文档视界 最新最全的文档下载
当前位置:文档视界 › 浅谈低压配电网中的功率因数

浅谈低压配电网中的功率因数

浅谈低压配电网中的功率因数
浅谈低压配电网中的功率因数

浅谈低压配电网中的功率因数精选文档

TTMS system office room 【TTMS16H-TTMS2A-TTMS8Q8-

浅谈低压配电网中的功率因数

【摘要】本文集中探讨了功率因数对广大供电企业的影响以及提高功率因数所带来的经济效益和社会效益,介绍了影响功率因数的主要因素和提高功率因数的一般方法,讨论了如何确定无功功率的补偿容量和应用人工补偿无功功率的两种具体方式。

【关键词】功率因数;补偿;消耗

在电力系统中,我们将各种设备所消耗的能量分为有功消耗和无功消耗。有功消耗是指电流通过电阻性负载所消耗的电能,它是一种能量转变中做功消耗的电能;无功消耗是指电流通过感性或容性负载时产生了磁场、电场,这些磁场、电场只在电源和负载之间往返转换,在交换中不能转变成其它形式的能量。视在功率是指有功损耗和无功损耗的平方和的平方根值。功率因数是指电力网中线路的视在功率供给有功功率的消耗所占百分数。

在电力网的运行中,我们所希望的是功率因数越大越好,否则将产生以下我们所不期望的不良影响:功率因数的降低导致电流增大,则发电机和变压能输出的有功功率下降,设备容量不能充分利用;使电能损耗和导线截面增加,电网的初期投资和运行费用相应增高;使发电机、变压器和电力网中的电压损失增大,电动机的端电压下降,则感应电动机的起动传矩和过负荷能力下降。用户功率因数的高低,对于电力系统发、供、用电设备的充分利用,有着显着的影响。适当提高用户的功率因数,不但可以充分的发挥发、供电设备的生产能力、减少线路损失、改善电压质量,而且可以提高用户用电设备的工作效率和为用户本身节约电能。因此,对于广大供电企业、特别是对现阶段全国性的一些改造后的农村电网来说,若能有效的搞好低压补偿,不但可以减轻上

一级电网补偿的压力,改善提高用户功率因数,而且能够有效地降低电能损失,减少用户电费。其社会效益及经济效益都会是非常显着的。

一、影响功率因数的主要因素

首先我们来了解功率因数产生的主要原因。功率因数的产生主要是因为交流用电设备在其工作过程中,除消耗有功功率外,还需要无功功率。当有功功率P一定时,如减少无功功率Q,则功率因数便能够提高。在极端情况下,当Q=0时,则其功率因数=1。因此提高功率因数问题的实质就是减少用电设备的无功功率需要量。

1. 异步电动机和电力变压器是耗用无功功率的主要设备

异步电动机的定子与转子间的气隙是决定异步电动机需要较多无功的主要因素。而异步电动机所耗用的无功功率是由其空载时的无功功率和一定负载下无功功率增加值两部分所组成。所以要改善异步电动机的功率因数就要防止电动机的空载运行并尽可能提高负载率。

变压器消耗无功的主要成份是它的空载无功功率,它和负载率的大小无关。因而,为了改善电力系统和企业的功率因数,变压器不应空载运行或长期处于低负载运行状态。

2. 供电电压超出规定范围也会对功率因数造成很大的影响

当供电电压高于额定值的10%时,由于磁路饱和的影响,无功功率将增长得很快,据有关资料统计,当供电电压为额定值的110%时,一般工厂的无功将增加35%左右。当供电电压低于额定值时,无功功率也相应减少而使它们的功率因数有所提高。但供电电压降低会影响电气设备的正常工作。所以,应当采取措施使电力系统的供电电压尽可能保持稳定。

3. 电网频率的波动也会对异步电机和变压器的磁化无功功率造成一定的影响

综上所述,我们知道了影响电力系统功率因数的一些主要因素,因此我们要寻求一些行之有效的、能够使低压电力网功率因数提高的一些实用方法,使低压网能够实现无功的就地平衡,达到降损节能的效果。

二、低压配电网无功补偿的一般方法

就目前普遍使用的在用户端增设电容器的无功补偿方式分析,按补偿电容器在供电网络中装设的位置不同可分为集中补偿、分散补偿、就地补偿和跟踪补偿几种形式。

集中补偿是指在企业的总降压站或配电室集中安装一批无功补偿装置的做法。其特征是安装地点为企业的电源进线中心,其作用是补偿大地区(高压)及本企业内部所消耗的无功功率。此方法也可称为随器补偿。即:将低压电容器通过低压保险接在配电变压器二次侧,以补偿配电变压器空载无功的补偿方式。配变在轻载或空载时的无功负荷主要是变压器的空载励磁无功,配变空载无功是低压电网无功负荷的主要部分,对于轻负载的配变而言,这部分损耗占供电量的比例很大,从而导致电费单价的增加,不利于电费的同网同价。

集中补偿具有接线简单、维护管理方便、能有效地补偿配变空载无功,限制低压电网无功负荷的优点,可使该部分无功就地平衡,从而提高配变利用率,降低无功网损,具有较高的经济性,所以集中补偿是目前补偿无功最有效的手段之一。

分散补偿是指将无功补偿装置分散到分变电所(大型企业)和车间配电室的做法。其特征是安装地点为电力负荷中心,其作用是补偿小区域或车间所消耗的无功功率。电压等级通常为10(6)kV及()kV。

就地补偿是在负荷旁对其进行电容直接补偿,其特征是无功补偿装置就在所补偿的电动机附近,其作用是仅补偿本台电动机所消耗的无功功率。电压等级通常为()kV。此方法也可称为随机补偿,即:将低压电容器组与电动机并接,通过控制、保护装置与电机,同时投切。随机补偿适用于补偿电动机的无功消耗,以补励磁无功为主,此种方式可较好地限制低压电网无功负荷。

就地补偿的特点体现在用电设备运行时,无功补偿投入,用电设备停运时,补偿设备也退出,而且不需频繁调整补偿容量。此种补偿方式具有投资少、占位小、安装容易、配置方便灵活,维护简单、事故率低等优点。

跟踪补偿是指以无功补偿投切装置作为控制保护装置,将低压电容器组补偿在大用户母线上的补偿方式。适用于100kVA以上的专用配变用户,可以替代随机、随器两种补偿方式,补偿效果较好。

跟踪补偿的优点是运行方式灵活,运行维护工作量小,比前两种补偿方式寿命相对延长、运行更可靠。但缺点是控制保护装置复杂、首期投资相对较大。因此当这三种补偿方式的经济性接近时,应优先选用跟踪补偿方式。

