文档视界 最新最全的文档下载
当前位置:文档视界 › 什么叫黑体辐射

什么叫黑体辐射

什么叫黑体辐射
什么叫黑体辐射

什么叫黑体辐射

任何物体都具有不断辐射、吸收、发射电磁波的本领。辐射出去的电磁波在各个波段是不同的,也就是具有一定的谱分布。这种谱分布与物体本身的特性及其温度有关,因而被称之为热辐射。为了研究不依赖于物质具体物性的热辐射规律,物理学家们定义了一种理想物体——黑体(black body),以此作为热辐射研究的标准物体。

所谓黑体是指入射的电磁波全部被吸收,既没有反射,也没有透射( 当然黑体仍然要向外辐射)。显然自然界不存在真正的黑体,但许多地物是较好的黑体近似( 在某些波段上)。

基尔霍夫辐射定律(Kirchhoff),在热平衡状态的物体所辐射的能量与吸收的能量之比与物体本身物性无关,只与波长和温度有关。按照基尔霍夫辐射定律,在一定温度下,黑体必然是辐射本领最大的物体,可叫作完全辐射体。

普朗克辐射定律(Planck)则给出了黑体辐射的具体谱分布,在一定温度下,单位面积的黑体在单位时间、单位立体角内和单位波长间隔内辐射出的能量为

B(λ,T)=2hc2 /λ5 ·1/exp(hc/λRT)-1

B(λ,T)—黑体的光谱辐射亮度(W,m-2 ,Sr-1 ,μm-1 )

λ—辐射波长(μm)

T—黑体绝对温度(K、T=t+273k)

C—光速(2.998×108 m·s-1 )

h—普朗克常数,6.626×10-34 J·S

K—波尔兹曼常数(Bolfzmann),1.380×10-23 J·K-1 基本物理常数

由图2.2可以看出:

①在一定温度下,黑体的谱辐射亮度存在一个极值,这个极值的位置与温度有关,这就是维恩位移定律(Wien)

λm T=2.898×103 (μm·K)

λm —最大黑体谱辐射亮度处的波长(μm)

T—黑体的绝对温度(K)

根据维恩定律,我们可以估算,当T~6000K时,λm ~0.48μm(绿色)。这就是太阳辐射中大致的最大谱辐射亮度处。

当T~300K,λm~9.6μm,这就是地球物体辐射中大致最大谱辐射亮度处。

②在任一波长处,高温黑体的谱辐射亮度绝对大于低温黑体的谱辐射亮度,不论这个波长是否是光谱最大辐射亮度处。

如果把B(λ,T)对所有的波长积分,同时也对各个辐射方向积分,那么可得到斯特番—波耳兹曼定律(Stefan-Boltzmann),绝对温度为T的黑体单位面积在单位时间内向空间各方向辐射出的总能量为B(T)

B(T)=δT4 (W·m-2 )

δ为Stefan-Boltzmann常数, 等于5.67×10-8 W·m-2 ·K-4

但现实世界不存在这种理想的黑体,那么用什么来刻画这种差异呢?对任一波长,定义发射率为该波长的一个微小波长间隔内,真实物体的辐射能量与同温下的黑体的辐射能量之比。显然发射率为介于0与1之间的正数,一般发射率依赖于物质特性、环境因素及观测条件。如果发射率与波长无关,那么可把物体叫作灰体(grey body),否则叫选择性辐射体。

第一章 量子力学基础知识

《结构化学基础》 讲稿 第一章 孟祥军

第一章 量子力学基础知识 (第一讲) 1.1 微观粒子的运动特征 ☆ 经典物理学遇到了难题: 19世纪末,物理学理论(经典物理学)已相当完善: ? Newton 力学 ? Maxwell 电磁场理论 ? Gibbs 热力学 ? Boltzmann 统计物理学 上述理论可解释当时常见物理现象,但也发现了解释不了的新现象。 1.1.1 黑体辐射与能量量子化 黑体:能全部吸收外来电磁波的物体。黑色物体或开一小孔的空心金属球近似于黑体。 黑体辐射:加热时,黑体能辐射出各种波长电磁波的现象。 ★经典理论与实验事实间的矛盾: 经典电磁理论假定:黑体辐射是由黑体中带电粒子的振动发出的。 按经典热力学和统计力学理论,计算所得的黑体辐射能量随波长变化的分布曲线,与实验所得曲线明显不符。 按经典理论只能得出能量随波长单调变化的曲线: Rayleigh-Jeans 把分子物理学中能量按自由度均分原则用到电磁辐射上,按其公式计算所得结果在长波处比较接近实验曲线。 Wien 假定辐射波长的分布与Maxwell 分子速度分布类似,计算结果在短波处与实验较接近。 经典理论无论如何也得不出这种有极大值的曲线。 ? 1900年,Planck (普朗克)假定: 黑体中原子或分子辐射能量时作简谐振动,只能发射或吸收频率为ν, 能量为 ε=h ν 的整数倍的电磁能,即振动频率为 ν 的振子,发射的能量只能是 0h ν,1h ν,2h ν,……,nh ν(n 为整数)。 ? h 称为Planck 常数,h =6.626×10-34J ?S ? 按 Planck 假定,算出的辐射能 E ν 与实验观测到的黑体辐射能非常吻合: ●能量量子化:黑体只能辐射频率为 ν ,数值为 h ν 的整数倍的不连续的能量。 能量波长 黑体辐射能量分布曲线 () 1 /81 3 3 --= kt h c h e E ννπν

黑体辐射与光的量子性

黑体辐射与光的量子性 § 8-1 黑体辐射 黑体辐射即为热辐射,是物体由于自身温度高于环境温度而产生的向外辐射电磁波的现象。 一、 热辐射 1、有关热辐射的物理量 (1)辐射能量分布函数:,时刻t 、空间点r 附近单位体积内的辐射场 中,方向为轴的 立体角内、频率附近内的能量为 辐射场的能量密度:U ,单位体积内的辐射能量 辐射场的谱密度:单位体积、单位频率内的辐射能量u 即 ,而 辐射场的亮度B :沿s 方向单位立体角内的辐射能流密度 辐射场的亮度的谱密度: 通过面元 的辐射通量 及其谱密度 辐射本领:单位表面积发出的辐射通量R 。 辐射本领的谱密度。 , 辐射照度:照射在物体上的单位表面积的辐射通量E 及其谱密度e : , (各向同性辐射场) 吸收本领

