文档视界 最新最全的文档下载
当前位置:文档视界 › 延迟焦化工艺流程

延迟焦化工艺流程

延迟焦化工艺流程
延迟焦化工艺流程

炼油厂的炼油工艺流程介绍

上传时间:2009-07-31 12:03 点

击:110

正文:

从焦炭塔顶逸出的油气和水蒸气混合物进入分馏塔,在塔内与加热炉对流段来的原料换热,冷凝出循环油馏分,其余大量油气从换热段上升进入蜡油集油箱以上的分馏段,在此进行传热和传质过程,分馏出富气、汽油、柴油和蜡油。焦化分馏塔油集油箱的蜡油经换热至90℃出装置进蜡油罐;另外引出两分路90℃冷蜡油作焦炭塔顶急冷油和装置封油用。

中段回流经中段回流蒸汽发生器发生蒸汽。

分馏塔顶回流从分馏塔抽出,经冷却后返回。

柴油从分馏塔进入汽提塔,经蒸汽汽提,柴油由汽油塔下部抽出,经换热冷却至70℃后分成两路,一路至加氢装置;另一路冷却至40℃进入柴油吸收塔作吸收剂来自压缩富气分液罐的富气进入柴油吸收塔下部,经吸收后,塔顶干气出装置进入全厂燃料气管网;塔底吸收油利用塔的压力(0.4MPa 表)自压入分馏塔作回流。

分馏塔顶油气经分馏塔顶空冷器和分馏塔顶油气后冷器冷却后进入分馏塔顶油气分离罐分离,分离出的汽油由汽油泵抽出分两路,一路去加氢装置,另一路返回塔顶作回流(不常用)。油气分离罐顶的富气经富气压缩机加压后经压缩富气空冷器、压缩富气后冷器冷却后进入压缩富气分液罐,冷凝液凝缩油至加氢装置;富气进入柴油吸收塔下部(一些装置的实际生产证明,经柴油吸收后的干气带残液比较严重,约占干气的20%,我公司设计时可以将油气分离罐顶的富气经富气压缩机加压后并入芳构化装置的吸收稳定系统或催化装置的吸收稳定系统,以防止干气带残液。)。此外,为了防止分馏塔底部结焦,分馏塔底设分馏塔底循环泵。

切焦采用有井架双钻具方式,切焦水用高压水泵抽高位水箱的水,打到焦炭塔面,进行水力除焦。焦炭和水一同流入贮焦池,经分离后切焦水流入沉淀池重新利用。

焦炭塔吹汽时,油气首先进入油气闪蒸罐,罐底污油经污油泵送出装置;罐顶油气进入水箱冷却器,冷却后进入吹汽放空油水分离罐,罐底污油经污油泵送出,含硫油污水经污水泵送至装置外污水处理场。不凝气进入放空油气脱水罐,然后进入瓦斯系统去火炬烧掉。

二、60万吨/年加氢装置

1、反应部分

焦化汽油、焦化柴油从延迟焦化装置直接进料,为控制加氢反应平稳,应严格控制其进料比例。两种原料进装置后经原料混合罐(D-201)混合,再经原料油泵(P-201/1、2)、过滤器(SR-201/1、2)、原料油脱水罐(D-202)进入原料油缓冲罐(D-203)。原料油过滤和脱水的目的是为了脱除堵塞反应器上部床层的固体颗粒和影响催化剂强度的水分。D-201、D-203用氮气气封保护。D-203中的原料经反应进料泵(P-202/1、2)升压至9.6MPa(A),经流量控制,与来自新氢压缩机(K-201/1、2)和循环氢压缩机(K-202/1、2)的混合氢混合,首先经混氢原料(I)/

反应产物换热器(E-204/1、2)换热,再经由混氢原料(Ⅱ)/反应产物换热器(E-201)与反应产物换热至199℃进入反应加热炉(F-201),加热至303℃进入至加氢反应器(R-201)中,该反应器设置二段催化剂床层,两床层间设有注急冷氢设施。

自反应器(R-201)来的反应产物经混氢原料(Ⅱ)/反应产物换热器(E-201)、汽提塔底油/反应产物换热器(E-202)、低分油/反应产物换热器(E203)、混氢原料(I)/反应产物换热器(E-204/1、2)换热,然后依次经反应产物空冷器(EC-201/1、2)、反应产物后冷器(E-207/1、2)冷却至40℃,进入高压分离器(D-204)。为了防止反应产物中的铵盐在低温部位结晶,通过脱氧水泵(P-207/1、2)将脱氧水注入到(EC-201/1、2)或(E-204/1、2)上游的管道中。冷却后的反应物在D-204中进行油、气、水三相分离。高分气(循环氢)经K-202/1、2入口分液罐(D-208)分液后,进入循环氢压缩机(K-202/1、2)升压至8.8MPa(G),然后分两路:一路作为急冷氢进入R-201,一路与来自新氢压缩机(K-201/1、2)的新氢混合,混合氢与原料油混合作为反应进料。含硫、含氨污水自D-204底排出,至装置外统一处理。D-204油相在液位控制下,经减压调节阀进入低压分离器(D-205),D-205闪蒸气排至燃料气管网。

低分油经低分油/分馏塔底油换热器(E-206/1、2)和E-203分别与精制重石脑油、反应产物换

热至200℃后去分馏部分汽提塔(C-201)。汽提塔底油经汽提塔底油/分馏塔底油换热器(E-205)和E-202分别与精制重石脑油、反应产物换热至245℃后去分馏部分分馏塔(C-202)。新氢自制氢装置来,经新氢压缩机入口分液罐(D-207)分液后进入K-201/1、2并经三级升压至

8.8MPa(G),再与K-202/1、2出口的循环氢混合。

2、分馏部分

从反应部分来的低分油经换热后进入C-201。塔底用0.8MPa过热蒸汽汽提。塔顶油气经汽提塔顶空冷器(EC-202/1、2)和汽提塔顶后冷器(E-208)冷凝冷却至40℃,进入汽提塔顶回流罐(D-210)进行气、油、水三相分离。闪蒸出的气体作为燃料进入燃料气管网。含硫污水送出装置。油相经汽提塔顶回流泵(P-203/1、2)升压后作为塔顶回流全部返回汽提塔(C-201)。

塔底油自压经E-205与精制重石脑油换热后去反应部分E-202换热器。从反应部分来的低分油经换热后进入C-202。塔底用重沸炉提供热源。塔顶油气经分馏塔顶空冷器(EC-203/1、2)和分馏塔顶后冷器(E-209)冷却至40℃,进入分馏塔顶回流罐(D-211)进行气、油、水三相分离。闪蒸出的气体通过放空罐至火炬。含硫污水送出装置。油相经分馏塔顶回流泵(P-204/1、2)升压后一部分作为塔顶回流,一部分作为精制轻石脑油出装置。

塔底精制重石脑油一小部分经分馏塔底产品泵(P-206/1、2)增压后经E-205和E-206/1、2分别与汽提塔底油、低分油换热至100℃左右,然后进入精制重石脑油后冷器(E-210)冷却至60℃出装置。塔底精制重石脑油大部分经分馏塔底循环泵(P-205/1、2)增压后用分馏塔底重沸炉(F-202)加热至290℃左右返回分馏塔下部,以补充分馏所需能量。