三、采取适当措施,设法提高系统自然功率因数

提高自然功率因数是在不添置任何补偿设备,采用降低各用电设备所需的无功功率,减少负载取用无功来提高工矿企业功率因数的方法,它不需要增加投资,是最经济的提高功率因数的方法。下面将对提高自然功率因数的措施作一些简要的介绍。

1. 合理使用电动机

合理选用电动机的型号、规格和容量,使其接近满载运行。在选择电动机时,既要注意它们的机械性能,又要考虑它们的电气指标。若电动机长期处于低负载下运行,既增大功率损耗,又使功率因数和效率都显着恶化。故从节约电能和提高功率因数的观点出发,必须正确的合理的选择电动机的容量。

2. 提高异步电动机的检修质量

实验表明,异步电动机定子绕组匝数变动和电动机定、转子间的气隙变动时对异步电动机无功功率的大小有很大的影响。

3. 采用同步电动机或异步电动机同步运行提高功率因数

由电机原理知道,同步电动机消耗的有功功率取决于电动机上所带机械负荷的大小,而无功取决于转子中的励磁电流大小,在欠激状态时,定子绕组向电网“吸取”无功,在过激状态时,定子绕组向电网“送出”无功。因此,只要调节电机的励磁电流,使其处于过激状态,就可以使同步电机向电网“送出”无功功率,减少电网输送给工矿企业的无功功率,从而提高了工矿企业的功率因数。异步电动机同步运行就是将异步电动机三相转子绕组适当连接并通入直流励磁电流,使其呈同步电动机运行,这就是“异步电动机同步化”。因而只要调节电机的直流励磁电流,使其呈过激状态,即能向电网输出无功,从而达到提高低压网功率因数的目的。

4. 合理选择配电变压器容量,改善配电变压器的运行方式

对负载率比较低的配电变压器,一般采取“撤、换、并、停”等方法,使其负载率提高到最佳值,从而改善电网的自然功率因数。

通过以上一些提高加权平均功率因数和自然功率因数的叙述,我们已经对“功率因数”这个简单的电力术语有了更深的了解和认识,知道了功率因数的提高对电力企业的重要影响,下面简单介绍对用电设备进行人工补偿的方式和对补偿容量的确定方法。

四、功率因数的人工补偿

功率因数是工厂电器设备使用状况和利用程度的具有代表性的重要指标,也是保证电网安全、经济运行的一项主要指标。供电企业仅仅依靠提高自然功率因数的办法已经不能满足工厂对功率因数的要求,工厂自身还需装设补偿装置,对功率因数进行人工补偿。对用电设备进行人工补偿的方式有:

1. 静电电容器补偿

当企业感性负载比较多时,它们从供电系统吸取的无功是滞后(负值)功率,如果用一组电容器和感性负载并联,电容需要的无功功率是引前(正值)功率,如果电容C选得合适,令QC+QL=0,这时企业已不需向供电系统吸取无功功率,功率因数为1,达到最佳值。

(1)电容器补偿容量的确定

( 2 )并联补偿移相电容器,应满足以下电压和容量的要求

2. 动态无功功率补偿

动态无功功率补偿一般应用于用电容量大、生产过程中负载急剧变化且具有重复冲击性的大型钢铁企业。这种波动频繁、急剧、幅值很大的动态无功功率,采用调相机或固定电容器进行补偿已远远满足不了要求,目前一般采用的新型动态无功功率补偿设备是静止无功补偿器。它具有稳定系统电压、改

善电网运行性能、动态补偿反应迅速、调节性能优越等优点。但最明显的缺点是投资大、设备体积大、占地面积大。

五、结束语

以上是对浅谈低压配电网中的功率因数的肤浅见解,不足之处敬请赐教。

低压配电设计规范(GB50054-95)

低压配电设计规(GB50054-95) 第一章总则 第1.0.1条为使低压配电设计执行国家的技术经济政策。做到保障人身安全、配电可靠、电能质量合格、节约电能、技术先进、经济合理和安装维护方便,制订本规。 第1.0.2条本规适用于新建和扩建工程的交流、工频500V 以下的低压配电设计。 第1.0.3条低压配电设计应节约有色金属,合理地选用铜铝材质的导体。 第1.0.4条低压配电设计除应执行本规外,尚应符合现行的国家有关标准、规的规定。 第二章电器和导体的选择 第一节电器的选择 第2.1.1条低压配电设计所选用的电器,应符合国家现行的有关标准,并应符合下列要求。 一、电器的额定电压应与所在回路标称电压相适应; 二、电器的额定电流不应小于所在回路的计算电流; 三、电器的额定频率应与所在回路的频率相适应; 四、电器应适应所在场所的环境条件; 五、电器应满足短路条件下的动稳定与热稳定的要求。用于断开短路电流的电器,应满足短路条件下的通断能力。 第2.1.2条验算电器在短路条件下的通断能力,应采用安装处预期短路电流周期分量的有效值,当短路点附近所接电动机额定电流之和超过短路电流的1%时,应计入电动机反馈电流的影响。 第2.1.3条当维护、测试和检修设备需断开电源时,应设置隔离电器。 第2.1.4条隔离电器应使所在回路与带电部分隔离,当隔离电器误操作会造成严重事故时,应采取防止误操作的措施。 第2.1.5条隔离电器宜采用同时断开电源所有极的开关或彼此靠近的单极开关。 第2.1.6条隔离电器可采用下列电器: 一、单极或多极隔离开关、隔离插头; 二、插头与插座; 三、连接片 四、不需要拆除导线的特殊端子; 五、熔断器。 第2.1.7条半导体电器严禁作隔离电器 第2.1.8条通断电流的操作电器可采用下列电器 一、负荷开关及断路器; 二、继电器、接触器; 三、半导体电器; 四、10A及以下的插头与插座。 第二节导体的选择 第2.2.1条导体的类型应按敷设方式及环境条件选择。绝缘导体除满足上述条件外,尚应符合工作电压的要求。 第2.2.2条选择导体截面,应符合下列要求: 一、线路电压损失应满足用电设备正常工作及起动时端电压的要求; 二、按敷设方式确定的导体载流量,不应小于计算电流; 三、导体应满足动稳定与热稳定的要求; 四、导体最小截面应满足机械强度的要求,固定敷设的导线最小芯线截面应符合表2.2.2的规定。 固定敷设的导线最小芯线截面表2.2.2

