文档视界 最新最全的文档下载
当前位置:文档视界 › 高中理科数学空间向量方法总结(家教专用)

高中理科数学空间向量方法总结(家教专用)

高中理科数学空间向量方法总结(家教专用)
高中理科数学空间向量方法总结(家教专用)

平面法向量与立体几何

引言:平面的法向量在课本上有定义,考试大纲中有“理解”要求,但在课本和多数的教辅材料

中都没有提及它的应用,其实平面的法向量是中学数学中的一颗明珠,是解立体几何题的锐利武器。本文介绍平面法向量的二种求法,并对平面法向量在高中立体几何中的应用作归纳和总结。开发平面法向量的解题功能,可以解决不少立体几何中有关角和距离的难题,使高考立体几何中求空间角、求空间距离、证明垂直、证明平行等问题的解答变得快速而准确,那么每年高考中那道12分的立体几何题将会变得更加轻松。 2、平面法向量的求法

方法一(内积法):在给定的空间直角坐标系中,设平面α的法向量(,,1)n x y =r [或(,1,)n x z =v

或(1,,)n y z =r ],在平面α内任找两个不共线的向量,a b r r

。由n α⊥r ,得0n a ?=r r 且0n b ?=r r ,由此得到关于,x y 的方程组,解此方程组即可得到n r

二、平面法向量的应用

1、 求空间角

(1)、求线面角:如图4-1,设→

n 是平面α的法向量,AB 是平面α的一条斜线,α∈A ,则AB 与平面α所成的角为:

41,arccos .22||||sin |cos ,|||||41,arccos 22||||n AB

n AB n AB n AB n AB n AB n AB n AB n AB π

π

θθππθ→

→→

→→→→

→→→→→→

→→→→

?

??-=-<>=-?????=<>=??

??-=<>-=-????

如图中:如图中:

例3、 在例2中,求直线1AA 与平面1ACD 所成的角。

解析:由例2知,(1,1,1)n =r ,1(0,0,1)AA =u u u r ,

∴11sin 3AA n AA n

θ?==

=?u u u r r

u u u r r ,

即θ= (2)、求面面角:设向量→

m ,→

n 分别是平面α、β的法向量,则二面角βα--l 的平面角为:

||||arccos

,→→→→→

→??>==

m n m θ(图5-1); |

|||arccos ,→

→→

→→

→??->==

m n m πθ(图5-2)

图 7

两个平面的法向量方向选取合适,可使法向量夹角就等于二面角的平面角。约定,在图5-1中,→

m 的方向对平面α而言向外,→

n 的方向对平面β而言向内;在图5-2中,→

m 的方向对平面α而言向内,→

n 的方向对平面β而言向内。我们只要用两个向量的向量积(简称“外积”,满足“右手定则”)使得两个半平面的法向量一个向内一个向外,则这两个半平面的法向量的夹角即为二面角βα--l 的平面角。

例4、 在例2中,求二面角1D AC D --的大小。

解:由例2知,平面1ACD 的法向量是1(1,1,1)n =u r

,平面DAC 的法向量是2(0,0,1)n =,

设二面角1D AC D --的大小为θ,则

1212

cos n n n n θ?==

=?u r u u r

u r u u r

,得θ=。

2、 求空间距离

(1)、异面直线之间距离:

方法指导:如图6,①作直线a 、b 的方向向量→

a 、→

b ,

求a 、b 的法向量→

n ,即此异面直线a 、b 的公垂线的方向向量;

②在直线a 、b 上各取一点A 、B ,作向量AB u u u r ;

③求向量AB u u u r 在→

n 上的射影d ,则异面直线a 、b 间的距离为

|

|||→

→?=

n n AB d ,其中b B a A b n a n ∈∈⊥⊥→

→,,,

(2)、点到平面的距离:

方法指导:如图7,若点B 为平面α外一点,点A 为平面α内任一点,平面的法向量为,则点

P 到平面α的距离公式为:0cos AB n AB n d AB AB AB n AB n n

θ??=?=?==??u u u r r u u u r r

u u u r u u u r u u u r u u r

u u u r r r

例5、 在例2中,求点1A 到平面1ACD 的距离。

解析:由例2的解答知,平面1ACD 的单位法向量0,333

n =u u r ,

又1(0,0,1)AA =u u u v

,设点1A 到平面

1ACD 的距离为d ,则 103333

(0,0,1)(,,)333

3d AA n =?=?=u u r u u u v 。 所以,点1A 到平面1ACD 的距离为33。 (3)、直线与平面间的距离:

方法指导:如图8,直线a 与平面α之间的距离:

||

AB n d n ?=u u u r r r ,其中a B A ∈∈,α。n r

是平面α的法向量

(4)、平面与平面间的距离:

方法指导:如图9,两平行平面,αβ之间的距离:

|

|||→

?=

n n AB d ,其中,A B αβ∈∈。n r

是平面α、β的法向量。

3、 证明

(1)、证明线面垂直:在图10中,→

m 向是平面α的法向量,→

a 是直线a 的方向向量,证明平面的法向量与直线所在向量共线(→

=a m λ)。 (2)、证明线面平行:在图11中,→

m 向是平面α的法向量,

a 是直线a 的方向向量,证明平面的法向量与直线所在向量垂直

(0=?→

a m )。

(3)、证明面面垂直:在图12中,→

m 是平面α的法向量,

n 是平面β的法向量,证明两平面的法向量垂直(0=?→

→n m )

(4)、证明面面平行:在图13中, →

m 向是平面α的法向量,

n 是平面β的法向量,证明两平面的法向量共线(→

→=n m λ)

。 三、利用法向量解2008年高考立体几何试题

例6、(湖南理第17题)如图14所示,四棱锥P -ABCD 的底面ABCD 是边长为1的菱形,∠BCD =60°,E 是CD 的中点,P A ⊥底面ABCD ,

P A =2. (Ⅰ)证明:平面PBE ⊥平面P AB ; (Ⅱ)求平面P AD 和平面PBE 所成二面角(锐角)的大小.

解:如图所示,以A 为原点,建立空间直角坐标系.则相关各点的坐标分别是A (0,0,0),B (1,

图13 α

m β

n

图11

α

m

a →

a

图10

α a →

m

a

图9

α

β

A B

n

A a

B α →

n

图8

图12

β α

m

n

0,0)

,3(,

22

C 1(,22

D P (0,0,2)

,(1,2

E

(Ⅰ)因为(0,

2

BE =平面P AB 的一个法向量是0(0,1,0)n =, 所以0BE n 和共线.从而BE ⊥平面P AB .

又因为BE ?平面PBE ,故平面PBE ⊥平面P AB .

(Ⅱ)

易知(1,0,2),0PB BE =-=u u u r u u u r ),

1(0,0,2),(2PA AD =-=u u u r u u u r

设1111(,,)n x y z =r 是平面PBE 的一个法向量,则由110,

n PB n BE ?=??=??u r u u u r g u r u u u r

g 得:

111122020,

000.x y z x y z +?-=??

??+?=??所以11110,2.(2,0,1).y x z n ===u r 故可取 设2222(,,)n x y z =u u r 是平面PAD 的一个法向量,则由220,

0n PA n AD ?=??=??u u r u u u r g u u r u u u r

g 得:

2222220020,100.2x y z x y z ?+?-=??

?+

+?=??

所以2220,.z x ==

故可取21,0).n =-u u r

于是,121212

cos ,n n n n n n <>==

=u r u u r

u r u u r g u r u u r g 故平面PAD 和平面PBE

所成二面角(锐角)的大小是 点评:本题采用常规方法(即综合法)求这个二面角的平面角比较困难,而用向量法只要计算不

出问题,一般都能解决问题

例7、(全国卷Ⅱ理科第19题)如图14,正四棱柱1111ABCD A B C D -中,124AA AB ==,点E

在1CC 上且EC E C 31=.(Ⅰ)证明:1

AC ⊥平面BED ; (Ⅱ)求二面角1A DE B --的大小.

解:以D 为坐标原点,射线DA 为x 轴的正半轴,

建立如图所示直角坐标系D xyz -.