为了抑制硫化氢对塔顶管道和冷换设备的腐蚀,在塔顶管道注入缓蚀剂。缓蚀剂自缓蚀剂罐

(D-212)经缓蚀剂泵(P-209/1,2)抽出后分两路,一路注入C-201塔顶管道;另一路注入C-202塔顶管道。

3、催化剂预硫化部分

为了使催化剂具有良好的活性,新鲜的或再生后的催化剂在使用前都必须进行预硫化。本设计采用湿法硫化,以直馏煤油为硫化油,二硫化碳为硫化剂。

催化剂进行预硫化操作时,系统内氢气经循环氢压缩机(K-202/1、2)按正常操作流程进行全量循环。二硫化碳自二硫化碳桶用硫化剂泵(P-208)升压后至反应进料泵入口,经反应进料泵(P-202/1、2)后与氢气混合,经反应产物与混氢原料油换热器(E-204/1、2、E-201)换热,经反应进料加热炉(F-201)升温,然后经过催化剂床层,对催化剂进行预硫化。自反应器底部出来的硫化油和循环氢等经E-201、E-202、E-203、E-204/1、2换热,经EC-201/1、2、E-207/1、2冷却后至高压分离器(D-204)进行气、油、水三相分离。气体自顶部出来,经D-208入K-202/1、2实现循环氢的循环,硫化油自高分罐(D-204)下部出来经调节阀降压后进入低分罐(D-205)阀蒸分离,液相返至原料油缓冲罐(D-203)入口实现循环流化,闪蒸出来的低分气至燃料气系统,催化剂预硫化过程中产生的水间断从高分罐(D-204)底部排出。催化剂预硫化结束后,硫化油改进原料油出装置线退出装置。

三、10000标方/小时制氢装置

1、进料系统

由装置外来的干气进入原料气缓冲罐,经过原料气压缩机压缩后进入原料气脱硫部分。

2、脱硫部分

进入脱硫部分的原料气经原料预热炉予热升温至380℃,进入加氢反应器发生反应,使有机硫转化为硫化氢后进入氧化锌脱硫反应器,硫化氢与氧化锌反应生成固体硫化锌被吸收下来。脱除硫化氢后的气体硫含量小于0.2PPm,进入转化部分。具体反应如下:

硫醇:RSH+H2→RH+H2s

硫醚:R1SR2+2H2→R1H+R2H+H2S

二硫醚:R1SSR2+3H2→R1H+R2H+2H2S

噻吩:C4H4S+4H2→C4H10+H2S

氧硫化碳:COS+H2→CO+H2S

二硫化碳:CS2+4H2→CH4+2H2S

ZnO(固)+H2S=ZnS(固)+H2O△Ho 298 =-76.62kJ/mol

3、转化部分

精制后的原料气按水碳比3.5与水蒸汽混合,再经转化炉对流段予热至500℃,进入转化炉辐射段。在催化剂的作用下,发生复杂的水蒸汽转化反应,从而生产出氢气、甲烷、一氧化碳、二氧化碳和水的平衡混合物。主要反应有:

CnHm+nH2O =nCO+(n+m/2)H2①

CO+3H2=CH4+H2O△Ho298

=-206kJ/mol②CO+H2O=CO2+H2△Ho298

=-41kJ/mol③

以甲烷为主的气态烃,蒸汽转化过程较为简单,主要发生上述反应,最终产品气组成由反应②③平衡决定。

而轻石脑油,由于其组成较为复杂,有烷烃、环烷烃、芳烃等,因此,除上述反应外,在不同的催化床层,还发生高级烃的热裂解、催化裂解、脱氢、加氢、积炭、氧化、变换、甲烷化等反应,最终产品气组成仍由反应②③平衡决定。

烃类水蒸汽转化反应是体积增大的强吸热反应,低压、高温、高水碳比有利于上述反应的进行。反应过程所需热量由转化炉顶部的气体燃料烧嘴提供,出转化炉820℃高温转化气经转化气蒸汽发生器换热后,温度降至360℃,进入中温变换部分。

4、变换部分

由转化部分来的约360℃的转化气进入中温变换反应器,在催化剂的作用下发生变换反应:CO+H2O=CO2+H2

Welcome To Download !!!

欢迎您的下载,资料仅供参考!

延迟焦化工艺新进展

延迟焦化工艺新进展 2005.01.28 09:05:59 中国石油信息网 放大字体缩小字体打印本页 延迟焦化工艺发展重点是优化操作条件,在增加产能的同时追求最大的液体产率、减少生焦率和尽可能处理劣质原料。 福斯特-惠勒公司、大陆石油公司(现大陆菲利浦斯公司)等有关延迟焦化工艺和设备的发展大大改进了延迟焦化技术。使循环时间已由24hr缩短到18hr以内,从而扩大了现有焦炭塔的处理能力。焦炭塔清焦的自动化作业提高了安全性,并有助于缩短循环时间。在低压(0.103MPa)下操作的无重油外部循环的新设计提高了液收,最大量减少了焦炭产率。循环馏出油代替循环重油,减少了焦炭产率,延长了停工维修之间的运转时间。新的双燃烧器加热炉设计和改进的炉管材质提高了焦化加热炉温度。现在标准的焦炭塔直径为8.2~8.5m,9.1m直径的焦炭塔也已投入应用。延迟焦化的总液收达到57%以上(占减压渣油进料)。 美国Valero炼制公司得克萨斯炼厂投资2.75亿美元,于2003年底投产的248万t/年延迟焦化装置,采用了福斯特-惠勒公司SYDEC工艺,该厂主要加工墨西哥重质、含硫的玛亚原油,延迟焦化装置加工玛亚减压渣油和中东原油沥青混合料,使用该劣质原料,使原料费用减小了1美元/bbl以上,使投资偿还率提高了3%。 延迟焦化装置可灵活加工各种原料,包括直馏、减粘、加氢裂化渣油、裂解焦油和循环油、焦油砂、FCC油浆、炼厂污油(泥)等60余种原料。处理原料油的CCR为3.8%~45%(m),API重度2 O~20O。委内瑞拉利用延迟焦化和加氢处理工艺对奥利诺柯原油进行改质,生产API 16 O~32 O、含硫<0.1%(m)的合成油。 较老的延迟焦化装置循环周期为12~14hr,目前新设计的循环周期一般为18~20hr,鲁姆斯公司的设计操作周期为<18hr。

焦化厂工艺流程.pdf

焦化厂主要生产车间:备煤车间、炼焦车间、煤气净化车间及其公辅设施等,各车间主要生产设施如下表所示:序号系统名称主要生产设施 1 备煤车间煤仓、配煤室、粉碎机室、皮带机运输系统、煤制样室 2 炼焦车间煤塔、焦炉、装煤设施、推焦设施、拦焦设施、熄焦塔、筛运焦工段(包括焦台、筛焦楼) 3 煤气净化车间冷鼓工段(包括风机房、初冷器、电捕焦油器等设施);脱氨工段(包括洗氨塔、蒸氨塔、氨分解炉等设施);粗苯工段(包括终冷器、洗苯塔、脱苯塔等设施) 4 公辅设施废水处理站、供配电系统、给排水系统、综合水泵房、备煤除尘系统、筛运焦除尘系统、化验室等设施、制冷站等 3、炼焦的重要意义由高温炼焦得到的焦炭可供高炉冶炼、铸造、气化和化工等工业部门作为燃料和原料;炼焦过程中得到的干馏煤气经回收、精制可得到各种芳香烃和杂环混合物,供合成纤维、医药、染料、涂料和国防等工业做原料;经净化后的焦炉煤气既是高热值燃料,也是合成氨、合成燃料和一系列有机合成工业的原料。因此,高温炼焦不仅是煤综合利用的重要途径,也是冶金工业的重要组成成分。 政策性风险煤炭是我国最重要的能源之一,在国民经济运行中处于举足轻重的地位,焦化行业属于国家重点扶持的行业。为建立大型钢铁循环结构,在钢铁的重要生产基地和炼焦煤生产基地建设并经营现代化大型焦化厂符合我国产业政策和经济结构调整方向,也是焦化工业发展的一个前景。 五、原料煤的准备 备煤车间的生产任务是给炼焦车间提供数量充足、质量合乎要求的配合煤。其工艺流程为:原料煤→受煤坑→煤场→斗槽→配煤盘→粉碎机→煤塔。 1、煤的接收与储存原料煤一般以汽车火车的方式从各地运输过来,邯钢焦化厂的原料煤主要来自邢台的康庄、官庄,峰峰和山西等地。当汽车、火车到达后,与受煤坑定位后,用螺旋卸煤机把煤卸到料仓里,当送料小车开启料仓开口后,用皮带把煤料运到规定位置。注意:每个料仓一次只能盛放同一种类别的煤。为了保证焦炉的连续生产和稳定焦炉煤的质量,应根据煤质的类别用堆取料机把运来的煤卸放在煤场的各规定位置。邯钢焦化厂的备煤车间用的气煤、肥煤、焦煤和瘦煤四种,按规定分别堆放在煤场的五个区。 2、煤原料的特性及配煤原则

