文档视界 最新最全的文档下载
当前位置:文档视界 › SSB单边带信号调制

SSB单边带信号调制

SSB单边带信号调制
SSB单边带信号调制

SSB单边带信号调制

由双边带过渡

双边带信号虽然抑制了载波,提高了调制效率,但调制后的频带宽度仍是基带信号带宽的2倍,而且上、下边带是完全对称的,它们所携带的信息完全相同。因此,从信息传输的角度来看,只用一个边带传输就可以了。我们把这种只传输一个边带的调制方式称为单边带抑制载波调制,简称为单边带调制(SSB)。

原理部分

采用单边带调制,除了节省载波功率,还可以节省一半传输频带,仅传输双边带信号的一个边带(上边带或下边带)。因此产生单边带信号的最简单方法,就是先产生双边带。然后让它通过一个边带滤波器,只传送双边带信号中的一个边带,这种产生单边带信号的方法称为滤波法。由于理想的滤波器特性是不可能作到的,实际的边带滤波器从带通到带阻总是有一个过渡带,随着载波频率的增加,采用一级载波调制的滤波法将无法实现。这时可采用多级调制滤波的办法产生单边带信号。即采用多级频率搬移的方法实现:先在低频处产生单边带信号,然后通过变频将频谱搬移到更高的载频处。产生SSB 信号的方法还有:相移形成法,混合形成法。

SSB移相法原理图

SSB移相法的形成的SystemView仿真

SSB移相法的形成上边带下边带

数学表达式

为简便起见,设调制信号为单频信号f(t)=Amcosωmt,载波为c(t)=cosωct,则调制后的双边带时域波形为:SDSB(t)=Amcosωmtcost=[Amcos(ωc+ωm)t+Amcos(ωc-ωm)t]/2 保留上边带,波形为:SUSB(t)=[Amcos(ωc+ωm)t]/2=Am(cosωctcosωmt-sinωctsinωmt)/2

保留下边带,波形为:SLSB(t)=[Amcos(ωc-ωm)t]/2=Am(cosωctcosωmt+sinωctsinωmt)/2

上两式中的第一项与调制信号和载波信号的乘积成正比,称为同相分量;而第二项的乘积则是调制信号与载波信号分别移相90°后相乘的结果,称为正交分量。由此可以

引出另一种形成单边带信号的方法——移相法。如下图所示,是SystemView的仿真设计。需要说明的是,如果调制信号是任意的周期信号,则可将其分解出多个频率分量之和,只要其中的移相电路为一定带宽的移相电路,对这些频率分量都能移相90°,那么形成任意调制信号的单边带信号是可能的。只不过将f(t)的输入变为f(t)/2即可。

数学表达式

用相移法形成SSB信号,SSB信号的时域表示式为

式中,“-”对应上边带信号,“+”对应下边带信号;表示把m(t)的所有频率成分均相移,称是m(t)的希尔伯特变换。

从SSB信号调制原理中可以清楚地看出,SSB信号的频谱是DSB信号频谱的一个边带,其带宽为DSB信号的一半,与基带信号带宽相同。单边带幅度调制的效率也为100%。从SSB信号调制原理中不难看出,SSB信号的包络不再与调制信号m(t)成正比,因此SSB信号的解调也不能采用简单的包络检波,需采用相干解调。

单边带幅度调制的好处是,节省了载波发射功率,调制效率高;频带宽度只有双边带的一半,频带利用率提高一倍。缺点是单边带滤波器实现难度大。

用matlab画单边带调节

%SSB调制与解调

clc,clear;

%m为调制信号

fs = 1.5*1e7; %采样率

fc = 1.5e6; %载波频率

n = 0:200;

m = cos(2*pi*1.5e5*n/fs); %调制信号subplot(3,2,[1 2]);

plot(m);

N = length(m); %采样点数

axis([1 N -1 1]);

title('原始信号');

c = cos(2*pi*fc*n/fs);

s = sin(2*pi*fc*n/fs);

mh = hilbert(m,N); %m的Hilbert变换

snl = m.*c - mh.*s; %上边带信号

subplot(3,2,3);

plot(real(snl)),axis([1 N -1 1]),title('LSB信号'); snu = m.*c + mh.*s; %下边带信号

subplot(3,2,5);

plot(real(snu)),axis([1 N -1 1]),title('USB信号');

shl = m.*s + mh.*c; %snl的近似Hilbert变换shu = m.*s + mh.*c; %snu的近似Hilbert变换%sh = hilbert(sn,N);

%解调出的信号

mdl = snl.*c + shl.*s;

mdu = snu.*c + shu.*s;

mdl = real(mdl);

mdu = real(mdu);

subplot(3,2,4);

plot(mdl,'r');

axis([1 N -1 1]);

title('LSB解调出的信号');

subplot(3,2,6);

plot(mdl,'g');

axis([1 N -1 1]);

title('USB解调出的信号');

M文件程序代码

%单边带幅度调制与解调(SSBAM)

ssb=real(hilbert(mt).*exp(j*2*pi*fc*t));

[f,ssbf]=FFT_SHIFT(ssb,N,t); PSD_SSB=(abs(ssbf).^2)/T; ssbd=ssb.*cos(2*pi*fc*t); ssbd=ssbd-mean(ssbd);

B=2*fmax;

[f,SSBf]=FFT_SHIFT(ssbd,N,t); [t,ssb_t]=RECT_LPF(f,SSBf,B);

实现调制过程

1.信号的产生

利用相移法来调制单边带调制信号,调制信号如下:

Fs=100000;%信号脉冲

t=[0:1/Fs:0.01];%一个脉冲的时间

y=cos(300*2*pi*t);%调制信号

yz=sin(300*2*pi*t);%调制信号的希尔伯特变换

时域波形图频域波形图载波为:C(t)= coswct

Fc=30000;%载波脉冲

c=cos(Fc*2*pi*t);%载波

b=sin(2*pi*Fc*t);%载波正弦变换

lssb=y.*c+yz.*b;%保留下边带信号

载波信号余弦时域波形图

载波信号正弦时域波形图

2.信号的调制

得到单边带信号后,在信号中加入高斯白噪声(此时设加入的高斯白噪声为大信噪比),得到加入噪声后的下边带信号:

yl=awgn(lssb,30);%调制信号加噪声

wsingle=fft(lssb);%其傅里叶变换

wsingle=abs(wsingle(l:length(wsingle)/2+1);%已调信号的频谱frqsingle=[0:length(wsingle)-1]*Fs/length(wsingle)/2;%已调信号的频谱W

