文档视界 最新最全的文档下载
当前位置:文档视界 › 东大20春学期《大学物理》在线平时作业2答卷

东大20春学期《大学物理》在线平时作业2答卷

东大20春学期《大学物理》在线平时作业2答卷

20春学期《大学物理》在线平时作业2

试卷总分:100 得分:100

一、单选题 (共 20 道试题,共 100 分)

1.{图}

A.D

B.C

C.B

D.A

答案:A

2.现有10g 氧气盛在容积为2 L 的容器内,压强为90.659 kPa ,则该氧气的温度为T ;单位体积的分子数为n 。它们的值分别为:

A.T = 698 K ;n = 94 × 10 25 m – 3

B.T = 698 K ;n = 9.4 × 10 25 m – 3

C.T = 69.8 K ;n = 94 × 10 25 m – 3

D.T = 69.8 K ;n = 9.4 × 10 25 m – 3

答案:D

3.{图}

A.D

B.C

C.B

D.A

答案:B

4.4 mol 的多原子分子理想气体,当温度为T时,其内能为:

A.12 kT

B.12 RT

C.10 kT

D.10 RT

答案:B

5.{图}

A.D

B.C

C.B

D.A

答案:D

6.在相同的温度和压强下,各为单位体积的氢气与氧气的内能之比与各为单位质量的氢气与氧气的内能之比分别为:

A.16 :1,1 :1

B.1 :1,8 :1

C.1 :1,32 :1

大学物理活页作业答案(全套)

1.质点运动学单元练习(一)答案 1.B 2.D 3.D 4.B 5.3.0m ;5.0m (提示:首先分析质点的运动规律,在t <2.0s 时质点沿x 轴正方向运动;在t =2.0s 时质点的速率为零;,在t >2.0s 时质点沿x 轴反方向运动;由位移和路程的定义可以求得答案。) 6.135m (提示:质点作变加速运动,可由加速度对时间t 的两次积分求得质点运动方程。) 7.解:(1))()2(22 SI j t i t r )(21m j i r )(242m j i r )(3212m j i r r r )/(32s m j i t r v (2))(22SI j t i dt r d v )(2SI j dt v d a )/(422s m j i v )/(222 s m j a 8.解: t A tdt A adt v t o t o sin cos 2 t A tdt A A vdt A x t o t o cos sin

9.解:(1)设太阳光线对地转动的角速度为ω s rad /1027.73600 *62 /5 s m t h dt ds v /1094.1cos 32 (2)当旗杆与投影等长时,4/ t h s t 0.31008.144 10.解: ky y v v t y y v t dv a d d d d d d d -k y v d v / d y C v ky v v y ky 2 22 121, d d 已知y =y o ,v =v o 则2 020 2 121ky v C )(22 22y y k v v o o

大物作业标准答案

大物作业答案

————————————————————————————————作者:————————————————————————————————日期: 2

本习题版权归物理与科学技术学院物理系所有,不得用于商业目的 《大学物理》作业 No.5 光的衍射 班级 ________ 学号 ________ 姓名 _________ 成绩 _______ 一、选择题: 1. 在如图所示的单缝夫琅禾费衍射装置中,设中央明纹的衍射角范围很小。若使单缝宽度a 变为原来的 23,同时使入射的单色光的波长λ 变为原来的3 / 4,则屏幕E 上单缝衍射条纹中央明纹的 宽度?x 将变为原来的 [ ] (A) 3 / 4倍 (B) 2 / 3倍 (C) 9 / 8倍 (D) 1 / 2倍 (E) 2倍 解:单缝衍射中央明纹两侧第一暗纹中心间距离为中央明纹线宽度: θtg 2f x =? 由第一暗纹中心条件: λθ=sin a 即 a λ θ= sin 当θ 小时,有 θθsin tg ≈ ∴ a f x λ 2≈? 已知题意:122 3 a a = , 4/312λλ= ,可得 ()()1112 2 2 2 12212x a f a f x ?=???? ??= =?λλ ∴ a 、λ 改变后的中央明纹宽度(?x )2变为原来宽度(?x )1的1/2 故选D 2. 波长 λ=500nm(1nm=10- 9m)的单色光垂直照射到宽度a =0.25 mm 的单缝上,单缝后面 放置一凸透镜,在凸透镜的焦平面上放置一屏幕,用以观测衍射条纹。今测得屏幕上中央明条纹一侧第三个暗条纹和另一侧第三个暗条纹之间的距离为d =12 mm ,则凸透镜的焦距f 为 [ ] (A) 2 m (B) 1 m (C) 0.5 m (D) 0.2 m (E) 0.1 m 解:由单缝衍射第一暗纹中心条件: λθ±=sin a 可得中央明纹线宽度a f x λ 2=? 而其余明纹线宽度a f x λ ='? 故中央明条纹一侧第三个暗条纹和另一侧第三个暗条纹之间的距离应是其余明纹线宽度 单缝 λa L E f O x y