依题设,1(220)(020)(021)(204)B C E A ,

,,,,,,,,,,. (021)(220)DE DB ==u u u r u u u r ,,,,,,1

1(224)(204)AC DA =--=u u u r u u u u r

,,,,,. (Ⅰ)因为10AC DB =u u u r u u u r g ,10AC DE =u u u r u u u r g

, 故1A C BD ⊥,1A C DE ⊥.又DB DE D =I ,所以1AC ⊥平面DBE . (Ⅱ)设向量()x y z =r

,,n 是平面1DA E 的法向量,则

DE ⊥r u u u r n ,1DA ⊥r u u u u r

n .故20y z +=,240x z +=.令1y =,则2z =-,4x =,(412)=-r ,,n .

1

AC r u u u r ,n 等于二面角1A DE B --

的平面角,111cos 42A C A C A C

==r u u u r

r u u u r g r u u u r ,n n n . 所以二面角1A DE B --

的大小为. 点评:本题主要考查位置关系的证明及二面角的找法和计算,同时也考查学生的空间想象能力和

推理能力。

例9(安徽卷理第18题)如图16,在四棱锥O ABCD -中,底面ABCD 四边长为1的菱形,

4

ABC π

∠=

, OA ABCD ⊥底面, 2OA =,M 为OA 的中点,N 为BC 的中点

(Ⅰ)证明:直线MN OCD 平面‖;(Ⅱ)求异面直线AB 与MD 所成角的大小;

(Ⅲ)求点B 到平面OCD 的距离。

解:作AP CD ⊥于点P,如图16,分别以AB,AP,AO 所在直线为,,x y z 轴建立坐标系

(0,0,0),(1,0,0),(0,

((0,0,2),(0,0,1),(1,0)22244

A B P D O M N --,

(1)(11),(0,2),(2)44222MN OP OD =-

-=-=--u u u u r u u u r u u u r 设平面OCD 的法向量为(,,)n x y z =r ,则

0,0n OP n OD ==r u u u r r u u u r

g g 即

2022022

y z x y z -=????-+-=??

取z =解得(0,

n =

(11)(0,044

MN n =--=u u u u r r g g ∵

MN OCD ∴平面‖

(2)设AB 与MD 所成的角为θ

,

(1,0,0),(1)22

AB MD ==--u u u r u u u u r ∵

1cos ,2

3AB MD AB MD π

θθ===?u u u r u u u u r g u u u r u u u u r ∴∴ , AB 与MD 所成角的大小为3π

(3)设点B 到平面OCD 的交流为d ,则d 为OB uuu r

在向量(0,n =r

上的投影的绝对值,

由 (1,0,2)OB =-u u u r , 得23OB n d n

?==u u u r r r

.所以点B 到平面OCD 的距离为2

3 点评:本题主要考查直线与直线、直线与平面、平面与平面的位置关系,异面直线所成的角及点到平面的距离等知识,考查空间想象能力和思维能力,利用综合法或向量法解决立体几何的能力。

四、 用空间向量解决立体几何的“三步曲”

(1)、建立空间直角坐标系(利用现有三条两两垂直的直线,注意已有的正、直条件,相关几何知识的综合运用,建立右手系),用空间向量表示问题中涉及的点、直线、平面,把立体几何问题转化为向量问题;(化为向量问题)(2)、通过向量运算,研究点、直线、平面之间的位置关系以及它们之间距离和夹角等问题;(进行向量运算)

(3)、把向量的运算结果“翻译”成相应的几何意义。(回到图形问题)

五、总结:以上介绍了平面的法向量及其二种求法,我们教材上只介绍了用数量积(内积法)

求法向量,而并没有介绍用向量积(外积法)求法向量,希望大家注意灵活应用,我们以此为工具,解决了立体几何中的部分难题。利用平面法向量解题,方法简便,易于操作,可以避开传统几何中的作图、证明的麻烦,又可弥补空间想像能力的不足,发挥代数运算的长处。深入开发它的解题功能,平面法向题将在数学解题中起到越来越大的作用。

空间向量与立体几何

一 利用空间向量证明空间位置关系

考情聚焦:1.平行与垂直是空间关系中最重要的位置关系,也是每年的必考内容,利用空间向量判断空间位置关系更是近几年高考题的新亮点。

2.题型灵活多样,难度为中档题,且常考常新。

考向链接:1.空间中线面的平行与垂直是立体几何中经常考查的一个重要内容,一方面考查学生的空间想象能力和逻辑推理能力;另一个方面考查“向量法”的应用。

2.空间中线面的平行与垂直的证明有两个思路:一是利用相应的判定定理和性质定理去解决;二是利用空间向量来论证。

例1:(2010·安徽高考理科·T18)如图,在多面体ABCDEF 中,四边形ABCD 是正方形,EF ∥AB ,EF FB ⊥,2AB EF =,90BFC ∠=?,BF FC =,H 为BC 的中点。 (1)求证:FH ∥平面EDB ;

(2)求证:AC ⊥平面EDB ; (3)求二面角B DE C --的大小。

【命题立意】本题主要考查了空间几何体的线面平行、线面垂直的证明、二面角的求解的问题,考查了考生的空间想象能力、推理论证能力和运算求解能力。 【思路点拨】可以采用综合法证明,亦可采用向量法证明。

【规范解答】

,,//,,,,,,,.

ABCD AB BC EF FB EF AB AB FB BC FB B AB FBC AB FH BF FC H BC FH BC AB BC B FH ABC ∴⊥⊥∴⊥=∴⊥∴⊥=∴⊥=∴⊥Q Q I I 四边形为正方形,又且,平面又为中点,且平面

H HB GH HF u u u r u u u r u u u r 如图,以为坐标原点,分别以、、的方向为x 轴、y 轴、z 轴的正方向建立坐标系,

1,(1,2,0),(1,0,0),(1,0,0),(1,2,0),(0,1,1),(0,0,1).BH A B C D E F =-----令则

(1)

(0,0,1),

(0,0,1),////HF HF GE HF HF ∴==∴??∴u u r u u u r u u r u u u r Q 设AC 与BD 的交点为G ,连接GE 、GH,则G (0,-1,0),GE 又GE 平面EDB,平面EDB,平面EDB

(2)

(2,2,0),(0,0,1),0,.

AC AC AC AC AC =-=∴=∴⊥⊥∴⊥u u u r u u r u u u r u u r Q g I GE GE GE 又BD,且GE BD=G ,平面EBD.

(3)

1111111(1,,),(1,1,1),(2,2,0).

010,10,220011,0y z BE BD BE y z y z y BD ==--=--?=--+=??=-=??--==?

??∴=-u u r

u u u r u u u r

Q u u u r u u r g u u u r u u r

g u u r 1111设平面BDE 的法向量为n n 由即,得,n n (,)

2222222(1,,),(0,2,0),(1,1,1).

00,01,10010,-1y z CD CE CD y y z y z CE ==-=-?==??==-??-+==?

??∴=u u r

u u u r u u u r

Q u u u r u u r g u u u r u u r

g u u r 2222设平面CDE 的法向量为n n 由即,得,n n (,)

121212121

cos ,,2||||22,60,n n n n n n n n ∴<>===∴<>=o o u r u u r

u r u u r g u r u u r u r u u r

即二面角B-DE-C 为60。

【方法技巧】1、证明线面平行通常转化为证明直线与平面内的一条直线平行;

2、证明线面垂直通常转化为证明直线与平面内的两条相交直线垂直;

3、确定二面角的大小,可以先构造二面角的平面角,然后转化到一个合适的三角形中进行求解。

4、以上立体几何中的常见问题,也可以采用向量法建立空间直角坐标系,转化为向量问题进行求解证明。应用向量法解题,思路简单,易于操作,推荐使用。

二:利用空间向量求线线角、线面角

考情聚焦:1.线线角、线面角是高考命题的重点内容,几乎每年都考。

2.在各类题型中均可出现,特别以解答题为主,属于低、中档题。

考向链接:1.利用空间向量求两异面直线所成的角,直线与平面所成的角的方法及公式为: (1)异面直线所成角

设分别为异面直线的方向向量,则

(2)线面角

设是直线l 的方向向量,n r

是平面的法向量,则

2.运用空间向量坐标运算求空间角的一般步骤为:

(1)建立恰当的空间直角坐标。(2)求出相关点的坐标。(3)写出向量坐标。(4)结合公式进行论证、计算。(5)转化为几何结论。

【方法技巧】(1)空间中证明线线,线面垂直,经常用向量法。

(2)求线面角往往转化成直线的方向向量与平面的法向量的夹角问题来解决。 (3)线面角的范围是0°~90°,因此直线的方向向量与平面法向量的夹角的余弦

是非负的,要取绝对值。

三:利用空间向量求二面角

考情聚焦:1.二面角是高考命题的重点内容,是年年必考的知识点。 2.常以解答题的形式出现,属中档题或高档题。

考向链接:求二面角最常用的办法就是分别求出二面角的两个面所在平面的法向量,然后通过两个平面的法向量的夹角得到二面角的大小,但要注意结合实际图形判断所求角是锐角还是钝角。

其计算公式为:设

分别为平面

的法向量,则 与

互补或相等,

【高考真题探究】

1. (2010·广东高考理科·T10)若向量a r =(1,1,x ), b r =(1,2,1), c r

=(1,1,1),满足条件

()(2)c a b -?r r r

=-2,则x = .

【命题立意】本题考察空间向量的坐标运算及向量的数量积运算.

【思路点拨】 先算出c a -r r 、2b r

,再由向量的数量积列出方程,从而求出.x

【规范解答】c a -r r (0,0,1)x =-,2(2,4,2)b =r

,由()(2)c a b -?r r r 2=-

得(0,0,1)(2,4,2)2x -?=-,即2(1)2x -=-,解得 2.x =【答案】2

3. (2010·陕西高考理科·T18)如图,在四棱锥P —ABCD 中,底面ABCD 是矩形PA ⊥平面ABCD ,

AP =AB=2, BC =22,E ,F 分别是AD ,PC 的中点.

(Ⅰ)证明:PC ⊥平面BEF ;

(Ⅱ)求平面BEF 与平面BAP 夹角的大小。

【规范解答】解法一 (Ⅰ)如图,以A 为坐标原点,AB ,AD ,AP 所在的直线分别为x ,y ,z 轴建立空间直角坐标系.∵AP =AB=2, BC =22,四边形ABCD 是矩形. ∴A ,B ,C ,D 的坐标为A(0,0,0),B(2,0,0),C(2, 22,0),D(0,22,0),P(0,0,2) 又E ,F 分别是AD ,PC 的中点,∴E(0,2,0),F(1,2,1).

∴PC uuu r =(2,22,-2)BF u u u r =(-1,2,1)EF u u u r

=(1,0,1), ∴PC uuu r ·BF u u u r =-2+4-2=0,PC uuu r ·EF u u u r

=2+0-2=0,

∴PC uuu r ⊥BF u u u r ,PC uuu r ⊥EF u u u r

,∴PC ⊥BF,PC ⊥EF,BF EF F =I ,∴PC ⊥平面BEF

(II )由(I )知平面BEF 的法向量1(2,22,2),n PC ==-u r u u u r

平面BAP 的法向量2(0,22,0),n AD ==u u r u u u r 128,n n ∴=u r u u r g

设平面BEF 与平面BAP 的夹角为θ,则1212

122cos cos ,,2422

n n n n n n θ====?u r u u r

g u r u u r u r u u r

∴045θ=, ∴ 平面BEF 与平面BAP 的夹角为0

45 6. (2010·四川高考理科·T18)

已知正方体ABCD A B C D -''''的棱长为1,点M 是棱AA '的中点,点O 是对角线BD '的中点.

(Ⅰ)求证:OM 为异面直线AA '和BD '的公垂线; (Ⅱ)求二面角M BC B -'-'的大小; (Ⅲ)求三棱锥M OBC -的体积.

【命题立意】本题主要考查异面直线、直线与平面垂直、

二面角、正方体、三棱锥体积等基础知识,并考查空间想象能力和逻辑推理能力,考查应用向量知识解决数学问题的能力,转化与化归的数学思想.

【思路点拨】方法一:几何法 问题(Ⅰ),分别证明OM AA '⊥,OM BD '⊥即可. 问题(II )首先利用三垂线定理,作出二面角M BC B -'-'的平面角, 然后通过平面角所在的直角三角形,求出平面角的一个三角函数值,便可解决问题.

问题(Ⅲ)选择便于计算的底面和高,观察图形可知,OBC ?和OA D ''?都在平面BCD A ''内,且OBC OA D S S ''??=,故M OBC M OA D O MA D V V V ''''---==,利用三棱锥的体积公式很快求出O MA D V ''-. 方法二:建立空间直角坐标系,利用空间向量中的法向量求解.

【规范解答】(方法一):(I )连结AC .取AC 的中点K ,则K 为BD 的中点,连结OK .

∵点M 是棱AA '的中点,点O 是BD '的中点,

由AA AK '⊥,得OM AA '⊥.

∵,AK BD AK BB '⊥⊥,∴AK BDD B ''⊥平面. ∴AK BD '⊥.∴OM BD '⊥. 又∵OM 与异面直线AA '和BD '都相交, 故OM 为异面直线AA '和

BD '的公垂线,

(II )取BB '的中点N ,连结MN ,则MN BCC B ''⊥平面, 过点 过点N 作NH BC '⊥于H ,连结MH ,则由三垂线 定理得,BC MH '⊥.

∴MHN ∠为二面角M BC B ''--的平面角.

122

1,sin 45224

MN NH BN ===?=o .

在Rt MNH ?中.tan 222

4

MN MHN NH =

==故二面角M BC B ''--的大小为arctan 22. (III )易知,OBC OA D S S ''??=,且OBC ?和OA D ''?都在平面BCD A ''内,点O 到平面MA D ''的距离12h =

,∴11324

M OBC M OA D O MA D MA D V V V S h ''''''---?====. (方法二):以点D 为坐标原点,建立如图所示的空间直角坐标系D xyz -, 则(1,0,0)A ,(1,1,0)B ,(0,1,0)C ,(1,0,1)A ',(0,1,1)C ',(0,0,1)D ' (I ) ∵点M 是棱AA '的中点,点O 是BD '的中点,

∴1(1,0,)2M , 111(,,)222O ,11

(,,0)22

OM =-u u u u r ,

(0,0,1)AA '=u u u r ,(1,1,1)BD '=--u u u u r

.

0OM AA '?=u u u u r u u u r ,11

0022

OM BD '?=-++=u u u u r u u u u r ,

∴OM AA '⊥,OM BD '⊥,

又∵MO 与异面直线AA '和BD '都相交, 故MO 为异面直线AA '和BD '的公垂线,

(II )设平面BMC '的一个法向量为1(,,)n x y z =u r ,1

(0,1,)2

BM =-u u u u r ,(1,0,1)BC '=-u u u u r .

110,0.n BM n BC ??=??'?=??u r u u u u r u r u u u

u r 即10,

20.

y z x z ?-+=???-+=? 取2z =,则2,1x y ==.1(2,1,2)n =u r . 取平面BC B ''的一个法向量2(0,1,0)n =u u r

.

121212

1cos ,391n n n n n n ?<>==

=?u r u u r

u r u u r u r u u r ,由图可知,二面角M BC B ''--的平面角为锐角, 故二面角M BC B ''--的大小为1

arccos

3

. (III )易知,11212444

OBC BCD A S S ''?=

=??=四边形,设平面OBC 的一个法向量为

3111(,,)n x y z =u u r

1(1,1,1)BD =--u u u u r ,(1,0,0)BC =-u u u r , 3130,0.n BD n BC ??=???=??u u r u u u u r u u r u u u r

即11110,

0.

x y z x --+=??-=? 取11z =,则11y =,从而3(0,1,1)n =u u r

.

M

到平面

OBC

的距

3

3

1BM n d n ?===u u u u r u u r u u r

.11133424M OBC OBC V S d -?=?=?=.