深圳市城市中低压配电网规划设计及供电技术导则

深圳市城市中低压配电网规划设计及供电技术导则 深圳供电局企业标准 Q/3SG—1.03.02—2001 深圳市城市中低压配电网规划设计及供电技术导则 2001—09—30 发布 2001—10—01 实施 前言 为规范深圳城市中低压配电网及用户供电系统的规划设计、建设改造及运行工 作,规范用户电能计量方式,制定本标准。 本标准规定了深圳城市中低压配电网的划分、规划设计原则及深圳城市中压配电网、低压配电网的结线方式;规定了用户供电方式与技术要求;规定了电能计量方式;规定了实施配网自动化的原则。本标准的制定参照了有关的国家标准及行业规范,并考虑了深圳城市中低压配电网的现状及发展方向。本标准由深圳供电局生技部门归口。本标准主要起草单位:深圳供电局规划分部、深圳供电局计量测试所、深圳 供电局生技工作组。 本标准由深圳供电局规划分部负责解释。

目录 1. 范围 (1) 2. 引用标准及规范 (1) 3. 总则 (2) 4. 一般技术要求 (2) 5. 中低压配电网结线 (5) 6. 用户供电 (7) 7. 用户电能计量方式 (11) 8. 配网自动化原则- (11) 附录A:本标准用词说明 (13) 附图1:城市中压配电结线方式图 (14) 附图2:各类用户高压供电方式示意图 (16) 附图3:含居民用电的综合型低压配电系统分类计量设计示意图 (17) 1. 范围 1.1本标准适用于深圳城市中低压配电网及用户供电系统的规划设计、建设改造及运行工作。 1.2根据深圳城市发展规划,特区内的福田、罗湖为市级中心;南山区、盐田区,以及特区外宝安区的新安镇、西乡镇,龙岗区的龙岗镇(龙岗中心城)为次级中心。本标准所指的城市中低压配电网即为与上述区域相对应的由深圳供电局运行维护及与其联网的中压(10kV)、低压(380/220V)配电网;本标准所指的用户为在上述区域内由深圳供电局通过中压或低压配电网供电的用户。 2. 引用标准及规范 下列标准的条文通过在本标准中的引用而构成本技术导则的条文。本标准发布时,所示版本均为有效,在被引用标准被修订后,应重新探讨使用下列标准最新版本的可能性。 能源电[1993] 228号“城市电网规划设计导则” DL/T 599-1996 “城市中低压配电网改造技术原则” GB 12325-90 “电能质量供电电压允许偏差” GB/T 14549-93 “电能质量公用电网谐波” GB50052-95 “供配电系统设计规范” GB50053-94 “10kV及以下变电所设计规范” GB50054-95 “低压配电设计规范” Q/3SG-1.03.01-2001 “深圳电网中低压配电设备技术规范及选用原则” Q/3SG-1.05.01-2001 “110kV变电站设计技术规范” SD325-89 “电力系统电压和无功电力技术导则(试行)”

中低压配电网规划设计

中低压配电网规划设计 摘要:随着市场经济的发展,城市配电网络也在不断发展。本文主要针对于中低压配电网,对其规划的现状以及规划设计的工作内容与主要步骤进行简单研究,希望对日后中低压配电网规划设计有一定帮助。 关键词:配电网;中低压;规划;设计 引言 随着人们的生活水平提升,日常生活中对于电力资源需求量也逐渐增多,随之中低压配电线路规划与设计重要性也越来越受到关注。目前我国的中低压配电网在规划设计上仍然有着一定缺陷,面对于越来越大的供电要求,已经显得较为吃力。所以对于中低压配电网规划设计的研究,对于我国中低压配电线路有着重要指导意义。 1、国内中低压配电网建设现状及面临问题 目前,国内90%左右的地级以上供电企业已经开始配电系统自动化,有的省份还设计了自己的技术原则。在社会上,已经有多家科研机构致力于配电系统的研究。一系列的努力都为我国的供电方面的问题提供了基础,包括供电的可靠率问题、设备的安全性问题、供电的质量问题等等,并且还对于劳动效率和现代化管理等方面都提供了保障。这一系列的设施技术也是我国的中低压配电网的建设现状现状。总结来看,我国的配电系统也有自己的不足,我国的配电系统发展时间较短,对于基础方面的配备也不够完善齐全,一些试点刚刚开始试验,对于中低压配电网的建设尚没有普及,并且理论研究不足。一般情况下,对于中低压配电网建设,常见的问题有如下几个方面。 首先是110kV变电站的分布点不平衡,使得10kV中压线路在使用时依然是单辐射线路,这样就使得供电的半径较长,环网率不够高,线路严重过载,致使转供电能力较差,网架结构复杂。而对于0.4kV低压供电系统,农村偏远地区的配变台区供电半径大,电压较低。城市的发展步骤和配电网的发展不协调。 2、中低压配电网规划设计的工作内容与主要步骤 2.1、对于规划的年份与范围进行确定。这点一般是由供电企业来提出具体要求,而规划者可以与自身具体情况相结合,来将自己的建议提出来。 2.2、对于规划数据收集的工作。对于规划数据收据的工作是配电网络规划设计的一个主要步骤,是开展负荷预测以及中低压配电网络现状分析的重要内容。 2.3、对已存在中低压配电网进行分析。这个工作的主要内容是通过对于现有中低压配电网网架的结构等一系列情况来进行分析,将配电网中存在的一些问

低压配电系统中常用的型式有:IT系统、TT系统、TN系统,下面我们做分别介绍。

低压配电系统中常用的型式有:IT系统、TT 系统、TN系统,下面我们做分别介绍。 一、IT型 必须说明:(略) 二、TT型

必须说明: 《农村低压电力技术规程》DL/T499-2001中规范: 3.4.5 采用TT系统时应满足的要求: 1、采用TT系统,除变压器低压侧中性点直接接地外,中性线不得再行接地,且应保持与相线(火线)同等的绝缘水平。 2、为了防止中性线的机械断线,其截面积应满足以下要求: 相线的截面积S:S≤16平方毫米中性线截面积S0:S0=S(与相线一样) 相线的截面积S:16<S≤35平方毫米中性线截面积S0:S0=16 相线的截面积S:S>35平方毫米中性线截面积S0:S0=S/2(相线的一半) 3、电源进线开关应隔离(能断开)中性线,漏电保护器必须隔离(能断开)中性线。 4、必须实施剩余电流保护(即必须安装漏电保护开关),包括: (1)剩余电流总保护、剩余电流中级保护(必要时),其动作电流应满足:

剩余电流总保护和是及时切除低压电网主干线和分支线路上断线接地等产生较大剩余电流的故障。 剩余电流总保护器的动作电流整定: 总保护整定 剩余电流较小的电网非阴雨季节为50mA 阴雨季节为200mA 剩余电流较大的电网非阴雨季节为100mA 阴雨季节为300mA (2)剩余电流末级保护 剩余电流中末级保护装于用户受电端(即终端用户,例如家庭用电,或某台用电设备),其保护范围是防止用户内部绝缘破坏,发生人身间接接触触电等而产生的剩余电流所造成的事故。对直接接触触电,仅作为基本保护措施的附加保护。 剩余电流中末级保护应满足以下条件: Re×Iop≤Ulim 式中: Re—受电设备外露可导电部分的接地电阻(Ω) Ulim—安全电压极限(正常情况下可按50V交流有效值考虑) Iop—剩余电流保护器的动作电流(A) Iop整定值:≤30mA 5、配电变压器低压侧及出线回路,均应装设过电流保护,包括:短路保护和过负荷保护。 6、PEE线的作用:当设备发生漏电时,漏电电流可以通过大地回流到变压器的中性点,可以降低带点的设备外壳电压,降低人触及设备外壳被电击的危险程度。 7、当发生单相接地故障时,接地电流通过大地流回变压器中性点,使得接地电流很大,促使线路保护器可靠动作(特别是整定值符合规范的漏电保护器)可靠动作,切断电源。 三、TN型 TN系统:包括TN—C、TN—C—S、TN—S三种系统 1、TN—C系统

浅析高层建筑电气中低压配电设计

浅析高层建筑电气中低压配电设计 发表时间:2016-07-07T14:01:27.963Z 来源:《基层建设》2016年6期作者:周鹿樵 [导读] 近年来,随着城市化水平的不断提高,高层建筑施工已经成为了建筑施工领域中十分重要的一部分。 广东华方工程设计有限公司广东东莞 523000 摘要:近年来,随着城市化水平的不断提高,高层建筑施工已经成为了建筑施工领域中十分重要的一部分。在高层建筑施工过程中,其建筑内的低压配电设计在建筑的整个施工阶段中扮演了十分重要的角色。文章首先分析了高层建筑电气设备的特点,其次文章又论述了高层建筑电气中低压配电设计的基本原则及优化设计过程的手段,希望能够为具体的设计过程提供具有参考价值的意见,从而使高层建筑电气中低压配电设计能够进一步的满足人们的需要。 关键词:高层建筑;电气;低压配电;设计 引言:与一般多层建筑的施工不同,高层建筑的施工难度往往更大,建筑物内使用的电气设备也比较多。同时,由于高层建筑具有结构复杂且智能度高的特点,因此其施工过程较一般建筑来说要复杂得多。在高层建筑电气中低压配电设计中,保证其供电稳定性以及可靠性是最基本的要求,同时也是施工设计人员必须注意的一点,只有保证上述两点,才能提高高层建筑的整体质量。 一、高层建筑供电系统的特点 相对于一般多层建筑来说,高层建筑所使用电气设备,具有种类多、用电量大以及对供电可靠性的要求高等特点。具体来说表现为以下方面: 第一,为保证建筑内人们生活工作的正常进行,高层建筑中使用电气设备具有种类多的特点。由于高层建筑的施工对其功能的完善提出了更高的要求,因此其无论在供配电系统与火灾报警等系统方面都应更加完善与齐全,这样才能更好的保证整个高层建筑内设备的顺利运行。 第二,相对于一般多层建筑,高层建筑在用电需求方面有着更高的要求。高层建筑从用途上分为高层居住建筑和高层公共建筑。高层居住建筑的用电量相对较小,一般在25至60瓦/每平方米。而高层公共建筑的用电量相对较大,例如:宾馆、办公楼、商业楼等,其用电量会到60至160瓦/每平方米。这样的用电量是非常大的。 第三,高层建筑电气内使用的电气设备对供电可靠性要求交高。相对于普通多层建筑,高层建筑由于使用功能相对复杂,防火要求相对较高,因此对供电可靠性提出了更高的要求。由于高层建筑用途的不同,往往在一栋建筑内同时存在一、二、三级负荷。特别对于一二级负荷,一旦中断供电有可能造成重大影响或重大损失。对于此类负荷,在配电设计上一般多采取一路高压市电加应急发电机组供电或者双高压市电供电的方式,使之保证其供电的可靠性。 第四,高层建筑电气系统相对复杂,建筑内使用电气设备种类繁多。因此其必须具备可靠的电气系统才能维持各个设备的运转。在高层建筑中,各电气子系统往往会互相连接。例如:在消防设备的建设中,施工人员就需要采取双母线分段系统来进行供电。目前,高层建筑对于电气系统的设计已经朝着智能化的放向发展,这就为节约人力资源以及提高工作效率的打下了基础。 第五,建筑内电气线路火灾对人民生命及财产安全的造成十分严重的威胁。而高层建筑在与一般多层建筑相比在消防疏散与消防救援上难度都大于一般建筑。这就对建筑内电气线路的防火性能提出了更高的要求。现在,一般多层建筑内采用阻燃性电线、电缆。而在高层建筑中,特别是一类高层建筑应采用阻燃低烟无卤交联聚氯乙烯电力电缆、电线或无烟无卤电力电缆、电线。而高层建筑中的消防设备供电线路则采用耐火电力电缆、电线。 二、高层建筑电气中低压配电设计原则 高层建筑电气中低压配电设计需要遵循的原则包括优化设计原则与合理高效的原则两点,对设计原则的了解有利于为设计人员的工作提供相应的标准,对设计过程的顺利完成十分有利。 (一)优化设计 所谓的优化设计,不仅包括设备性能及系统运行方面的优化,同时还包括运行效率方面的优化。高层建筑的施工内容相对复杂,这就使得其资金投入也会相应较大。为保证施工企业的施工成本能够得到有效的节约,提高施工效率便成为了一个主要的手段,但施工效率的提高以及施工成本的节约必须要以节能环保的理念为基础,这样才能使高层建筑电气中低压配电设计能够更加符合目前社会发展的主要趋势。首先,在对高层建筑电气中低压配电设计之前,一定要提出相应的设计流程,同时对流程的可行性及适用性进行分析,为整个设计过程的可靠性提供保证。其次,在设计过程中,设计人员还要对线路之间以及设备之间的距离进行设计,这是保证设备与线路能够正常发挥其作用的基础。 (二)合理高效 在高层建筑电气的低压配电设计过程中,一定要坚持合理高效的原则。所谓的合理高效原则主要是针对设计过程中节能环保性能的保证来说的。在具体的设计过程中,相关人员一定要在保证电气设备使用性能的基础上,尽可能的降低其对能源的消耗量。想要达到上述目的,设计人员就一定要注重对节能设备的使用。同时在选择设备时,还应对其各项参数进行严格的考察,以使其质量及使用性能都能够得到保证。同时,在配电系统设计过程中,工作人员一定要保证其具有分散化的特点,以使电能能够得到更好的分配。 三、完善高层建筑电气中低压配电设计的策略 (一)确定负荷等级 对于高层建筑的供配电系统设计,首先要明确其建筑物的建筑性质,其次确定建筑物的用电负荷等级,并根据负荷等级才设计相应的供电方案,进而保证其供电系统的合理性。我国规定民用高层建筑分为两类,其超过54m的一类高层建筑和54m以下的二类高层建筑。而民用建筑电气负荷又分为三级,即一级负荷、二级负荷、三级负荷。对于一类高层建筑中的走道照明、值班照明、警卫照明、障碍标志灯、主要业务用电子计算机系统电源、保安系统电源、电话机房电源、客梯电力、排污泵、变频调速恒压供水生活泵及消防用电设备电源等为一级负荷;二类高层建筑中的主要通道及楼梯间照明用电、客梯电力、排污泵、生活泵及消防用电设备电源等为二级负荷。其余不属