大学物理作业(二)答案

班级___ ___学号____ ____姓名____ _____成绩______________ 一、选择题 1. m 与M 水平桌面间都是光滑接触,为维持m 与M 相对静止,则推动M 的水平力F 为:( B ) (A)(m +M )g ctg θ (B)(m +M )g tg θ (C)mg tg θ (D)Mg tg θ 2. 一质量为m 的质点,自半径为R 的光滑半球形碗口由静止下滑,质点在碗内某处的速率为v ,则质点对该处的压力数值为:( B ) (A)R mv 2 (B)R mv 232 (C)R mv 22 (D)R mv 252 3. 如图,作匀速圆周运动的物体,从A 运动到B 的过程中,物体所受合外力的冲量:( C ) (A) 大小为零 (B ) 大小不等于零,方向与v A 相同 (C) 大小不等于零,方向与v B 相同 (D) 大小不等于零,方向与物体在B 点所受合力相同 二、填空题 1. 已知m A =2kg ,m B =1kg ,m A 、m B 与桌面间的摩擦系数μ=0.5,(1)今用水平力F =10N 推m B ,则m A 与m B 的摩擦力f =_______0______,m A 的加速度a A =_____0_______. (2)今用水平力F =20N 推m B ,则m A 与m B 的摩擦力f =____5N____,m A 的加速度a A =_____1.7____. (g =10m/s 2) 2. 设有三个质量完全相同的物体,在某时刻t 它们的速度分别为v 1、v 2、v 3,并且v 1=v 2=v 3 ,v 1与v 2方向相反,v 3与v 1相垂直,设它们的质量全为m ,试问该时刻三物体组成的系统的总动量为_______m v 3________. 3.两质量分别为m 1、m 2的物体用一倔强系数为K 的轻弹簧相连放在光滑水平桌面上(如图),当两物体相距为x 时,系统由静止释放,已知弹簧的自然长度为x 0,当两物体相距为x 0时,m 1的速度大小为 2 2 121 Km x m m m + . 4. 一弹簧变形量为x 时,其恢复力为F =2ax -3bx 2,现让该弹簧由x =0变形到x =L ,其弹力的功为: 2 3 aL bL - . 5. 如图,质量为m 的小球,拴于不可伸长的轻绳上,在光滑水平桌面上作匀速圆周运动,其半径为R ,角速度为ω,绳的另一端通过光 滑的竖直管用手拉住,如把绳向下拉R /2时角速度ω’为 F m A m B m M F θ A O B R v A v B x m 1 m 2 F m R

大学物理习题及答案

x L h 书中例题:1.2, 1.6(p.7;p.17)(重点) 直杆AB 两端可以分别在两固定且相互垂直的直导线槽上滑动,已知杆的倾角φ=ωt 随时间变化,其中ω为常量。 求:杆中M 点的运动学方程。 解:运动学方程为: x=a cos(ωt) y=b sin(ωt) 消去时间t 得到轨迹方程: x 2/a 2 + y 2/b 2 = 1 椭圆 运动学方程对时间t 求导数得速度: v x =dx/dt =-a ωsin(ωt) v y =dy/dt =b ωcos(ωt) 速度对时间t 求导数得加速度: a x =d v x /dt =-a ω2cos(ωt) a y =d v y /dt =-b ω2sin(ωt) 加速度的大小: a 2=a x 2+a y 2 习题指导P9. 1.4(重点) 在湖中有一小船,岸边有人用绳子跨过一高处的滑轮拉船靠岸,当绳子以v 通过滑轮时, 求:船速比v 大还是比v 小? 若v 不变,船是否作匀速运动? 如果不是匀速运动,其加速度是多少? 解: l =(h2+x2)1/2 221/2 122()d l x d x v d t h x d t ==+ 221/2()d x h x v d t x += 当x>>h 时,dx/dt =v ,船速=绳速 当x →0时,dx/dt →∞ 加速度: x y M A B a b φ x h

220d x d t =2221/22221/2221/2221/2221/22221/2()1()11()()1112()2()d x d h x v dt dt x d h x v dt x d dx d h x dx h x v v dx x dt x dx dt dx x dx h x v v x dt x h x dt ?? +=??????=?+???? +??=?++ ???=-?+++ 将221/2()d x h x v d t x +=代入得: 2221/2221/2 221/2 22221/21()112()()2()d x h x x h x h xv v v v d t x x x h x x ++=-?+++3222232222)(x v h x v v x x h dt x d -=++-= 分析: 当x ∞, 变力问题的处理方法(重点) 力随时间变化:F =f (t ) 在直角坐标系下,以x 方向为例,由牛顿第二定律: ()x dv m f t dt = 且:t =t 0 时,v x =v 0 ;x =x 0 则: 1 ()x dv f t dt m = 直接积分得: 1 ()()x x v dv f t dt m v t c ===+?? 其中c 由初条件确定。 由速度求积分可得到运动学方程:

大学物理(第五版)上册课后习题答案马文蔚

习题1 1-1 质点作曲线运动,在时刻t 质点的位矢为r ,速度为v ,t 至()t t +?时间内的位移为r ?,路程为s ?,位矢大小的变化量为r ?(或称r ?),平均速度为v ,平均速率为v 。 (1)根据上述情况,则必有( ) (A )r s r ?=?=? (B )r s r ?≠?≠?,当0t ?→时有dr ds dr =≠ (C )r r s ?≠?≠?,当0t ?→时有dr dr ds =≠ (D )r s r ?=?≠?,当0t ?→时有dr dr ds == (2)根据上述情况,则必有( ) (A ),v v v v == (B ),v v v v ≠≠ (C ),v v v v =≠ (D ),v v v v ≠= 1-2 一运动质点在某瞬间位于位矢(,)r x y 的端点处,对其速度的大小有四种意见,即 (1) dr dt ;(2)dr dt ;(3)ds dt ;(4下列判断正确的是: (A )只有(1)(2)正确 (B )只有(2)正确 (C )只有(2)(3)正确 (D )只有(3)(4)正确 1-3 质点作曲线运动,r 表示位置矢量,v 表示速度,a 表示加速度,s 表示路程,t a 表示切向加速度。对下列表达式,即 (1)dv dt a =;(2)dr dt v =;(3)ds dt v =;(4)t dv dt a =。 下述判断正确的是( ) (A )只有(1)、(4)是对的 (B )只有(2)、(4)是对的 (C )只有(2)是对的 (D )只有(3)是对的 1-4 一个质点在做圆周运动时,则有( ) (A )切向加速度一定改变,法向加速度也改变 (B )切向加速度可能不变,法向加速度一定改变 (C )切向加速度可能不变,法向加速度不变

