导电性和改善焊接质量。银可做高级反光镜及热水瓶的胆内膜。 铜金银是人类历史中是最早发现的三种元素,很久以前就被用于制造钱币和(首饰)装饰品,所以俗称货币金属或将金银称贵金属,例: 合金名称银币(英) 银币(美) 金币(美) 18K黄金14K黄金18K白金 质量组成(%) 92.5Ag 90.0Ag 90.0Au 75Au 58Au 75Au 7.5Cu 10Cu 10Cu 12.5Ag 14~28Ag 3.5Cu,5Zn 12.5Cu 14~28Cu 16.5Ni

生物炭在农业中的运用讲解

课程名称:化学前沿 题目:生物炭在农业中的运用学院:化学与化工学院 年级: 专业: 班级: 学号: 姓名: 教师:

目录 摘要 (3) 关键词 (3) Abstract. (3) Key words (3) 前言 (3) 1、生物炭的生产原料 (4) 2、生物炭的生产过程及其理化特性 (4) 3、生物炭对土壤的作用机理。 (5) 3. 1 生物炭对土壤物理性质的影响 (5) 3. 1. 1 生物炭对土壤容重的影响 (5) 3. 1. 2 生物炭对土壤孔隙度的影响 (6) 3. 1. 3 生物炭对土壤水分的影响 (6) 3. 2 生物炭对土壤化学性质的影响 (7) 3. 2. 1 生物炭对土壤pH 的影响 (7) 3. 2. 2 生物炭对土壤阳离子交换量的影响 (8) 4、生物炭对土壤污染物环境风险的消减作用 (9) 4.1生物炭对土壤中N、P的持留 (9) 4.2生物炭对土壤中重金属的吸附和固持 (9) 5、生物炭在农业上应用的模式 (10) 5.1炭基有机肥模式 (10) 5.2炭基有机-无机复混肥模式 (10) 5.3改良土壤的模式 (11) 5.4土壤重金属污染治理的模式 (12) 6、生物炭在农业生产上的应用价值分析 (13) 7、发展与展望 (13) 8、参考文献。 (14)

生物炭在农业中的运用 摘要 生物炭(Biochar)是在限氧或隔绝氧的环境条件下,通过高温裂解,将小薪柴、农作物秸秆、杂草等生物质经炭化而形成的,是一种碳含量极其丰富的炭。这种由植物形成的,以固定碳元素为目的的炭被科学家们称为“生物炭”。生物炭作为土壤改良剂、肥料缓释载体及碳封存剂备等运用越来越广。其农用的效益是多元化的,将生物炭农用已作为当前农业的重要课题。 关键词:生物炭、性质特点、农业、改良、应用现状、发展前景 Abstract: Biochar is an insoluble solid matter with high aromatization produced by biomass pyrolysis in completely or partially hypoxic conditions. In recent years,biochar is widely used in agriculture as a soil amendment and controlle release carrier for fertilizers. In order to boost the study and utilization of biochar in agriculture,this study summarized the factors that affect properties of biochar and its effects on soil physical and chemical properties,amount of microorganisms in soil,and growth and yields of crops. The fu-ture research issues were also suggested.Biochar has showed important roles in controlling non-point source pollution, improving soil quality, increasing soil production, alleviating climate changes, and maintaining agro-ecosystem sta-bility. The prospect of biochar industrialization and development in China was also proposed. Keywords:Biochar;Character;Agriculture;Improvement;Application status;Development prospect 前言 作为农业大国的中国,年产作物秸秆8×108 t以上[1],而以作物秸秆为主的广泛存在的生物质Cbiomass)是制备生物质炭(biochar)的主要原料。生物质炭是由生物质在完全或部分缺氧的条件下经热裂解、炭化产生的一类高度芳香