浅谈低压配电网中的功率因数

浅谈低压配电网中的功率因数 【摘要】本文集中探讨了功率因数对广大供电企业的影响以及提高功率因数所带来的经济效益和社会效益,介绍了影响功率因数的主要因素和提高功率因数的一般方法,讨论了如何确定无功功率的补偿容量和应用人工补偿无功功率的两种具体方式。? 【关键词】功率因数;补偿;消耗? 在电力系统中,我们将各种设备所消耗的能量分为有功消耗和无功消耗。有功消耗是指电流通过电阻性负载所消耗的电能,它是一种能量转变中做功消耗的电能;无功消耗是指电流通过感性或容性负载时产生了磁场、电场,这些磁场、电场只在电源和负载之间往返转换,在交换中不能转变成其它形式的能量。视在功率是指有功损耗和无功损耗的平方和的平方根值。功率因数是指电力网中线路的视在功率供给有功功率的消耗所占百分数。? 在电力网的运行中,我们所希望的是功率因数越大越好,否则将产生以下我们所不期望的不良影响:功率因数的降低导致电流增大,则发电机和变压能输出的有功功率下降,设备容量不能充分利用;使电能损耗和导线截面增加,电网的初期投资和运行费用相应增高;使发电机、变压器和电力网中的电压损失增大,电动机的端电压下降,则感应电动机的起动传矩和过负荷能力下降。用户功率因数的高低,对于电力系统发、供、用电设备的充分利用,有着显着的影响。适当提高用户的功率因数,不但可以充分的发挥发、供电设备的生产能力、减少线路损失、改善电压质量,而且可以提高用户用电设备的工作效率和为用户本身节约电能。因此,对于广大供电企业、特别是对现阶段全国性的一些改造后的农村电网来说,若能有效的搞好低压补偿,不但可以减轻上一级电网补偿的压力,改善提高用户功率因数,而且能够有效地降低电能损失,减少用户电费。其社会效益及经济效益都会是非常显着的。? 一、影响功率因数的主要因素? 首先我们来了解功率因数产生的主要原因。功率因数的产生主要是因为交流用电设

中低压配电网规划研究

中低压配电网规划研究 发表时间:2017-07-04T16:06:25.367Z 来源:《电力设备》2017年第7期作者:赵娟娟[导读] 按照南方电网发展“转型”的要求,规划设计建设一个满足陆良地方经济社会的可持续发展,覆盖城乡智能、高效、可靠、绿色的配电网意义重大。 (云南能源职业技术学院 655001) 摘要:为适应经济社会发展需求,建设一个城乡统筹、安全可靠、经济高效、技术先进、环境友好的配电网一举多得,既能够保障民生、拉动投资,又能够带动制造业水平提升,为适应能源互联、推动“互联网+”发展提供有力支撑,对于稳增长、促改革、调结构、惠民生具有重要意义。按照南方电网发展“转型”的要求,规划设计建设一个满足陆良地方经济社会的可持续发展,覆盖城乡智能、高效、可靠、绿色的配电网意义重大。 关键词:现代配电网;智能电网;负荷预测;规划研究 配电网在电力网中起重要分配电能作用的网络,是保障电力“落得下、用得上”的关键环节,是国民经济和社会发展的重要公共基础设施。由于长期“重发轻供不管用”,配电网建设滞后,问题日积月累,如配电网结构薄弱,供电能力不强,可靠性不高,一些地区“低电压”、“卡脖子”问题突出等。随着我国新型城镇化建设的加快,分布式电源、微电网、智能用电、电动汽车等产业快速发展,配电网负荷也快速增长,其功能和形态发生显著变化。这不仅对供电安全性、可靠性、适应性的要求越来越高,也对配电网的规划设计、接入管理、运行检修、安全协调控制等也提出了更高要求,加快配电网升级改造日益紧迫。 配电网规划是供电企业规划活动中的基本环节,配电网的规划质量直接影响到配网的网络水平及投资效益,其对于降低网损、提高可靠性和保障电能质量的影响不亚于配电网的运行管理,因此说,配电网规划技术的发展对整个电力的发展至关重要。对此,要用新的观念和超前意识制定的电网规划来改变配电网的现状,用规划来指导配网建设,同时规划要体现以安全为基础,以效益为中心的建网指导思想,不断采用新科技;规划应坚持与经济、社会、环境协调发展,注重适度超前和可持续发展的原则,应根据城市的定位、经济发展水平、负荷性质和负荷密度等条件划分供电区,不同级别的县(区)和不同类别的供电区应采用不同的建设标准。 国家电网公司将于2015年在重点城市核心区域率先建成现代配电网,重要城市主要城区基本建成现代配电网,全面解决无电地区用电问题,基本解决县域电网与主网联系薄弱问题,以及农网“低电压”问题,适应分布式电源8%渗透率接入;2020年全面建成世界一流的现代配电网,满足经济社会快速发展和城镇化发展的用电需要。国家电网公司制定了相关规划,将坚持统一规划、统一标准,统筹城乡配电网协调发展、配电网与上一级电网协调发展,满足城镇化快速发展、客户多元化的用电需求。根据《南方电网发展规划(2013-2020年)》,南方电网公司将加强城乡配电网建设,推广建设智能电网,到2020年城市配电网自动化覆盖率将达到80%。各地电网企业将推行配网建设“三通一标”(通用设计、通用设备、通用造价、标准工艺),确保规划设计、建设改造、运维检修、物资采购等环节技术标准一致。 我国香港、经济较发达国家和地区的配电网负荷已进入平稳发展期,法国、日本的配电自动化覆盖率分别达到90%和100%。香港拥有强大的输配电网络,中华电力有限公司已建成梅花形多环网络,实现两供一备、一供一备,配网与主网一样选用带操作机构的断路器。同时,电缆环网网络全部配置光纤纵差保护,可以实现零秒切除故障,5分钟内完成转电。中华电力有限公司贯彻“第一时间恢复供电”的服务理念,针对低压线路的停电,购置了多台流动发电车,采用先恢复用户供电后抢修的方式,减少对用户停电时间。同时,为满足用户快速复电需求,公司设置了不同容量(100kVA、400kVA、500kVA、1MVA、3MVA)的流动发电机,全面实现配电网自动化,供电可靠程度高达99.99%。在2003~2005年间,一般客户每年平均意外停电时间只有5.37分钟。 我国现在的户年平均停电时间高于9h,只有北京、上海的中心城区才达到2h以内。停电9h的电网是不可能比停电1h的电网更坚强可靠的。为了达到输电网安全、配电网可靠的坚强智能电网建设目标,如果不从电网规划技术上进行变革性的考虑,仅靠一些电网自动化、智能化技术的发展是很难超越发达国家的电网可靠性水平的。因此,我国配电网规划有必要采用基于可靠性的规划思路与方法,应该从电力设备寿命长的特点出发,对未来增长趋势进行预测,进行近、中、远期规划,以满足电网损耗越来越低、可靠性越来越高的要求。这些理念与我国可持续发展、节能减排的目标是一致的。 其中的电力需求预测和电源规划发面的有负荷预测方法:负荷预测以乡镇配电网负荷、电量的历史数据为基础,结合乡镇国民经济和社会发展的历史和发展趋势进行综合分析而得出。 采用预测方法如下:1、总量负荷预测 1)大用户加自然增长法:将全网的总负荷分为一般自然增长负荷和大负荷两类,分别进行电量预测和最大负荷预测;对一般负荷采用自然增长法进行电量预测。大负荷根据现有及规划大负荷的生产能力、市场因素等进行预测。 2)回归模型预测法——根据负荷过去的历史资料,建立可以进行数学分析的数学模型,对未来的负荷进行预测。从数学上看,就是用数理统计中的回归分析方法,即通过对变量的观测数据进行统计分析,确定变量之间的相互关系,从而实现预测的目的。 2、分区负荷预测:分区可按照土地用途功能、负荷性质、行政区划、地理自然条件(如:山、河流等)或变电站的供电范围划分等原则进行。为便于历史负荷的收集,本次规划按乡镇分区进行预测。根据产业区、开发区和新城的发展规划,采用合理的预测方法对“十三五”期间新开发的区域进行负荷预测。 中低压配电网电源规划包括以下几方面:1、电压等级:中压配电网:10千伏;低压配电网:380/220伏。2、配电网供电安全水平; 3、供电可靠率控制目标; 4、线损率控制目标; 5、中性点接地; 6、短路电流控制水平; 7、线路及通道; 8、技术装备; 9、无功补偿; 10、电压偏差;11、防灾减灾 电网规划应坚持与经济、社会、环境协调发展,注重适度超前和可持续发展的原则,因此应根据城市的定位、经济发展水平、负荷性质和负荷密度等条件划分供电区。不同级别的县(区)和不同类别的供电区应采用不同的建设标准。 参考文献 [1]刘海波,胡滨,王旭阳.关于"十三五"配电网发展的思考[J].中国电力,2015,48(1):21-22. [2]朱发国,武苗.对我国配电网建设及其关键技术的思考[J].南方电网技术,2013,7(3):58-59. [3]国家电网公司,Q/GDW738-2012,2012.配电网规划设计技术导则[S].