辐射通量:温度为T时,频率附近单位频率间隔内的辐射能量。 ,:辐射谱密度、辐射本领。) 吸收本领、吸收比:照射到物体上的通量,其中被物体吸收的通量,比例 ,称为吸收本领或吸收比。 基尔霍夫热辐射定律:热平衡状态下物体的辐射本领与吸收本领成正比,比值只与有关。 即,是普适函数,与物质无关。 吸收大,辐射也大。 二、黑体辐射 1.绝对黑体:只有吸收,没有反射。即吸收本领。 则此时, =,通过研究辐射本领就可以得知普适函数的特性,使 得对物质热辐射 的研究大为方便。 只开有一个小口的空腔,对于射入其中的光,可以完全吸收,故该空腔的开口可以作为绝对黑体。 2.绝对黑体热辐射的实验规律,可以用辐射本领与波场的关系描述。

三、黑体辐射的定律 1. Stefan-Boltzmann定律 ,, Stefan-Boltzmann常数。 辐射的总能量,即曲线下的面积与成正比。 2. Wien位移定律 ,函数的极大值满足, 3. Rayleigh-Jeans定律 绝对黑体空腔内的光以驻波的形式存在,单位体积内、频率在到之间的驻波数为 ,而从小孔辐射出的驻波数为,辐射出的能量,即辐射本领为 或。 ,与实验结果偏离。称为"紫外灾难"。 四、Plank的量子假设(1900年提出,1918年获Nobel奖) 空腔中的驻波是一系列的谐振子,只能取一些分立的能量,即 , 且,,Plank常数。

普朗克黑体辐射公式推导

普朗克黑体辐射公式推 导 The document was finally revised on 2021

普朗克黑体辐射公式的推导 所谓的黑体是指能吸收射到其上的全部辐射的物体,这种物体就称为绝对黑体,简称黑体。 黑体辐射:由这样的空腔小孔发出的辐射就称为黑体辐射。 辐射热平衡状态: 处于某一温度 T 下的腔壁,单位面积所发射出的辐射能量和它所吸收的辐射能量相等时,辐射达到热平衡状态。 实验发现: 热平衡时,空腔辐射的能量密度,与辐射的波长的分布曲线,其形状和位置只与黑体的绝对温度 T 有关而与黑体的形状和材料无关。 实验得到: 1. Wien 公式 从热力学出发加上一些特殊的假设,得到一个分布公式: ννννρνd T C C d )/ex p(231-=

Wien 公式在短波部分与实验还相符合,长波部分则明显不一致。 2. Rayleigh-Jeans 公式 ννπνρνd kT C d Jeans Rayleigh 2 38= -公式 Rayleigh-Jeans 公式在低频区和实验相符,但是在高频区公式与实验不符,并且 ∞→=?∞ v v d E E ,既单位体积的能量发散,而实验测得的黑体辐射的能量密度是 4T E σ=,该式叫做Stefan-Bolzmann 公式,σ叫做Stefan-Bolzmann 常数。 3. Planck 黑体辐射定律 1900年12月14日Planck 提出如果空腔内的黑体辐射和腔壁原子处于平衡,那么辐射的能量分布与腔壁原子的能量分布就应有一种对应。作为辐射原子的模型,Planck 假定: (1)原子的性能和谐振子一样,以 给定的频率 v 振荡; (2)黑体只能以 E = hv 为能量单位不连续的发射和吸收辐射能量,而不是象经典理论所要求的那样可以连续的发射和吸收辐射能量。 得到: νννπνρνd kT h C h d ??? ? ??-=1)/exp(1 833该式称为 Planck 辐射定律 h 为普朗克常数,h=s j .10 626.634 -? 4,普朗克的推导过程: 把空窖内的电磁波分解为各个频率的简振振动,简振模的形式最后为 ).(),(wt r K i k k e C t r -=αβψ,为常系数振方向,表示两个互相垂直的偏α αk C 2,1=

普朗克黑体辐射公式推导(精.选)

普朗克黑体辐射公式的推导 所谓的黑体是指能吸收射到其上的全部辐射的物体,这种物体就称为绝对黑体,简称黑体。 黑体辐射:由这样的空腔小孔发出的辐射就称为黑体辐射。 辐射热平衡状态:处于某一温度T 下的腔壁,单位面积所发射出的辐射能量和它所吸收的辐射能量相等时,辐射达到热平衡状态。 实验发现: 热平衡时,空腔辐射的能量密度,与辐射的波长的分布曲线,其形状和位置只与黑体的绝对温度T 有关而与黑体的形状和材料无关。 实验得到: 1.Wien 公式 从热力学出发加上一些特殊的假设,得到一个分布公式: Wien 公式在短波部分与实验还相符合,长波部分则明显不一致。 2. Rayleigh-Jeans 公式 Rayleigh-Jeans 公式在低频区和实验相符,但是在 高频区公式与实验不符,并且 ∞→=?∞ v v d E E ,既单位体积的能量发散,而 实 验测得的黑体辐射的能量密度是4 T E σ=,该 式 叫做Stefan-Bolzmann 公式,σ叫做Stefan-Bolzmann 常数。 3. Planck 黑体辐射定律 1900年12月14日Planck 提出如果空腔内的黑体辐射和腔壁原子处于平衡,那么辐射的能量分布与腔壁原子的能量分布就应有一种对应。作为辐射原子的模型,Planck 假定: (1)原子的性能和谐振子一样,以给定的频率v 振荡; (2)黑体只能以E=hv 为能量单位不连续的发射和吸收辐射能量,而不是象经典理论所要求的那样可以连续的发射和吸收辐射能量。 得到: νννπνρνd kT h C h d ??? ? ??-=1)/exp(1 833该式称为Planck 辐射定律 h 为普朗克常数,h=s j .10626.634 -? 4,普朗克的推导过程: 把空窖内的电磁波分解为各个频率的简振振动,简振模的形式最后为) .(),(wt r K i k k e C t r -=αβψ, 为常系数振方向,表示两个互相垂直的偏ααk C 2,1= 每一个简振模在力学上等价于一个自由度,记频率在( )νννd +,内的自由度数为()ννd g ,