生物炭对水稻根系形态与生理特性及产量的影响_张伟明

作物学报 ACTA AGRONOMICA SINICA 2013, 39(8): 1445?1451 https://www.docsj.com/doc/0714943120.html,/zwxb/ ISSN 0496-3490; CODEN TSHPA9 E-mail: xbzw@https://www.docsj.com/doc/0714943120.html, 本研究由国家自然科学基金项目(31101105), 院士专项基金和辽宁工程技术研究计划基金项目(2011402021)资助。 * 通讯作者(Corresponding author): 陈温福, E-mail: wfchen5512@https://www.docsj.com/doc/0714943120.html, Received(收稿日期): 2012-11-06; Accepted(接受日期): 2013-04-22; Published online(网络出版日期): 2013-01-04. URL: https://www.docsj.com/doc/0714943120.html,/kcms/detail/11.1809.S.20130104.1734.005.html DOI: 10.3724/SP.J.1006.2013.01445 生物炭对水稻根系形态与生理特性及产量的影响 张伟明 孟 军 王嘉宇 范淑秀 陈温福* 沈阳农业大学 / 辽宁省生物炭工程技术研究中心, 辽宁沈阳110866 摘 要: 为明确生物炭对水稻根系与产量的效应, 探明生物炭在水稻生产上应用的潜力与价值。采用盆栽试验研究了生物炭对超级粳稻不同生育期根系生长、形态特征及生理特性的影响。结果表明, 土壤中施入生物炭能增加水稻生育前期根系的主根长、根体积和根鲜重, 提高水稻根系总吸收面积和活跃吸收面积。在水稻生育后期, 生物炭在一定程度上延缓了根系衰老。根系伤流速率与根系活力在整个生育期内均高于对照, 同时维持了较为适宜的根冠比, 根系生理功能增强; 生物炭处理的水稻产量增加, 表现为每穴穗数、每穗粒数、结实率提高, 比对照平均增产25.28%。以每千克干土加20 g 生物炭处理的产量最高, 比对照提高了33.21%。生物炭处理对水稻根系形态特征的优化与生理功能的增强具有一定的促进作用。 关键词: 生物炭; 水稻; 根系性状; 产量 Effect of Biochar on Root Morphological and Physiological Characteristics and Yield in Rice ZHANG Wei-Ming, MENG Jun, WANG Jia-Yu, FAN Shu-Xiu, and CHEN Wen-Fu * Shenyang Agricultural University, Biochar Engineering Technology Research Center of Liaoning Province, Shenyang 110866, China Abstract: A pot experiment was conducted to clarify the effects of biochar on roots and yield of super japonica rice and the ap-plicable value of biochar in rice production. In early growing stage, biochar application increased the main root length and volume and fresh weight of roots, leading to enlarged root total absorption area and active absorption area. In late growing stage, biochar application delayed root senescence in some extents and maintained relatively high activity of rice roots. Compared to the control, biochar treatments showed higher root physiological activity, which resulted in increased bleeding rate and root activity in the whole growing period. The average yield of biochar treatments was 25.28% higher than that of the control, due to improved pani-cle number per hill, grain number per panicle, and seed-setting rate. The optimal amount of biochar application was 20 g in one kilogram of dry soil, which produced the highest yield with 33.21% increase over the control. Therefore, biochar is favorable to optimize root morphology and physiological characteristics in rice. Keywords: Biochar; Rice; Root traits; Yield 生物炭(Biochar), 通常是指以自然界广泛存在的生物质资源为基础, 利用特定的炭化技术, 由生物质在缺氧条件下不完全燃烧所产生的富碳产 物[1]。常见的生物炭有秸秆炭、木炭、花生壳炭等。生物炭可溶性极低, 具有高度羧酸酯化和芳香化结构[2-3], 生物质在炭化后具有较大的孔隙度和比表面积[2], 吸附能力强, 成为可应用于农业、工业等领域的一种理想材料。 近年来, 生物炭受到农业、环境、能源等领域 专家们的广泛关注, 被誉为“黑色黄金”。国内外相关研究结果表明, 生物炭施入农田土壤后可改变土壤理化性质, 对提高肥料利用效率, 增加作物产量, 促进农业可持续发展等都具有重要作用[4-10]。来自巴西亚马逊河地区的田间试验表明, 在土壤中施入生物炭(以11 t hm ?2标准), 2年4个生长季后水稻和高粱产量累积增加了约75% [8]。而在热带与亚热带地区施用生物炭发现, 除了可使大豆、玉米等作物增产外, 植株中的镁、钙含量也明显增加[11]。生物炭