(现场管理)炼焦车间工艺流程

1.炼焦车间 1.1概述 本工程炼焦车间采用4×55孔JNDK55-05型5.5m单热式捣固焦炉。单U形集气管(设在焦侧),双吸气管。两个2×55孔炉组布置在一条中心线上。在每个炉组机侧设一个双曲线斗槽的煤塔。装煤除尘采用双U形导烟管的装煤导烟车(CGT车),将装煤烟尘导到n+2和n-1炭化室。出焦除尘设地面站,采用皮带小车式除尘拦焦机。每2×55孔焦炉配一套新型湿法熄焦系统和预留一套干熄焦装置位置。 1.2炼焦基本工艺参数 炭化室孔数4×55 孔 每孔炭化室装煤量(干) 40.6 t 焦炉周转时间25.5 h 焦炉年工作日数365 d 焦炉紧张操作系数 1.07 装炉煤水分10% 煤气产率330 m3/t干煤 全焦率75% 焦炉加热用煤气低发热值: 焦炉煤气17900kJ/m3 装炉煤水份为7%时炼焦干煤相当耗热量 焦炉煤气加热时2250kJ/kg

由备煤车间送来的能满足炼焦要求的配合煤装入煤塔。通过摇动给料器将煤装入装煤推焦机的煤箱内(下煤不畅时,采用风力震煤措施),并将煤捣固成煤饼,装煤推焦机按作业计划从机侧炉门送入炭化室内。煤饼在炭化室内经过一个结焦周期的高温干馏炼制成焦炭和荒煤气。 炭化室内的焦炭成熟后,用装煤推焦机推出,经拦焦机导入熄焦车内,由电机车牵引熄焦车至熄焦塔内进行喷水熄焦。熄焦后的焦炭卸至凉焦台上,冷却一定时间后送往筛贮焦工段进行筛分。 煤在炭化室干馏过程中产生的荒煤气汇集到炭化室顶部空间,经过上升管,桥管进入集气管,约800℃左右的荒煤气在桥管内被氨水喷洒冷却至85℃左右。荒煤气中的焦油等同时被冷凝下来。煤气和冷凝下来的焦油同氨水一起经吸煤气管道送入煤气净化车间。 焦炉加热用的焦炉煤气,由外部管道架空引入。分别进入每座焦炉的焦炉煤气经预热器预热至45℃左右送入地下室,通过下喷管把煤气送入燃烧室立火道与从废气开闭器进入的空气汇合燃烧。燃烧后的废气通过立火道顶部跨越孔进入下降气流的立火道,再经过蓄热室,由格子砖把废气的部分显热回收后经过小烟道、废气交换开闭器、分烟道、总烟道、烟囱,排入大气。 上升气流的煤气和空气与下降气流的废气由交换传动装置定时进行换向。

焦化厂工艺流程文字叙述及流程图

备煤 炼焦所用精煤,一方面由外部购入,另一方面由原煤经洗煤后所得,洗精煤由皮带机送入精煤场。精煤经受煤坑下的电子自动配料称将四种煤按相应的比例送到带式输送机上除铁后,进入可逆反击锤式粉碎机粉碎后(小于3mm占90%以上),经带式输送机送至焦炉煤塔内供炼焦用。 炼焦 装煤推焦车在煤塔下取煤,捣固成煤饼后,按作业计划从机侧推入炭化室内。煤饼在炭化室内经过一个结焦周期的高温干馏,炼成焦炭并产生荒煤气。 炭化室内的煤饼结焦成熟后,由装煤推焦机推出并通过拦焦机的导焦栅送入熄焦车内。熄焦车由电机牵引至熄焦塔熄焦。熄焦后的焦炭卸至凉焦台,冷却后送往筛焦楼进行筛分和外运。 煤在干馏过程中产生的荒煤气汇集到炭化室的顶部空间,经上升管、桥管进入集气管。700℃的荒煤气在桥管内经过氨水喷洒后温度降至85℃左右,煤气和冷凝下来的焦油氨水一起经吸煤气管道送入煤气回收车间进行煤气净化及焦油回收。 焦炉加热燃用的净化煤气经预热器预热至45℃左右进入地下室,通过下喷管把煤气送入燃烧室立火道,燃烧后的废气经烟道、烟囱排入大气。 冷鼓

由焦炉送来的80-83℃的荒煤气,沿吸煤气管道入气液分离器。经气液分离后,煤气进入初冷器进行两段间接冷却;上段用32℃循环水冷却煤气,下段用16-18℃低温水冷却煤气,使煤气冷却至22℃,然后经捕雾器入电捕焦油器除去悬浮的焦油雾后进入鼓风机,煤气由鼓风机加压送至脱硫工段。 在初冷器下段用含有一定量焦油、氨水的混合液进行喷洒,以防止初冷器冷却水管外壁积萘,提高煤气冷却效果。 由气液分离器分离出的焦油氨水混合液自流入机械化氨水澄清槽,进行氨水、焦油和焦油渣的分离。分离后的氨水自流入循环氨水中间槽,用泵送到焦炉集气管喷洒冷却荒煤气,多余的氨水(即剩余氨水)送入剩余氨水槽,焦油自流入焦油中间槽,然后用泵将焦油送至焦油贮槽,静置脱水后外售,分离出的焦油渣定期用车送至煤场掺入精煤中炼焦。 脱硫 来自冷鼓工段的粗煤气进入脱硫塔下部与塔顶喷淋下来的脱硫 液逆流接触洗涤后,煤气经捕雾段除去雾滴后全部送至硫铵工段。 从脱硫塔中吸收了H2S的脱硫液送至再生塔下部与空压站来的压缩空气并流再生,再生后的脱硫液返回脱硫塔塔顶循环喷淋脱硫,硫泡沫则由再生塔顶部扩大部分排至硫泡沫槽,再由硫泡沫泵加压后送熔硫釜连续熔硫,生产硫磺外售。熔硫釜内分离的清液送至溶液循环槽循环使用。

焦化生产工艺流程

焦化生产工艺流程 焦化生产 炼焦生产是以一定特性的洗精煤为原料,在焦炉中密闭高温干馏,使之分解炭化生产出焦炭和焦炉煤气,再通过各种化工单元,对焦炉煤气进行净化,并回收其中的焦油、硫铵、粗苯、硫磺等化工产品。 一、备煤车间 1、概述 备煤主要由煤场、受煤坑及转运站、粉碎机室及高架栈桥等设施组成。用以完成煤场内煤的配合、堆放、上料、粉碎等任务,最终得到按一定比例配合好的炼焦煤,运送到焦炉煤塔中备用。本工程备煤系统采用两级粉碎的工艺方案。备煤系统能力是按年产90万吨的捣固焦炉生产能力而配套设计的。备料、粉碎及配煤能力为360t/h。 2、工艺流程 进厂的洗精煤按不同煤种卸在各自的堆场、分类堆存。贮煤塔需要供煤时,精煤堆场的各种煤分别由装载机将煤送入各自受煤坑内的受煤漏斗,受煤坑下部设有可调容积式给料机将煤送入破碎机,可调容积式给料机控制各种煤量大小,通过控制给煤速度达到精确配煤目的。此工艺既提高了配煤效果,又降低了投资。粘结性差的本地煤和晋城无烟煤通过受煤坑、可调容积式给料机进入PFCK可逆反击锤式破碎机粉碎至小于1mm粒度达到75%以上。粉碎后的弱粘结煤再与未经破碎的焦煤共同进入PFJ反击式破碎机再次破碎并混合,将其中的焦煤粉碎至 3mm以下。完成粉碎、混合、粉碎三个过程的配合煤最后由带式输送机将煤运至贮煤塔,供焦炉炼焦使用。 备煤工艺的关键在于将粘结差的本地煤和无烟煤由PFCK可逆反击锤式破碎机进行高细度破碎后再与未经粉碎的焦煤共同进入粗粒度的PFJ反击式破碎机进行粉碎。如此设计的目的是使弱粘结煤的粒度小于主焦煤的粒度,粉碎并混合后,不同粒度的煤料能够形成更合理的颗粒级配,提高煤料的堆密度,并使主焦煤与弱粘结煤或不粘结煤能够项目包裹,从而达到更好的捣固和结焦效果。该技术是实现大量采用当地廉价的非炼焦煤生产优质冶金焦炭的关键之一。 —1—. 二、焦化车间 1、概述 炼焦车间主要由2×45孔550-D型,炭化室高5.5m蓄热室式捣固焦炉,双4t。100×10联火道、废气循环、下喷、单热式焦炉及配套设施组成。年产焦炭采用湿法熄焦。炼焦车间主要用以完成启闭炉门、捣固煤饼、装煤、炼焦、推焦、拦