其时域波形其频域波形

3.信号的解调

因为单边带信号也是抑制载波的已调信号,它的包络不能直接反映调制信号的变化,所以,仍需采用相干解调。通过解调器后的信号如下图:

其时域波形其频域波形

信号与系统试题附答案

信科0801《信号与系统》复习参考练习题一、单项选择题:

14、已知连续时间信号,) 2(100)2(50sin )(--=t t t f 则信号t t f 410cos ·)(所占有的频带宽度为() A .400rad /s B 。200 rad /s C 。100 rad /s D 。50 rad /s

f如下图(a)所示,其反转右移的信号f1(t) 是() 15、已知信号)(t f如下图所示,其表达式是() 16、已知信号)(1t A、ε(t)+2ε(t-2)-ε(t-3) B、ε(t-1)+ε(t-2)-2ε(t-3) C、ε(t)+ε(t-2)-ε(t-3) D、ε(t-1)+ε(t-2)-ε(t-3) 17、如图所示:f(t)为原始信号,f1(t)为变换信号,则f1(t)的表达式是() A、f(-t+1) B、f(t+1) C、f(-2t+1) D、f(-t/2+1)

18、若系统的冲激响应为h(t),输入信号为f(t),系统的零状态响应是( ) 19。信号)2(4sin 3)2(4cos 2)(++-=t t t f π π 与冲激函数)2(-t δ之积为( ) A 、2 B 、2)2(-t δ C 、3)2(-t δ D 、5)2(-t δ ,则该系统是()>-系统的系统函数.已知2]Re[,6 51)(LTI 202s s s s s H +++= A 、因果不稳定系统 B 、非因果稳定系统 C 、因果稳定系统 D 、非因果不稳定系统 21、线性时不变系统的冲激响应曲线如图所示,该系统微分方程的特征根是( ) A 、常数 B 、 实数 C 、复数 D 、实数+复数 22、线性时不变系统零状态响应曲线如图所示,则系统的输入应当是( ) A 、阶跃信号 B 、正弦信号 C 、冲激信号 D 、斜升信号

DDS信号发生器原理

2 基本原理 2.1 直接数字频率合成器 直接数字合成(Direct Digital Synthesis,简称DDS)技术是从相位概念出发,直接对参考正弦信号进行抽样,得到不同的相位,通过数字计算技术产生对应的电压幅度,最后滤波平滑输出所需频率。 2.1.1 DDS工作原理 下面,通过从相位出发的正弦函数产生描述DDS的概念。 图1表示了半径R为1的单位圆,半径R绕圆心旋转与X轴的正方向形成夹角θ(t),即相位角。 图1 单位圆表示正弦函数S= R sinθ(t) DDS的原理框图如图2所示。图中相位累加器可在每一个时钟周期来临时将频率控制字(FTW)所决定的相位增量M累加一次,如果记数大于2N,则自动溢出,而只保留后面的N位数字于累加器中[9]。 图2 DDS原理框图

DDS的数学模型可归结为:在每一个时钟周期T c 内,频率控制字M与N比特相位累加器累加一次,并同时对2N取模运算,得到的和(以N位二进制数表示)作为相位值,以二进制代码的形式去查询正弦函数表ROM,将相位信息转变成相应的数字量化正弦幅度值,ROM输出的数字正弦波序列再经数模转换器转变为阶梯模拟信号,最后通过低通滤波器平滑后得到一个纯净的正弦模拟信号。 由于ROM表的规模有限,相位累加器一般仅取高位作为寻址地址送入正弦查询表获得波形幅度值。正弦查询表中以二进制数形式存入用系统时钟对正弦信号进行采样所得的样值点,可见只需改变查询表内容就可实现不同的波形输出。 2.1.2 DDS的结构 DDS的基本结构包括相位累加器、正弦查询表(ROM)、数模转换器(DAC)和低通滤波器(LPF),其中从频率控制字到波形查询表实现由数字频率值输入生成相应频率的数字波形,其工作过程为: ⑴确定频率控制字M; ⑵在时钟脉冲f c 的控制下,该频率控制字累加至相位累加器生成实时数字相位值; ⑶将相位值寻址ROM转换成正弦表中相应的数字幅码。 模块DAC实现将数字幅度值高速且线性地转变为模拟幅度值,DDS产生的混叠干扰由DAC之后的低通滤波器滤除]7[。 ㈠相位累加器 相位累加器是DDS最基本的组成部分,用于实现相位的累加并存储其累加结果。 若当前相位累加器的值为Σ n ,经过一个时钟周期后变为Σ 1+ n ,则满足 Σ 1+ n =Σ n +M Σ n 为一等差数列,不难得出:Σ n =nM+Σ 其中Σ 为相位累加器的初始相位值。 ㈡正弦查询表(ROM) DDS查询表所存储的数据是每一个相位所对应的二进制数字正弦幅值,在每一个时钟周期内,相位累加器输出序列的高m位对其进行寻址,最后的输出为该相位相对应的二进制正弦幅值序列。 ㈢数模转换器(DAC) 数模转换器的作用是将数字形式的波形幅值转换成所要求合成频率的模拟形式