活性炭吸附碘量法测定金

活性炭吸附碘量法测定金 一、方法提要 试样用王水分解,在稀王水介质中用活性炭富集Au,活性炭灰化灼烧后用王水复溶,加HCI蒸干,在乙酸介质中以NH4HF2、EDTA掩蔽少量的Fe、Cu等干扰元素,加入KI将Au3+还原为Au+,同时析出游离I2,以淀粉为指示剂,用硫代硫酸钠标准溶液滴定。本法适用于一般矿石中ω(Au)/10-6>0.5的测定。 二、试剂配制 活性炭-纸浆:首先处理活性炭。将粒径为0.074mm的活性炭在20g/L NH4HF2溶液中浸泡3d,过滤,用HCl (2+98)及热水各洗涤7~8次。将处理后的活性炭与纸浆以干时的质量比按1+2混匀。 金标准溶液:称取0. 0500g纯金(99.99%以上)于100mL瓷坩埚中,加l0mL王水,盖表面皿,在60~70℃水浴上加热溶解后立即加入8~10滴250g/L NaCl溶液,再在沸水浴上加热蒸干,取下,加1mL HCI,继续在沸水浴上蒸干。取下加少量水,微热使盐类全溶,取下冷至室温,移入盛有5mL HCI的500mL容量瓶中,用水稀释至刻度,混匀。此溶液含100μg/mLAu。 硫代硫酸钠标准溶液:称取25. 2g硫代硫酸钠(Na2S2O3·5H2O)溶于新煮沸后冷却的蒸馏水中,加0. 1g Na2CO3,用水稀释至1L(溶液pH7.2~7.5),此溶液1mL相当于l0mg Au.分别取30mL和100mL上述溶液于l0L下口瓶内,各加入1g无水Na2CO3和l0mL氯仿,用冷却的新蒸馏水稀释至10L,摇匀,放置一周后,进行标定:取30μg或100μg Au于50mL 瓷坩埚中,加3~5滴250g/L NaCl溶液,加2~3mL王水,水浴蒸干,加3~4滴HCI,蒸干,重复两次。然后用两种硫代硫酸钠标准溶液按碘量法滴定。求出其1mL溶液相当Au的质量(1mL分别相当30μg和l00μg),μg/mL。 三、分析手续 称取10-30g(精确至0. 01g)试样于瓷方舟中,在高温炉中于600℃灼烧40min,取出放冷,将试样转入400mL烧杯中,用少量水润湿,加100mL王水(1+1),加热微沸30~60min,中间摇动数次,取下趁热加l0mL l0g/L动物胶溶液,搅拌,用温水稀释至100~120mL,将溶液注入连接在装有活性炭-纸浆吸附柱的布氏漏斗中,用热HCl (2+98)洗涤烧杯2次、残渣7~8次。取下布氏漏斗,用热的20g/L NH4HF2溶液洗涤活性炭3~4次,再用热HCI(2+98)洗3~4次,量后用温水洗3~4次,抽干.取出活性炭-纸浆吸附饼,放入50mL瓷坩埚中,放在电炉盘上低温烘干,并升温炭化,再移入650~700℃高温炉内灼烧至无炭粒存在,取出冷却。在瓷坩埚内加入5滴250g/L NaCl溶液,沿坩埚壁加入2-3mL王水,放在沸水浴上蒸干,滴加3~5滴HCI,继续蒸干,重复两次,最后蒸至无酸味。取下坩埚,加3~5mL乙酸(7+93),搅动使可溶性盐类全部溶解,冷至室温。加入0.1g NH4HF2,搅匀。滴加数滴25g/L EDTA溶液后,立即加入0.5g KI,用硫代硫酸钠标准溶液滴定至淡黄色,加入3~5滴l0g/L淀粉溶液,继续滴定至蓝色消失即为终点。 四、分析结果的计算

碘量法测定金

金测定 ——碘量法(活性炭吸附) 一、方法原理: 此法基于用王水溶解试样中的金,以活性炭富集,然后用碘量法完成测定。 1、对试样要求: 金在试样中一般呈单质状态,分布极不均匀,故欲得准确分析结果,试样必须有足够的细度和均匀性,以增加其代表性。本法要求一般的矿的试样必须通过180网目。 2、测定原理: 试样中的金溶于王水后生成三氯化金,它再与NaCl作用生成易离解的氯金酸盐: Au+3HCl+HNO3== AuCl3+2H2O+NO↑ AuCl3+NaCl==Na AuCl4或AuCl3 +HCl== HAuCl4 Na AuCl4== Na++ AuCl4— 氯金酸根络离子经活性炭吸附后达到了富集金并使金与多数金属离子分离的目的。活性炭经过灰化灼烧AuCl3又被还原为单质金。 2 AuCl3+3C+ 3 H2O==2 Au+6 HCl+3CO↑ 三氯化合物又能够氧化碘化钾而析出等当量的碘。 AuCl3+3KI==AuI+I2+3KCl 最后用Na2S2O3标液滴定析出的碘,间接计算出Au的含量。 3、干扰与分离: 活性炭富集Au后,虽使Au与大多数金属元素和残渣已经分离,但少量的硅酸及部分的Cu、Pb、Fe也被吸附并对测定有影响。硅酸、Fe、Pb可用NH4HF2洗脱。残余的Fe和Cu、Pb可分别与I-及EDTA络合而消除其影响。 Fe3++6F-==FeF63- Cu2++H2Y2-==Cu Y2-+2H + Pb2++H2Y2-==Pb Y2-+2H + 4、适用范围: 经过方法考查和生产实践检验,本法对本地矿的地质样试样和选矿各种产品适用。测

定范围为可测定含金在0.3g/t以上的试样。 二、试剂的配制与标定: 1、HCl(分析纯)比重1.19 2、HNO3(分析纯)比重1.42 3、正王水(1∶1) HCl∶HNO3∶H2O=3∶1∶4 4、反王水(1∶1) HCl∶HNO3∶H2O=1∶3∶4 王水(1∶1) HCl∶HNO3 =3∶1 5、NaCl 分析纯固体及饱和溶液 6、KI 分析纯固体 7、稀醋酸(7%) 93ml H2O加7 ml冰醋酸 8、氟化氢氨分析纯固体及5%的水溶液 9、1%淀粉指示剂 1 g可溶性淀粉溶于100 ml H2O中,煮沸至透明,冷却后即可。 10、KF或NaF 分析纯固体 11、EDTA的提纯1%EDTA溶液的配制: ⑴将10 gEDTA溶于100 ml的H2O中,加热至60—80℃,加1∶1的H2SO480 ml,立即 加4%的KMnO4溶液30—40 ml,冷却后EDTA结晶析出,打开真空泵,将清液逐渐倒入布氏漏斗中,以倾析法用水洗烧杯中的结晶物数次,将结晶物全部倒入漏斗中,以水洗至白色,在100—102℃的干燥箱中烘干备用。 ⑵将提纯后的EDTA称取1g于烧杯中,加H2O100ml,加热至60—80℃,用10%的NaOH 使EDTA恰好溶解为止。 12、活性炭分析纯粉状无灰,对购买的活性炭要进行提纯,方法:在400ml的塑料瓶 中加入5%氟化氢氨400ml,加活性炭调至稀糊状,浸泡二天以上,抽滤,用温热的5%HCl 洗柱内活性炭8—10次,再用温热的水洗8—10次,停止抽气将活性炭转入塑料瓶中加盖备用。 13、滤纸浆:将滤纸撕烂用热水浸泡,捣碎备用。 14、NaCO3分析纯固体 15、金标准溶液:称取99.99%金属金0.5000g于100ml瓷坩埚中,加王水10ml,在水溶液中 溶解后,立刻加入1gNaCl,在水浴上蒸至无酸味,再加浓盐酸2ml,蒸干后以水溶解,倒入1000ml容量瓶中,加浓盐酸9ml,用水稀释至刻度,摇匀,置阴凉处保存备用,此溶液1ml含500μgAu。取上述溶液100ml于500ml容量瓶中,用1N的HCl准确稀释至刻度,摇匀备用,此溶液1ml含100μgAu。