高中数学平面向量知识点总结

高中数学必修4之平面向量 知识点归纳 一.向量的基本概念与基本运算 1向量的概念: ①向量:既有大小又有方向的量向量一般用c b a ,,……来表示,或用有向线段的起点与终 点的大写字母表示,如:AB u u u r 几何表示法 AB u u u r ,a ;坐标表示法),(y x yj xi a 向 量的大小即向量的模(长度),记作|AB u u u r |即向量的大小,记作|a | 向量不能比较大小,但向量的模可以比较大小. ②零向量:长度为0的向量,记为0 ,其方向是任意的, 0 与任意向量平行零向量a =0 |a |=0 由于0r 的方向是任意的,且规定0r 平行于任何向量,故在有关向量平行(共线) 的问题中务必看清楚是否有“非零向量”这个条件.(注意与0的区别) ③单位向量:模为1个单位长度的向量 向量0a 为单位向量 |0a |=1 ④平行向量(共线向量):方向相同或相反的非零向量任意一组平行向量都可以移到同一直 线上方向相同或相反的向量,称为平行向量记作a ∥b 由于向量可以进行任意的平移(即自 由向量),平行向量总可以平移到同一直线上,故平行向量也称为共线向量 数学中研究的向量是自由向量,只有大小、方向两个要素,起点可以任意选取,现在必须区分清楚共线向量中的“共线”与几何中的“共线”、的含义,要理解好平行向量中的“平行”与几何中的“平行”是不一样的. ⑤相等向量:长度相等且方向相同的向量相等向量经过平移后总可以重合,记为b a 大 小相等,方向相同 ),(),(2211y x y x 2 12 1y y x x 2向量加法 求两个向量和的运算叫做向量的加法 设,AB a BC b u u u r u u u r r r ,则a +b r =AB BC u u u r u u u r =AC u u u r (1)a a a 00;(2)向量加法满足交换律与结合律; 向量加法有“三角形法则”与“平行四边形法则”: (1)用平行四边形法则时,两个已知向量是要共始点的,和向量是始点与已知向量的始点重合的那条对角线,而差向量是另一条对角线,方向是从减向量指向被减向量 (2) 三角形法则的特点是“首尾相接”,由第一个向量的起点指向最后一个向量的终点的有向线段就表示这些向量的和;差向量是从减向量的终点指向被减向量的终点 当两个向量的起点公共时,用平行四边形法则;当两向量是首尾连接时,用三角形法

高二数学-空间向量与立体几何测试题

1 / 10 高二数学 空间向量与立体几何测试题 第Ⅰ卷(选择题,共50分) 一、选择题:(本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只 有一项是符合题目要求的) 1.在下列命题中:①若a 、b 共线,则a 、b 所在的直线平行;②若a 、b 所在的直线是异面直线,则a 、b 一定不共面;③若a 、b 、c 三向量两两共面,则a 、b 、c 三向量一定也共面;④已知三向量a 、b 、c ,则空间任意一个向量p 总可以唯一表示为p =x a +y b +z c .其中正确命题的个数为 ( ) A .0 B.1 C. 2 D. 3 2.在平行六面体ABCD -A 1B 1C 1D 1中,向量1D A 、1D C 、11C A 是 ( ) A .有相同起点的向量 B .等长向量 C .共面向量 D .不共面向量 3.若向量λμλμλ且向量和垂直向量R b a n b a m ∈+=,(,、则)0≠μ ( ) A .// B .⊥ C .也不垂直于不平行于, D .以上三种情况都可能 4.已知a =(2,-1,3),b =(-1,4,-2),c =(7,5,λ),若a 、b 、c 三向量共面,则实数λ等于 ( ) A. 627 B. 637 C. 647 D. 65 7 5.直三棱柱ABC —A 1B 1C 1中,若CA =a ,CB =b ,1CC =c , 则1A B = ( ) A.+-a b c B. -+a b c C. -++a b c D. -+-a b c 6.已知a +b +c =0,|a |=2,|b |=3,|c |=19,则向量a 与b 之间的夹角><,为( ) A .30° B .45° C .60° D .以上都不对 7.若a 、b 均为非零向量,则||||?=a b a b 是a 与b 共线的 ( ) A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分又不必要条件 8.已知△ABC 的三个顶点为A (3,3,2),B (4,-3,7),C (0,5,1),则BC 边上的 中线长为 ( ) A .2 B .3 C .4 D .5 9.已知则35,2,23+-=-+= ( ) A .-15 B .-5 C .-3 D .-1

高中数学必修4知识点总结:第二章 平面向量

高中数学必修4知识点总结 第二章 平面向量 16、向量:既有大小,又有方向的量. 数量:只有大小,没有方向的量. 有向线段的三要素:起点、方向、长度. 零向量:长度为0的向量. 单位向量:长度等于1个单位的向量. 平行向量(共线向量):方向相同或相反的非零向量.零向量与任一向量平行. 相等向量:长度相等且方向相同的向量. 17、向量加法运算: ⑴三角形法则的特点:首尾相连. ⑵平行四边形法则的特点:共起点. ⑶三角形不等式:a b a b a b -≤+≤+ . ⑷运算性质:①交换律:a b b a +=+ ; ②结合律:()() a b c a b c ++=++ ;③00a a a +=+= . ⑸坐标运算:设()11,a x y = ,()22,b x y = ,则()1212,a b x x y y +=++ . 18、向量减法运算: ⑴三角形法则的特点:共起点,连终点,方向指向被减向量. ⑵坐标运算:设()11,a x y = ,()22,b x y = ,则()1212,a b x x y y -=-- . 设A 、B 两点的坐标分别为()11,x y ,()22,x y ,则()1 212 ,x x y y A B=-- . 19、向量数乘运算: ⑴实数λ与向量a 的积是一个向量的运算叫做向量的数乘,记作a λ . ①a a λλ= ; ②当0λ>时,a λ 的方向与a 的方向相同;当0λ<时,a λ 的方向与a 的方向相反;当0λ=时,0a λ= . ⑵运算律:①()()a a λμλμ= ;②()a a a λμλμ+=+ ;③() a b a b λλλ+=+ . ⑶坐标运算:设(),a x y = ,则()(),,a x y x y λλλλ== . 20、向量共线定理:向量() 0a a ≠ 与b 共线,当且仅当有唯一一个实数λ,使b a λ= . 设()11,a x y = ,()22,b x y = ,其中0b ≠ ,则当且仅当12210x y x y -=时,向量a 、() 0b b ≠ 共线. 21、平面向量基本定理:如果1e 、2e 是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数1λ、2λ,使1122a e e λλ=+ .(不共线的向量1e 、2e 作为这一平面内所有向量的一组基 b a C B A a b C C -=A -AB =B

高中数学-空间向量及向量的应用

高中数学 - 空间向量及向量的应用 空间直角坐标系的原则: 规定:一切空间向量的起点都是坐标系原点,于是,空间任意一个向量与它的终点坐标一一对应 一个向量在直角坐标系中的坐标等于表示这个向量的有向线段的终点的坐标减去起点的坐标。 设 , , 空间向量的直角坐标运算: 空间两点间距离: ; 1:利用空间向量证明空间位置关系(同平面向量) 2:利用空间向量求线线角、线面角 1 )异面直线所成角 设 分别为异面直线 的方向向量,则 则: 空间线段 的中点 M (x ,y ,z )的坐标:

2 )线面角 设 是直线 l 的方向向量, n 是平面的法向量,则 3 :利用空间向量求二面角 其计算公式为:设 分别为平面 的法向量,则 与 互补或相等, 操作方法: 1.空间中各种角包括:异面直线所成的角、直线与平面所成的角以及二面角。 ①棱上一点双垂线法:②面上一点三垂线法:③空间一点垂面法: 斜面面积和射影面积的关系公式: S S cos ( S 为原斜面面积 , S 为射影面积 , 为斜面与射影所成二面 角的平面角 )这个公式对于斜面为三角 形 , 任意多边形都成立 . 是求二面角的好方法 .当作二面角的平面角有困难时 如果能找得斜面面积的射影面积 ,可直接应用公式 ,求出二面角的大小。 2.空间的距离 点线距,点面距,线线距,线面距,面面距都是对应图形上两点间的最短距离 3.空间向量的应用 (1)用法向量求异面直线间的距离 2)直线与平面所成的角的范围是 [0, ] 。射影转化法 2 方法 3)二面角的范围一般是指 (0, ],解题时要注意图形的位置和题目的要求。作二面角的平面角常有三种 1)异面直线所成的角的范围 是 b F