延迟焦化工艺流程

延迟焦化 1. 延迟焦化工艺流程: 本装置的原料为温度90℃的减压渣油,由罐区泵送入装置原料油缓冲罐,然后由原料泵输送至柴油原料油换热器,加热到135℃左右进入蜡油原料油换热器,加热至160℃左右进入焦化炉对流段,加热至305℃进入焦化分馏塔脱过热段,在此与来自焦炭塔顶的热油气接触换热。原料油与来自焦炭塔油气中被凝的循环油一起流入塔底,在380~390℃温度下,用辐射泵抽出打入焦化炉辐射段,快速升温至495~500℃,经四通阀进入焦碳塔底部。 循环油和减压渣油中蜡油以上馏分在焦碳塔内由于高温和长时间停留而发生裂解、缩合等一系列的焦化反应,反应的高温油气自塔顶流出进入分馏塔下部与原料油直接换热后,冷凝出循环油馏份;其余大量油气上升经五层分馏洗涤板,在控制蜡油集油箱下蒸发段温度的条件下,上升进入集油箱以上分馏段,进行分馏。从下往上分馏出蜡油、柴油、石脑油(顶油)和富气。 分馏塔蜡油集油箱的蜡油在343℃温度下,自流至蜡油汽提塔,经过热蒸汽汽提后蜡油自蜡油泵抽出,去吸收稳定为稳定塔重沸器提供热源后降温至258℃左右,再为解吸塔重沸器提供热源后降温至242℃左右,进入蜡油原料油换热器与原料油换热,蜡油温度降至210℃,后分成三部分:一部分分两路作为蜡油回流返回分馏塔,一路作为下回流控制分馏塔蒸发段温度和循环比,一路作为上回流取中段热;一部分回焦化炉对流段入口以平衡大循环比条件下的对流段热负荷及对流出口温度;另一部分进水箱式蜡油冷却器降温至90℃,一路作为急冷油控制焦炭塔油气线温度,少量蜡油作为产品出装置。 柴油自分馏塔由柴油泵抽出,仅柴油原料油换热器、柴油富吸收油换热器后一部分返回分馏塔作柴油回流,另一部分去柴油空冷器冷却至55℃后,再去柴油水冷器冷却至40℃后分两路:一路出装置;另一路去吸收稳定单元的再吸收塔作吸收剂。由吸收稳定单元返回的富吸收油经柴油富吸收油换热器换热后也返回分馏塔。 分馏塔顶油气经分馏塔顶空冷器,分馏塔顶水冷器冷却到40℃,流入分馏塔顶气液分离罐,焦化石脑油由石脑油泵抽出送往吸收稳定单元。焦化富气经压缩机入口分液罐分液后,进入富气压缩机。 焦炭塔吹汽、冷焦产生的大量蒸汽及少量油气,进入接触冷却塔下部,塔顶部打入冷却后的重油,洗涤下来自焦炭塔顶大量油气中的中的重质油,进入接触冷却塔底泵抽出后经接触冷却塔底油及甩油水冷器冷却后送往接触冷却塔顶或送出装置。塔顶流出的大量水蒸气经接触冷却塔顶空冷器、接触冷却塔顶水冷器冷却到40℃进入接触冷却塔顶气液分离罐,分出的轻污油由污油泵送出装置,污水由污水泵送至焦池,不凝气排入火炬烧掉。甩油经甩油罐及甩油冷却器冷却后出装置。 2. 吸收稳定工艺流程: 从焦化来的富气经富气压缩机升压至1.4Mpa,然后经焦化富气空冷器冷却,冷却后与来自解吸塔的轻组份一起进入富气水冷器,冷却到40℃后进入气液分离罐,分离出的富气进入吸收塔;从石脑油(顶油)泵来的粗石脑油进入吸收塔上段作吸收剂。从稳定塔来的稳定石脑油打入塔顶部与塔底气体逆流接触,富气中的C3、C4组分大部分被吸收下来。吸收塔设中段回流,从吸收塔顶出来带少量吸收剂的贫气自压进入再吸收塔底部,再吸收塔

延迟焦化工艺流程教学提纲

延迟焦化工艺流程

炼油厂的炼油工艺流程介绍 上传时间:2009-07-31 12:03 点 击:110 正文: 延迟焦化、加氢精制、制氢工艺流程 工艺流程简述 前言:根据济南炼油厂、海化集团等公司的延迟焦化装置、加氢装置、制氢装置的工艺流程整理而成。并参考洛阳设计院、北京设计院、华西所提供材料。 一、100万吨/年延迟焦化装置 本装置原料为减压渣油,温度为150℃,由常减压装置直接送入焦化装置内与柴油换热,换热后温度为170℃,进入原料油缓冲罐(D-101)。原料油缓冲罐内的减压渣油由原料油泵抽出,与热蜡油经过两次换热再进加热炉对流段(Ⅱ)加热后分两股入焦化分馏塔(C-102)下段的五层人字挡板的上部和下部,在此与焦炭塔(C-101/1,2)顶来的油气接触,进行传热和传质。原料油中蜡油以上馏分与来自焦炭塔顶油气中被冷凝的馏分(称循环油)一起流入塔底,在384℃温度下,用加热炉幅射进料泵抽出打入加热炉幅射段,在这里快速升温至500℃,然后通过四通阀入焦炭塔底。 循环油和原料油中蜡油以上馏分在焦炭塔内由于高温和长停留时间,产生裂解和缩合等一系列复杂反应,最后生成油气(包括富气、汽油、柴油和蜡油),由焦炭塔进入分馏塔,而焦炭则结聚在焦炭塔内。 从焦炭塔顶逸出的油气和水蒸气混合物进入分馏塔,在塔内与加热炉对流段来的原料换热,冷凝出循环油馏分,其余大量油气从换热段上升进入蜡油集油箱以上的分馏段,在此进行传热和传质过程,分馏出富气、汽油、柴油和蜡油。焦化分馏塔油集油箱的蜡油经换热至90℃出装置进蜡油罐;另外引出两分路90℃冷蜡油作焦炭塔顶急冷油和装置封油用。 中段回流经中段回流蒸汽发生器发生蒸汽。 分馏塔顶回流从分馏塔抽出,经冷却后返回。 柴油从分馏塔进入汽提塔,经蒸汽汽提,柴油由汽油塔下部抽出,经换热冷却至70℃后分成两路,一路至加氢装置;另一路冷却至40℃进入柴油吸收塔作吸收剂来自压缩富气分液罐的富气进入柴油吸收塔下部,经吸收后,塔顶干气出装置进入全厂燃料气管网;塔底吸收油利用塔的压力(0.4MPa 表)自压入分馏塔作回流。 分馏塔顶油气经分馏塔顶空冷器和分馏塔顶油气后冷器冷却后进入分馏塔顶油气分离罐分离,分离出的汽油由汽油泵抽出分两路,一路去加氢装置,另一路返回塔顶作回流(不常用)。油气分离罐顶的富气经富气压缩机加压后经压缩富气空冷器、压缩富气后冷器冷却后进入压缩富气分液罐,冷凝液凝缩油至加氢装置;富气进入柴油吸收塔下部(一些装置的实际生产证明,经柴油吸收后的干气带残液比较严重,约占干气的20%,我公司设计时可以将油气分离罐顶的富气经富气压缩机加压后并入芳构化装置的吸收稳定系统或催化装置的吸收稳定系统,以防止干气带残液。)。此外,为了防止分馏塔底部结焦,分馏塔底设分馏塔底循环泵。 切焦采用有井架双钻具方式,切焦水用高压水泵抽高位水箱的水,打到焦炭塔面,进行水力除焦。焦炭和水一同流入贮焦池,经分离后切焦水流入沉淀池重新利用。 焦炭塔吹汽时,油气首先进入油气闪蒸罐,罐底污油经污油泵送出装置;罐顶油气进入水箱冷却器,冷却后进入吹汽放空油水分离罐,罐底污油经污油泵送出,含硫油污水经污水泵送至装置外污水处理场。不凝气进入放空油气脱水罐,然后进入瓦斯系统去火炬烧掉。