活性炭碘吸附值的测定

[]E c V Vv c V m ?+-?=)(90.126311 活性炭碘吸附值的测定 活性炭的碘吸附值从0到1200mg/g,那么活性炭的碘吸附值如何测定能? 衡量活性炭在液相吸附中的应用好坏,主要看碘吸附值、亚甲蓝吸附值和焦糖脱色率的三项指标,所谓“三把尺”。若水中主要含有小分子,那就需要采用碘吸附值高的活性炭;若水中主要成分为较大分子,那就要采用亚甲蓝吸附值高的活性炭;若水中成分为大分子,就必须采用焦糖脱色率高的活性炭。 碘吸附值高的活性炭在水中脱除小分子化合物的性能较高,因此,碘吸附值是衡量净水炭的一项重要指标。测量碘吸附值具体做法是:称取不同质量的三份制备好的试样,精确至0.0004g 并将试样分别放入容量为250mL 干燥的磨口锥形瓶中,用移液管取10.0mL 盐酸加入每个锥形瓶中,塞好玻璃塞摇动使活性炭浸润;接着拔去塞子加热至沸,微拂30s ,除去干扰的硫,冷却至室温;再用移液管取100.0mL 的碘标准溶液依次加入上述各锥形瓶(碘标准溶液使用前现标定),立即塞好玻璃塞,置于振荡器上震荡15min ,静置5min 后用激淋机,静置15min 后用离心机分离。各取50.0mL 澄清液分别放入250mL 的锥形瓶中,用硫代硫酸钠标准溶液进行滴定。当溶液呈现黄色时,加入2mL 淀粉指示液,并继续滴定至蓝色消失为止。分别记下消耗的硫代硫酸钠标准溶液体积。 测定结果处理如下:对试样剂量计算见式: 式中 m ——试样使用剂量,g ; V 1 ——加入点标准溶液体积,mL ; c 1——碘标准溶液浓度,mol/L ; V 3——加入盐酸(5%)体积,mL ; c ——澄清液的浓度,mol/L ; E ——碘吸附值,mg/g. 澄清液浓度计算,见式 V v c c 22= 式中 c —— 澄清液的浓度,mol/L ; c 2—— 硫代硫酸钠标准溶液浓度,mol/L ; V 2——消耗硫代硫酸钠标准溶液体积,mL; V ——澄清液体积,mL. 活性炭的吸附量和被吸附物质的浓度有关,为了获取吸附剩余碘浓度 0.02mol/L 时的碘吸附值,澄清液浓度应在0.008~0.040mol/L 范围内,否则应调整试样质量m 。 吸附碘量按式(2-3)计算: X=126.9×V 1×c 1-[(V 1+V 3)/V]×126.9×c 2×V 2 (2-3) 式中 X ——吸附碘量,mg; V 1——加入碘标准溶液体积,mL; c 1——碘标准溶液浓度,mol/L; V 3——加入盐酸体积,mL; c 2——硫代硫酸钠标准溶液浓度,mol/L; V 2——消耗硫代硫酸钠标准溶液体积,mL;

活性炭吸附碘量法测金化验步骤

载金碳碘量法化验步骤 1.称样,灰化 载金碳样称0.5g左右,置于高温炉中600-800℃灰化。 2.溶样 试样取出冷却至室温,移入400ml烧杯中,润湿,加10ml 浓硝酸,预处理(在电热板上微热),待无红棕色气体产生后,加入120ml1:1王水,在电加热板上,微沸50min,待体积剩余50-60ml时取下冷却。 3.活性炭吸附柱 活性炭吸附柱分三层,依次为白纸浆作底层,中间层活性炭纸浆层和白纸浆顶层。白纸浆厚度3mm,活性炭纸浆层厚度8-9mm。4.活性炭吸附 漏斗中铺一张定性滤纸将冷却好的试样依次倒入布氏漏斗中,进行抽滤,烧杯洗涤3次。用温热的5%HCl溶液洗布氏漏斗内的残渣7-8次,取下漏斗,再依次分别用温热的(50℃):6%氟化氢铵(NH4HF2)溶液、5%HCl溶液洗涤吸附柱7-8次,最后用温水清洗活性炭吸附层7-8次后抽干。 5.活性炭层高温灰化 将活性炭层取下放入50ml瓷坩埚中,在电热板上低温灰化,40min后,观察无明火,随后放入650℃高温炉中高温灰化,20min 后观察无火星,灰化完全,取出冷却至室温。 6.水浴蒸酸