数字信号处理滤波器

1.设计物理可实现的低通滤波器 设计思路:因为要设计FIR有限脉冲响应滤波器,通常的理想滤波器的单位脉冲响应h是无限长的,所以需要通过窗来截断它,从而变成可实现的低通滤波器。程序如下: clc;clear all; omga_d=pi/5; omga=0:pi/30:pi; for N=3:4:51; w1= window(@blackman,N); w2 = window(@hamming,N); w3= window(@kaiser,N,2.5); w4= window(@hann,N); w5 = window(@rectwin,N); M=floor(N/2); subplot(311);plot(-M:M,[w1,w2,w3,w4,w5]); axis([-M M 0 1]); legend('Blackman','Hamming','kaiser','hann','rectwin'); n=1:M; hd=sin(n*omga_d)./(n*omga_d)*omga_d/pi; hd=[fliplr(hd),1/omga_d,hd]; h_d1=hd.*w1';h_d2=hd.*w2';h_d3=hd.*w3';h_d4=hd.*w4';h_d5=hd.*w5'; m=1:M; H_d1=2*cos(omga'*m)*h_d1(M+2:N)'+h_d1(M+1); H_d2=2*cos(omga'*m)*h_d2(M+2:N)'+h_d2(M+1); H_d3=2*cos(omga'*m)*h_d3(M+2:N)'+h_d3(M+1); H_d4=2*cos(omga'*m)*h_d4(M+2:N)'+h_d4(M+1); H_d5=2*cos(omga'*m)*h_d5(M+2:N)'+h_d5(M+1); subplot(312);plot(omga,[H_d1,H_d2,H_d3,H_d4,H_d5]); legend('Blackman','Hamming','kaiser','hann','rectwin'); subplot(313);plot(abs([fft(h_d1);fft(h_d2);fft(h_d3);fft(h_d4);fft(h_ d5)])'); pause(); end 程序分析: 整个对称窗的长度为N,然而为了在MATLAB中看到窗函数在负值时的形状需将N变为它的一半,即为2M+1个长度。窗长设置为从3开始以4为间隔一直跳动51。则长度相同的不同窗函数在时域[-M,M]的形状如第一个图所示。 对窗函数进行傅里叶变换时,将零点跳过去先构造一个一半的理想滤波器的脉冲响应hd,再将零点位置求导得出的数赋值进去。将生成的hd左右颠倒形成了一个理想的滤波器的脉冲响应。将构造的理想滤波器的脉冲响应依次与之前定义的窗函数相乘,相乘出来的为列向量,用转置将其变成行向量,形成的h_d就是非理想的低通滤波器的脉冲响应序列。因为h_d为对称奇数长度序列,它的DTFT 可以是二倍的离散余弦变化,而零点的位置则直接带入求出,两者相加则是H_d。则第二个图表示的是五个矩阵向量在频域的变化,而第三个图表示的是五个非理想低通滤波器的傅里叶变换,图三FFT给出的结果永远是对称的,因为它显示

SSB单边带信号调制

SSB单边带信号调制 由双边带过渡 双边带信号虽然抑制了载波,提高了调制效率,但调制后的频带宽度仍是基带信号带宽的2倍,而且上、下边带是完全对称的,它们所携带的信息完全相同。因此,从信息传输的角度来看,只用一个边带传输就可以了。我们把这种只传输一个边带的调制方式称为单边带抑制载波调制,简称为单边带调制(SSB)。 原理部分 采用单边带调制,除了节省载波功率,还可以节省一半传输频带,仅传输双边带信号的一个边带(上边带或下边带)。因此产生单边带信号的最简单方法,就是先产生双边带。然后让它通过一个边带滤波器,只传送双边带信号中的一个边带,这种产生单边带信号的方法称为滤波法。由于理想的滤波器特性是不可能作到的,实际的边带滤波器从带通到带阻总是有一个过渡带,随着载波频率的增加,采用一级载波调制的滤波法将无法实现。这时可采用多级调制滤波的办法产生单边带信号。即采用多级频率搬移的方法实现:先在低频处产生单边带信号,然后通过变频将频谱搬移到更高的载频处。产生SSB 信号的方法还有:相移形成法,混合形成法。 SSB移相法原理图

SSB移相法的形成的SystemView仿真 SSB移相法的形成上边带下边带 数学表达式 为简便起见,设调制信号为单频信号f(t)=Amcosωmt,载波为c(t)=cosωct,则调制后的双边带时域波形为:SDSB(t)=Amcosωmtcost=[Amcos(ωc+ωm)t+Amcos(ωc-ωm)t]/2 保留上边带,波形为:SUSB(t)=[Amcos(ωc+ωm)t]/2=Am(cosωctcosωmt-sinωctsinωmt)/2 保留下边带,波形为:SLSB(t)=[Amcos(ωc-ωm)t]/2=Am(cosωctcosωmt+sinωctsinωmt)/2 上两式中的第一项与调制信号和载波信号的乘积成正比,称为同相分量;而第二项的乘积则是调制信号与载波信号分别移相90°后相乘的结果,称为正交分量。由此可以

北京邮电大学数字信号处理习题库选择题附加答案重点

13.下列关于冲激响应不变法描述错误的是 ( C A.S 平面的每一个单极点 s=sk 变换到 Z 平面上 z= e skT 处的单极点 B.如果模拟滤波器是因果稳定的,则其数字滤波器也是因果稳定的 C.Ha(s和 H(z的部分分式的系数是相同的 D.S 平面极点与Z 平面极点都有 z= e s kT 的对应关系 14.下面关于 IIR 滤波器设计说法正确的是( C A. 双线性变换法的优点是数字频率和模拟频率成线性关系 B. 冲激响应不变法无频率混叠现象 C. 冲激响应不变法不适合设计高通滤波器 D. 双线性变换法只适合设计低通、带通滤波器 15.以下关于用双线性变换法设计 IIR 滤波器的论述中正确的是( B 。 A.数字频率与模拟频率之间呈线性关系 B.总是将稳定的模拟滤波器映射为一个稳定的数字滤波器 C.使用的变换是 s 平面到 z 平面的多值映射 D.不宜用来设计高通和带阻滤波器 16.以下对双线性变换的描述中不正确的是 ( D 。 A.双线性变换是一种非线性变换 B.双线性变换可以用来进行数字频率与模拟频率间的变换C.双线性变换把 s 平面的左半平面单值映射到 z 平面的单位圆内 D.以上说法都不对17.以下对双线性变换的描述中正确的是 ( B 。 A.双线性变换是一种线性变换B.双线性变换可以用来进行数字频率与模拟频率间的变换 C.双线性变换是一种分段线性变换 D.以上说法都不对 18.双线性变换法的最重要优点是:;主要缺点是 A 。 A. 无频率混叠现象;模拟域频率与数字域频率间为非线性关系 B. 无频率混叠现象;二次转换造成较大幅度失真 C. 无频率失真;模拟域频率与数字域频率间为非线性关系 D. 无频率失真;二次转换造成较大幅度失真 19.利用模拟滤波器设计法设计 IIR 数字滤波器的方法是先设计满足相应指标的模拟滤波器,再按 某种方法将模拟滤波器转换成数字滤波器。双线性变换法是一种二次变换方法,即它 C 。 A. 通过付氏变换和 Z 变换二次变换实现 B. 通过指标变换和频谱变换二次变换实现 C. 通过二次变换,使得变换后 S 平面与 Z 平面间为一种单值映射关系 D. 通过模拟频率变换和数字频率变换二次变换实现 20.下列对 IIR 滤波器特点的论述中错误的是( C 。 A.系统的单位冲激响应 h(n是无限长的 B.结构必是递归型的C.肯定是稳定的 D.系统函数 H(z在有限 z 平面(0<|z|<∞)上有极点 21.在数字信号处理中通常定义的数字频率ω是归一化频率,归一化因子为 C 。 A.采样周期B. 模拟采样角频率 C. 模拟采样频率 D. 任意频率 22.信号数字频谱与模拟频谱间的一个显著区别在于数字频谱具有 A 。 A.周期性 B. 更大的精确度 C. 更好的稳