大学物理 习题分析与解答

第八章 恒定磁场 8-1 均匀磁场的磁感强度B 垂直于半径为r 的圆面.今以该圆周为边线,作一半球面S ,则通过S 面的磁通量的大小为[ ]。 (A) B r 22π (B) B r 2π (C) 0 (D) 无法确定 分析与解 根据高斯定理,磁感线是闭合曲线,穿过圆平面的磁通量与穿过半球面的磁通量相等。正确答案为(B )。 8-2 下列说法正确的是[ ]。 (A) 闭合回路上各点磁感强度都为零时,回路内一定没有电流穿过 (B) 闭合回路上各点磁感强度都为零时,回路内穿过电流的代数和必定为零 (C) 磁感强度沿闭合回路的积分为零时,回路上各点的磁感强度必定为零 (D) 磁感强度沿闭合回路的积分不为零时,回路上任意点的磁感强度必定为零 分析与解 由磁场中的安培环路定理,磁感强度沿闭合回路的积分为零时,回路上各点的磁感强度不一定为零;闭合回路上各点磁感强度为零时,穿过回路的电流代数和一定为零。正确答案为(B )。 8-3 磁场中的安培环路定理∑?=μ=?n L I 1i i 0d l B 说明稳恒电流的磁场是[ ]。 (A) 无源场 (B) 有旋场 (C) 无旋场 (D) 有源场

分析与解 磁场的高斯定理与安培环路定理是磁场性质的重要表述,在恒定磁场中B 的环流一般不为零,所以磁场是涡旋场;而在恒定磁场中,通过任意闭合曲面的磁通量必为零,所以磁场是无源场;静电场中E 的环流等于零,故静电场为保守场;而静电场中,通过任意闭合面的电通量可以不为零,故静电场为有源场。正确答案为(B )。 8-4 一半圆形闭合平面线圈,半径为R ,通有电流I ,放在磁感强度为B 的均匀磁场中,磁场方向与线圈平面平行,则线圈所受磁力矩大小为[ ]。 (A) B R I 2π (B) B R I 221π (C) B R I 24 1π (D) 0 分析与解 对一匝通电平面线圈,在磁场中所受的磁力矩可表示为B e M ?=n IS ,而且对任意形状的平面线圈都是适用的。正确答案为(B )。 8-5 一长直螺线管是由直径d =0.2mm 的漆包线密绕而成。当它通以I =0.5A 的电流时,其内部的磁感强度B =_____________。(忽略绝缘层厚度,μ0=4π×10-7N/A 2) 分析与解 根据磁场中的安培环路定理可求得长直螺线管内部的磁感强度大小为nI B 0μ=,方向由右螺旋关系确定。正确答安为(T 1014.33-?)。 8-6 如图所示,载流导线在平面内分布,电流为I ,则在圆心O 点处的磁感强度大小为_____________,方向为 _____________ 。 分析与解 根据圆形电流和长直电 流的磁感强度公式,并作矢量叠加,可得圆心O 点的总

大学物理习题与作业答案

理想气体状态方程 5-1一容器内储有氧气,其压强为1.01?105Pa ,温度为270 C ,求:(1)气体分子的数密度;(2)氧气的质量密度;(3)氧分子的质量;(4)分子间的平均距离(设分子均匀等距分布)。 解:(1)nkT p =,32523 5 /m 1044.2) 27273(1038.11001.1?=+???==-kT p n (2)R M m T pV mol =Θ,335mol kg/m 30.1)27273(31.810321001.1=+????== =∴-RT pM V m ρ (3)n m O 2 =ρΘ, kg 1033.510 44.230 .12625 2 -?=?= = ∴n m O ρ (4)m 1045.310 44.21193253 -?=?==n d 5-2在容积为V 的容器中的气体,其压强为p 1,称得重量为G 1。然后放掉一部分气体,气体的压强降至p 2,再称得重量为G 2。问在压强p 3下,气体的质量密度多大? 解:设容器的质量为m ,即放气前容器中气体质量为m g G m -=1 1,放气后容器中气体质量为m g G m -= 2 2。 由理想气体状态方程有

RT M m g G RT M m V p mol 1mol 11-==, RT M m g G RT M m V p mol 2 mol 22-== 上面两式相减得 V p p G G g M RT )()(1212mol -=-,)(1 21 2mol p p G G gV RT M --= 当压强为3p 时,1 21 2 33mol 3p p G G gV p RT p M V m --?=== ρ 压强、温度的微观意义 5-3将2.0?10-2kg 的氢气装在4.0?10-3m 2的容器中,压强为3.9?105Pa ,则氢分子的平均平动动能为多少? 解:RT M m pV mol = Θ,mR pV M T mol =∴ 5-4体积33m 10-=V ,压强Pa 105=p 的气体分子平均平动动能的总和为多少? 解:kT N t 23=∑ε,其中N 为总分子数。kT V N nkT p = =Θ,kT pV N = 5-5温度为0℃和100℃时理想气体分子的平均平动动能各为多少?欲使分子的平均 平动动能等于1eV ,气体的温度需多高?(1eV=1.6?10-19J )