向瓷坩埚中加入2-3滴25%NaCl溶液,润湿,再加1ml王水,水浴,待坩埚底部蒸干至湿盐状,加2ml浓盐酸继续水浴蒸干,加浓盐酸重复两次,待蒸至无酸味,取下冷却。 7.碘量法测金 向坩埚中加入3-5ml 7%醋酸溶液和1ml NH4HF2,2ml 1%EDTA溶液和0.1gKI,迅速滴定至淡黄色,加淀粉指示剂,滴定至无色,记下消耗硫代硫酸钠标准溶液体积V。 8.计算 含量(g/t)=T*V/m T—硫代硫酸钠对金的滴定度,单位:ug/ml V—消耗硫代硫酸钠体积,单位:ml m—称样量,单位:g 9.试剂配制 ①活性炭纸浆:首先处理活性炭。将粒径为0.074的活性炭在20g/l的NH4HF2溶液中浸泡3天,过滤,用HCl(2+98)及热水各洗涤7-8次,将处理后的活性炭与纸浆按干时的质量比1:2混匀。 ②金标液:称取0.0500g纯金(99.99%纯度以上)于100ml瓷坩埚中,加10ml王水,盖表面皿,在60-70℃水浴上加热溶解后立即加入8-10滴250g/L的NaCl溶液,再在水浴上加热蒸干,取下,加1mlHCl,继续在沸水浴上蒸干。取下加少量水,微热使可溶性盐类溶解,取下冷却至室温,移入盛有5ml HCl的500ml容量瓶中,用水稀释至刻度,混匀,此时金标准溶液100ug/ml。

活性炭吸附碘量法测定金

活性炭吸附碘量法测定金 试剂配制: 抽滤吸附装置: 将带活动过滤板的吸附柱装于抽滤筒上,先加白纸将,抽干,2-3mm厚,用滤板压平,再加混有活性炭的纸浆,抽干压平,在6mm以上,再加少量白纸浆抽干压平,做到层次分明,把布氏漏斗装于吸附柱上,加一张滤纸及少量纸浆,抽干。 活性炭:粒度0.074mm,将分析纯或化学纯活性炭放入20g/L氟化氢铵或氟氰酸溶液中浸泡3天后抽滤,以盐酸2%及水洗净氟根。 纸浆:用定性滤纸在水中浸泡,捣碎备用。 稀王水:V(盐酸)+V(硝酸)+V(水)=3+1+4 聚环氧乙烷:称1g聚环氧乙烷用少量水调成糨糊状,再加200ml水及4—5滴盐酸,缓缓加热溶解。 冰乙酸体积比7%的水溶液(7+93) 氯化钠200g/l的水溶液 EDTA 乙二胺四乙酸二钠25g/l水溶液 称取25gEDTA,加水400ml,加热搅拌溶解,冷却后用水稀释至1000ml 金标准溶液(1mg/ml): 硫代硫酸钠标准滴定溶液:称取2.52g 硫代硫酸钠溶于新煮沸后冷却的蒸馏水中,加0.1g 碳酸钠,用水定容1000 ml(溶液PH为7.2—7.5),此溶液1ml约相当于1mg金。取30ml,100ml,200ml上述溶液,各加0.1g碳酸钠,用煮沸后冷却的蒸馏水稀释至1000ml,即分别得到1ml硫代硫酸钠标准滴定溶液,分别相当于30ug,100ug,200ug的金的溶液。经标定后使用。 标定:分取5ml金标准溶液三份于50ml瓷坩埚中,加0.1gKI,搅拌,立即用相应含量的硫代硫酸钠标准滴定溶液滴定至微黄色后,加3—5滴10g/L淀粉指示剂,继续滴定,近终点时应充分搅拌,逐渐滴入至溶液由蓝色变为无色,即为终点。 按下式计算硫代硫酸钠标准滴定溶液对金的滴定系数: FAu=Mo/V o 式中:FAu—滴定系数,与1.00ml硫代硫酸钠标准滴定溶液相当的金的质量,ug/ml. Mo—吸取金标准溶液含量ug. V o—标定时消耗硫代硫酸钠标准滴定溶液体积,ml 分析步骤: 在感量0.1g的天平称取10g-20g试样于于高温炉中焙烧。400℃1h,升温至600℃2h,将试样取出放入400ml烧杯中,用水润湿,盖上表皿,加100ml稀王水加热溶解;加热溶解保持30—60分钟微沸状,溶液体积蒸至30—40ml时取下,用热水洗涤表皿及杯壁,并用热水稀释到150—200ml,搅拌,使可溶性盐溶解,加入0.5ml聚环氧乙烷,搅拌,放置,待溶液冷至40--50℃时过滤、吸附。 过滤吸附: 将试样溶液连同残渣一起倒入漏斗中,进行抽滤及吸附,漏斗内溶液全部滤干后,用温热盐酸2%洗涤烧杯2—3次。洗残渣及滤纸7—8次,拿掉布氏漏斗,用温热的20g/L 氟