浅谈低压配电网重复接地

浅谈低压配电网重复接地 通过这段时间的学习经历,我收获良多,特别是对于专业课程的学习。我将所有的理论知识与自身工作经历和工作经验相结合,总结了一些在低压配电网中重复接地的原因及重复接地的安全作用以及在重复接地时的相关事项,从而能够深入体会到重复接地在低压配电网中的重要性,从而扎扎实实的做好此项工作。 众所周知,随着改革开放的深入开展国民经济飞速发展,人民生活水平逐步提高,对电力的需要日益加大,对配电网的供电安全性和可靠性提出了更高的要求,低压配电网由于分布广、结构复杂,某些地方还存在着薄弱环节,事故故障较多,像零线和相线碰线、零线断线、搭头线处不规范等,诸如此类的低压故障事故时常发生。从而导致不仅影响了供电系统的安全可靠运行,而且可能因断线、零线烧断等因素烧坏家电对设备财产和人身安全带来严重的后果,所以避免或减轻上述事故带来的影响加强对零线及有关电气设备的重复接地是刻不容缓、及其重要的。只有认认真真的做好重复接地工作,才能确保系统中用户的人身安全、设备安全,提高供电可靠性,相反,忽略了此项工作,将直接影响电网的安全性和可靠性,成为电网中的一大缺陷和隐患。今后必将会对系统和用户均照成不良影响和后果,所以,重复接地的重要性是相当重要的,值得在工作中加以重视。 我们所谓的重复接地就是将零线的一处和多处通过接地装置与大地再此可靠的接连。由此可见,重复接地只存在于中性点接地的电力系统中,而且前低压配电网广泛采用的三相四线就是这样的一个供电系统。 那我们为什么要进行重复接地呢?原因大致有以下几个:一、三相四线负荷由于不均匀,中性线本身就有一定的不平衡电流通过,中性点也有一定的低压值,需要通过重复接地使接地电阻更趋于理想化,使三相更趋于对称,从变压器侧供应的三相电压基本上是对称的,中性点为零电位,如果三相负载平衡中性线的电流为零或电流很小,而实际上线路的参数及特性存在着一定的差别,加上线路中的三相负载不平衡,即使三相负载分配较平均,但由于各项负载开启的时间不同,就会造成三相不平衡。因此,在三相四线制系统中,中性线不仅存在不

低压配电设计规范(GB50054-95)