大学物理作业(1-5)

1—4 一质点的运动学方程为2t x =,()2 1-=t y (S1)。试求: (1)质点的轨迹方程:(2) 在2=t s 时,质点的速度和加速度。 [解] (1) 由质点的运动方程 2t x = (1) ()2 1-=t y (2) 消去参数t ,可得质点的轨迹方程 21)y = (2) 由(1)、(2)对时间t 求一阶导数和二阶导数可得任一时刻质点的速度和加速度 t dt dx v x 2== ()12-==t dt dy v y 所以 ()221x y v v t t =+=+-v i j i j (3) 222==dt x d a x 222==dt y d a y 所以 22=+a i j (4) 把t =2s 代入式(3)、(4),可得该时刻质点的速度和加速度。 42=+v i j 22=+a i j 1—6 质点的运动学方程为() 2 22t t =++r i j (S1),试求:(1)质点的轨道方程;(2)t =2s 时质点的速度和加速度。 [解] (1) 由质点的运动方程,可得 2 2,2x t y t ==+ 消去参数t ,可得轨道方程 2124 y x =+ (2) 由速度、加速度定义式,有 d /d 22t t ==+v r i j 22d /d 2t ==a r j 将t=2s 代入上两式,得 24=+v i j , 2=a j 1—10 在重力和空气阻力的作用下,某物体下落的加速度为Bv g a -=,g 为重力加速度,B 为与物体的质量、形状及媒质有关的常数。设t =0时物体的初速度为零。(1)试求物体的速度随时间变化的关系式;(2)当加速度为零时的速度(称为收尾速度)值为多大? [解] (1) 由dt dv a /=得 dt Bv g dv =-

大学物理-作业与答案

《大学物理》课后作业题 专业班级: 姓名: 学号: 作业要求:题目可打印,答案要求手写,该课程考试时交作业。 第一章 质点力学 1、质点的运动函数为: 5 4;22 +==t y t x , 式中的量均采用SI 单位制。求:(1)质点运动的轨道方程;(2)s 11=t 和s 22=t 时,质点的位置、速度和加速度。 1、用消元法 t=x/2 轨迹方程为 y=x2+5 2、运动的合成 x 方向上的速度为x'=2, y 方向上的速度为y'=8t+5 将t 带入分别求出x 和y 方向上的速度 然后合成 x 方向上的加速度为x''=0 y 方向上的加速度为y''=8 所以加速度为8 2、如图所示,把质量为m 的小球悬挂在以恒加速度水平运动的小车上,悬线与竖直方向的夹角为θ,求小车的加速度和绳的张力。 绳子的拉力F ,将其水平和竖直正交分解为 Fsinα 和 Fcosα 竖直:Fcosα=mg 水平:Fsinα=ma a=gtanα 方向水平向右 3、一质量为0.10kg 的质点由静止开始运动,运动函数为j i 23 53 += t r (SI 单位) 求在t=0到t=2s 时间内,作用在该质点上的合力所做的功。 质点的速度就是 V =dr / dt =5* t^2 i +0 j 即质点是做直线运动,在 t =0时速度为V0=0;在 t =2秒时,速度为 V1=5*2^2=20 m/s 由动能定理得所求合力做的功是 W 合=(m*V1^2 / 2)-(m*V0^2 / 2)= m*V1^2 / 2=0.1*20^2 / 2=20 焦耳 第二章 刚体力学 T 1

1、在图示系统中,滑轮可视为半径为R、质量为m0的匀质圆盘。设绳与滑轮之间无滑动, 水平面光滑,并且m1=50kg,m2=200kg,m0=15kg,R=0.10m,求物体的加速度及绳中的张力。 解将体系隔离为 1 m, m, 2 m三个部分,对 1 m和 2 m分别列牛顿方程,有 a m T g m 2 2 2 = - a m T 1 1 = β2 1 22 1 MR R T R T= - 因滑轮与绳子间无滑动,则有运动学条件 R aβ = 联立求解由以上四式,可得 R M m m g m ? ? ? ? ? + + = 2 1 2 1 2 β 由此得物体的加速度和绳中的张力为 2 2 1 262 .7 15 5.0 200 50 81 .9 200 2 1 - ? = ? + + ? = + + = =s m M m m g m R aβ N a m T381 62 .7 50 1 1 = ? = =N a g m T438 ) 62 .7 81 .9( 200 ) ( 2 2 = - ? = - = 第四章静止电荷的电场 1、如图所示:一半径为R的半圆环上均匀分布电 荷Q(>0),求环心处的电场强度。 解:由上述分析,点O的电场强度 由几何关系θd d R l=,统一积分变量后,有 y x O