信号发生器的基本参数和使用方法

信号发生器 本人介绍一下信号发生器的使用和操作步骤. 1、信号发生器参数性能 频率范围:0.2Hz ~2MHz 粗调、微调旋钮 正弦波, 三角波, 方波, TTL 脉波 0.5" 大型LED 显示器 可调DC offset 电位 输出过载保护 信号发生器/信号源的技术指标: 波形正弦波, 三角波, 方波, Ramp 与脉波输出 振幅>20Vp-p (open circuit);>10Vp-p (加50Ω负载) 阻抗50Ω+10% 衰减器-20dB+1.0dB (at 1kHz) DC 飘移<-10V ~ >+10V, (<-5V ~ >+5V 加50Ω负载) 周期控制 1 : 1 to 10 : 1 continuously rating 显示幕4位LED显示幕 频率范围0.2Hz to2MHz(共7 档) 频率控制Separate coarse and fine tuning

失真< 1% 0.2Hz ~ 20kHz , < 2% 20kHz ~ 200kHz 频率响应< 0.2dB 0.2Hz ~100kHz;< 1dB100kHz~2MHz 线性98% 0.2Hz ~100kHz;95%100kHz~2MHz 对称性<2% 0.2Hz ~100kHz 上升/下降时间<120nS 位准4Vp-p±1Vp-p ~ 14.5Vp-p±0.5Vp-p 可调 上升/下降时间<120nS 位准>3Vpp 上升/下降时间<30nS 输入电压约0V~10V ±1V input for 10 : 1 frequency ratio 输入阻抗10kΩ(±10%) 交流100V/120V/220V/230V ±10%, 50/60Hz 电源线×1, 操作手册×1, 测试线GTL-101 ×1

信号与系统综合实验报告-带通滤波器的设计DOC

广州大学 综合设计性实验 报告册 实验项目选频网络的设计及应用研究 学院物电学院年级专业班电子131 姓名朱大神学号成绩 实验地点电子楼316 指导老师

《综合设计性实验》预习报告 实验项目:选频网络的设计及应用研究 一 引言: 选频网络在信号分解、振荡电路及其收音机等方面有诸多应用。比如,利用选频网络可以挑选出一个周期信号中的基波和高次谐波。选频网络的类型和结构有很多,本实验将通过设计有源带通滤波器实现选频。 二 实验目的: (1)熟悉选频网络特性、结构及其应用,掌握选频网络的特点及其设计方法。 (2)学会使用交流毫伏表和示波器测定选频网络的幅频特性和相频特性。 (3)学会使用Multisim 进行电路仿真。 三 实验原理: 带通滤波器: 这种滤波器的作用是只允许在某一个通频带范围内的信号通过,而比通频带下限频率低和比上限频率高的信号均加以衰减和抑制。 典型的带通滤波器可以从二阶低通滤波器中将其中一级改成高通而成,如图1所示。 电路性能参数可由下面各式求出。 通带增益:CB R R R R A f vp 144+= 其中B 为通频带宽。 中心频率:)1 1(121 3 12 20R R C R f += π

通带宽度:)2 1(14 321R R R R R C B f -+= 品质因数:B f Q 0 = 此电路的优点是,改变f R 和4R 的比值,就可以改变通带宽度B 而不会影响中心频率0f 。 四 实验内容: 设计一个中心频率Hz f 20000=,品质因数5>Q 的带通滤波器。 五 重点问题: (1)确定带通滤波器的中心频率、上限频率及下限频率。 (2)验证滤波器是否能筛选出方波的三次谐波。 六 参考文献: [1]熊伟等.Multisim 7 电路设计及仿真应用.北京:清华大学出版社,2005. [2]吴正光,郑颜.电子技术实验仿真与实践.北京:科学出版社,2008. [4]童诗白等.模拟电子技术基础(第三版).北京:高等教育出版社, 2001. 图1 二阶带通滤波器

单边带信号调制与解调-MATLAB

MATLAB中用M文件实现SSB解调 一、课程设计目的 本次课程设计是对通信原理课程理论教学和实验教学的综合和总结。通过这次课程设计,使同学认识和理解通信系统,掌握信号是怎样经过发端处理、被送入信道、然后在接收端还原。 要求学生掌握通信原理的基本知识,运用所学的通信仿真的方法实现某种传输系统。能够根据设计任务的具体要求,掌握软件设计、调试的具体方法、步骤和技巧。对一个实际课题的软件设计有基本了解,拓展知识面,激发在此领域中继续学习和研究的兴趣,为学习后续课程做准备。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。 二、课程设计内容 (1)熟悉MATLAB中M文件的使用方法,掌握SSB信号的解调原理,以此为基础用M文件编程实现SSB信号的解调。 (2)绘制出SSB信号解调前后在时域和频域中的波形,观察两者在解调前后的变化,通过对分析结果来加强对SSB信号解调原理的理解。 (3)对信号分别叠加大小不同的噪声后再进行解调,绘制出解调前后信号的时域和频域波形,比较未叠加噪声时和分别叠加大小噪声时解调信号的波形有何区别,借由所得结果来分析噪声对信号解调造成的影响。 (4)在老师的指导下,独立完成课程设计的全部内容,并按要求编写课程设计论文,文中能正确阐述和分析设计和实验结果。 三、设计原理 1、 SSB解调原理 在单边带信号的解调中,只需要对上、下边带的其中一个边带信号进行解调,就能够恢复原始信号。这是因为双边带调制中上、下两个边带是完全对称的,它们所携带的信息相同,完全可以用一个边带来传输全部消息。 单边带解调通常采用相干解调的方式,它使用一个同步解调器,即由相乘器和低通