低压配电设计规范(GB50054-95) 第一章总则 第1.0.1条为使低压配电设计执行国家的技术经济政策。做到保障人身安全、配电可靠、电能质量合格、节约电能、技术先进、经济合理和安装维护方便,制订本规范。 第1.0.2条本规范适用于新建和扩建工程的交流、工频500V 以下的低压配电设计。 第1.0.3条低压配电设计应节约有色金属,合理地选用铜铝材质的导体。 第1.0.4条低压配电设计除应执行本规范外,尚应符合现行的国家有关标准、规范的规定。 第二章电器和导体的选择 第一节电器的选择 第2.1.1条低压配电设计所选用的电器,应符合国家现行的有关标准,并应符合下列要求。 一、电器的额定电压应与所在回路标称电压相适应; 二、电器的额定电流不应小于所在回路的计算电流; 三、电器的额定频率应与所在回路的频率相适应; 四、电器应适应所在场所的环境条件; 五、电器应满足短路条件下的动稳定与热稳定的要求。用于断开短路电流的电器,应满足短路条件下的通断能力。 第2.1.2条验算电器在短路条件下的通断能力,应采用安装处预期短路电流周期分量的有效值,当短路点附近所接电动机额定电流之和超过短路电流的1%时,应计入电动机反馈电流的影响。 第2.1.3条当维护、测试和检修设备需断开电源时,应设置隔离电器。 第2.1.4条隔离电器应使所在回路与带电部分隔离,当隔离电器误操作会造成严重事故时,应采取防止误操作的措施。 第2.1.5条隔离电器宜采用同时断开电源所有极的开关或彼此靠近的单极开关。 第2.1.6条隔离电器可采用下列电器: 一、单极或多极隔离开关、隔离插头; 二、插头与插座; 三、连接片 四、不需要拆除导线的特殊端子; 五、熔断器。 第2.1.7条半导体电器严禁作隔离电器 第2.1.8条通断电流的操作电器可采用下列电器 一、负荷开关及断路器; 二、继电器、接触器; 三、半导体电器; 四、10A及以下的插头与插座。 第二节导体的选择 第2.2.1条导体的类型应按敷设方式及环境条件选择。绝缘导体除满足上述条件外,尚应符合工作电压的要求。 第2.2.2条选择导体截面,应符合下列要求: 一、线路电压损失应满足用电设备正常工作及起动时端电压的要求; 二、按敷设方式确定的导体载流量,不应小于计算电流; 三、导体应满足动稳定与热稳定的要求; 四、导体最小截面应满足机械强度的要求,固定敷设的导线最小芯线截面应符合表2.2.2的规定。 固定敷设的导线最小芯线截面表2.2.2

低压配电系统中配电级数的选择

【摘要】配电系统是否安全可靠、经济实用并便于管理,其配电级数的设计是至关重要的。相关规范规定,在低压配电设计中,从变压器低压侧用电设备的配电级数一般不超过三级,对于重要的负荷,上下级保护电器的动作应具有选择性。在实际工程的设计中,由于对配电级数的理解不到位,导致了配电系统经济技术上部合理的情况时有发生。本文首先区分了配电级数和保护级数的不同概念,对保护级之间选择性的问题做了理解,最后重点探讨了低压系统中各级配电保护的选择性配合。 【关键词】低压配电系统;配电级数;保护级数;断路器;故障线路 一、对配电级数和保护级数的理解 配电级数是一个供电回路经配电装置分配成几个供电回路过程的次数,通过几次分配就称作几级配电。对于一个配电装置而言,总进线开关与分支配出开关合起来算做一级配电,这与其总进线开关是否具有保护功能无关。 保护级数则是按保护开关的上下级个数来确定的,它既与配电级数有联系又不同于配电级数。同一电压等级的配电级数,高压不宜多于两级,低压不宜多于三级;而保护级数则可能达到四级甚至五级,一般情况下各级保护之间需要进行保护配合,即动作应具有选择性。 二、保护级之间选择性的问题 保护的选择性是指协调具有保护功能的电源,当系统任意点故障后可以被位于仅靠故障点的上一级保护电源消除,而且只能由其单独类消除,从而保证其他回路的工作连续性。选择性保护对于所有故障电源(即无论是过负荷、接地故障还是短路等任何一种故障)都能实现选择性保护时未完全选择性。当仅在一定故障电流范围内实现选择性保护时为部分选择性。对于重要负荷,其供电线路上、下级保护电气的选择性,可保证故障时不致越级切断线路而引起非故障线路的设备终端供电,这对设备的供电可靠性是很重要的。 如果当过载或短路故障发生时,d1和d2断路器均跳闸,那么此保护就无选择性,如图1所示。 对保护分级有充分的理解,有助于合理设置上下级保护电气的选择性。规范只规定了对于重要负荷需要有选择性,但对重要负荷没有说明和列举,对于是完全选择还是部分选择也无具体要求。根据笔者对相关规范的理解,重要负荷为一级负荷、二级负荷及消防负荷;对于一级负荷及消防负荷,须做到完全选择,对于二级负荷,部分选择即可。 三、低压系统中各级配电保护的选择性配合 低压配电系统一般分二到三级,不宜超过三级。第一级为变电所低压柜,第二级为中间(楼层)配电箱,第三级为终端配电箱。应尽量减少配电级数,级数少有利于保护的选择性配合。对于各级配电保护的选择性配合探讨如下: (一)变电所低压柜 1、断路器的形式 一般总开关及联络开关采用框架断路器,出线开关采用塑壳断路器。 2、总开关与联络开关的选择方法 总开关与联络开关应有选择性,方法一是按选择性表格选型,框架电流一般相差二级时可以保证选择性要求;方法二是联络开关取消瞬时保护,总开关于分开关的长延时保护整定值的比值不小于1:6,方法三是联络开关改为框架式负荷开关。 3、总开关与分开关的选择方法 总开关与分开关应有选择性,以施耐德mt型框架开关与nsx型塑壳开关为例,经查表比对,基本上实现了全系列的全选择性保护。《工业于民用配电设计手册》建议为保证选择性低压总开关取消瞬时保护,仅设短延时保护,这是没有必要的。变压器低压出线总开关不宜取消瞬时保护,一方面难以复核系统设备及排线的动热稳定性,大短路电流时应该采用能量保

无功补偿对低压电网功率因数的影响(一)