黑体与黑体辐射

科技名词定义 中文名称:黑体辐射 英文名称:blackbody radiation;black body radiation 定义1:黑体发出的电磁辐射。它比同温度下任何其他物体发出的电磁辐射都强。 应用学科:大气科学(一级学科);大气物理学(二级学科) 定义2:研究实际物体吸收和发射辐射能量的性能时的一种理想化的比较标准。 应用学科:电力(一级学科);通论(二级学科) 8-1 黑体辐射 黑体辐射即为热辐射,是物体由于自身温度高于环境温度而产生的向外辐射电磁波的现象。 一、热辐射 1、有关热辐射的物理量 (1)辐射能量分布函数:,时刻t、空间点r附近单位体积内的辐射场中,方向为轴的 立体角内、频率附近内的能量为 辐射场的能量密度:U,单位体积内的辐射能量 辐射场的谱密度:单位体积、单位频率内的辐射能量u 即,而 辐射场的亮度B:沿s方向单位立体角内的辐射能流密度

辐射场的亮度的谱密度: 通过面元的辐射通量及其谱密度 辐射本领:单位表面积发出的辐射通量R。 辐射本领的谱密度。, 辐射照度:照射在物体上的单位表面积的辐射通量E及其谱密度e: ,(各向同性辐射场) 吸收本领 辐射通量:温度为T时,频率附近单位频率间隔内的辐射能量。 ,:辐射谱密度、辐射本领。)吸收本领、吸收比:照射到物体上的通量,其中被物体吸收的通量,比例 ,称为吸收本领或吸收比。 基尔霍夫热辐射定律:热平衡状态下物体的辐射本领与吸收本领成正比,比值只与有关。 即,是普适函数,与物质无关。

吸收大,辐射也大。 二、黑体辐射 1.绝对黑体:只有吸收,没有反射。即吸收本领。 则此时,=,通过研究辐射本领就可以得知普适函数的特性,使得对物质热辐射 的研究大为方便。 只开有一个小口的空腔,对于射入其中的光,可以完全吸收,故该空腔的开口可以作为绝对黑体。 2.绝对黑体热辐射的实验规律,可以用辐射本领与波场的关系描述。 三、黑体辐射的定律 1.Stefan-Boltzmann定律

第一讲黑体辐射

量子论 第一讲 黑体辐射 1.热辐射 在上一章中,我们已经提到,开尔文勋爵所说的两朵乌云的第二朵是黑体辐射的实验结果被拔开时,人们发现了近代物理学的两个基础理论的另一个理论即量子力学论. 量子论 由于温度升高而发射能量的辐射源,通常称为热辐射.热辐射体中原子和分子不发生运动状态变化.热辐射能量来自物体的热运动.物体在任何温度下(只要不是绝对零度)都向四周进行热辐射,也从周围吸收这种辐射.热辐射的光谱是连续光谱.一般情况下,热辐射的光谱不仅与辐射源的温度有关,还与它的表面特征有关. 为了定量的描述热辐射与温度和物体特性的关系,首先引入下列概念: (1)辐射出射度(简称辐出度) 温度为T的热辐射体,在单位间内从单位面积向各个方向辐射出的所有频率的辐射能量.又称为辐射能通量密度. (2)单色辐射出射度 温度为T的热辐射体, 在单位时间内从单位面积向各个方向所发射的、在某一频率附近的单位间隔内辐射能量(即功率)叫做该物体的单色辐射出射度.单色辐射出射度与温度、频率和物体的表面特性有关. (3)吸收本领 入射到物体上的辐射通量,一部分被物体散射或反射(对透明物体,还会有一部分透射), 其余的为物体所吸收. 2.黑体 热辐射的规律是很复杂的,我们知道,各种物体由于它有不同的结

构,因而它对外来辐射的吸收以及它本身对外的辐射都不相同.但是有一类物体其表面不反射光,它们能够在任何温度下,吸收射来的一切电磁辐射,这类物体就叫做绝对黑体,简称黑体. 绝对黑体是我们研究热辐射时为使问题简化的理想模型.实际上黑体只是一种理想情况,但如果做一个闭合的空腔,在空腔表面开一个小孔,小孔表面就可以模拟黑体表面.这是因为从外面射来的辐射,经小孔射入空腔,要在腔壁上经过多次反射,才可能有机会射出小孔.因此,在多次反射过程中,外面射来的辐射几乎全部被腔壁吸收.在实验中,可在绕有电热丝的空腔上开一个小孔来实现,正因为实验所用的绝对黑体都是空腔辐射,因此,黑体辐射又称为空腔辐射. 3.黑体的经典辐射定律 1879年,斯忒藩(J.Stefan,1835~1893年)从实验观察到黑体的辐出度与绝对温度T的四次方成正比,即: 1884年玻尔兹曼从理论上给出这个关系式.其中. 对一般物体而言,,为发射率,J为辐出度, ,式中,称为斯特藩-玻尔兹曼常数.通常<1,但对黑体而言,e = 1 (即为完全辐射). 如果物体周围的环境温度为,则须考虑物体表面对入射辐射能的吸收.假定入射的辐射能通量密度为,为物体表面的吸收率,则该物体表面所吸收的辐射能通量密度为,通常a < 1,但对黑体而言,(即为完全吸收).因此物体表面对入射能量的反射率为. 从理论上我们不难证明物体表面的放射率和吸收率相等,即,此称为我们可以说:容易辐射能量的物体,也容易吸收入射的能量. 处于热平衡时,黑体具有最大的吸收比,因而它也就有最大的单色辐出度. 4.紫外灾难 (1)基尔霍夫定律(Kirchhoff's Law): 热平衡状态时,任何物体的单色辐出度与单色吸收比之比,等于同温度条件下绝对黑体的单色辐出度

黑体辐射公式的推导

普朗克和瑞利-金斯黑体辐射公式的推导 1 引言 马克斯·普朗克于1900年建立了黑体辐射定律的公式,并于1901年发表。其目的是改进由威廉·维恩提出的维恩近似(至于描述黑体辐射的另一公式:由瑞利勋爵和金斯爵士提出的瑞利-金斯定律,其建立时间要稍晚于普朗克定律。由此可见瑞利-金斯公式所导致的“紫外灾难”并不是普朗克建立黑体辐射定律的动机)。维恩近似在短波范围内和实验数据相当符合,但在长波范围内偏差较大;而瑞利-金斯公式则正好相反。普朗克得到的公式则在全波段范围内都和实验结果符合得相当好。在推导过程中,普朗克考虑将电磁场的能量按照物质中带电振子的不同振动模式分布。得到普朗克公式的前提假设是这些振子的能量只能取某些基本能量单位的整数倍,这些基本能量单位只与电磁波的频率有关,并且和频率成正比。 这即是普朗克的能量量子化假说,这一假说的提出比爱因斯坦为解释光电效应而提出的光子概念还要至少早五年。然而普朗克并没有像爱因斯坦那样假设电磁波本身即是具有分立能量的量子化的波束,他认为这种量子化只不过是对于处在封闭区域所形成的腔(也就是构成物质的原子)内的微小振子而言的,用半经典的语言来说就是束缚态必然导出量子化。普朗克没能为这一量子化假设给出更多的物理解释,他只是相信这是一种数学上的推导手段,从而能够使理论和经验上的实验数据在全波段范围内符合。不过最终普朗克的量子化假说和爱因斯坦的光子假说都成为了量子力学的基石。