焦化厂工艺介绍

焦化一期工艺流程简介

焦化厂一期年产200万吨焦化项目介绍 一、2012年焦化厂产品生产计划及产率 单位产品名称产量计划产率(%) 焦化厂 焦炭200(万吨) 焦油99998吨5% 硫磺2873吨0.15% 硫铵14363吨0.75% 粗苯27194吨 1.42 供甲醇煤气量55000(万m3/h) 二、焦化厂产品质量指标 单位产品指标项目质量指标合格率 焦化厂二级冶 金焦 合 格 率 灰分≤13.5% 100% 挥发份≤1.8% 硫分≤0.80% 反应后强度≥55% 100% 冷强度合格率 M40≥80% 100% M25≥88% 100% M10≤7.5% 100% 80焦 合 格 率 灰分≤18.1% 100% 挥发份≤1.8% 硫分≤1.0% 固定碳合格率≥80% 100% 冷强度合格率 M40≥78% 100% M25≥88% 100% M10≤7.5% 100% 焦炭质 量区间 控制 班次灰分控制区间合 格率 12.9%~13.5% ≥95.0% 17.5%~18.1% ≥90.0% 焦炭水分≤8% 超水扣吨煤焦油合格率100% 硫酸铵合格率100% 粗苯合格率100% 焦炭各 粒级产 率 二级焦 40以上占比≥73.5% 10mm以下占比≤5.0% 80焦 25以上占比≥93.5% 10mm以下占比≤5.0% 焦炉煤 气 硫化氢含量≤150mg/NM3 ≥96% 氨含量≤40mg/NM3 苯含量≤4000mg/NM3 焦油/粉尘含量≤50mg/NM3 氧含量≤0.7%(体积)

三、焦化厂主要工艺流程介绍: 焦化厂由6个车间组成,包括4个生产车间:备煤车间、炼焦车间、化产车间(煤气净化车间)、污水处理车间,两个辅助车间:储运车间、机修车间。 1、备煤工艺 备煤工艺为先配煤后粉碎工艺;该工艺是将原料煤按一定比例配合后再进行粉碎的工艺。外购的炼焦精煤由汽车运来后自卸于受煤坑,经受煤坑下叶轮给煤机将精煤给入煤1带式输送机, 再经煤2带式输送机将煤送入堆取料机,把煤堆入精煤储场。自洗煤厂的炼焦精煤由皮带通廊送来,由煤3带式输送机将煤送入堆取料机,把煤堆入精煤储场。两种来煤方式均可不落煤场直接经煤4带式输送机把煤送往配煤仓。煤场采用不同每种轮流上煤。上煤时,由堆取料机取煤,经堆取料机主皮带、煤4带式输送机,转运至可逆带式输送机。由可逆带式输送机将煤送入可逆配仓带式输送机,卸入配煤仓。煤仓后设计为双系列。配煤仓下设电子自动配料秤,将各种煤按相应的配合比例配送到仓下的备1带式输送机,除铁后,送入可逆反击锤式破碎机,煤被破碎至<3mm占82%以上后,经备2、备3、备4、备5带式输送机,送入1#煤塔内;另一系列配送至仓下的备6带式输送机,除铁后,送入可逆反击锤式破碎机,煤被破碎至<3mm占82%以上后,经备7、备8、备9、备10、带式输送机,送入2#煤塔内,供焦炉使用。

延迟焦化工艺介绍

随着原油的变重及劣质化,以及市场对轻质油品需求结构的变化,石油深度加工已发展成为最重要的二次加工过程。石油深度加工是通过改变氢碳比(H/C)来提高轻质油收率,其基本途径不外乎是采取加氢或脱碳的办法。 其中脱碳方法主要有催化裂化、焦化、减粘裂化等,而加氢则是加氢转化过程。按渣油加工工艺大致可分为5种类型:(1)分离工艺,如减压渣油溶剂脱沥青;(2)脱碳工艺,如热裂化、减粘裂化、延迟焦化、灵活焦化、流化焦化、减粘裂化与热裂化联合工艺;(3)催化转化工艺,如渣油催化裂化;(4)加氢工艺,如渣油加氢裂化,加氢处理;(5)脱碳与加氢联合工艺,如热裂化一加氢裂化联合工艺。 在上述加工工艺中,渣油的加氢裂化和延迟焦化是渣油转化的最主要方法。 焦化过程按其焦化方法可分为釜式焦化、平炉焦化、延迟焦化、接触焦化和流化焦化等。釜式及平炉焦化属于间歇操作,已被淘汰。接触焦化与流化焦化由于设备结构复杂、维修费用高,工业上没有得到发展。流化焦化在西欧一些国家采用较多,仅次于延迟焦化。延迟焦化应用范围最为广泛。 世界上第一套延迟焦化工艺技术于1982年开发成功,1930年投入工业化生产。随着延迟焦化工艺技术的不断改进和完善,在世界各国得到了迅速发展。我国于1958年在石油二厂建立了10万吨/年焦化工业试验装置,并于1963年底在石油二厂建成第一套30万吨/年延迟焦化工业装置。1998年中国石油化工集团公司的延迟焦化能力达到1040×104t/a,占一次加工能力(12954×104 t/a)的8.0%,延迟焦化已成为重质油轻质化的重要手段之一。 延迟焦化与热裂化相似,只是在短时间内加热到焦化反应所需温度,控制原料在炉管中基本上不发生裂化反应,而延缓到专设的焦炭塔中进行裂化反应,“延迟焦化”也正是因此得名。 延迟焦化装置主要由8个部分组成:(1)焦化部分,主要设备是加热炉和焦炭塔。有一炉两塔、两炉四塔,也有与其它装置直接联合的。(2)分馏部分,主要设备是分馏塔。(3)焦化气体回收和脱硫,主要设备是吸收解吸塔,稳定塔,再吸收塔等。(4)水力除焦部分。(5)焦炭的脱水和储运。(6)吹气放空系统。(7)蒸汽发生部分。(8)焦炭焙烧部分。国内选定炉出口温度为495~500℃,焦炭塔顶压力为0.15~0.2 Mpa。

石油焦用途及延迟焦化装置工艺路线的选择(1)