高二数学空间向量与立体几何测试题

高二数学 空间向量与立体几何测试题 第Ⅰ卷(选择题,共50分) 一、选择题:(本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只 有一项是符合题目要求的) 1.在下列命题中:①若a 、b 共线,则a 、b 所在的直线平行;②若a 、b 所在的直线是异面直线,则a 、b 一定不共面;③若a 、b 、c 三向量两两共面,则a 、b 、c 三向量一定也共面;④已知三向量a 、b 、c ,则空间任意一个向量p 总可以唯一表示为p =x a +y b +z c .其中正确命题的个数为 ( ) A .0 B.1 C. 2 D. 3 2.在平行六面体ABCD -A 1B 1C 1D 1中,向量1D A 、1D C 、11C A 是 ( ) A .有相同起点的向量 B .等长向量 C .共面向量 D .不共面向量 3.若向量λμλμλ且向量和垂直向量R b a n b a m ∈+=,(,、则)0≠μ ( ) A .// B .⊥ C .也不垂直于不平行于, D .以上三种情况都可能 4.已知a =(2,-1,3),b =(-1,4,-2),c =(7,5,λ),若a 、b 、c 三向量共面,则实数λ等于 ( ) A. 627 B. 637 C. 647 D. 65 7 5.直三棱柱ABC —A 1B 1C 1中,若CA =a ,CB =b ,1CC =c , 则1A B = ( ) A.+-a b c B. -+a b c C. -++a b c D. -+-a b c 6.已知a +b +c =0,|a |=2,|b |=3,|c |=19,则向量a 与b 之间的夹角><,为( ) A .30° B .45° C .60° D .以上都不对 7.若a 、b 均为非零向量,则||||?=a b a b 是a 与b 共线的 ( ) A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分又不必要条件 8.已知△ABC 的三个顶点为A (3,3,2),B (4,-3,7),C (0,5,1),则BC 边上的 中线长为 ( ) A .2 B .3 C .4 D .5 9.已知则35,2,23+-=-+= ( ) A .-15 B .-5 C .-3 D .-1

高中数学的空间向量知识

高中数学的空间向量知识 基本内容 空间向量作为新加入的内容,在处理空间问题中具有相当的优越性,比原来处理空间问题的方法更有灵活性。 如把立体几何中的线面关系问题及求角求距离问题转化为用向量解决,如何取向量或建立空间坐标系,找到所论证的平行垂直等关系,所求的角和距离用向量怎样来表达是问题的关键.立体几何的计算和证明常常涉及到二大问题:一是位置关系,它主要包括线线垂直,线面垂直,线线平行,线面平行;二是度量问题,它主要包括点到线、点到面的距离,线线、线面所成角,面面所成角等。这里比较多的主要是用向量证明线线、线面垂直及计算线线角,而如何用向量证明线面平行,计算点到平面的距离、线面角及面面角的例题不多,起到一个抛砖引玉的作用。 以下用向量法求解的简单常识: 1、空间一点P位于平面MAB的充要条件是存在唯一的有序实数对x、y,使得PM=xPA+yPB(其中PM等为向量,由于图不方便做就如此代替,下同) 2、对空间任一点O和不共线的三点A,B,C,若:OP=xOA+yOB+zOC (其中x+y+z=1),则四点P、A、B、C共面. 3、利用向量证a‖b,就是分别在a,b上取向量(k∈R). 4、利用向量证在线a⊥b,就是分别在a,b上取向量. 5、利用向量求两直线a与b的夹角,就是分别在a,b上取,求:的问题. 6、利用向量求距离就是转化成求向量的模问题:. 7、利用坐标法研究线面关系或求角和距离,关键是建立正确的空间直角坐标系,正确表达已知点的坐标. 首先该图形能建坐标系 如果能建 则先要会求面的法向量 求面的法向量的方法是 1。尽量在空中找到与面垂直的向量 2。如果找不到,那么就设n=(x,y,z) 然后因为法向量垂直于面 所以n垂直于面内两相交直线

空间向量其运算测试题

高二选修(2—1)第三章3.1空间向量及其运算测试 一、选择题 1 抛物线2 81x y - =的准线方程是 ( ) A . 321=x B . 2=y C . 32 1 =y D . 2-=y 2.已知两点1(1,0)F -、2(1,0)F ,且12F F 是1PF 与2PF 的等差中项,则动点P 的轨迹方程是 ( ) A . 22 1169x y += B . 22 11612x y += C .22 143x y += D .22 134 x y += 1.已知向量a =(3,-2,1),b =(-2,4,0),则4a +2b 等于 ( ) A .(16,0,4) B .(8,-16,4) C .(8,16,4) D .(8,0,4) 2.在三棱柱ABC -A 1B 1C 1中,若CA →=a ,CB →=b ,CC 1→=c ,则A 1B → = ( ) A .a +b -c B .a -b +c C .-a +b +c D .-a +b -c 4.在下列条件中,使M 与A 、B 、C 一定共面的是 ( ) A.OM →=2OA →-OB →-OC → B.OM →=15OA →+13OB →+12OC → C.MA →+MB →+MC → =0 D.OM →+OA →+OB →+OC → =0 6.在正方体ABCD -A 1B 1C 1D 1中,给出以下向量表达式:①(A 1D 1→-A 1A →)-AB →;②(BC → + BB 1→)-D 1C 1→; ③(AD →-AB →)-2DD 1→;④(B 1D 1→+A 1A →)+DD 1→. 其中能够化简为向量BD 1→ 的是 ( ) A .①② B .②③ C .③④ D .①④ 7.已知向量a =(1,-1,1),b =(-1,2,1),且k a -b 与a -3b 互相垂直,则k 的值是 A .1 B .15 C .35 D .-20 9 8.若a =(2,-3,1),b =(2,0,3),c =(0,2,2),a ·(b +c )的值为 ( ) A .4 B .15 C .7 D .3 9.已知四边形ABCD 满足:AB →·BC →>0,BC →·CD →>0,CD →·DA →>0,DA →·AB → >0,则该四边形 为 ( ) A .平行四边形 B .梯形 C .长方形 D .空间四边形

高中数学向量总结归纳

平面向量的数量积及平面向量的应用 1.定义及运算律. 两个向量的内积(即数量积),其结果是一个实数,而不是向量.其定义源于物理学中“力所做的功”. 设a 及b 是具有共同始点的两个非零向量,其夹角θ满足:0°≤θ≤180°,我们把|a |·|b |·cos θ叫做a 与b 的数量积,记作a ·b 若a =(x 1,y 1),b =(x 2,y 2),则a ·b =2121y y x x +. 其运算满足“交换律”“结合律”以及“分配律”,即:a ·b =b ·a ,(λ·a )·b =λ(a ·b ),(a ±b )·c =a ·c ±b ·c . 2.平面向量数量积的重要性质. ①|a |=a a ?=2||cos ||||a a a =θ?;cos θ=| |||) (b a b a ??;|a ·b |≤|a |·|b |,当且仅当a ,b 共线时取等号. ②设a =(x 1,y 1),b =(x 2,y 2),则:|a |= 21 21y x +;cos θ= 22 22 21 21 2121) (y x y x y y x x + ? + +;|x 1x 2+y 1y 2|≤ 2 2 222121y x y x +?+ 3.两向量垂直的充要条件 若a ,b 均为非零向量,则:a ⊥b ?a ·b =0. 若a =(x 1,y 1),b =(x 2,y 2),则a ⊥b ?x 1x 2+y 1y 2=0. 4.向量的模及三角不等式 |a |2=a ·a 或|a |=a a ?;|a ·b |≤|a |·|b |;|a |2-|b |2=(a +b )·(a -b );|a ±b |=θ??±+cos ||||222b a b a (θ为a ,b 夹角);||a |-|b ||≤|a ±b |≤|a |+|b |. 5.三角不等式的推广形式 |a 1+a 2+…+a n |≤|a 1|+|a 2|+…+|a n |.