信号与系统课程设计滤波器word文档

信号与系统课程设计 课程名称:信号与系统 题目名称:滤波器的设计与实现 学院:电气与电子工程学院 专业班级:电气工程及其自动化 学号:012005018113 学生姓名:谢宗喜 指导教师:黄劲 2007年12 月20 日

目录 一、设计要求 (2) 二、设计原理 (2) 三、设计思路 (3) 四、设计内容 (3) A、一阶有源滤波电路 (3) B、二阶有源滤波电路 (5) 1、二阶低通滤波电路 (5) 2、二阶高通滤波电路 (6) 3、二阶带通滤波电路 (8) C、用仿真软件设计滤波器 (10) 1、给定性能参数设计滤波器 (10) a、二阶低通滤波器 (10) b、二阶高通滤波器 (11) c、二阶带通滤波器 (12) 2、不同阶数滤波器性能比较 (12) D、滤波器的Matlab设计仿真 (13) 1、二阶低通滤波器 (13) 2、二阶高通滤波器 (14) 五、参考文献 (16)

一、设计要求 自已设计电路系统,构成低通滤波器、高通滤波器和带通滤波器。利用Matlab或其他仿真软件进行仿真。 有源滤波器由是有源元件和无源元件(一般是R和C)共同组成的电滤波器。和无源滤波器相比,它的设计和调整过程较简便,此外还能提供增益。因此,本课程设计中选择了二阶有源滤波器作为主要研究对象。 1、自行设计电路图,确定前置放大电路,有源滤波电路,功率放大电路的方案, 并使用绘图软件(Electronics Worrkbench)画出设计电路,包括低通、高通和带通。 2、所设计的滤波器不仅有滤波功能,而且能起放大作用,负载能力要强。 3、根据给定要求和电路原理图计算和选取单元电路的元件参数。 4、用Matlab或其他仿真软件(FilterLab)对滤波器进行仿真,记录仿真结果。 二、设计原理 1、电容器C具有通高频阻低频的性能。 2、由源滤波器由放大电路部分和滤波电路部分组成。 3、仿真软件可以将滤波器的性能直观的表现出来。 4、各种滤波器的幅频特性:

08级数字信号处理试卷A及参考答案1

2008 ~2009《数字信号处理》考试试卷(A ) 一、 填空题(本题满分30分,共含4道小题,每空2分) 1. 两个有限长序列x 1(n),0≤n ≤33和x 2(n),0≤n ≤36,做线性卷积后结果的长度 是 ,若对这两个序列做64点圆周卷积,则圆周卷积结果中n= 至 为线性卷积结果。 2. DFT 是利用nk N W 的 、 和 三个固有特性来实现FFT 快速运算的。 3. IIR 数字滤波器设计指标一般由 、 、 和 等四项组成。 4. FIR 数字滤波器有 和 两种设计方法,其结构 有 、 和 等多种结构。 二、 判断题(本题满分16分,共含8道小题,每小题2分,正确打√,错误打×) 1. 相同的Z 变换表达式一定对应相同的时间序列。( ) 2. Chirp-Z 变换的频率采样点数M 可以不等于时域采样点数N 。( ) 3. 按频率抽取基2 FFT 首先将序列x(n)分成奇数序列和偶数序列。( ) 4. 冲激响应不变法不适于设计数字带阻滤波器。( ) 5. 双线性变换法的模拟角频率Ω与数字角频率ω成线性关系。( ) 6. 巴特沃思滤波器的幅度特性必在一个频带中(通带或阻带)具有等波纹特性。( ) 7. 只有FIR 滤波器才能做到线性相位,对于IIR 滤波器做不到线性相位。( ) 8. 在只要求相同的幅频特性时,用IIR 滤波器实现其阶数一定低于FIR 阶数。( ) 三、 综合题(本题满分18分,每小问6分) 若x (n)= {3,2,1,2,1,2 },0≤n≤5, 1) 求序列x(n)的6点DFT ,X (k)=? 2) 若)()]([)(26k X W n g DFT k G k ==,试确定6点序列g(n)=?

pwm波信号发生器

电子技术综合训练 设计报告 题目:PWM信号发生器的设计 姓名: 学号: 班级: 同组成员: 指导教师: 日期: 摘要 本次课程设是基于TTL系列芯片的简易PWM信号发生器,PWM信号发生器应用所学的数字电路和模拟电路的知识进行设计。在设计过程中,所有电路仿真均基于Multisim10仿真软件。本课程设计介绍了PWM信号发生器的设计方案及其基本原理,并着重介绍了PWM信号发生器各单元电路的设计思路,原理及仿真,整体电路的的工作原理,控制器件的工作情况。设计共有三大组成部分:一是原理电路的设计,本部分详细讲解了电路的理论实现,是关键部分;二是性能测试,这部分用于

测试设计是否符合任务要求。三是是对本次课程设计的总结。 关键字: 目录 1 设计任务和要求…………………………………………………………? 1.1设计任务……………………………………………………………? 1.2设计要求…………………………………………………………….? 2 系统设计…………………………………………………………………? 2.1系统要求…………………………………………………………….? 2.2方案设计……………………………………………………………? 2.3系统工作原理……………………………………………………….? 3 单元电路设计……………………………………………………………? 3.1 单元电路A(单元电路的名称) ……………………………………? 3.1.1电路结构及工作原理……………………………………………? 3.1.2电路仿真…………………………………………………………?

3.1.3元器件的选择及参数确定……………………………………………? 3.2单元电路B(单元电路的名称) ……………………………………? 3.2.1电路结构及工作原理…………………………………………? 3.2.2电路仿真…………………………………………………………? 3.2.3元器件的选择及参数确定…………………………………………….? …… 4 系统仿真……………………………………………………………………?. 5 电路安装、调试与测试……………………………………………………? 5.1电路安装………………………………………………………………? 5.2电路调试………………………………………………………………? 5.3系统功能及性能测试…………………………………………………? 5.3.1测试方法设计………………………………………………………? 5.3.2测试结果及分析……………………………………………………? 6 结论…………………………………………………………………………?