石油焦用途及延迟焦化装置工艺路线的选择(1) 1石油焦用途 石油焦可以用于不同工业,用于电厂和水泥厂作燃料的石油焦,需要高的热值及良好的研磨性;用于铝厂和钢铁厂或碳素厂作为原料的石油焦,无论是作为阳极糊和人造石墨电极的原料或是作为生产碳化物的原料均需要控制其含硫量和挥发分,对于制作电极原料的石油焦还应对金属含量加以控制。 1.1石油焦用作电厂CFB锅炉的燃料 为配合进口含硫原油加工及油品质量升级,需要在沿海及沿江企业新增或扩建一批延迟焦化装置,预计石油焦的产量可达3600kt。要消化这些含硫高、价格低廉的石油焦,可以采用先进的循环流化床技术,配套建设一批以石油焦为原料的CFB锅炉,为炼厂提供低成本的蒸汽、电、氢气。这是一举三得的事,既消化了价格低廉的高硫石油焦,又满足了企业新增项目的用汽、用电需求,还可以替代部分现有烧油锅炉,节约出宝贵的重油资源。武汉石油化工厂2000年新建一台75t/h烧石油焦的循环床锅炉,能在燃烧过程中用石灰石作床料实现炉内脱硫,同时降低NOx的排放量,锅炉燃烧效率可达95%~99%。镇海石化大量加工国外含硫原油,每年生产几十万吨高硫石油焦,由于石油焦中硫含量高,处理比较困难,利用价值不大。 1999年,采用CFB锅炉技术将高含硫石油焦用于发电,每度

电成本仅为0.18元,而渣油发电成本高达0.58元,2000年消化石 油焦240kt。上海石化正进行热电总厂的扩建,采用CFB锅炉,每 年可以处理280kt高含硫石油焦。 另外,工业硅生产也用高硫焦,消耗量为300kg/t工业硅。 1.2石油焦用作冶炼厂阳极糊和石墨电极的原料含硫量低的石油焦,可以用于冶炼厂作为制作电极的原料。碳素厂使用石油焦,生产供铝厂使用的阳极糊,生产供钢铁厂使用的 石墨电极。 石油焦的硫含量影响到焦的使用和用焦制成炭素制品的质量。特别在制造石墨电极中硫含量是一项较为重要的指标,硫含量过高会直接影响到石墨电极的质量,也会影响到炼钢的质量。在500℃以上的高温下,石墨电极内的硫会被分解出来,过多的硫使电极晶体膨胀,致使电极收缩并产生裂纹,严重的可使电极报废。在生产石墨电极中,石油焦的硫含量会影响电耗量,用含硫为1.0%的石油焦生产电极时所用耗电量要比用含硫为0.5%的石油焦每吨多耗电9%左右。石油焦在作为阳极糊的原料时,其含硫量对耗电量也有明显的影响。我国延迟石油焦标准 SH0527-92见表1。 表1延迟石油焦标准SH0527-92

焦化废水处理工艺流程及特点

焦化废水处理工艺流程及特点 焦化废水特点: 焦化废水所含污染物包括酚类、多环芳香族化合物及含氮、氧、硫的杂环化合物等,是一种典型的含有难降解的有机化合物的工业废水。焦化废水中的易降解有机物主要是酚类化合物和苯类化合物,砒咯、萘、呋喃、眯唑类属于可降解类有机物。难降解的有机物主要有砒啶、咔唑、联苯、三联苯等。焦化废水的水质因各厂工艺流程和生产操作方式差异很大而不同。一般焦化厂的蒸氨废水水质如下:CODcr3000-3800mg/L、酚600-900mg/L、氰10mg/L、油50-70mg/L、氨氮300mg/L 左右。 焦化废水处理: 预处理 生物处理前的预处理方法通常是物理和化学方法,如气浮法、吹脱法、混凝沉淀法、折点氯化法等,主要目的是使二级生化处理工艺的进水达到可生化处理的范围。在预处理工艺中,吹脱法主要是用于蒸氨,气浮法用于除油 生物处理 SDN工艺 SDN(强化反硝化/硝化)工艺是先进的生物脱氮技术应用到焦化废水治理领域的一种生物处理工艺,使氨氮和COD去除率达到90~96%以上,比较以往的治理工艺,SDN具有系统适应能力强,运行稳定、操作简单、成本低、去除污染物范

围广的特点。废水经处理,回用于熄焦、洗煤等,大大减少新鲜水的用量,既减少了污染物排放总量,又能节约用水,具有明显的经济效益。 SDN焦化废水处理工艺由预处理、生物处理、深度处理、污泥处理四工段组成,功能分区清晰,便于操作管理。其中生化处理段采用由强化缺氧和好氧两部分组成的SDN工艺。该工艺氨氮和COD去除率达到90~96%以上,彻底解决了传统处理工艺中氨氮、COD去除率低下,生化系统不稳定,投资和运行成本据高不下等难题。 HSB工艺 HSB(High Solution Bacteria)是高分解力菌群的英文缩写,是由100多种菌种组成的高效微生物菌群,其中47种经中国台湾经济部标准局的专利认可,专门应用于废水处理。根据不同废水水质,对微生物筛选及驯化,针对性的选择多种微生物组成的菌群并将其种植在废水处理槽中,通过对微生物生长不息、周而复始的新陈代谢过程,分解不同污染物形成相互依赖的生物链和分解链,突破了常规细菌只能将某些污染物分解到某一中间阶段就不能进行下去的限制。其最终产物为CO、H2O、N2等,达到废水无害化的目的。该技术具有以下优点:Ⅰ.HSB技术对COD、NH 3-N等降解性能好,经投加HSB菌种后不仅COD、NH3-N 能达标排放,酚、氰等也有较大的降解; Ⅱ.投资费用少。由于HSB高效菌种能够有效的处理高浓度COD及NH3-N,可将原活性污泥法的气浮除油出水直接进入HSB处理装置,不再添加稀释水。不仅减少处理设施容积,减少占地面积,而且节省大量水资源;

最全的焦化厂生产工艺流程【最新版】

最全的焦化厂生产工艺流程 焦化厂总工艺流程图从5个方面带你进入焦化厂工艺流程现场一原料二备煤工艺三炼焦工艺四化工生产工艺五化工产品一原料--煤煤炭是炼焦的主要原料,根据成煤条件不同,自然界的煤可分为三大类,即腐植煤、残植煤和腐泥煤。腐植煤在自然界中分布最广,储量最大,在煤炭利用和化学加工方面占有主要的位置。煤炭分类及参数示例如下表: 二备煤工艺 1备煤流程--备煤作业区操作完成备煤:对进厂的洗精煤进行处理,以达到炼焦要求,通常把原料煤在炼焦前进行的工艺处理过程称为备煤工艺过程。达到炼焦要求之后,通过皮带被输送到煤塔供炼焦作业区使用。 流程:洗精煤(2设备图解 螺旋卸车机 煤场和堆取料机卸料--汽车来煤自卸车直接入卸煤槽,非自卸车采用桥式螺旋卸车机卸车,卸约800吨/小时精煤堆场--煤场贮煤面积~34000m2,7.4万吨精煤储存量,约为炼焦17天的用煤量;堆场设

两台DQ3025型堆取料机,单台堆料能力为600t/h,取料能力300t/h,煤场设推土机库,辅助堆取料机作业。在精煤煤场设有喷洒水和喷洒覆盖剂装置, 可防止煤尘飞扬造成对周围环境的污染。 配煤仓 煤塔配煤--按比例配合不同煤种, 使配合煤达到符合炼焦用煤的要求, 配煤仓为直径8米的双曲线斗嘴仓7个。每个仓的储量约为500t。煤仓双曲线钢漏斗内衬超高分子塑料板,防止棚料。仓下配煤设备采用配料稳定, 配比准确, 自动化程度高的电子自动配料秤,系统控制为PLC控制。粉碎--选用可逆反击锤式粉碎机PFCK两台, 其单台破粹能力为250t/h,一开一备。该粉碎机是在吸收德、日同类设备先进技术开发而成, 具有破碎比大、能力大、转速低、粉尘少、对煤的水分适应性强等优点;采用液力偶合器,能有效防护过载且能软启动;机体外壳开闭与反击板调节均采用液压装置,检修及更换锤头方便;采用组合式锤头, 使用寿命长,维护、检修费用低, 节约生产成本。3配煤工艺、配合煤指标配煤炼焦--是把几种牌号不同的单种煤按-定的比例配合起来炼焦。为什么要配煤?主要原因如下:a、节约优质炼焦煤,扩大炼焦煤源;b、充分利用各种煤的结焦特性取长补短,改善冶金焦炭质量;c、也能合理利用煤炭资源,在保证焦炭质量的前提下,增加炼焦化学产品的产率和炼焦煤气的发生量;d、充分利用本地资源,因地制宜发展焦化企业。配煤工艺--包括两种:即先粉后配