2 公式推导 2.1 普朗克公式和瑞利-金斯公式的推导 黑体是指在任何温度下,对于各种波长的电磁辐射的吸收系数恒等于1的物体。黑体辐射的能量是由电磁场的本征振动引起的,为简化推导过程,在此将黑体简化为边长为L 的正方形谐振腔。则腔内的电磁场满足亥姆霍兹方程: 2222u+k u 0 (k )ωμε?== (1) 用分离变量法,令u(x,y,z)X(x)Y(y)Z(z)= 则(1)式可分解为三个方程: 22 2 22 222200 0x y z d X k X dx d Y k Y dy d Z k Z dz ?+=???+=???+=?? 其中2222x y z k k k ωμε++= 得(1)式的驻波解为: 112233(,,)(cos sin )(cos sin )(cos sin ) x x y y z z u x y z c k x d k x c k y d k y c k z d k z =+++由在x=0,x=L,y=0,y=L,z=0,z=L 上的边界条件0n E n ?=?及0D E ?=可得:

黑体辐射定律

基尔霍夫热辐射定律 基尔霍夫热辐射定律(Kirchhoff热辐射定律),德国物理学家古斯塔夫·基尔霍夫于1859年提出的传热学定律,它用于描述物体的发射率与吸收比之间的关系。 简介一般研究辐射时采用的黑体模型由于其吸收比等于1(α=1),而实际物体的吸收比则小于1(1>α>0)。基尔霍夫热辐射定律则给出了实际物体的辐射出射度与吸收比之间的关系。 ?M为实际物体的辐射出射度,M b为相同温度下黑体的辐射出射度。 而发射率ε的定义即为 所以有ε=α。 所以,在热平衡条件下,物体对热辐射的吸收比恒等于同温度下的发射率。 而对于漫灰体,无论就是否处在热平衡下,物体对热辐射的吸收比都恒等于同温度下的发射率。 不同层次的表达式 对于定向的光谱,其基尔霍夫热辐射定律表达式为 对于半球空间的光谱,其基尔霍夫热辐射定律表达式为 对于全波段的半球空间,其基尔霍夫热辐射定律表达式为 ?θ为纬度角,φ为经度角,λ为光谱的波长,T为温度。 参考文献

?杨世铭,陶文铨。《传热学》。北京:高等教育出版社,2006年:356-379。 ?王以铭。《量与单位规范用法辞典》。上海:上海辞书出版社 普朗克黑体辐射定律 普朗克定律描述的黑体辐射在不同温度下的频谱 物理学中,普朗克黑体辐射定律(也简称作普朗克定律或黑体辐射定律)(英 文:Planck's law, Blackbody radiation law)就是用于描述在任意温度T下,从一个黑体中发射的电磁辐射的辐射率与电磁辐射的频率的关系公式。这里辐射率就是频率的函数[1]: 这个函数在hv=2、82kT时达到峰值[2]。 如果写成波长的函数,在单位立体角内的辐射率为[3]

第一讲黑体辐射

量子论 第一讲 黑体辐射 1.热辐射 在上一章中,我们已经提到,开尔文勋爵所说的两朵乌云的第二朵是黑体辐射的实验结果被拔开时,人们发现了近代物理学的两个基础理论的另一个理论即量子力学论. 量子论 由于温度升高而发射能量的辐射源,通常称为热辐射.热辐射体中原子和分子不发生运动状态变化.热辐射能量来自物体的热运动.物体在任何温度下(只要不是绝对零度)都向四周进行热辐射,也从周围吸收这种辐射.热辐射的光谱是连续光谱.一般情况下,热辐射的光谱不仅与辐射源的温度有关,还与它的表面特征有关. 为了定量的描述热辐射与温度和物体特性的关系,首先引入下列概念: (1)辐射出射度(简称辐出度) 温度为T 的热辐射体,在单位间内从单位面积向各个方向辐射出的所有频率的辐射能量.又称为辐射能通量密度. (2)单色辐射出射度 温度为T 的热辐射体, 在单位时间内从单位面积向各个方向所发射的、在某一频率附近的单位间隔内辐射能量(即功率)叫做该物体的单色辐射出射度.单色辐射出射度与温度、频率和物体的表面特性有关. (3)吸收本领 入射到物体上的辐射通量,一部分被物体散射或反射(对透明物体,还会有一部分透射), 其余的为物体所吸收. 2.黑体 热辐射的规律是很复杂的,我们知道,各种物体由于它有不同的结构,因而它对外来辐射的吸收以及它本身 对外的辐射都不相同.但是有一类物体其表面不反射光,它们能够在任何温度下,吸收射来的一切电磁辐射,这类物体就叫做绝对黑体,简称黑体. 绝对黑体是我们研究热辐射时为使问题简化的理想模型.实际 上黑体只是一种理想情况,但如果做一个闭合的空腔,在空腔表面开一个小孔,小孔表面就可以模拟黑体表面.这是因为从外面射来的辐射,经小孔射入空腔,要在腔壁上经过多次反射,才可能有机会射出小孔.因此,在多次反射过程中,外面射来的辐射几乎全部被腔壁吸收.在实验中,可在绕有电热丝的空腔上开一个小孔来实现,正因为实验所用的绝对黑体都是空腔辐射,因此,黑体辐射又称为空腔辐射. 3.黑体的经典辐射定律 1879年,斯忒藩(J .Stefan ,1835~1893年)从实验观察到黑体的辐出度与绝对温度T 的四次方成正比,即: 4J T σ=