(完整版)高中数学空间向量训练题

高中数学空间向量训练题(含解析) 一.选择题 1.已知M、N分别是四面体OABC的棱OA,BC的中点,点P在线MN上,且MP=2PN,设向量=,=,=,则=() A.++B.++C.++D.++ 2.已知=(2,﹣1,2),=(﹣1,3,﹣3),=(13,6,λ),若向量,,共面,则λ=() A.2 B.3 C.4 D.6 3.空间中,与向量同向共线的单位向量为() A.B.或 C. D.或 4.已知向量,且,则x的值为() A.12 B.10 C.﹣14 D.14 5.若A,B,C不共线,对于空间任意一点O都有=++,则P,A,B,C四点() A.不共面B.共面C.共线D.不共线 6.已知平面α的法向量是(2,3,﹣1),平面β的法向量是(4,λ,﹣2),若α∥β,则λ的值是()

A.B.﹣6 C.6 D. 7.已知,则的最小值是()A.B.C.D. 8.有四个命题:①若=x+y,则与、共面;②若与、共面,则=x+y;③若=x+y,则P,M,A,B共面;④若P,M,A,B共面,则=x+y.其中真命题的个数是() A.1 B.2 C.3 D.4 9.已知向量=(2,﹣1,1),=(1,2,1),则以,为邻边的平行四边形的面积为()A.B.C.4 D.8 10.如图所示,在长方体ABCD﹣A1B1C1D1中,AD=AA1=1,AB=2,点E是棱AB的中点,则点E到平面ACD1的距离为() A.B. C.D. 11.正方体ABCDA1B1C1D1中,直线DD1与平面A1BC1所成角的正弦值为() A. B. C.D. 二.填空题(共5小题) 12.已知向量=(k,12,1),=(4,5,1),=(﹣k,10,1),且A、B、C三点共线,则k= . 13.正方体ABCD﹣A1B1C1D1的棱长为1,MN是正方体内切球的直径,P为正方体表面上的动点,则?的最大值为. 14.已知点P是平行四边形ABCD所在的平面外一点,如果=(2,﹣1,﹣4),=(4,

高中数学平面向量知识点总结及常见题型x

平面向量 一.向量的基本概念与基本运算 1向量的概念: ①向量:既有大小又有方向的量向量一般用a,b,c……来表示,或用有向线段的起点与终 点的大写字母表示,如:AB几何表示法AB , a ;坐标表示法a =xi ? yj (x, y).向量 的大小即向量的模(长度),记作| A B |即向量的大小,记作I 向量不能比较大小,但向量的模可以比较大小. ②零向量:长度为0的向量,记为0,其方向是任意的,0与任意向量平行零向量a = 0 = I a I = 0"由于0的方向是任意的,且规定0平行于任何向量,故在有关向量平行(共线) 的问题中务必看清楚是否有“非零向量”这个条件. (注意与0的区别) ③单位向量:模为1个单位长度的向量向量a0为单位向量二I a0I = 1 ④平行向量(共线向量):方向相同或相反的非零向量任意一组平行向量都可以移到同一直 线上方向相同或相反的向量,称为平行向量.记作a // b ■由于向量可以进行任意的平移(即自由向量),平行向量总可以平移到同一直线上,故平行向量也称为共线向量 ⑤相等向量:长度相等且方向相同的向量相等向量经过平移后总可以重合,记为 亠% =x2 小相等,方向相同(x「yj = (x2, y2)=」 y2 2向量加法 求两个向量和的运算叫做向量的加法t―4 ―4 设AB 二a, BC =b,贝y a + b =AB BC = AC (1)0 a a,0二a ;( 2)向量加法满足交换律与结合律; 向量加法有“三角形法则”与“平行四边形法则”: (1)用平行四边形法则时,两个已知向量是要共始点的,和向量是始点与已知向量的始点重合的那条对角线,而差向量是另一条对角线,方向是从减向量指向被减向量 (2)三角形法则的特点是“首尾相接”,由第一个向量的起点指向最后一个向量的终点的有向线段就表示这些向量的和;差向量是从减向量的终点指向被减向量的终点 当两个向量的起点公共时,用平行四边形法则;当两向量是首尾连接时,用三角形法则?向量加法的三角形法则可推广至多个向量相加: AB BC CD PQ ? QR二AR,但这时必须“首尾相连” ? 3向量的减法 ①相反向量:与a长度相等、方向相反的向量,叫做a的相反向量 记作-a,零向量的相反向量仍是零向量 关于相反向量有:(i) -(-a)=a ; (ii) a+(-a)=( - a)+ a = 0 ; (iii) 若a、b是互为相反向量, 则a=-b,b = -a,a + b=0 ②向量减法:向量a加上b的相反向量叫做a与b的差, 记作:a - b二a ? (-b)求两个向量差的运算,叫做向量的减法 ③作图法:a -b可以表示为从b的终点指向a的终点的向量(a、b有共同起点) 4实数与向量的积: ①实数入与向量a的积是一个向量,记作入a,它的长度与方向规定如下: (I) a a ;

高中数学-空间向量及向量的应用

高中数学-空间向量及向量的应用 一个向量在直角坐标系中的坐标等于表示这个向量的有向线段的终点的坐标减去起点的坐标。 设血勺乃召),氓叫?乃w ), AB = OB-OA=(^y 2l 切—(吊丹 丑)=(乃—咛乃—丹 勺一匂) 空间向量的直角坐标运算: 设Q = 2],砌,色3 $ =1鹉毎妇则; ① 口+ b= P],曲,电 宀|俎,给禺 ?=I 角十知鬥 +為、屯 +鸟I ? ② a-b = \ a^a 2,a 21■ 诲.场岛i =(业一% 气-如 码一為 帀 ③ 加=兄I 曲卫2,? ' = I 現珂"久卷 '(/i e 7?); ④ 总■&= |气命4 片妇任 | = &占 + 逐血 +&並: ⑤ 口0Fe 鱼二 空三生=左或。『舌寻口[三碣‘ - 冊节 处二赵; 对? $ ⑥ 7丄匸q 口血十口曲十m 禺=0 ; 空间两点间距离:丄“ 「 1 :利用空间向量证明空间位置关系(同平面向量) 2:利用空间向量求线线角、线面角 (1)异面直线所成角Z ? gw 设Q”分别为异面直线讥的方向向量,则 则: 空间线段 的中点M (x ,y ,z )的坐标: 空间直角坐标系的原则: 规定:一切空间向量的起点都是坐标系原点,于是,空间任意一个向量与它的终点坐标一一对应

(2) 线面角凰打殳《是直线l 的方向向量,n 是平面的法向量,则 3 :利用空间向量求二面角 其计算公式为:设 加“分别为平面G 8的法向量,则 与,剤7 互补或相等, - ? ? . m * n |( csfl i = | A>| = I 忘I * I 云I 操作方法: 1 ?空间中各种角包括:异面直线所成的角、直线与平面所成的角以及二面角。 ①棱上一点双垂线法:②面上一点三垂线法:③空间一点垂面法: 斜面面积和射影面积的关系公式: S S cos (S 为原斜面面积,S 为射影面积,为斜面与射影所成二面 角的平面角)这个公式对于斜面为三角形 ,任意多边形都成立.是求二面角的好方法.当作二面角的平面角有困难时 如果能找得斜面面积的射影面积 ,可直接应用公式,求岀二面角的大小。 2 ?空间的距离 点线距,点面距,线线距,线面距,面面距都是对应图形上两点间的最短距离 3 ?空间向量的应用 (1 )用法向量求异面直线间的距离 CQS P rris-:欧 * b (1)异面直线所成的角的范围是 (2 )直线与平面所成的角的范围是 [0,—]。射影转 化法 2 方法 (3 )二面角的范围一般是指 (0,],解题时要注意图形的位置和题目的要求。作二面角的平面角常有三种 b F