延迟焦化工艺流程

炼油厂的炼油工艺流程介绍 上传时间:2009-07-31 12:03 点 击:110 正文:

二、60万吨/年加氢装置 1、反应部分 焦化汽油、焦化柴油从延迟焦化装置直接进料,为控制加氢反应平稳,应严格控制其进料比例。两种原料进装置后经原料混合罐(D-201)混合,再经原料油泵(P-201/1、2)、过滤器(SR-201/1、2)、原料油脱水罐(D-202)进入原料油缓冲罐(D-203)。原料油过滤和脱水的目的是为了脱除堵塞反应器上部床层的固体颗粒和影响催化剂强度的水分。D-201、D-203用氮气气封保护。D-203中的原料经反应进料泵(P-202/1、2)升压至9.6MPa(A),经流量控制,与来自新氢压缩机(K-201/1、2)和循环氢压缩机(K-202/1、2)的混合氢混合,首先经混氢原料(I)/反应产物换热器(E-204/1、2)换热,再经由混氢原料(Ⅱ)/反应产物换热器(E-201)与反应产物换热至199℃进入反应加热炉(F-201),加热至303℃进入至加氢反应器(R-201)中,该反应器设置二段催化剂床层,两床层间设有注急冷氢设施。 自反应器(R-201)来的反应产物经混氢原料(Ⅱ)/反应产物换热器(E-201)、汽提塔底油/反应产物换热器(E-202)、低分油/反应产物换热器(E203)、混氢原料(I)/反应产物换热器(E-204/1、2)换热,然后依次经反应产物空冷器(EC-201/1、2)、反应产物后冷器(E-207/1、2)冷却至40℃,进入高压分离器(D-204)。为了防止反应产物中的铵盐在低温部位结晶,通过脱氧水泵(P-207/1、2)将脱氧水注入到(EC-201/1、2)或(E-204/1、2)上游的管道中。冷却后的反应物在D-204中进行油、气、水三相分离。高分气(循环氢)经K-202/1、2入口分液罐(D-208)分液后,进入循环氢压缩机(K-202/1、2)升压至8.8MPa(G),然后分两路:一路作为急冷氢进入R-201,一路与来自新氢压缩机(K-201/1、2)的新氢混合,混合氢与原料油混合作为反应进料。含硫、含氨污水自D-204底排出,至装置外统一处理。D-204油相在液位控制下,经减压调节阀进入低压分离器(D-205),D-205闪蒸气排至燃料气管网。 低分油经低分油/分馏塔底油换热器(E-206/1、2)和E-203分别与精制重石脑油、反应产物换热至200℃后去分馏部分汽提塔(C-201)。汽提塔底油经汽提塔底油/分馏塔底油换热器(E-205)和E-202分别与精制重石脑油、反应产物换热至245℃后去分馏部分分馏塔(C-202)。新氢自制氢装置来,经新氢压缩机入口分液罐(D-207)分液后进入K-201/1、2并经三级升压至 8.8MPa(G),再与K-202/1、2出口的循环氢混合。 2、分馏部分 从反应部分来的低分油经换热后进入C-201。塔底用0.8MPa过热蒸汽汽提。塔顶油气经汽提塔顶空冷器(EC-202/1、2)和汽提塔顶后冷器(E-208)冷凝冷却至40℃,进入汽提塔顶回流罐(D-210)进行气、油、水三相分离。闪蒸出的气体作为燃料进入燃料气管网。含硫污水送出装置。油相经汽提塔顶回流泵(P-203/1、2)升压后作为塔顶回流全部返回汽提塔(C-201)。 塔底油自压经E-205与精制重石脑油换热后去反应部分E-202换热器。从反应部分来的低分油经换热后进入C-202。塔底用重沸炉提供热源。塔顶油气经分馏塔顶空冷器(EC-203/1、2)和分馏塔顶后冷器(E-209)冷却至40℃,进入分馏塔顶回流罐(D-211)进行气、油、水三相分离。闪蒸出的气体通过放空罐至火炬。含硫污水送出装置。油相经分馏塔顶回流泵(P-204/1、2)升压后一部分作为塔顶回流,一部分作为精制轻石脑油出装置。 塔底精制重石脑油一小部分经分馏塔底产品泵(P-206/1、2)增压后经E-205和E-206/1、2分别与汽提塔底油、低分油换热至100℃左右,然后进入精制重石脑油后冷器(E-210)冷却至60℃出装置。塔底精制重石脑油大部分经分馏塔底循环泵(P-205/1、2)增压后用分馏塔底重沸炉(F-202)加热至290℃左右返回分馏塔下部,以补充分馏所需能量。 为了抑制硫化氢对塔顶管道和冷换设备的腐蚀,在塔顶管道注入缓蚀剂。缓蚀剂自缓蚀剂罐 (D-212)经缓蚀剂泵(P-209/1,2)抽出后分两路,一路注入C-201塔顶管道;另一路注入C-202塔顶管道。 3、催化剂预硫化部分

焦化厂化产车间的工艺流程与参数1详解

实习报告参考资料焦化厂化产车间的工艺流程与参数 1.冷鼓工段从荒煤气管上分离出的焦油、氨水与焦油渣在机械化氨水澄清槽(V81502A.B),澄清后分离成三层,上层为氨水,中层为焦油,下层为焦油渣。分离的氨水满流至循环氨水槽(V81503A.B),然后用循环氨水泵(P81501A.B)送至炼焦炉冷却荒煤气,当初冷器、电捕器和终冷器需要清扫时,从循环氨水泵后抽出一部分定期清扫,多余的氨水经循环氨水泵(P81501A.B),抽送至剩余氨水槽(V81504),在剩余氨水槽分离出焦油后,氨水进入气浮除油机,在此浮选出焦油,然后进入氨水中间槽,再用剩余氨水泵(P81502A.B)送至脱硫及硫回收工段进行蒸氨,分离出的焦油进入废水槽,由废水泵抽送到机械化澄清槽;机械化氨水澄清槽分离的焦油至焦油分离器(V81505)进行焦油的进一步脱水、脱渣,分离的氨水进入废液收集槽(V81511),由液下泵抽送到机械化氨水澄清槽,分离的焦油定期用焦油泵(P81503A.B)送到酸、碱、油品库区的焦油槽进行贮存,分离的焦油渣定期送往煤场掺混炼焦。定期用焦油泵将循环氨水槽底部聚集的焦油抽送至机械化氨水澄清槽。各设备的蒸汽冷凝液及脱硫工段来的蒸汽冷凝液均接入凝结水槽(V81510)定期用凝结水泵(P81506A.B)送往循环水系统或送入脱硫事故槽。经电捕焦油器捕集下来的焦油排入电捕水封槽(V81509),由电捕水封槽液下泵送至机械化氨水澄清槽(V81502A.B),当沉淀管需用循环氨水冲洗时,停高压电冲洗半小时,然后间隔30 分钟再