炭化温度对沙蒿生物炭形貌特征和化学性质的影响-土壤

土 壤 (Soils), 2014, 46(5): 814–818 ①基金项目:国家自然科学基金项目(31260502)资助。 * 通讯作者(paul98@https://www.docsj.com/doc/0714943120.html,) 作者简介:侯建伟(1986—),男,内蒙古通辽人,博士研究生,主要从事土壤肥力与植物营养研究。E-mail: hjw19860627@https://www.docsj.com/doc/0714943120.html, 炭化温度对沙蒿生物炭形貌特征和化学性质的影响① 侯建伟,索全义*,梁 桓,韩雪琦,刘长涛 (内蒙古农业大学生态环境学院,呼和浩特 010018) 摘 要:沙蒿是半灌木典型沙生植物,作为制炭物料具有其特殊性,而炭化温度决定生物炭形貌特征和化学性质。通过无氧炭化法制备了不同温度(300 ~ 900℃)的沙蒿生物炭,研究了炭化温度对沙蒿生物炭形貌特征、表面官能团种类、产率变化和有机组分含量的影响。结果表明:生物炭孔径随着炭化温度的升高而增大,700℃以后生物炭结构有一定程度的破坏;生物质炭化后C–O–C 、–COOH 、–CH 3、–CH 2、–OH 和C=O 逐渐消失;生物炭产率随着炭化温度的升高而降低,尤其是从 300℃升高至 400℃产率降低最为明显,这与纤维素及半纤维素的分解有直接关系;生物炭中有机组分的C 元素含量增加,由 701.7 g/kg 增加到 899.3 g/kg ,增加了 197.6 g/kg ;而H 、O 和N 元素含量则逐渐降低,分别降低了21.4、171.8 和 6.6 g/kg ;生物炭中有机组分的原子比 H/C 、O/C 和 (N + O)/C 都逐渐减小。总之,生物质升温炭化过程中,炭化温度与生物炭孔径及有机组分的C 元素含量呈正相关关系而与生物炭产率、生物炭中有机组分的H 、O 和N 元素含量呈负相关关系,低温和中温炭化时生物炭保留原有的骨架结构,而高温时对其有一定程度的破坏作用,沙蒿生物质含有丰富的官能团,升温裂解过程中多数官能团消失,无机组分 Si–O–Si 得以保留,此外,生物质升温裂解是一个芳香性逐渐增强,亲水性和极性逐渐减弱的过程。 关键词:沙蒿;生物炭;表面结构;官能团;生物炭产率;有机组分 中图分类号:S152.4 沙篙是菊科篙属(Artemisia )的一个半灌木类群,是一种典型的沙生植物,具有很强的抗寒、抗旱和耐沙埋等特性。沙蒿在其生境中经过漫长的自然选择成为建群种和优势种,广泛地分布在半固定或固定的沙地,是较好的固沙防风植物,在生态保护和恢复中起到了非常重要的作用,也是恶劣生境下的重要碳汇植物。沙蒿平茬或刈割可明显促进其生长,增强它的生活能力,平茬或刈割后的沙蒿可将其就地转化成为生物炭(biochar ,无氧条件下炭化的产物[1–3])进行沙地封存。这一方面可以利用生物炭的稳定性实现碳汇的目的,为减缓全球气候变化做出贡献;另一方面可利用生物炭的多孔性、亲水性、吸附性等特性,实现改善沙地生境效应的作用[4–5]。 生物炭的特性由原料和制备条件所决定。目前研究制备生物炭的原料主要包括阔叶树、牧草、树皮、作物残余物(如稻草、坚果壳和稻壳)、柳枝梭、有机废物(如酒糟、甘蔗渣、橄榄废物、鸡粪、牛粪、剩余污泥和纸浆)等,而对沙地特殊生境下的沙蒿作为制取生物炭材料的研究尚未见报道[6]。 近些年来,因生物炭可充分发挥环境和农业效益而备受研究者的亲睐,而生物炭的含碳率高、孔隙结构丰富、比表面积大、理化性质稳定等固有的特点是生物炭还田改土[7–9]、提高农作物产量、缓释肥效[10–12],实现碳封存的重要结构基础。为此,本试验以沙生植物沙蒿为材料,研究炭化温度对沙蒿生物炭产率、表面特征、官能团、有机组分含量和有机组分中原子比的影响,为沙蒿生物炭的制取和应用提供基本依据。 1 材料与方法 1.1 材料 供试材料为黑沙蒿,取自内蒙古呼和浩特市托克托县沙地,该沙地是库布齐沙地的东缘,分布在托克托县的西南。将取回的沙蒿平铺于室外阳光下晒干后粉碎放入烘箱中65℃烘至恒重(约24 h),然后放入干燥器中以备制取生物炭。 1.2 试验设计 炭化温度设300、400、500、600、700、800和