高中数学空间向量与立体几何测试题及答案

高中 数学选修(2-1)空间向量与立体几何测试题 一、选择题 1.若把空间平行于同一平面且长度相等的所有非零向量的始点放置在同一点,则这些向量的终点构成的图形是( ) A.一个圆 B.一个点 C.半圆 D.平行四边形 答案:A 2.在长方体1111ABCD A B C D -中,下列关于1AC u u u u r 的表达中错误的一个是( ) A.11111AA A B A D ++u u u r u u u u r u u u u r B.111AB DD D C ++u u u r u u u u r u u u u u r C.111AD CC D C ++u u u r u u u u r u u u u u r D.11111()2 AB CD AC ++u u u u r u u u u r u u u u r 答案:B 3.若,,a b c 为任意向量,∈R m ,下列等式不一定成立的是( ) A.()()a b c a b c ++=++ B.()a b c a c b c +=+··· C.()a b a b +=+m m m D.()()a b c a b c =···· 答案:D 4.若三点,,A B C 共线,P 为空间任意一点,且PA PB PC αβ+=u u u r u u u r u u u r ,则αβ-的值为( ) A.1 B.1- C. 1 2 D.2- 答案:B 5.设(43)(32)a b ==,,,,,x z ,且∥a b ,则xz 等于( ) A.4- B.9 C.9- D. 649 答案:B 6.已知非零向量12e e ,不共线,如果1222122833e e e e e e =+=+=-u u u r u u u r u u u r , ,AB AC AD ,则四点,,,A B C D ( ) A.一定共圆 B.恰是空间四边形的四个顶点心 C.一定共面 D.肯定不共面 答案:C

数学高二-选修2-1测评7 空间向量的运算

学业分层测评(七) (建议用时:45分钟) [学业达标] 一、选择题 1.(2016·广州高二检测)若a ,b 均为非零向量,则a·b =|a ||b |是a 与b 共线的 ( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分又不必要条件 【解析】 由a·b =|a ||b |cos θ=|a||b|可知cos θ=1,由此可得a 与b 共线;反过来,若a ,b 共线,则cos θ=±1,a·b =±|a ||b |.故a·b =|a ||b |是a ,b 共线的充分不必要条件. 【答案】 A 2.如图2-2-7所示,已知三棱锥O -ABC 中,M ,N 分别是OA ,BC 的中点,点G 在线段MN 上,且MG =2GN .设OG →=xOA →+yOB →+zOC → ,则x ,y ,z 的值分别为( ) 图2-2-7 A .x =13,y =13,z =1 3 B .x =13,y =13,z =1 6 C .x =13,y =16,z =1 3 D .x =16,y =13,z =1 3

【解析】 OG →=OM →+MG →=12OA →+23MN → =12OA →+23(ON →-OM →)=12OA →-23OM →+23ON → =? ????12-13OA →+23×12(OB →+OC →) =16OA →+13OB →+13OC →, ∴x =16,y =13,z =13. 【答案】 D 3.已知e 1、e 2互相垂直,|e 1|=2,|e 2|=2,a =λe 1+e 2,b =e 1-2e 2,且a 、b 互相垂直,则实数λ的值为( ) A.12 B .14 C .1 D .2 【解析】 ∵a ⊥b ,∴(λe 1+e 2)·(e 1-2e 2)=0. 又e 1⊥e 2,∴e 1·e 2=0. ∴λe 21-2e 22=0.又∵|e 1|=2,|e 2|=2, ∴4λ-8=0,∴λ=2. 【答案】 D 4.设向量a ,b 满足|a |=|b |=1,a·b =-12,则|a +2b |=( ) 【导学号:32550026】 A. 2 B . 3 C. 5 D .7 【解析】 依题意得|a +2b |2=a 2+4b 2+4a·b =5+4×? ????-12=3,则|a +2b | = 3. 【答案】 B

高中数学(理)空间向量知识点归纳总结及综合练习

空间向量知识点归纳总结 知识要点。 1. 空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。 注:(1)向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量。 (2)空间的两个向量可用同一平面内的两条有向线段来表示。 2. 空间向量的运算。 3. 共线向量。 (1)如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量也叫做共线向量或平行向量, a 平行于 b ,记作b a //。 》 (2)共线向量定理:空间任意两个向量a 、b (b ≠0 ),a b a b 共面向量 (1)定义:一般地,能平移到同一平面内的向量叫做共面向量。 说明:空间任意的两向量都是共面的。 (2)共面向量定理:如果两个向量,a b 不共线,p 与向量,a b 共面的条件是存在实数,x y 使 p xa yb =+。 5. 空间向量基本定理:如果三个向量,,a b c 不共面,那么对空间任一向量p ,存在一个唯一的有序实数组 ,,x y z ,使p xa yb zc =++。 若三向量,,a b c 不共面,我们把{,,}a b c 叫做空间的一个基底,,,a b c 叫做基向量,空间任意三个不共面的向量都可以构成空间的一个基底。 推论:设,,,O A B C 是不共面的四点,则对空间任一点P ,都存在唯一的三个有序实数,,x y z ,使 OP xOA yOB zOC =++。 6. 空间向量的直角坐标系: ~ (1)空间直角坐标系中的坐标: (2)空间向量的直角坐标运算律: ①若123(,,)a a a a =,123(,,)b b b b =,则112233(,,)a b a b a b a b +=+++, 112233(,,)a b a b a b a b -=---,123(,,)()a a a a R λλλλλ=∈, 112233a b a b a b a b ?=++, 112233//,,()a b a b a b a b R λλλλ?===∈, 1122330a b a b a b a b ⊥?++=。 ②若111(,,)A x y z ,222(,,)B x y z ,则212121(,,)AB x x y y z z =---。 一个向量在直角坐标系中的坐标等于表示这个向量的有向线段的终点的坐标减去起点的坐标。 》

高一数学必修四,平面向量知识点总结,2020最新版

平面向量知识点专题 知识点梳理: 一、向量的基本概念 1. 向量的定义:既有大小又有方向的量叫做向量,一般用c b a ,,来表示,或用有向线段的起点与终点的大写字母表示,如(其中A 为起点,B 为终点)。 2. 向量的大小:又叫向量的模,也就是向量的长度,记作||a 或||。 3. 零向量:长度为0的向量,记作0,其方向是不确定的。我们规定零向量与任何向量a 共线(平行),即a ∥0。 4. 单位向量:模长为1个单位的向量叫做单位向量。当≠||a 0时,很明显| |a a ± 是与向量a 共线(平行)的单位向量。 5. 相等向量:大小相等,方向相同的向量,记为b a =。 6. 相反向量:大小相等,方向相反的向量,向量a 的相反向量记为a -。 7. 共线向量(平行向量):方向相同或方向相反的向量,叫做平行向量,也叫做共线向量,因为任何平行向量经过平移后,总可以移到同一条直线上。 二、向量的线性运算 1. 向量的加法: 1.1. 求两个向量和的运算叫做向量的加法。已知向量b a ,,在平面内任取一点A ,作b a ==,,则向量叫做向量a 和b 的和(或和向量),即b a =+=+。 1.2. 向量加法的几何意义:向量的加法符合三角形法则和平行四边形法则,如图: 1.3. 若向量b a ,不共线,加法的三角形法则和平行四边形法则都适用;当向量b a ,共线时,只能用三角形法则。 1.4. 三角形法则可推广至若干个向量的和,如图:

2. 向量的减法: 2.1. 向量a 与b 的相反向量之和叫做向量a 与b 的差或差向量,即)(b a b a -+=-。 2.2. 向量减法的几何意义:向量的减法符合三角形法则,同起点,指向被减数,如图: 3. 向量的数乘运算: 3.1. 实数λ与向量a 的积是一个向量,记为a λ,其长度与方向规定如下: ①||||||a a λλ= ②当0>λ时,a λ与a 的方向相同;当0<λ时,a λ与a 的方向相反;当0=λ时,0=a λ,方向不确定。 3.2. 向量数乘运算的运算律:设μλ,为实数,则 ①a a a μλμλ+=+)(; ②a a )()(λμμλ=; ③b a b a λλλ+=+)(。 三、重要定理和性质 1. 共线向量基本定理:如果)(R b a ∈=λλ,则b a ∥;反之,如果b a ∥且0≠b 时,一定存在唯一实数λ,使b a λ=。 2. 平面向量基本定理: 2.1. 如果21,e e 是同一平面内不共线的两个向量,那么对于该平面内的任一向量a ,都存在唯一的一对实数21λλ,,使得2211e e a λλ+=。 2.2. 基底:我们把不共线的向量21,e e 叫做表示该平面内所有向量的一组基底,记为{21,e e }。2211e e λλ+叫做向量a 关于基底{21,e e }的分解式。 2.3. 平面向量基本定理又叫做平面向量分解定理,是平面向量正交分解的理论依据,也是向量坐标表示的基础。 3. 线段定比分点的向量表达:如图,在△ABC 中,若点D 是边BC 上的点,且)1(-≠=λλDC BD ,则向