送高压电。冲洗液亦进入电捕水封槽中,离心鼓风机(C81501A.B)及其煤气管道的冷凝液均流入鼓风机水封槽(V81508A.B),然后与电捕水封槽(V81509)中的电捕液分别加压后一并送机械化氨水澄清槽(V81502A.B)。为防止各贮槽含氨尾气逸散,来自循环氨水槽及剩余氨水槽顶部的放散气集中后通过自控调节装置返回荒煤气系统。2.蒸氨工段由冷鼓来的剩余氨水进入原料氨水过滤器(V82510A.B)进行过滤,除去剩余氨水中的焦油等杂质,然后进入氨水换热器(E82503)与从蒸氨塔(T82504)塔底来的蒸氨废水换热,剩余氨水由75℃左右加热至98℃,进入蒸氨塔,在蒸氨塔中采用0.5Mpa 蒸汽直接汽提,塔内操作压力不超过0.035MPa,蒸出的氨汽进入氨分缩器(E82502),用31℃循环水冷却,冷凝下来的液体直接返回蒸氨塔顶作回流,未冷凝的含NH3 约10%的氨汽送入硫铵工段饱和器,塔底排出的蒸氨废水在氨水换热器(E82503)中与剩余氨水换热后,蒸氨废水由105℃降到95℃,进(E82504) 被31℃的循环水冷却至40℃后至生化处理装置。蒸氨塔(T82504)塔底排出焦油渣进入焦油桶(X82502),人工清理外运。从酸碱库区来的NaOH(32%)溶液送入碱液贮槽(V82512),然后由碱液输送泵(P82506A.B),加压后送入剩余氨水蒸氨管线,加入的碱量根据检测的PH 值调节。 2.1 原料氨水经加热后的温度:85℃-98℃; 2.2 蒸氨塔顶部温度:101℃-103℃; 2.3 蒸氨塔底部温度:101℃-105℃; 2.4 氨分缩器后的温度:95℃-98℃;根据蒸氨效果及硫铵母液消耗情况适

延迟焦化工艺技术及其在深度加工中的应用

延迟焦化工艺技术及其在深度加工中的应用 发表时间:2019-07-23T11:35:10.807Z 来源:《中国经济社会论坛》学术版2019年第3期作者:张海献薛勇郭连英[导读] 随着经济的发展,越来越多的领域会运用到石油资源,但是随着石油供应量的不断增加,也面临着资源短缺的问题。张海献薛勇郭连英中国石油辽阳石化公司炼油厂辽宁辽阳 111003 摘要:随着经济的发展,越来越多的领域会运用到石油资源,但是随着石油供应量的不断增加,也面临着资源短缺的问题。面对这种情形需要在提高石油使用率方面做出相应的调整,因此重点在资源的节约以及二次处理方面提出了重要的措施。通过采用延迟焦化的工艺技术能够有效的实现对渣油的深度转化和加工,大大减少了工作周期,对焦炭的产出进行了控制。 关键词:经济发展石油资源短缺延迟焦化转化加工一、延迟焦化工艺技术概述在重质石油处理过程中,应用较为广泛的就是延迟焦化技术。该项石油处理机技术能够有效的实现重油的深度裂化,并且实现二次使用。主要的处理流程为:首先要将需要处理加热的重油放置到加热炉内,并将温度控制在五百摄氏度,一段时间后转移到焦炭塔中;随后保障焦炭塔内的压强和温度的合理性,进行裂化和缩合的处理,分解出汽油、柴油等产品。但是在现如今,由于石油资源的相对短缺,所以要提高石油资源的使用率并节约能源,因为资源的短缺,导致劣质石油滥用的现象频繁发生,为了保护生态环境,国家关于原油的排放处理提出了更高的要求,同时这也给石油企业重新制定了生产标准,特别是在劣质原油的处理和深度加工方面给予了更高的关注度,因此为了完成该项工作需要具备更多的专业性较强的技术人员。在实际情况当中,石油企业在进行劣质原有生产时会产生大量的油渣,为了能够有效的降低对周围生态环境的污染程度,石油企业再对油渣进行再次的处理和深度加工,那么运用到的延迟焦化工艺技术具备较强的适应性的特点,所以在对油渣进行深度加工处理时,能够保障处理质量,同时还能够减少一定的成本支出,因此其也逐渐成为石油企业应用较为广泛的石油处理技术。该项技术能够进一步完善石油深度加工的处理步骤,并且其自身的特点能够较强的适应现有原材料,因此运用该成熟的技术,简化操作步骤,控制成本支出,同时提高轻油的产出率和石油的二次利用率,并能够实现对环境的保护和对能源的节约,具备较高的价值性。因此,要充分运用该项工艺技术,从而保障石油企业的可持续性发展。 二、延迟焦化工艺技术在深度加工中的作用 2.1劣质稠油的处理我们都知道劣质原油最大的特点就是粘性高,并且还包括了硫以及沥青质两种物质,所以在对原油加工的过程中会带来一定的难度。但是在现阶段,我们可以利用延迟焦化工艺技术当中的超稠原油加工的原理来进行处理。虽然在一定程度上延迟焦化工艺技术能够起到不错的效果,但是在后续的对蜡油处理加工方面缺少一定的技术支撑。又因为在劣质原油当中含有大量的沥青质物质,容易在炉管产生结焦和弹丸焦等现象。在实际操作当中如果出现上述问题,可以及时的采用大循环比操作的方式来进行蜡油的循环处理,随后产生轻质产品,这样以来就为劣质原有的焦化处理奠定了良好的基础。 2.2可以对循环比进行灵活调节在对渣油进行传统的处理时,首先是采用原料循环的模式分两路进入分馏塔,对原油进行加热,随后再讲其转移到缓冲罐中进行处理,最后通过缓冲罐底部转移到加热炉和焦炭塔进入分馏塔。但是采用延迟焦化工艺技术之后,将传统的两条途径分成四条,进而实现循环油的处理:第一条途径是将渣油和原料结合,将其混合物转移到加热炉中进行循环处理;第二条途径是实现HC-GO的直接输送;第三条途径是渣油经过分馏塔上部时实现往回倒流,从而有效的保障了蒸发阶段温度的合理性;第四条途径是在分馏塔的底部,从而实现对温度的调节。在以上处理过程当中,可实时的调节控制循环比。延迟焦化工艺处理技术已经被众多石油企业所接受并且落实,随着应用的逐渐广泛,对于企业自身来讲拥有了一套特定的工业化运行模式,有效的改善了原有处理的效率,对塔底生焦的现象进行规避,适当的增加了工作期限。 2.3实现了冷焦水的密闭处理运用传统的处理加工技术,对于冷焦水的密封处理,会产生部分臭气排放到空气当中,从而对生态环境造成一定的影响,并且严重影响了国民的生活质量。那么采用延迟焦化工艺处理技术之后,会在一定程度上对上述问题进行化解,同时对于旧时的冷焦水系统进行完善,最终实现循环式处理,这样以来能够有效的保障除油效果和温度,将对环境的污染程度控制到最低。 三、焦化产品的应用 3.1对焦化后石油焦的处理采用延迟焦化工艺技术之后,对于原油的提炼会同时产生百分之二十到百分之三十的石油焦,对于产生的石油焦的利用能够直接影响到整个处理技术的进程与效果。通过相关数据表明,在进行延迟焦化工艺技术时,产生的含硫量在在0.8%以下的石油焦,可以再将其投入到炼钢领域以制备电极;对于含硫量低于1.5%2号石油焦,可以再将其投入到炼铝领域以制备石墨;对于含硫量在3%的石油焦,可以再将其投入到制造电石领域。 3.2石脑油,柴油,蜡油等产品的利用采用延迟焦化工艺技术之后,会相继出现柴油等产物,应该对这些产物给予相应的处理。比如处理产物中的石脑油,进行加入氢气的处理,可以有效的将其转变为化工原料,或者排除一切复杂的操作步骤直接将其当做催化材料。对于柴油的利用,主要是加入氢气的方式将其转变为十六烷值柴油的部门。对于蜡油的处理,也可以直接用来当做催化裂化的原材料。但是现实当中的蜡油自身含有一定的氮元素、芳烃以及硫元素等,所以造成自身的质量偏差,对于这些情况下的蜡油要注意加入氢元素进行加工处理,方可实现二次使用。 四、结束语通过以上内容,我们了解到在现如今的重质石油处理加工过程中,延迟焦化技术能够实现重油的深度加工,起到了至关重要的作用。经济的快速发展带动着科学技术的进步,该项技术也在一定程度上得到了较高的创新和完善,延迟焦化工艺技术的普遍运用,为石油企业的发展保驾护航。参考文献:

相关文档