不同原料生物炭理化性质的对比分析

不同原料生物炭理化性质的对比分析 来源:《农业资源与环境学报》2017 年第 6 期 作者:孙涛1,朱新萍1,李典鹏1,顾祝禹1,张佳喜2,贾宏涛1* 单位:1、新疆农业大学草业与环境科学学院;2、新疆农业大学机械交通学院为研究不同原料生物炭理化性质的差异,以苜蓿秸秆生物炭、小麦秸秆生物炭、棉花秸秆生物炭、葡萄藤生物炭、污泥生物炭和褐煤生物炭6 种生物炭为测试材料,利用傅里叶红外光谱仪和Boehm 滴定法对生物炭表面官能团进行定性和定量分析,用电子扫描显微镜观察生物炭表面形貌,并测定生物炭的pH值、有机碳含量和阳离子交换量等基本理化性质。 结果表明,除污泥生物炭呈弱酸性外(pH=6.76),其他生物炭均呈碱性(pH=8.49~9.96)。苜蓿秸秆生物炭有机碳含量最高(588.43 g·kg-1),污泥生物炭最低(168.17 g·kg-1)。阳离子交换量大小排序为,苜蓿秸秆生物炭、棉花秸秆生物炭>葡萄藤生物炭>小麦秸秆生物炭>污泥生物炭>褐煤生物炭。FTIR 图谱表征显示,生物炭表面存在芳香烃类和含氧基团,生物炭的结构以芳环骨架为主。苜蓿生物炭表面官能团总数最多,污泥生物炭最少。扫描电镜(SEM)结果表明,苜蓿秸秆生物炭、小麦秸秆生物炭、棉花秸秆生物炭、葡萄藤生物炭表面有明显孔隙结构,褐煤生物炭和污泥生物炭表面并无明显的孔隙结构。 综上,苜蓿秸秆生物炭、小麦秸秆生物炭、棉花秸秆生物炭、葡萄藤生物炭适用农田土壤改良与培肥,褐煤生物炭和污泥生物炭可尝试用于污染土壤的修复,同时污泥生物炭可用于盐碱土的改良。 前言 生物炭是生物质材料在限氧、低温(<700 ℃)环境下,经加热分解最终获得的一种碳含量丰富的固态产物。因其表面具有丰富的孔隙结构,以及稳定的脂

活性炭吸附氢醌滴定法测定金

6.1 活性炭吸附氢醌滴定法测定金 1方法提要 试样经灼烧后用王水分解,金全部以氯金酸状态进入溶液中,用活性炭吸附并与其它元素分离、炭化,再以王水溶解水浴蒸干,在PH=2.0~2.5磷酸盐缓冲溶液中以联苯胺做指示剂,用氢醌标准溶液滴定,其反应式如下: Au+4HCl+HNO3→HAuCl4+NO+2H2O 2HAuCl4+3C6H6O2→2Au+2C6H4O2+8HCl 5~3000ugAu呈系列,实际工作中0.1~20ug用1ml=20ugAu氢醌标液滴定。0.1ug以下本法测不准。 2仪器设备同碘量法 主要试剂(均为A. R) HCl、HNO3、1+1王水、1+1逆王水 KCl 100g/L水溶液 NH4HF220g/L水溶液 聚乙二醇6000分子式HOCH2(CH2OCH2)n CH2OH:20g/L水液 活性炭(-200目) 250g放入2500ml 2% NH4HF2水溶液中,浸泡7天(在塑料桶中),抽气过滤,以2%HCl及水洗净至无F-离子备用。 KH2PO4—H3PO4PH= 2~2.5缓冲液 称100g KH2PO4.12H2O溶于900ml水中(加热溶解),加25ml经过处理的磷酸,水稀至1000ml,用精密试纸测PH值,可用

稀KOH溶液调PH值。 2.7 联苯胺指示剂1g/L 称0.1g 联苯胺以数滴冰醋酸溶解后,水稀至100ml。 2.8 氢醌储备液 称取0.8376g对苯二酚(G.. R)溶于400ml冷水中,不许加热,加8.3mL HCl,加25ml无水乙醇,水稀至1000ml,贮于棕色容量瓶中。 此溶液1ml相当于1mgAu 氢醌工作液 分取上述溶液稀释成1ml相当于30(60、90)ugAu 分取30(60、90)ml母液于1000ml棕色容量瓶中加0.4ml HCl,加50ml无水乙醇,水稀释至刻度,标定后使用。 标定方法: 分取三份5ml 20ugAu/ml标准溶液,放50ml瓷坩埚中,加3~5滴KCl,在水浴上蒸干,滴加0.5mlHCl蒸至无酸味,取下,以下同操作手续。 计算公式:T=m/v 式中T—氢醌工作液对金的滴定度ug/ml m—分取金标准的量ug V—消耗氢醌工作标液的体积ml 3 操作手续 称样10~20g于方瓷舟中,600℃灼烧1h,放入400ml烧杯中,