黑体辐射

中国石油大学近代物理实验实验报告成绩: 班级:姓名:同组者:教师: 黑体辐射实验 【实验目的】 1、了解黑体辐射实验现象,掌握辐射研究方法。 2、学会仪器调整与参数选择,提高物理数量关系与建模能力。 3、通过验证定律,充实物理假说与思想实验能力。 【实验原理】 黑体是指能够完全吸收所有外来辐射的物体,处于热平衡时,黑体吸收的能量等于辐射的能量,由于黑体具有最大的吸收本领,因而黑体也就具有最大的辐射本领。这种辐射是一种温度辐射,辐射的光谱分布只与辐射体的温度有关,而与辐射方向及周围环境无关。事实上当然不存在绝对黑体,但有些物体可以近似地作为黑体来处理,比如,一束光一旦从狭缝射入空腔体内,就很难再通过该狭缝反射回来,那么,这个开着的狭缝空腔体就可以看作是黑体。 1、黑体辐射的光谱分析 实验测出黑体的辐射强度在不同温度下与辐射波长的关系曲线。 维恩假定辐射能量按频率的分布类似于麦克斯韦的分子速率分布,导出如下公式 E(λ,T)=bλ?5e?a/λT(1) 式中E(λ,T)称为单色辐出度,它表示单位时间内,在黑体的单位面积上单位波长间隔内所辐射出的的能量,单位是瓦特/米2 ,T表示绝对温度,a,b是与波长和温度无关的常数。这个分布在短波部分与实验结果符合较好,而长波部分偏离较大。 瑞利和金斯利用经典电动力学和统计物理学推导得到单色辐出度 E(λ,T)=2πC λ4 kT (2) 式中,C为真空中的光速,k为玻尔兹曼常量。它在波长很长,温度较高时与实验结果相符合,但在短波段偏离非常大,当频率趋于无穷大时引起发散,这就是当时有名的“紫外灾难”。 普朗克提出:电磁辐射的能量只能是量子化的。他认为黑体是由多个带点谐振子组成,这些谐振子处于热平衡状态,每个振子具有一个固有的谐振频率ν,可以发出与吸收相同频率的电磁波,每个谐振子只能吸收或发射不连续的一份一份的能量,这个能量是一个最小能量ε0 =hν的整数倍,即谐振子能量为E=nhν,n为正整数,h为普朗克常量。在此能量量子化的假定下,他推导出了如下黑体辐射公式: E(λ,T)=2πhc2 λ5 1 e hc/λkT?1(3)

第一讲 黑体辐射

量子论 第一讲黑体辐射 1.热辐射 在上一章中,我们已经提到,开尔文勋爵所说的两朵乌云的第二朵是黑体辐射的实验结果被拔开时,人们发现了近代物理学的两个基础理论的另一个理论即量子力学论. 量子论 由于温度升高而发射能量的辐射源,通常称为热辐射.热辐射体中原子和分子不发生运动状态变化.热辐射能量来自物体的热运动.物体在任何温度下(只要不是绝对零度)都向四周进行热辐射,也从周围吸收这种辐射.热辐射的光谱是连续光谱.一般情况下,热辐射的光谱不仅与辐射源的温度有关,还与它的表面特征有关. 为了定量的描述热辐射与温度和物体特性的关系,首先引入下列概念: (1)辐射出射度(简称辐出度) 温度为T的热辐射体,在单位间内从单位面积向各个方向辐射出的所有频率的辐射能量.又称为辐射能通量密度. (2)单色辐射出射度 温度为T的热辐射体, 在单位时间内从单位面积向各个方向所发射的、在某一频率附近的单位间隔内辐射能量(即功率)叫做该物体的单色辐射出射度.单色辐射出射度与温度、频率和物体的表面特性有关. (3)吸收本领 入射到物体上的辐射通量,一部分被物体散射或反射(对透明物体,还会有一部分透射), 其余的为物体所吸收. 2.黑体 热辐射的规律是很复杂的,我们知道,各种物体由于它有不同的结构,因而它对外来辐射的吸收以及它本身对外的 辐射都不相同.但是有一类物体其表面不反射光,它们能够在任 何温度下,吸收射来的一切电磁辐射,这类物体就叫做绝对黑体,

简称黑体. 绝对黑体是我们研究热辐射时为使问题简化的理想模型.实际上黑体只是一种理想情况,但如果做一个闭合的空腔,在空腔表面开一个小孔,小孔表面就可以模拟黑体表面.这是因为从外面射来的辐射,经小孔射入空腔,要在腔壁上经过多次反射,才可能有机会射出小孔.因此,在多次反射过程中,外面射来的辐射几乎全部被腔壁吸收.在实验中,可在绕有电热丝的空腔上开一个小孔来实现,正因为实验所用的绝对黑体都是空腔辐射,因此,黑体辐射又称为空腔辐射. 3.黑体的经典辐射定律 1879年,斯忒藩(J .Stefan ,1835~1893年)从实验观察到黑体的辐出度与绝对温度T 的四次方成正比,即: 4J T σ= 1884年玻尔兹曼从理论上给出这个关系式.其中8245.6703210/()W m K δ-=??. 对一般物体而言,() 412 J T Js m εσ--=,ε为发射率,J 为辐出度, () 412 J T Js m εσ--=,式中 ()81245.67010Js m K σ----=?,称为斯特藩-玻尔兹曼常数.通常ε<1,但对黑体而言,e = 1 (即为完全辐射). 如果物体周围的环境温度为0T ,则须考虑物体表面对入射辐射能的吸收.假定入射的辐射能通量密度为40T σ,a 为物体表面的吸收率,则该物体表面所吸收的辐射能通量密度为40J a T σ'=,通常a < 1,但对黑体而言,1a =(即为完全吸收).因此物体表面对入射能量的反射率为1r a =-. 从理论上我们不难证明物体表面的放射率和吸收率相等,即e a =,此称为我们可以说:容易辐射能量的物体,也容易吸收入射的能量. 处于热平衡时,黑体具有最大的吸收比,因而它也就有最大的单色辐出度. 4.紫外灾难 (1)基尔霍夫定律(Kirchhoff's Law): 热平衡状态时,任何物体的单色辐出度与单色吸收比之比,等于同温度条件下绝对黑体的单色辐出度 因此,“绝对黑体的单色辐出度”,是当时研究的尖端课题. 推论:

黑体辐射

量子(quantum): 现代物理的重要概念。最早是由德国物理学家M·普朗克在1900年提出的。他假设黑体辐射中的辐射能量是不连续的,只能取能量基本单位的整数倍,从而很好地解释了黑体辐射的实验现象。 后来的研究表明,不但能量表现出这种不连续的分离化性质,其他物理量诸如角动量、自旋、电荷等也都表现出这种不连续的量子化现象。这同以牛顿力学为代表的经典物理有根本的区别。量子化现象主要表现在微观物理世界。描写微观物理世界的物理理论是量子力学。 量子一词来自拉丁语Quantus,意为“有多少”,代表“相当数量的某物质”。自从普朗克提出量子这一概念以来,经爱因斯坦、玻尔、德布罗意、海森伯、薛定谔、狄拉克、玻恩等人的完善,在20世纪的前半期,初步建立了完整的量子力学理论。绝大多数物理学家将量子力学视为理解和描述自然的基本理论。 任何物体都具有不断辐射、吸收、反射电磁波的本领。辐射出去的电磁波在各个波段是不同的,也就是具有一定的谱分布。这种谱分布与物体本身的特性及其温度有关,因而被称之为热辐射。为了研究不依赖于物质具体物性的热辐射规律,物理学家们定义了一种理想物体——黑体(black body),以此作为热辐射研究的标准物体。 黑体: 在任何条件下,对任何波长的外来辐射完全吸收而无任何反射的物体,即吸收比为1的物体。 在黑体辐射中,随着温度不同,光的颜色各不相同,黑体呈现由红——橙红——黄——黄白——白——蓝白的渐变过程。某个光源所发射的光的颜色,看起来与黑体在某一个温度下所发射的光颜色相同时,黑体的这个温度称为该光源的色温。“黑体”的温度越高,光谱中蓝色的成份则越多,而红色的成份则越少。例如,白炽灯的光色是暖白色,其色温表示为4700K,而日光色荧光灯的色温表示则是6000K。 黑体辐射: 指由理想放射物放射出来的辐射,在特定温度及特定波长放射最大量之辐射。同时,黑体是可以吸收所有入射辐射的物体,不会反射任何辐射,但黑体未必是黑色的,例如太阳为气体星球,可以认为射向太阳的电磁辐射很难被反射回来,所以认为太阳是一个黑体(绝对黑体是不存在的)。理论上黑体会放射频谱上所有波长之电磁波。维恩位移定律是描述黑体电磁辐射能流密度的峰值波长与自身温度关系的定律。

黑体红外热辐射实验(修)

黑体红外热辐射实验 热辐射是19世纪发展起来的新学科,至19世纪末该领域的研究达到顶峰,以致于量子论这个婴儿注定要从这里诞生。黑体辐射实验是量子论得以建立的关键性实验之一,也是高校实验教学中一重要实验。物体由于具有温度而向外辐射电磁波的现象成为热辐射,热辐射的光谱是连续谱,波长覆盖范围理论上可从0到∞,而一般的热辐射主要靠波长较长的可见光和红外线。物体在向外辐射的同时,还将吸收从其他物体辐射的能量,且物体辐射或吸收的能量与它的温度、表面积、黑度等因素有关。 1. 1862年,基尔霍夫根据实验提出了理想黑体的概念 2. 1896年,维恩把热力学考察和多普勒原理结合起来,应用到空腔辐射的压缩。他指出,在一定温度下的辐射密度可以通过反射壁包围辐射区域的绝热收缩或绝热膨胀,转变到另一温度的辐射,从而得出了黑体辐射的能量按波长(或频率)分布的公式,又称维恩公式。这个公式的短波部分同实验数据很好符合,并足以解释为什么光谱的极大强度在黑体的温度升高时愈来愈向短波方向移动。 3. 1900年,瑞利应用经典统计力学和电磁理论来计算一个封闭腔的热辐射。他指出,随着封闭腔被加热,那么腔中将建立一个电磁场,这个电磁场可分解成为一个具有不同频率和不同方向的驻波系统,每一个这样的驻波就是电磁场的一个基本状态。于是在一定频率间隔内的场能的计算变为去导出基元驻波的个数,由此得到一个新的热辐射公式。可是瑞利在推导中错了一个因数8,这个错误为英国当时只有27岁的金斯所发现。他于1905年给《自然》杂志的一封信中加以修正,即把原来的瑞利公式用8去除,得到了现在称之为瑞利-金斯公式。这是企图用古典理论来处理黑体辐射的又一重要尝试。这个公式表明,辐射能量密度的频率分布正比于频率的平方。于是在长波部分与实验数据基本相符,但在短波部分却完全不相符合,因此此时按公式计算而得到的辐射能量将变成无穷大,显然这是不可能的。古典理论与实验事实产生了很大的矛盾,这种情况曾被荷兰物理学家埃伦菲斯特称为“紫外灾难”。事实上,维恩公式与瑞利—金斯公式,各从一个侧面反映出物体辐射中的部分规律,但在解释全部热辐射现象却产生了矛盾和“灾难”,这就充分暴露了经典物理学本身的缺陷。 4. 1900年,普朗克指出,为了得到和实验符合的黑体辐射公式(普朗克公式),必须抛弃经典物理学中关于物体可以连续辐射或吸收能量的概念,而代之以新的概念。他认为可以将构成黑体腔壁的物质看作带电的线性谐振子,它们和腔内的电磁场交换能量(辐射或吸收能量)。而这些微观谐振子只能处于某些特定的状态,在这些状态中它们的能量是最小能量ε0的整数倍。它辐射或吸收能量时只能由一个可能状态跃迁到另一可能状态,即能量只可一份一份地改变,而不能连续地变化。这最小能量ε0称为能量子,它与振子的振动频率v成正比,比例系数就是h (普朗克常数),ε0=hv根据这些假设可以成功地导出普朗克黑体辐射公式。 普朗克的能量子假说,突破了经典物理学的旧框架,首次提出了微观系统的量子特性,从而打开了认识微观世界的大门,是现代物理学史上又一次革命性的发现。 【实验目的】 1.了解黑体辐射的历史并明白它在近代物理学发展中的重要地位。 2.研究物体的辐射面、辐射体温度对物体辐射能力大小的影响。

《量子力学》的诞生(知识点总结)