大学物理作业参考答案.docx

电势、导体与 ※ 电介质中的静电场 (参考答案) 班级: 学号: 姓名: 成绩: 一 选择题 1.真空中一半径为 R 的球面均匀带电 Q ,在球心 O 处有一带电量为 q 的点电荷, 如图所示, 设无穷远处为电势零点,则在球内离球心 O 距离为 r 的 P 点处的电势为: (A ) q ; ( B ) 1 ( q Q ) ; 4 0 r O r P 4 0r R Q q R (C ) q Q ; ( D ) 1 ( q Q q ) ; 4 0 r 4 0r R 参考:电势叠加原理。 [ B ] 2.在带电量为 -Q 的点电荷 A 的静电场中,将另一 带电量为 q 的点电荷 B 从 a 点移动到 b , a 、 b 两点距离点电荷 A 的距离分别为 r 和 r ,如 1 2 图,则移动过程中电场力做功为: (A ) Q ( 1 4 0 r 1 qQ ( 1 (C ) 4 0 r 1 1 ) ; ( B ) qQ r 2 4 r 1 ) ; (D ) 4 2 ( 1 1 ) ;(-Q)A r 1 B a 0 r 1 r 2 qQ r 2 ( q ) b r ) 。 0 ( r 2 1 参考:电场力做功=势能的减小量。 A=W-W =q(U -U ) [ C ] ab a b 。 3.某电场的电力线分布情况如图所示,一负电荷从 M 点移到 N 点,有人根据这个图做出以 下几点结论,其中哪点是正确的? (A )电场强度 E <E ; ( B )电势 U < U ; MN M N (C )电势能 W M < W N ; ( D )电场力的功 A > 0。 N M [ C ] 4.一个未带电的空腔导体球壳内半径为 R ,在腔内离球心距离为 d ( d < R )处,固定一电 量为 +q 的点电荷,用导线把球壳接地后,再把地线撤去,选无穷远处为电势零点,则球心 O 处的点势为: (A ) 0; ( B ) 4 q d ; R q q ( 1 1 ) 。 O +q (C ) - ; ( D ) d 4 0R 4 0 d R 参考:如图,先用高斯定理可知导体内表面电荷为 -q ,导体 外表面无电荷(可分析) 。虽然内表面电荷分布不均,但到 O 点的距离相同,故由电势叠加 原理可得。 [ D ] ※ 5.在半径为 R 的球的介质球心处有电荷 +Q ,在球面上均匀分布电荷 -Q ,则在球内外处的电势分别为: Q Q Q (A ) 4 r 内 , 4 r 外 ; ( B ) 4 r 内 , 0; 参考:电势叠加原理。注:原题中ε为ε0 (C ) 4 Q Q r 内 4 R ,0; ( D ) 0, 0 。 [ C ]

大学物理上学习指导作业参考答案

第一章 质点运动学 课 后 作 业 1、一质点沿x 轴运动,其加速度a 与位置坐标x 的关系为] a =2+6 x 2 (SI) 如果质点在原点处的速度为零,试求其在任意位置处的速度. 解:设质点在x 处的速度为v , 62d d d d d d 2x t x x t a +=?== v v 2分 () x x x d 62d 0 20 ??+=v v v 2分 () 2 21 3 x x +=v 1分 2、一质点沿x 轴运动,其加速度为a = 4t (SI),已知t = 0时,质点位于x 0=10 m 处,初速度v 0 = 0.试求其位置和时间的关系式. 解: =a d v /d t 4=t , d v 4=t d t ? ?=v v 0 d 4d t t t v 2=t 2 3分 v d =x /d t 2=t 2 t t x t x x d 2d 0 2 ??= x 2= t 3 /3+x 0 (SI) 2分 3、一质点沿半径为R 的圆周运动.质点所经过的弧长与时间的关系为 22 1 ct bt S += 其中b 、c 是大于零的常量,求从0=t 开始到切向加速度与法向 加速度大小相等时所经历的时间. 解: ct b t S +==d /d v 1分 c t a t == d /d v 1分 ()R ct b a n /2 += 1分 根据题意: a t = a n 1分 即 ()R ct b c /2 += 解得 c b c R t -= 1分

4、如图所示,质点P 在水平面内沿一半径为R =2 m 的圆轨道转动.转动的角速度ω与时间t 的函数关系为2kt =ω (k 为常量).已知s t 2=时,质点P 的速度值为32 m/s .试求1=t s 时,质点P 的速度与加速度的大小. 解:根据已知条件确定常量k () 222/rad 4//s Rt t k ===v ω 1分 24t =ω, 24Rt R ==ωv s t 1=时, v = 4Rt 2 = 8 m/s 1分 2s /168/m Rt dt d a t ===v 1分 22s /32/m R a n ==v 1分 ()8.352 /122=+=n t a a a m/s 2 1分 5、一敞顶电梯以恒定速率v =10 m/s 上升.当电梯离地面h =10 m 时,一小孩竖直向上抛出一球.球相对于电梯初速率200=v m/s .试问: (1) 从地面算起,球能达到的最大高度为多大? (2) 抛出后经过多长时间再回到电梯上? 解:(1) 球相对地面的初速度 =+='v v v 030 m/s 1分 抛出后上升高度 9.4522 ='=g h v m/s 1分 离地面高度 H = (45.9+10) m =55.9 m 1分 (2) 球回到电梯上时电梯上升高度=球上升高度 202 1 )(gt t t -+=v v v 1分 08.420==g t v s 1分 6、在离水面高h 米的岸上,有人用绳子拉船靠岸,船在离岸S 处,如图所示.当人以0υ(m ·1-s )的速率收绳时,试求船运动的速度和加速度的大小.