活性炭吸附-碘量法测定金

活性炭吸附-碘量法测定金 2016-05-20 13:03来源:内江洛伯尔材料科技有限公司作者:研发部 碘量法测定金试料经灼烧、王水溶解。活性炭吸附金。Au(Ⅲ)与碘化钾反应生成碘化亚金,并游离出碘,以淀粉为指示剂,用硫代硫酸钠标准滴定溶液滴定以测定金量。 本法适用于冶金物料、载金炭、浸出液等中0.x % (g/L)~xx % (g/L)的金含量的测定。 (1) 主要试剂 王水;盐酸溶液(2+98);氟化氢铵溶液(20 g/L);氯化钠溶液(25 g/L);淀粉溶液(10 g/l);EDTA溶液(250 g/L);醋酸溶液(7+93)。 活性炭(粒度200目):将活性炭置于氟化氢铵溶液中,浸泡2~3日,抽滤。以盐酸溶液(2+98)及水洗涤至无 F-为止。活性炭在氢氧化钠溶液(200 g/L)中煮沸3 h,抽滤,以水洗涤。于盐酸溶液(1+3)中煮沸2 h后使用。 金标准储备溶液称取0.50 g纯金(≥99.99%)于400 mL烧杯中,加20 mL王水,加热溶解。加5 mL氯化钠溶液,水浴蒸至湿盐状。加3 mL盐酸,水浴蒸至湿盐状,重复3~4次。加20 mL盐酸,转入500 mL容量瓶中,加145 mL盐酸,用水稀释至刻度,混匀。此溶液1 mL含1 mg金。 金标准溶液(100 μg/mL)。 硫代硫酸钠标准滴定溶液:称取25.2 g硫代硫酸钠(Na2S2O4·5H2O),溶于新煮沸并冷却的蒸馏水中,加入0.1~0.2 g碳酸钠,转入1000 mL容量瓶中,用水稀释至刻度,混匀。此溶液1 mL相当于10 mg金。放置7天后使用。 取上述溶液30 mL、100 mL,各加入1~2 g碳酸钠,分别用新煮沸并冷却的蒸馏水稀释至10000 mL,混匀。此溶液1 mL相当于30 μg、100 μg金。标定后使用。 标定分别移取10.00 mL金标准溶液,加0.1~0.3 g碘化钾,搅匀,立即用相应浓度的硫代硫酸钠标准滴定溶液滴定至微黄色。加0.5~1.0 mL淀粉

活性炭吸附金机理

活性炭吸附金机理 炭能从气相和液相中吸附、分离、净化某些物质的特性,在古代就已为人类所认识,并应用于生活和生产领域。而炭能从溶液中吸附贵金属的特性,是M·拉佐斯基(Lazowski)1848年提出的。1880年,W.N.Davis用木炭从氯化浸出金的溶液中成功地吸附回收了金,并获得专利。1894年,W.D.Johnston使用活性炭充填的过滤器,将氰化钾浸出金的澄清液流经过滤器提取金、银,然后再熔炼活性炭进行回收。1934年,T.G.Chapman将活性炭直接加入氰化浸出矿浆中成功地吸附回收了金,他为炭浆法的发展迈出了第一步。此种“炭浆法”曾于20世纪40年代应用于美国内华达州的盖特尔矿山,它虽能成功地从矿浆中吸附回收金,但整个工艺证明是不经济的。因为从中回收金必需烧毁和熔炼这些载金炭。1950年,J.B.Zadra 采用硫化钠和氢氧化钠混合液从载金炭上成功地解吸了金,但此法不适于从载金炭上回收银。直到1952年扎德拉等才研究成功用热的氰化钠和氢氧化钠混合液从载金炭上同时解吸金、银,从而奠定了现代炭浆法的基础。 炭浆法或炭浸法提金工艺的核心是活性炭对氰化液中金的吸附作用。活性炭吸附金性能的优劣将直接影响着该工艺对金的回收率。因此,对活性炭理化性能的掌握和选择则是炭浆法提金的关键。 1.活性炭 1)活性炭晶体结构 根据x射线衍射研究证实,活性炭的典型结构与石墨的典型结构近似。活性炭属于无定形碳或微晶形碳,其结构与石墨相类似,是由多环芳香族环组成的层面晶格,见图1。

图2是石墨和活性炭的典型结构示意图。从图中看出,石墨是由联结成六角形的碳原子层组成,各层之间由范德华力(Van der Waals force)维系在约0.335 nm的距离,任何一个平面上的碳原子都处在下面一层六角形中部的上方。而活性炭则不像石墨那样有规则排列,它的六角形碳环有很多已经断裂,其总体结构较紊乱。 微晶形碳的结构比石墨缺乏完整性,在微晶形碳中有两种不同的结构,一种是和石墨类似的二元结构,这种结构网平面平行,形成相等的间隔,而层平面在垂直方向上取向不完全,层与层之间的排列也不规则。这就是所谓的乱层结构,见图3。由具有乱层结构的碳排列成一个单位,称作一个基本结晶,这个基本结晶的大小随炭化温度而变化。基本结晶间的错动便形成孔隙,这是起吸附作用的部位。另一种是由碳六角形不规则交叉连接而成的空间格子

相关文档