第一讲 量子力学的诞生 ★重点与难点解析 一、经典物理碰到的严重困难(不能解释的典型物理现象) 1. 无法解释黑体辐射问题 (1)一些基本概念 黑体;热辐射;单色辐出度;辐射出射度。 (2)单色辐出度的一些理论公式与实验结果的差异 维恩(Wien )公式只在短波波段(高频部分)与实验符合,而在长波波段(低频部分)与实验差别较大。 瑞利—金斯(Rayleigh-Jeans )公式只在长波波段(低频部分)与实验符合,而在短波波段(高频部分)与实验有明显差异,历史上称为“紫外灾难”。 普朗克通过改进维恩公式,得到了一个辐射公式(后称为普朗克公式),其与实验符合的很好。但无法用经典物理来解释这个公式 2. 无法解释光电效应 (1)什么是光电效应;什么是光电子 (2)光电效应的特点 A )对于一定的金属材料做成的(表面光洁的)电极,有一个确定的临界频率0ν,当照射光频率0νν<时,无论光的强度多大,都不会观测到光电子从电极上逸出; B )每个光电子的能量只与照射光的频率有关,而与光强度无关。光强度只影响到光电流的强度,即单位时间从金属电极单位面积上逸出的电子的数目; C )当入射光频率0νν>时,不管光多微弱,只要光一照上,几乎立刻观测到光电子。这与经典电磁理论计算结果不一致。 以上三个特点中,C )是定量上的问题,而A )和B )在原则上无法用经典物理学来解释。 3. 无法解释原子结构 经典理论无法解释原子的线状光谱和稳定性等: (1)根据经典理论,原子向外辐射电磁波,随电子运动轨道的半径不断减小,辐射电磁波的频率将连续变化。而实验发现,原子光谱是离散的线状光谱,并非连续; (2)原子的核型结构是不稳定的,绕核旋转的电子最终将落到原子核上,但实际原子是稳定的,电子不会落到原子核上。 4. 无法解释极低温下固体与分子的比热问题 在极低温下,由经典统计力学的能量均分定理等得到的固体与分子的比热与实验不符。 二、能量量子化思想对上述问题的解释 1. 普朗克(Planck )能量子假说 1900年,普朗克发现:如作下列假设,就可以根据玻尔兹曼分布律从理论上导出与实验结果相符合的普朗克黑体辐射公式。

普朗克黑体辐射公式推导

量子力学结课论文: 对普朗克黑体辐射公式的推证及总结

摘要:黑体辐射现象是指当黑体(空腔)与内部辐射处于平衡时,腔壁单位面积所发射出的辐射能量与它所吸收的辐射能量相等。实验得出的平衡时辐射能量密度按波长分布的曲线,其形状和位置只与黑体的绝对温度有关,而与空腔的形状和组成物质无关。基于能量量子化的假设,普朗克提出了与实验结果相符的黑体辐射能量公式: ρv dν=8πhν3 3 ? 1 e hv kT?1 普朗克的理论很好地解释了黑体辐射现象,并且突破了经典物理学在微观领域内的束缚,打开了人类认识光的微粒性的途径[1]。本文主要介绍了普朗克公式的推导过程及其能量假设并将普朗克对黑体辐射的解释做了总结。 关键词:黑体辐射能量量子化普朗克公式麦克斯韦-玻尔兹曼分布 1.普朗克的量子化假设: 黑体以hν为能量单位不连续地发射和吸收频率为ν的光子的能量. 且能量单位hν称为能量子,h为普朗克常量(h=6.62606896×10?34J?S) 2.普朗克公式的推导过程: 2.1任意频率ν下的辐射能量:

假设有一处于平衡状态的黑体,其内有数量为N 的原子可吸收或发出频率为ν的光子,其中N g 为这些原子中处在基态的原子数,N e 为处在激发态(此处指可由基态原子受频率为ν的光子激发达到的能态)的原子数,n 为频率为ν的光子平均数。则由统计力学中的麦克斯韦-玻尔兹曼公式[2]知: N e ∝N e ?E e N g ∝ N e ?E g 由此可得 N e N g =e ?Ee ?Eg =e ?h ν(2.1.1) 平衡状态下,体系内原子在两能级间相互转化的速率相等,且其速率正比于转化的概率和该状态下的原子数目。结合爱因斯坦系数关系[3]可得:N g n=N e (n+1)(2.1.2) 结合(2.1.1),可解得:n =1 e h νkT ?1(2.1.3) 则该状态下光子总能量为: ε0= nhv =hv e h νkT ?1 (2.1.4) 2.2 v ~v +d v 频率段中可被体系接收的频率数目 设所求黑体为规整的立方体,其长,宽,高分别为L x ,L y ,L z 。体积为V 0。不妨先讨论一维情况: 体系线宽为L ,则L 必为光子半波长的整数倍,设其波数为K ,有

(整理)黑体强化热辐射传热节能技术

黑体强化热辐射传热节能技术 黑体技术的适用行业及范围 适用行业:机械、冶金、建材(玻璃、陶瓷)、石油、化工、锅炉等。适用范围 ◎锅炉行业:燃气火管锅炉和链排式燃煤锅炉。 ◎冶金行业:蓄热式加热炉、步进式轧钢加热炉、推钢式轧钢加热炉、环形加热炉、室式退火炉、铜材退火炉、坩埚炉等。 ◎机械行业:如重型机械厂、汽车制造厂、工程机械厂等企业完成钢制零件的淬火、正火、退火等工艺所需要的各种热处理炉。 包括:箱式、台车式 铸造加热炉 铸造厂的铸件退火炉 板簧业的汽车弹簧钢板淬火炉 ◎陶瓷行业:(包括工业电器陶瓷)陶瓷烧成窑、隧道窑、辊道窑、车底式窑;耐火材料及建筑用砖烧成窑。 ◎玻璃行业:玻璃池窑、玻璃钢化窑。 ◎石化行业:乙烯裂解炉(管式加热炉)和圆筒型管式炉等。 先进的技术 黑体元件是怎样工作的? ◎黑体元件对炉膛内呈漫射状的热射线,以其高吸收特性尽快吸收; ◎黑体元件先通过吸收热射线,自己不断积累热量,逐渐提高自身的温度; ◎黑体元件再以其高发射特性,重新发射热射线,依靠元件的几何结构和被设置的位置,把热射线直接射向了被加热物料;