大学物理(上册)参考答案

第一章作业题 P21 1.1; 1.2; 1.4; 1.9 质点沿x 轴运动,其加速度和位置的关系为 a =2+62 x ,a 的单位为2 s m -?,x 的单 位为 m. 质点在x =0处,速度为101 s m -?,试求质点在任何坐标处的速度值. 解: ∵ x v v t x x v t v a d d d d d d d d === 分离变量: x x adx d )62(d 2 +==υυ 两边积分得 c x x v ++=32 2221 由题知,0=x 时,100 =v ,∴50=c ∴ 1 3s m 252-?++=x x v 1.10已知一质点作直线运动,其加速度为 a =4+3t 2 s m -?,开始运动时,x =5 m , v =0, 求该质点在t =10s 时的速度和位置. 解:∵ t t v a 34d d +== 分离变量,得 t t v d )34(d += 积分,得 1 223 4c t t v ++= 由题知,0=t ,00 =v ,∴01=c 故 2234t t v + = 又因为 2 234d d t t t x v +== 分离变量, t t t x d )23 4(d 2+= 积分得 2 3221 2c t t x ++= 由题知 0=t ,50 =x ,∴52=c 故 52123 2++ =t t x 所以s 10=t 时 m 70551021 102s m 1901023 10432101210=+?+?=?=?+ ?=-x v 1.11 一质点沿半径为1 m 的圆周运动,运动方程为 θ=2+33 t ,θ式中以弧度计,t 以秒

大学物理学上册习题参考答案

第一章 质点运动学 1.4一个正在沿直线行驶的汽船,关闭发动机后,由于阻力得到一个与速度反向、大小与船速平方成正比例的加速度,即d v /d t = -kv 2,k 为常数. (1)试证在关闭发动机后,船在t 时刻的速度大小为011kt v v =+; (2)试证在时间t 内,船行驶的距离为 01 ln(1)x v kt k = +. [证明](1)分离变量得2d d v k t v =-, 积分 020d d v t v v k t v =-??, 可得 0 11kt v v =+. (2)公式可化为0 01v v v kt = +, 由于v = d x/d t ,所以 00001 d d d(1) 1(1)v x t v kt v kt k v kt = =+++ 积分 000 01 d d(1) (1)x t x v kt k v kt =++?? . 因此 01 ln(1)x v kt k = +. 证毕. 1.5 一质点沿半径为0.10m 的圆周运动,其角位置(以弧度表示)可用公式表示:θ = 2 + 4t 3.求: (1)t = 2s 时,它的法向加速度和切向加速度; (2)当切向加速度恰为总加速度大小的一半时,θ为何值? (3)在哪一时刻,切向加速度和法向加速度恰有相等的值? [解答](1)角速度为 ω = d θ/d t = 12t 2 = 48(rad·s -1), 法向加速度为 a n = rω2 = 230.4(m·s -2); 角加速度为 β = d ω/d t = 24t = 48(rad·s -2), 切向加速度为

a t = rβ = 4.8(m·s -2). (2)总加速度为a = (a t 2 + a n 2)1/2, 当a t = a /2时,有4a t 2 = a t 2 + a n 2,即 n a a = 由此得 2r r ω= 即 22 (12)24t = 解得 3 6t =. 所以 3242(13)t θ=+==3.154(rad). (3)当a t = a n 时,可得rβ = rω2, 即 24t = (12t 2)2, 解得 t = (1/6)1/3 = 0.55(s). 1.6 一飞机在铅直面内飞行,某时刻飞机的速度为v = 300m·s -1,方向与水平线夹角为30°而斜向下,此后飞机的加速度为a = s -2,方向与水平前进方向夹角为30°而斜向上,问多长时间后,飞机又回到原来的高度?在此期间飞机在水平方向飞行的距离为多少? [解答]建立水平和垂直坐标系,飞机的初速度的大小为 v 0x = v 0cos θ, v 0y = v 0sin θ. 加速度的大小为 a x = a cos α, a y = a sin α. 运动方程为 2 01 2x x x v t a t =+, 2 01 2y y y v t a t =-+. 即 201 c o s c o s 2x v t a t θ α=?+?, 2 01 sin sin 2y v t a t θα=-?+?. 令y = 0,解得飞机回到原来高度时的时间为 t = 0(舍去) ; 02sin sin v t a θ α= =.

大学物理作业(一)答案

大学物理作业(一)答 案 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

班级___ ___学号____ ____姓名____ _____成绩______________ 一. 填空: 1. 已知质点的运动方程:22,2t y t x -== (SI 制),则(1) t =1s 时质点的位置矢量 2i j +,速度 22i j -,加速度___2j -_________,(2) 第1s 末到第2s 秒末质点的位移____23i j -___ ___,平均速度___23i j -_______. 2. 一人从田径运动场的A 点出发沿400米的跑道跑了一圈回A 点,用了1分钟的时间,则在上述时间内其平均速度为_____0_________. 3. 一质点沿线x 轴运动,其加速度为t a 4=(SI 制),当t =0时,物体静止于x =10m 处,则t 时刻质点的速度______22t _____,位置____32103 t +_____________. 4. 一质点的运动方程为j i r 232t t +=(SI 制),任意时刻t 的切向加速度为 ,法向加速度为 . 二. 选择: 1. 以下说法错误的是:( ABC ) (A) 运动物体的加速度越大,物体的速度也越大. (B) 物体在直线前进时,如果物体向前的加速度减小了,物体前进的速度也减小. (C) 物体的加速度值很大,而物体的速度值可以不变,是不可能的. (D) 在直线运动中且运动方向不发生变化时,位移的量值与路程相等. 2. 下面叙述哪一种正确: ( B ) (A)速度为零,加速度一定为零. (B)当速度和加速度方向一致,但加速度量值减小时,速度的值一定增加. (C)速度很大加速度也一定很大. 3. 如图河中有一小船,人在离河面一定高度的岸上通过 绳子以匀速度0v 拉船靠岸,则船在图示位置处的速率 为:( C ) (A)0v (B)θcos 0v (C) θcos /0v (D) θtan 0v 4. 以初速度0v ,仰角θ抛出小球,当小球运动到最高点时,其轨道曲率半径为(不计空气 阻力): ( D )