高中数学 空间向量及其运算 教案

空间向量及其运算 【高考导航】 本节内容是高中教材新增加的内容,在近两年的高考考查中多作为解题的方法进行考查,主要是解题的方法上因引入向量得以扩展.例如2001上海5分,2002上海5分. 【学法点拨】 本节共有4个知识点:空间向量及其线性运算、共线向量与共面向量、空间向量的分解定理、两个向量的数量积.这一节是空间向量的重点,在学习本节内容时要与平面向量的知识结合起来,认识到研究的范围已由平面扩大到空间.一个向量是空间的一个平移,两个不平行向量确定的是一个平行平面集,在此基础上,把平行向量基本定理和平面向量基本定理推广到空间,得出空间直线与平面的表达式,有了这两个表达式,我们可以很方便地解决空间的共线和共面问题.空间向量基本定理是空间几何研究代数化的基础,有了这个定理,整个空间被3个不共面的基向量所确定,空间一个点或一个向量和实数组(x ,y ,z )建立起一一对应关系,空间向量的数量积一节中,由于空间任一向量都可以转化为共面向量,所以空间两个向量的夹角的定义、取值范围、两个向量垂直的定义和表示符号及向量的模的概念和表示符号等,都与平面向量相同. 【基础知识必备】 一、必记知识精选 1.空间向量的定义 (1)向量:在空间中具有大小和方向的量叫作向量,同向且等长的有向线段表示同一向量或相等向量. (2)向量的表示有三种形式:a ,AB ,有向线段. 2.空间向量的加法、减法及数乘运算. (1)空间向量的加法.满足三角形法则和平行四边形法则,可简记为:首尾相连,由首到尾.求空间若干个向量之和时,可通过平移将它们转化为首尾相接的向量.首尾相接的若干个向量若构成一个封闭图形,则它们的和为0,即21A A +32A A +…1A A n =0. (2)空间向量的减法.减法满足三角形法则,让减数向量与被减数向量的起点相同,差向量由减数向量的终点指向被减数向量的终点,可简记为“起点相同,指向一定”,另外要注意 -=的逆应用. (3)空间向量的数量积.注意其结果仍为一向量. 3.共线向量与共面向量的定义. (1)如果表示空间向量的有向线段在直线互相平行或重合,那么这些向量叫做共线向量或平行向量.对于空间任意两个向量a,b(b≠0),a∥b ?a=λb ,若A 、B 、P 三点共线,则对空间任意一点O ,存在实数t,使得OP =(1-t)OA +t OB ,当t=2 1 时,P 是线段AB 的中点,则中点公式为OP = 2 1 (OA +). (2)如果向量a 所在直线O A 平行于平面α或a 在α内,则记为a ∥α,平行于同一个平面的

空间向量与立体几何单元测试试卷

五河二中高二数学测试卷(理科) 一、选择题: 1.在下列命题中:①若a 、b 共线,则a 、b 所在的直线平行;②若a 、b 所在的直线是异 面直线,则a 、b 一定不共面;③若a 、b 、c 三向量两两共面,则a 、b 、c 三向量一定 也共面;④已知三向量a 、b 、c ,则空间任意一个向量p 总可以唯一表示为 c z b y a x p ++=.其中正确命题的个数为 ( ) A .0 B .1 C . 2 D .3 2.已知a =(2,-1,3),b =(-1,4,-2),c =(7,5,λ),若a 、b 、c 三向量共 面,则实数λ等于 ( ) A .627 B .637 C .647 D .65 7 3.直三棱柱ABC —A 1B 1C 1中,若c CC b CB a CA ===1,,, 则1A B =u u u r ( ) A .a +b -c B .a -b +c C .-a +b +c D .-a +b -c 4.已知a +b +c =0,|a |=2,|b |=3,|c |=19,则向量a 与b 之间的夹角>

高中数学平面向量知识点总结82641

平面向量知识点总结 第一部分:向量的概念与加减运算,向量与实数的积的运算。 一.向量的概念: 1. 向量:向量是既有大小又有方向的量叫向量。 2. 向量的表示方法: (1)几何表示法:点—射线 有向线段——具有一定方向的线段 有向线段的三要素:起点、方向、长度 记作(注意起讫) (2)字母表示法:可表示为 3.模的概念:向量的大小——长度称为向量的模。 记作:|| 模是可以比较大小的 4.两个特殊的向量: 1?零向量——长度(模)为0的向量,记作。的方向是任意的。 注意与0的区别 2?单位向量——长度(模)为1个单位长度的向量叫做单位向量。 二.向量间的关系: 1.平行向量:方向相同或相反的非零向量叫做平行向量。 记作:∥∥ 规定:与任一向量平行 2. 相等向量:长度相等且方向相同的向量叫做相等向量。 记作:= 规定:= 任两相等的非零向量都可用一有向线段表示,与起点无关。 3. 共线向量:任一组平行向量都可移到同一条直线上 , 所以平行向量也叫共线向量。 三.向量的加法: 1.定义:求两个向量的和的运算,叫做向量的加法。 注意:;两个向量的和仍旧是向量(简称和向量) 2.三角形法则: 强调: a b c a + b A A A B B B C C a +b a + b a a b b b a a

1?“向量平移”(自由向量):使前一个向量的终点为后一个向量的起点 2?可以推广到n 个向量连加 3?a a a =+=+00 4?不共线向量都可以采用这种法则——三角形法则 3.加法的交换律和平行四边形法则 1?向量加法的平行四边形法则(三角形法则): 2?向量加法的交换律:+=+ 3?向量加法的结合律:(+) +=+ (+) 4.向量加法作图:两个向量相加的和向量,箭头是由始向量始端指向终向量末端。 四.向量的减法: 1.用“相反向量”定义向量的减法 1?“相反向量”的定义:与a 长度相同、方向相反的向量。记作 -a 2?规定:零向量的相反向量仍是零向量。-(-a ) = a 任一向量与它的相反向量的和是零向量。a + (-a ) = 0 如果a 、b 互为相反向量,则a = -b , b = -a , a + b = 0 3?向量减法的定义:向量a 加上的b 相反向量,叫做a 与b 的差。 即:a - b = a + (-b ) 求两个向量差的运算叫做向量的减法。 2.用加法的逆运算定义向量的减法: 向量的减法是向量加法的逆运算: 若b + x = a ,则x 叫做a 与b 的差,记作a - b 3.向量减法做图:表示a - b 。强调:差向量“箭头”指向被减数 总结:1?向量的概念:定义、表示法、模、零向量、单位向量、平行向量、 相等向量、共线向量 2?向量的加法与减法:定义、三角形法则、平行四边形法则、运算定律 五:实数与向量的积(强调:“模”与“方向”两点) 1.实数与向量的积 实数λ与向量a ρ的积,记作:λa ρ 定义:实数λ与向量a ρ的积是一个向量,记作:λa ρ 1?|λa ρ|=|λ||a ρ | 2?λ>0时λa ρ与a ρ方向相同;λ<0时λa ρ与a ρ方向相反;λ=0时λa ρ = 2.运算定律:结合律:λ(μa ρ)=(λμ)a ρ ① 第一分配律:(λ+μ)a ρ=λa ρ+μa ρ ② 第二分配律:λ(a ρ+b ρ)=λa ρ +λb ρ ③ 3.向量共线充要条件:

相关文档
相关文档 最新文档