◎黑体元件把热射线从无序调控为有序,提高了热射线的到位率。 红外加热系统是怎样形成的? ◎在炉壁上设置众多的黑体元件,它们或凸出在炉壁之外,或凹入在炉壁里面; ◎对热源装置(如电热体或烧嘴砖)作保护性处理; ◎对整体炉墙进行强化处理; ◎众多黑体元件经过红外涂装和强化处理,和炉墙一起,构成工业加热炉的红外加热系统。 黑体元件的多项功能 ◎在不改变原炉子结构的前提下,大幅度增大了炉膛的传热面积; ◎提高了炉膛的发射率; ◎将热射线从无序调控为有序,提高了热射线的到位率,增加了对被加热物料的辐照度,强化了辐射传热; ◎黑体元件相当于排球的二传手,它在热流的源头调控炉内热射线,实现定向传热,加快了传热速度。 黑体技术的技术优势 ◎合理的形状设计和材质配置,使黑体元件具很高的发射率; ◎黑体元件的高发射率具有很高的稳定性,在不超过1790℃的高温状态下基本不老化; ◎黑体元件工作时,就好像是炉膛内的许许多多个“温柔烧嘴”,它们可改善炉温均匀性,使被加热物料受到均匀加热; ◎黑体元件本身不是热源,所以工程实施方便可靠; ◎已经实施黑体技术改造的几十台各种类型的加热炉,节能率均达到20%以上; ◎黑体技术经过二十多年的研究和实践,以经发展到第三代,技术成熟可靠,实施方便,使用安全。 黑体技术的技术指标

第一讲黑体辐射

1.热辐射 量子论 第一讲黑体辐射 在上一章中,我们已经提到,开尔文勋爵所说的两朵乌云的第二朵是黑体辐射的实验结果被拔开时, 人们发现了近代物理学的 两个基础理论的另一个理论即量子力学论 量子论 由于温度升高而发射能量的辐射源,通常称为热辐射?热辐射体中原子和分子不发生运动状态变化.热辐射能量来自物体的 热运动?物体在任何温度下(只要不是绝对零度)都向四周进行热辐射,也从周围吸收这种辐射?热辐射的光谱是连续光谱.一般 情况下,热辐射的光谱不仅与辐射源的温度有关,还与它的表面特征有关 为了定量的描述热辐射与温度和物体特性的关系,首先引入下列概念: (1)辐射出射度(简称辐出 度) 温度为T的热辐射体,在单位间内从单位面积向各个方向辐射出的所有频率的辐射能量?又称为辐射能通量密度. ⑵单色辐射出射度 温度为T的热辐射体,在单位时间内从单位面积向各个方向所发射的、在某一频率附近的单位间隔内辐射能量(即功率) 叫做该物体的单色辐射出射度.单色辐射出射度与温度、频率和物体的表面特性有关 (3)吸收本 领 入射到物体上的辐射通量,一部分被物体散射或反射(对透明物体,还会有一部分透射),其余的为物体所吸收. 2.黑体 热辐射的规律是很复杂的, 我们知道,各种物体由于它有不同的结构,因而它对外来辐射的吸收以及它本身对外的辐射都 不相同.但是有一类物体其表面不反射光,它们能够在任何温度下, 吸收射来的一切电磁辐射,这类物体就叫做绝对黑体,简称黑体 绝对黑体是我们研究热辐射时为使问题简化的理想模型.实际 上黑体只是一种理想情况,但如果做一个闭合的空腔, 在空腔表面 开一个小孔,小孔表面就可以模拟黑体表面.这是因为从外面射来的辐射,经小孔射入空腔,要在腔壁上经过多次反射,才可能有机会射出小孔.因此,在多次反射过程中,外面射来的辐射几乎全部被腔壁吸收.在实验中,可在绕有电热丝的空腔上开一个小 孔来实现,正因为实验所用的绝对黑体都是空腔辐射,因此,黑体辐射又称为空腔辐射. 3.黑体的经典辐射定律 1879年,斯忒藩(J. Stefan, 1835~1893年)从实验观察到黑体的辐出度与绝对温度T的四次方成正比,即: J =町4 1884年玻尔兹曼从理论上给出这个关系式.其中冠=5.67032X10」W/(m2 *4). 对一般物体而言,J = eo T4(Js」m2 ), S为发射率,J为辐出度,J =旳丁4(Js’m,),式中=5.670"0」(Js 为斯特藩-玻尔兹曼常数通常E<1,但对黑体而言,e = 1 (即为完全辐射). 如果物体周围的环境温度为T o,则须考虑物体表面对入射辐射能的吸收.假定入射的辐射能通量密度为bT o4a为物体表面 的吸收率,则该物体表面所吸收的辐射能通量密度为j' = aDT o4,通常a < 1,但对黑体而言,a =1(即为完全吸收).因此物体 表

Planck和Rayleigh-Jeans黑体辐射公式的推导

Planck 和Rayleigh-Jeans 黑体辐射公式的推导 Made by 0310340 陶波 0310351 郑启飞 0310337 盛海翔 黑体是指在任何温度下,对于各种波长的电磁辐射的吸收系数恒等于1的物体 黑体辐射的能量是由电磁场的本征振动引起的,为简化推导过程,在此将黑体简化为边长为L 的正方形谐振腔。如图示 : 则腔内的电磁场满足亥姆霍兹方程: 2222u+k u 0 (k )ωμε?== (1) 用分离变量法,令u(x,y,z)X(x)Y(y)Z(z)= 则(1)式可分解为三个方程: 22 2 22 222200 0x y z d X k X dx d Y k Y dy d Z k Z dz ?+=???+=???+=?? 其中 2222x y z k k k ωμε++= 得(1)式的驻波解为:

112233(,,)(cos sin )(cos sin )(cos sin ) x x y y z z u x y z c k x d k x c k y d k y c k z d k z =++?+由在x=0,x=L,y=0,y=L,z=0,z=L 上的边界条件0n E n ?=?及0D E ?=可得: 123cos sin sin sin cos sin sin sin cos x x y z y x y z z x y z E A k x k y k z E A k x k y k z E A k x k y k z ?=? =?? =? x x k n L π = , y y k n L π =, z z k n L π = ,,0,1,2,x y z n n n = (其中1A ,2A ,3A 满足关系1230x y z k A k A k A ++=) 则j k (j 表示第j 个本征态)的绝对值为: 22222 22()()()j x y z j k n n n n L L ππ=++= 换成第j 个本征态的频率得:222 ()2j j c n L ν= 当j L λ>>时,j λ和j ν可视为连续变化,不必取分立值,即有: 2 22 ()2c n L ν= (2) (2)式表明在整数n 空间一组整数,,x y z n n n 即对应一个本征模的频率。因此,频率区间ν 内的本征模数,在数值上等于整数n 空间内数值半径由n n n →+ 范围内球壳体积的

相关文档