大学物理作业答案(下)

65. 如图所示,几种载流导线在平面内分布,电流均为I ,求:它们在O 点的磁感应强度。 1 R I B 80μ= 方向 垂直纸面向外 2 R I R I B πμμ2200- = 方向 垂直纸面向里 3 R I R I B 4200μπμ+ = 方向 垂直纸面向外 66. 一半径为R 的均匀带电无限长直圆筒,电荷面密度为σ,该筒以角速度ω绕其轴线匀速旋转。试求圆筒内部的磁感应强度。 解:如图所示,圆筒旋转时相当于圆筒上具有同向的面电流密度i , σωσωR R i =ππ=)2/(2 作矩形有向闭合环路如图中所示.从电流分布的对称性分析可知,在ab 上各点B 的 大小和方向均相同,而且B 的方向平行于ab ,在bc 和fa 上各点B 的方向与线元垂直, 在de , cd fe ,上各点0=B .应用安培环路定理 ∑??=I l B 0d μ 可得 ab i ab B 0μ= σωμμR i B 00== 圆筒内部为均匀磁场,磁感强度的大小为σωμR B 0=,方向平行于轴线朝右.

67.在半径为R 的长直金属圆柱体内部挖去一个半径为r 的长直圆柱体,两柱体轴线平行,其间距为a (如图)。今在此导体内通以电流I ,电流在截面上均匀分布,求:空心部分轴线上O ' 点的磁感应强度的大小。 解:) (22r R I J -= π 1012 1 r J B ?= μ 2022 1 r k J B ?-=μ j Ja O O k J r r J B B 021******** 21)(2 1 μμμ=?=-?= += r R Ia ) (22 2 0-= πμ 68.一无限长圆柱形铜导体,半径为R ,通以均匀分布的I 今取一矩形平面S (长为L ,宽为2R ),位置如图,求:通过该矩形平面的磁通量。

《大学物理》习题和答案

《大学物理》习题和答案 第9章热力学基础 1,选择题 2。对于物体的热力学过程,下面的陈述是正确的,即 [(A)的内能变化只取决于前两个和后两个状态。与所经历的过程无关(b)摩尔热容量的大小与物体所经历的过程无关 (C),如果单位体积所含热量越多,其温度越高 (D)上述说法是不正确的 8。理想气体的状态方程在不同的过程中可以有不同的微分表达式,那么方程 Vdp?pdV?MRdT代表[(M)(A)等温过程(b)等压过程(c)等压过程(d)任意过程 9。热力学第一定律表明 [] (A)系统对外界所做的功不能大于系统从外界吸收的热量(B)系统内能的增量等于系统从外界吸收的热量 (C)在这个过程中不可能有这样一个循环过程,外部对系统所做的功不等于从系统传递到外部的热量(d)热机的效率不等于1 13。一定量的理想气体从状态(p,V)开始,到达另一个状态(p,V)。一旦它被等温压缩到2VV,外部就开始工作;另一种是绝热压缩,即外部功w。比较这两个功值的大小是22 [] (a) a > w (b) a = w (c) a 14。1摩尔理想气体从初始状态(T1,p1,V1)等温压缩到体积V2,由外部对气体所做的功是[的](a)rt 1ln v2v(b)rt 1ln 1v1 v2(c)P1(v2?

V1(D)p2v 2?P1V1 20。两种具有相同物质含量的理想气体,一种是单原子分子气体,另一种是双原子分子气体, 通过等静压从相同状态升压到两倍于原始压力。在这个过程中,两种气体[(A)从外部吸收相同量的热量和内部能量增量,(b)从外部吸收相同量的热量和内部能量增量是不同的,(c)从外部吸收相同量的热量和内部能量增量是不同的,(d)从外部吸收相同量的热量和内部能量增量是相同的。这两个气缸充满相同的理想气体,并具有相同的初始状态。在等压过程之后,一个钢瓶内的气体压力增加了一倍,另一个钢瓶内的气体温度也增加了一倍。在这个过程中,这两种气体从[以外吸收的热量相同(A)不同(b),前者吸收的热量更多(c)不同。后一种情况吸收更多热量(d)热量吸收量无法确定 25。这两个气缸充满相同的理想气体,并具有相同的初始状态。等温膨胀后,一个钢瓶的体积膨胀是原来的两倍,另一个钢瓶的气体压力降低到原来的一半。在其变化过程中,两种气体所做的外部功是[] (A)相同(b)不同,前者所做的功更大(c)不同。在后一种情况下,完成的工作量很大(d)完成的工作量无法确定 27。理想的单原子分子气体在273 K和1atm下占据22.4升的体积。将这种气体绝热压缩到16.8升需要做多少功? [](a)330j(b)680j(c)719j(d)223j 28。一定量的理想气体分别经历等压、等压和绝热过程后,其内能从E1变为E2。在以上三个过程中,