常见的信号处理滤波方法

低通滤波:又叫一阶惯性滤波,或一阶低通滤波。是使用软件编程实现普通硬件RC 低通滤波器的功能。 适用范围:单个信号,有高频干扰信号。 一阶低通滤波的算法公式为: Y(n)X(n)(1)Y(n 1)αα=+-- 式中: α是滤波系数;X(n)是本次采样值;Y(n 1)-是上次滤波输出值;Y(n)是本次滤波输出值。 滤波效果1: 红色线是滤波前数据(matlab 中生成的正弦波加高斯白噪声信号) 黄色线是滤波后结果。 滤波效果2:

matlab中函数,相当于一阶滤波,蓝色是原始数据(GPS采集到的x(北)方向数据,单位m),红色是滤波结果。 一阶滤波算法的不足: 一阶滤波无法完美地兼顾灵敏度和平稳度。有时,我们只能寻找一个平衡,在可接受的灵敏度范围内取得尽可能好的平稳度。

互补滤波:适用于两种传感器进行融合的场合。必须是一种传感器高频特性好(动态响应好但有累积误差,比如陀螺仪。),另一传感器低频特性好(动态响应差但是没有累积误差,比如加速度计)。他们在频域上互补,所以进行互补滤波融合可以提高测量精度和系统动态性能。 应用:陀螺仪数据和加速度计数据的融合。 互补滤波的算法公式为: 1122Y(n)X (n)(X (n)Y(n 1))αα+=+-- 式中:1α和2α是滤波系数;1X (n)和2X (n)是本次采样值;Y(n 1)-是上次 滤波输出值;Y(n)是本次滤波输出值。 滤波效果 (测试数据): 蓝色是陀螺仪 信号,红色是加 速度计信号,黄 色是滤波后的 角度。

互补滤波实际效果:

卡尔曼滤波:卡尔曼滤波器是一个“optimal recursive data processing algorithm(最优化自回归数据处理算法)”。对于解决很大部分的问题,它是最优,效率最高甚至是最有用的。他的广泛应用已经超过30年,包括机器人导航,控制,传感器数据融合甚至在军事方面的雷达系统以及导弹追踪等等。近来更被应用于计算机图像处理,例如头脸识别,图像分割,图像边缘检测。 首先,用于测量的系统必须是线性的。 k k k 是测量系统参数。 在进行卡尔曼滤波时: 首先进行先验预测: 计算先验预测方差: 计算增益矩阵: 后验估计值: 后验预测方差: 举例说明: (下文中加粗的是专有名词,需要理解) 预测小车的位置和速度的例子(博客+自己理解):

单边带通信的特点

单边带通信的特点 单边带通信的特点在业余无线电短波通信中,单边带 制(SSB)占据着极其重要的位置。与调幅和调频制相比较, 其主要特点如下:一、节约频带。信道容量可增加一倍,从而部分的解决了短波通信中电台拥挤的问题。二、节约功率。与调幅制相比,在一定条件下,要达到相同的通信效果,单边带通讯用到的发射功率仅是调幅通讯用到的发射机功率 的1/16.三、没有门槛效应。即使是在微弱的信号下,仍可 勉强维持通信。四、各信道间相互干扰小。保密性也稍好。 五、网络通信的可能性。不会象调幅制那样出现啸叫声。其缺点则主要是技术难度大。对频率稳定度、滤波器的选择性和放大器的线性要求较高。各种调制式都有它的特点和适用范围,单边带通信和双边带通信相比较也有它突出的特点。下面我们从调制信号占据的带宽,发射机功率的有效利用程度和抵抗传输失真等主要方面,来分析单边带制的特点。(一)、节约频带由于单边带通信只是利用调幅信号中的一个边带 进行通信,由此能节省频带。设被传偷的声频信号的最高频率分量为Fmax,并用Bam、Bssb、Bfm分别表示调幅、单边带和调频时信号的带宽,则它们分别等于: Bam=2FmaxBssb~=FmaxBfm~=2(1+mf)FmaxBfm式中的mf是调频指数,mf=Aω/Ω等于最大频移与最高音频角频率

之比,其值一般取1.6-5视不同用途而异,以Fmax=3KHz 为例,可得:Bam=6KHzBssb=3KHzBfm=18KHz(取mf=2)从比较看出,单边带信号频谱占用的频带宽度最小,因而对高频频谱利用得最经济,在同样的有限高频频段内,就可以使无线电波道容量比用调幅制时增加一倍,从而部分地解决了短波波段空中频谱拥挤的问题。(二)、功率节约在双边带通信中,由于调幅波是由三个分量合成的,因此调幅波的功率就分配在载频和两个边带上。载波成分电流振幅最大,而边频成份电流振幅最小,因此,一个幅调波的总功率的大部分就消耗在不代表信号意义的载频上,而真正含有信号意义的每个边频的功率则是很少的。设载波功率Po=1/2I2cR,式中R为负载,每一边带功率: PΩ=1/2(MIc/2)2R=1/8M2I2cR,调幅波的总功率: P=Po+2PΩ=1/2I2cR+2(1/8M2I2cR) =1/2I2cR(1+M2/2)-Po(1+M2/2).当M=1时,调幅波的总功率是载波功率的150%,其中载波功率占全部功率的2/3,二个边惜共占全部功率的1/3,每个边带只占全部功率的1/6,也就是说,在调幅波中,不代表信号意义的载波分量,白白地消耗了2/3的总功率,而包含有信号意义的每一个边带只分配到1/6的总功率,上面我们假设调幅度M=1,实际上语言调制时M有大有小,最大等于1,不然就产生过调制,所以语言调制时M只能取其平均值,通常M平均=0.3,这样

(完整word版)数字信号处理题库(附答案)

数字信号处理复习题 一、选择题 1、某系统)(),()()(n g n x n g n y =有界,则该系统( A )。 A.因果稳定 B.非因果稳定 C.因果不稳定 D. 非因果不稳定 2、一个离散系统( D )。 A.若因果必稳定 B.若稳定必因果 C.因果与稳定有关 D.因果与稳定无关 3、某系统),()(n nx n y =则该系统( A )。 A.线性时变 B. 线性非时变 C. 非线性非时变 D. 非线性时变 4.因果稳定系统的系统函数)(z H 的收敛域是( D )。 A.9.0z D. 9.0>z 5.)5.0sin(3)(1n n x π=的周期( A )。 A.4 B.3 C.2 D.1 6.某系统的单位脉冲响应),()21()(n u n h n =则该系统( C )。 A.因果不稳定 B.非因果稳定 C.因果稳定 D.非因果不稳定 7.某系统5)()(+=n x n y ,则该系统( B )。 A.因果稳定 B.非因果稳定 C.因果不稳定 D.非因果不稳定 8.序列),1()(---=n u a n x n 在)(z X 的收敛域为( A )。 A.a z < B. a z ≤ C. a z > D. a z ≥ 9.序列),1()21()()31()(---=n u n u n x n n 则)(z X 的收敛域为( D )。 A.21z C. 21>z D. 2 131<

滤波器信号分析与处理实验

实验报告 课程名称:信号分析与处理指导老师:项基成绩:__________________ 实验名称:________滤波器_____实验类型:___研究型________同组学生姓名:__________ 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理 六、实验结果与分析(必填) 七、讨论、心得 一、 实验目的和要求(必填) 1、了解有源滤波器的种类、基本结构、工作原理及其特性。 2、学会测量有源滤波器的幅频特性。 二、 实验内容和原理(必填) 有源滤波器具有体积小、性能好、调整方便等优点,在信号处理方面得到了广泛的应用。 通常高阶的有源滤波器都可由一阶和二阶的滤波器串联而成,其中一阶滤波器只需一只电阻和一只电容构成一级RC 无源网络即可。本实验研究二阶RC 有源滤波器的有关问题。 1.二阶低通有源滤波器 二阶低通有源滤波器的实验电路如图2-7-1(a )所示。图中将1C 接地端改接到输出端是为了改善 10=ωω附近的滤波器性能。因为在10 <ωω 且接近1的范围内,o u 和i u 相位差小于 90,1C 起正反馈作用, 因而有利于提高这段范围内的输出幅度,而在频带外即10 ??ωω 时,o u 和i u 基本相同,1C 起促进带外衰减 的作用。 当R R R ==21时,该滤波器电路的传递函数为 2 12 122 122002200121 )(C C R s RC s C C R s Q s K s H ++=++=ωωω 截止频率为 2 101C C R = ω 品质因数为 2 1 21C C Q = 通带增益为10=K 。 该电路的优点是改变电阻R 即可改变截止角频率而不影响品质因数Q ,因此,调整时应先调1C 或2C ,使Q 满足要求,然后通过调节电阻R 将0ω调准确。

信号与系统实验四 答案

实验四 基于窗函数的FIR DF 的设计 提示: 1. Matlab 中提供了很多常用的窗函数,其中一些窗函数的调用形式为: 矩形窗:w=boxcar(N) 三角形窗:w=bartlett(N) 汉宁窗:w=hanning(N) 哈明窗:w=hamming(N) 布莱克曼窗:w=blackman(N) 其中,输入参数N 表示窗口的长度,返回的变量w 是一个长度为N 的列向量,表示窗函数在这N 点的取值。 2. b=fir1(N,Wc,'ftype',Window) fir1函数用来设计FIR 滤波器。其中N 为滤波器的阶数;Wc 是截止频率,其取值在0~1之间,它是以π为基准频率的标称值,设计低通和高通滤波器时,Wc 是标量,设计带通和带阻滤波器时,Wc 是1×2的向量;设计低通和带通滤波器时,无需 'ftype',当ftype=high 时,设计高通滤波器,当ftype=stop 时,设计带阻滤波器;Window 表示设计滤波器所采用的窗函数类型,Window 的长度为N+1,若Window 缺省,则fir1默认使用哈明窗;b 对应设计好的滤波器的系数h(n),即单位冲激响应,h(n)的长度为N+1。 需注意)(n h 的长度与滤波器的阶数间的关系。FIR 滤波器的系统函数可表示为: ∑-=-=1 )()(N n n z n h z H )(n h 的长度为N ,而滤波器的阶数为1-N 阶。 3. 求数字滤波器的频率响应 h=freqz(b,a,w) 其中,b 和a 分别为系统函数)(z H 的分子多项式和分母多项式的系数。对于FIR 滤波器,此处的b 即为h(n),a 可看作1。 实验题目: 1. 分别用矩形窗和哈明窗设计FIR 低通滤波器,设窗宽11=N ,截止频率rad c πω 2.0=,要求绘出两种窗函数设计的滤波器幅频曲线,并进行比较。

信号发生器的基本原理

信号发生器的基本原理- 信号发生器使用攻略 信号发生器的基本原理 现代信号发生器的结构非常复杂,与早期的简易信号发生器天差地别,但总体基本结构功能单元还是类似的。信号发生器的主要部件有频率产生单元、调制单元、缓冲放大单元、衰减输出单元、显示单元、控制单元。早期的信号发生器都采用模拟电路,现代信号发生器越来越多地使用数字电路或单片机控制,内部电路结构上有了很大的变化。 频率产生单元是信号发生器的基础和核心。早期的高频信号发生器采用模拟电路LC振荡器,低频信号发生器则较多采用文氏电桥振荡器和RC移相振荡器。由于早期没有频率合成技术,所以上述LC、RC振荡器优点是结构简单,可以产生连续变化的频率,缺点是频率 稳定度不够高。早期产品为了提高信号发生器频率稳定度,在可变电容的精密调节方面下了很多功夫,不少产品都设计了精密的传动机构和指示机构,所以很多早期的高级信号发生器体积大、重量重。后来,人们发现采用石英晶体构成振荡电路,产生的频率稳定,但是石英晶体的频率是固定的,在没有频率合成的技术条件下,只能做成固定频率信号发生器。之后 也出现过压控振荡器,虽然频率稳定度比LC振荡器好些,但依然不够理想,不过压控振荡 器摆脱了LC振荡器的机械结构,可以大大缩减仪器的体积,同时电路不太复杂,成本也不高。现在一些低端的函数信号发生器依然采用这种方式。 随着PLL锁相环频率合成器电路的兴起,高档信号发生器纷纷采用频率合成技术,其 优点是频率输出稳定(频率合成器的参考基准频率由石英晶体产生),频率可以步进调节,频率显示机构可以用数字化显示或者直接设置。早期的高精度信号发生器为了得到较小的频率步进,将锁相环做得非常复杂,成本很高,体积和重量都很大。目前的中高端信号发生器 采用了更先进的DDS频率直接合成技术,具有频率输出稳定度高、频率合成范围宽、信号频谱纯净度高等优点。由于DDS芯片高度集成化,所以信号发生器的体积很小。 信号发生器的工作频率范围、频率稳定度、频率设置精度、相位噪声、信号频谱纯度都与频率产生单元有关,也是信号发生器性能的重要指标。 信号发生器的一大特性就是可以操控仪器输出信号的幅度,信号通过特定组合衰减量的衰减器达到预定的输出幅度。早期的衰减器是机械式的,通过刻度来读取衰减量或输出幅度。现代中高档信号发生器的衰减器单元由单片机控制继电器来切换,向电子芯片化过渡,衰减单元的衰减步进量不断缩小,精度相应提高。大频率范围的高精度衰减器和高精度信号输出属于高科技技术,这也是国内很少有企业能制造高端信号发生器的原因之一。信号发生器的信号输出范围和输出电平的精度和准确度也是标志信号发生器性能的重要指标。