《大学物理(上册)》课后习题答案

第1章 质点运动学 P21 1.8 一质点在xOy 平面上运动,运动方程为:x =3t +5, y = 2 1t 2 +3t -4. 式中t 以 s 计,x ,y 以m 计。⑴以时间t 为变量,写出质点位置矢量的表示式;⑵求出t =1 s 时刻和t =2s 时刻的位置矢量,计算这1秒内质点的位移;⑶ 计算t =0 s 时刻到t =4s 时刻内的平均速度;⑷求出质点速度矢量表示式,计算t =4 s 时质点的速度;(5)计算t =0s 到t =4s 内质点的平均加速度;(6)求出质点加速度矢量的表示式,计算t =4s 时质点的加速度(请把位置矢量、位移、平均速度、瞬时速度、平均加速度、瞬时加速度都表示成直角坐标系中的矢量式)。 解:(1)j t t i t r )432 1()53(2-+++=m ⑵ 1=t s,2=t s 时,j i r 5.081-= m ;2114r i j =+m ∴ 213 4.5r r r i j ?=-=+m ⑶0t =s 时,054r i j =-;4t =s 时,41716r i j =+ ∴ 140122035m s 404 r r r i j i j t --?+= ===+??-v ⑷ 1d 3(3)m s d r i t j t -==++?v ,则:437i j =+v 1s m -? (5) 0t =s 时,033i j =+v ;4t =s 时,437i j =+v 24041 m s 44 j a j t --?= ===??v v v (6) 2d 1 m s d a j t -==?v 这说明该点只有y 方向的加速度,且为恒量。 1.9 质点沿x 轴运动,其加速度和位置的关系为2 26a x =+,a 的单位为m/s 2, x 的单位为m 。质点在x =0处,速度为10m/s,试求质点在任何坐标处的速度值。 解:由d d d d d d d d x a t x t x ===v v v v 得:2 d d (26)d a x x x ==+v v 两边积分 210 d (26)d x x x =+? ?v v v 得:2322 250x x =++v ∴ 1m s -=?v 1.11 一质点沿半径为1 m 的圆周运动,运动方程为θ=2+33t ,式中θ以弧度计,t 以秒计,求:⑴ t =2 s 时,质点的切向和法向加速度;⑵当加速度 的方向和半径成45°角时,其角位移是多少? 解: t t t t 18d d ,9d d 2==== ωβθω ⑴ s 2=t 时,2 s m 362181-?=??==βτR a 2 222s m 1296)29(1-?=??==ωR a n ⑵ 当加速度方向与半径成ο45角时,有:tan 451n a a τ?== 即:βωR R =2 ,亦即t t 18)9(2 2=,解得:9 23= t 则角位移为:32 2323 2.67rad 9 t θ=+=+? = 1.13 一质点在半径为0.4m 的圆形轨道上自静止开始作匀角加速度转动,其角加速度为α=0.2 rad/s 2,求t =2s 时边缘上各点的速度、法向加速度、切向加速度和合加速度。 解:s 2=t 时,4.022.0=?== t αω 1s rad -? 则0.40.40.16R ω==?=v 1s m -? 064.0)4.0(4.022=?==ωR a n 2 s m -? 0.4 0.20.0a R τα==?=2s m -? 22222 s m 102.0)08.0()064.0(-?=+=+= τa a a n 与切向夹角arctan()0.06443n a a τ?==≈?

大学物理作业(一)答案

班级______学号________姓名_________成绩______________ 一. 填空: 1. 已知质点的运动方程:22,2t y t x -==(S I制),则(1)t =1s 时质点的位置矢量2i j +,速度22i j -,加速度___2j -_________,(2) 第1s 末到第2s 秒末质点的位移____23i j -______,平均速度___23i j -_______. 2. 一人从田径运动场的A 点出发沿400米的跑道跑了一圈回A点,用了1分钟的时间,则在上述时间内其平均速度为_____0_________. 3. 一质点沿线x 轴运动,其加速度为t a 4=(S I制),当t =0时,物体静止于x =10m 处,则t 时刻质点的速度______22t _____,位置____32103 t +_____________. 4. 一质点的运动方程为j i r 232t t +=(SI 制),任意时刻t 的切向加速度为_ _ ____,法向加速度为 _____. 二. 选择: 1. 以下说法错误的是:(ABC ) (A) 运动物体的加速度越大,物体的速度也越大. (B) 物体在直线前进时,如果物体向前的加速度减小了,物体前进的速度也减小. (C) 物体的加速度值很大,而物体的速度值可以不变,是不可能的. (D) 在直线运动中且运动方向不发生变化时,位移的量值与路程相等. 2. 下面叙述哪一种正确: ( B ) (A)速度为零,加速度一定为零. (B)当速度和加速度方向一致,但加速度量值减小时,速度的值一定增加. (C)速度很大加速度也一定很大. 3. 如图河中有一小船,人在离河面一定高度的岸上通过 绳子以匀速度0v 拉船靠岸,则船在图示位置处的速率 为:( C ) (A )0v (B)θcos 0v (C ) θcos /0v (D) θtan 0v 4. 以初速度0v ,仰角θ抛出小球,当小球运动到最高点时,其轨道曲率半径为( 不计空气

相关文档