数字信号处理和滤波器设计

计算机仿真技术实验指导书

河南科技大学电子信息工程学院 二〇〇八年二月

计算机仿真技术实验指导书 MATLAB是一种交互式的以矩阵为基本数据结构的系统。在生成矩阵对象时,不要求明确的维数说明。所谓交互式,是指MATLAB的草稿纸编程环境。 与C语言或FORTRON语言作科学数值计算的程序设计相比较,利用MATLAB可节省大量的编程时间。 本实验指导书主要讨论四个实验。 实验一信号与系统的时域分析以及信号合成与分解 1. 实验目的 (1) 连续时间信号的向量表示法和符号运算表示法,典型离散信号表示; (2) 连续信号和离散信号的时域运算与时域变换; (3) 连续系统和离散系统的卷积,以及冲激响应、阶跃响应、单位响应、零状态响应; (4) 周期信号的傅立叶级数分解与综合(以周期方波为例); 2. 实验原理与方法 (1) 信号在MATLAB中的表示方法 MATLAB用两种方法来表示连续信号,一种是用向量的方法来表示信号,另一种则是符号运算的方法来表示信号。用适当的MATLAB语句表示出信号后,就可以利用MATLAB的绘图命令绘制出直观的信号时域波形。 向量表示法表示信号的方法是:MATLAB用一个向量表示连续信号的时间范围,另一个向量表示连续信号在该时间范围内的对应样值。如下列代码p=0.001; t=-pi:p:pi; f=1+cos(t); plot(t,f) title('f(t)=1+cos(t)') xlabel('t') axis([-pi,pi,-0.2,2.4])

执行后即可绘制连续信号1+cos(t)的时域波形。 借助于符号运算以及符号绘图函数ezplot,也可以绘制连续信号时域波形。如下列代码 syms t f=sym('1+cos(t)') %定义符号表达式 ezplot(f,[-pi,pi]) %绘制符号表达式波形 set(gcf,'color','w') %设置当前图形背景颜色为白色 执行后即可绘制连续信号1+cos(t)的时域波形。 与连续信号的表示相似,在MATLAB中,离散信号也需要用两个向量来表示,其中一个向量表示离散信号的时间范围,另一个向量表示该离散信号在该时间范围内的对应样值。但与连续信号表示有所不同的是,表示离散信号时间范围向量的元素必须为整数。如下列代码 n=[-3,-2,-1,0,1,2,3]; x=[-3,2,-1,3,1,-2,1]; stem(n,x,'filled') set(gcf,'color','w') title('x(n)') xlabel('n') 执行后即可绘制离散信号x(n)={ -3,2,-1,3,1,-2,1}的时域波形。 ↑ n=0 (2) 连续信号和离散信号的时域运算与时域变换 对连续信号而言,其基本时域变换有反褶、平移、尺度变换、倒相。 利用MATLAB的符号运算功能以及符号绘图函数ezplot,可以直观的观察和分析连续信号的时域运算与时域变换。如下列代码 syms t; f=sym('(t+1)*(heaviside(t+1)-heaviside(t))'); f=f+sym('(heaviside(t)-heaviside(t-1))'); %定义信号符号表达式 ezplot(f,[-3,3]) %绘制信号波形 axis([-3,3,-1.2,1.2]) set(gcf,'color','w')

数字信号处理试卷及答案

数字信号处理试卷及答案1 一、填空题(每空1分, 共10分) 1.序列()sin(3/5)x n n π=的周期为 。 2.线性时不变系统的性质有 律、 律、 律。 3.对4()()x n R n =的Z 变换为 ,其收敛域为 。 4.抽样序列的Z 变换与离散傅里叶变换DFT 的关系为 。 5.序列x(n)=(1,-2,0,3;n=0,1,2,3), 圆周左移2位得到的序列为 。 6.设LTI 系统输入为x(n) ,系统单位序列响应为h(n),则系统零状态输出y(n)= 。 7.因果序列x(n),在Z →∞时,X(Z)= 。 二、单项选择题(每题2分, 共20分) 1.δ(n)的Z 变换是 ( )A.1 B.δ(ω) C.2πδ(ω) D.2π 2.序列x 1(n )的长度为4,序列x 2(n )的长度为3,则它们线性卷积的长度是 ( )A. 3 B. 4 C. 6 D. 7 3.LTI 系统,输入x (n )时,输出y (n );输入为3x (n-2),输出为 ( ) A. y (n-2) B.3y (n-2) C.3y (n ) D.y (n ) 4.下面描述中最适合离散傅立叶变换DFT 的是 ( ) A.时域为离散序列,频域为连续信号 B.时域为离散周期序列,频域也为离散周期序列 C.时域为离散无限长序列,频域为连续周期信号 D.时域为离散有限长序列,频域也为离散有限长序列 5.若一模拟信号为带限,且对其抽样满足奈奎斯特条件,理想条件下将抽样信号通过 即可完全不失真恢复原信号 A.理想低通滤波器 B.理想高通滤波器 C.理想带通滤波器 D.理想带阻滤波器 6.下列哪一个系统是因果系统 ( )A.y(n)=x (n+2) B. y(n)= cos(n+1)x (n) C. y(n)=x (2n) D.y(n)=x (- n) 7.一个线性时不变离散系统稳定的充要条件是其系统函数的收敛域包括 ( ) A. 实轴 B.原点 C.单位圆 D.虚轴 8.已知序列Z 变换的收敛域为|z |>2,则该序列为

相关文档