无功补偿对低压电网功率因数的影响(一) 摘要:依据用电设备的功率因数,可测算输电线路的电能损失。通过现场技术改造,可使低于标准要求的功率因数达标,实现节电目的。本文分析了无功补偿的作用和补偿容量的选择方法,着重论述了低压电网和异步电动机无功补偿容量的配置。结合应用实例说明采用无功补偿技术,提高低压电网和用电设备的功率因数,已成为节电工作的一项重要措施。 关键词:节电技术功率因数无功补偿 0引言 无功补偿,就其概念而言早为人所知,它就是借助于无功补偿设备提供必要的无功功率,以提高系统的功率因数,降低能耗,改善电网电压质量。无功补偿的合理配置原则:①总体平衡与局部平衡相结合,以局部为主。②电力部门补偿与用户补偿相结合。在配电网络中,用户消耗的无功功率约占50%~60%,其余的无功功率消耗在配电网中。因此,为了减少无功功率在网络中的输送,要尽可能地实现就地补偿,就地平衡,所以必须由电力部门和用户共同进行补偿。③分散补偿与集中补偿相结合,以分散为主。集中补偿,是在变电所集中装设较大容量的补偿电容器。分散补偿,指在配电网络中分散的负荷区,如配电线路,配电变压器和用户的用电设备等进行的无功补偿。集中补偿,主要是补偿主变压器本身的无功损耗,以及减少变电所以上输电线路的无功电力,从而降低供电网络的无功损耗。但不能降低配电网络的无功损耗。因为用户需要的无功通过变电所以下的配电线路向负荷端输送。所以为了有效地降低线损,必须做到无功功率在哪里发生,就应在哪里补偿。所以,中、低压配电网应以分散补偿为主。④降损与调压相结合,以降损为主。 1影响功率因数的主要因素 1.1异步电动机和电力变压器是耗用无功功率的主要设备异步电动机的定子与转子间的气隙是决定异步电动机需要较多无功的主要因素。而异步电动机所耗用的无功功率是由其空载时的无功功率和一定负载下无功功率增加值两部分所组成。所以要改善异步电动机的功率因数就要防止电动机的空载运行并尽可能提高负载率。变压器消耗无功的主要成份是它的空载无功功率,它和负载率的大小无关。因而,为了改善电力系统和企业的功率因数,变压器不应空载运行或长其处于低负载运行状态。 1.2供电电压超出规定范围也会对功率因数造成很大的影响当供电电压高于额定值的10%时,由于磁路饱和的影响,无功功率将增长得很快,据有关资料统计,当供电电压为额定值的110%时,一般工厂的无功将增加35%左右。当供电电压低于额定值时,无功功率也相应减少而使它们的功率因数有所提高。但供电电压降低会影响电气设备的正常工作。所以,应当采取措施使电力系统的供电电压尽可能保持稳定。 1.3电网频率的波动也会对异步电机和变压器的磁化无功功率造成一定的影响 1.4以上论述了影响电力系统功率因数的一些主要因素,因此必须要寻求一些行之有效的、能够使低压电力网功率因数提高的一些实用方法,使低压网能够实现无功的就地平衡,达到降损节能的效果。 2低压配电网无功补偿的方法 提高功率因数的主要方法是采用低压无功补偿技术,我们通常采用的方法主要有三种:随机补偿、随器补偿、跟踪补偿。 2.1随机补偿随机补偿就是将低压电容器组与电动机并接,通过控制、保护装置与电机,同时投切。随机补偿适用于补偿电动机的无功消耗,以补励磁无功为主,此种方式可较好地限制用电单位无功负荷。随机补偿的优点是:用电设备运行时,无功补偿投入,用电设备停运时,补偿设备也退出,而且不需频繁调整补偿容量。具有投资少、占位小、安装容易、配置方便灵活,维护简单、事故率低等。 2.2随器补偿随器补偿是指将低压电容器通过低压保险接在配电变压器二次侧,以补偿配电

低压配电系统中正确使用断路器

低压配电系统中正确使用断路器 断路器广泛应用于低压配电系统中,是一种保护电器元件。在设计低压配电系统时,应注意断路器的选择性,对断路器过流脱扣器额定电流进行选择和整定,确保充分发挥过电流脱扣器的作用;当环境温度大于或小于校准温度值时,应根据制造商提供的温度与载流能力修正系数来调整低压断路器的额定电流值。 一、断路器的几种电流参数 断路器的额定电流In,是指脱扣器能长期通过的电流,也就是脱扣器额定电流。 断路器壳架等级额定电流Inm,用基本几何尺寸相同和结构相似的框架或塑料外壳中所装的最大脱扣器额定电流表示。它决定了所能安装的脱扣器的最大额定电流值。例如,DW15—1600 额定电流800A的断路器,1600 A是断路器的壳架等级额定电流Inm,断路器的额定电流In为800A。 过电流脱扣器可分为过载脱扣器和短路(电磁)脱扣器,有长延时动作电流(Ir1)、短延时动作电流(Ir2)和瞬时动作电流(Ir3)之分。如正泰产DW15—1600的Ir1为(0.7~1)In,Ir3为(1~3)In,没有短延时脱扣器;常熟产CW2—1600A 的Ir1为(0.4~1)In,Ir2为(0.4~15)In+OFF,短延时时间0.1s—0.4s,共4级,Ir3为1.6KA~35 KA+OFF。 断路器的额定极限短路分断能力(Icu):按规定的试验程序所规定的条件,不包括断路器继续承载其额定电流能力的分断能力;也就是断路器规定的试验电压及其它规定条件下的极限短路分断电流值,不考虑断路器继续承载它的额定电流。 极限短路分断能力Icu的试验程序为O—t—CO。其具体试验是:把线路的电流调整到预期的短路电流值(例如380V,50KA),而试验按钮未合,被试断路器处于合闸位置,按下试验按钮,断路器通过50KA的短路电流,断路器立即开断(OPEN简称O)并熄灭电弧,断路器应完好,且能再合闸。t为间歇时间,一般为3min,此时线路处于热备状态(试验按钮仍在按下状态),断路器再进行一次接通(CLOSE简称C)和紧接着的开断(O)(接通试验是考核断路器在峰值电流下的电动和热稳定性和动、静触头因弹跳的磨损)。此程序即为CO。断路器能完全分断,熄灭电弧,并无超出规定的损伤,就认定它的极限分断能力试验成功。 额定运行短路分断能力Ics ,是指断路器在规定的试验电压及其它规定条件下的一种比额定极限短路分断电流小的分断电流值,在按规定的试验程序O—t—CO—t—CO动作之后,断路器应有继续承载它的额定电流的能力。它比Icu 的试验程序多了一次CO。Ics是Icu的一个百分数。对于万能式和塑壳式断路器,Ics值略有不同,塑壳式允许Ics最小可以是25%Icu,万能式允许Ics最小是50%的Icu ,Ics=Icu的断路器是很少的。我国的DW45智能型万能式断路器的Ics为62.5%~65%Icu,国际上,ABB公司的F系列,施耐德的M系列也不过是70%左右。

低压配电系统分类

低压配电系统分类 380V/220V低压配电系统按保护接地的形式不同,低压配电系统分为三种:IT系统、TT系统和TN系统。 其中,第一个大写字母T表示电源变压器中性点直接接地;I则表示电源变压器中性点不接地(或通过高阻抗接地)。第二个大写字母T表示电气设备的外壳直接接地,但和电网的接地系统没有联系;N表示电气设备的外壳与系统的接地中性线相连。 IT系统的电源中性点是对地绝缘的或经高阻抗接地,而用电设备的金属外壳直接接地。即:过去称三相三线制供电系统的保护接地。 TT系统的电源中性点直接接地;用电设备的金属外壳亦直接接地,且与电源中性点的接地无关。即过去的三相四线制供电系统中的保护接地。 TN系统,在变压器或发电机中性点直接接地的380/220V三相四线低压电网中,将正常运行时不带电的用电设备的金属外壳经公共的保护线与电源的中性点直接电气连接。即过去的三相四线制供电系统中的保护接零。 TN系统的电源中性点直接接地,并有中性线引出。按其保护线形式,TN 系统又分为:TN-C系统、TN-S系统和TN-C-S系统等三种。 (1)TN-C系统(三相四线制),该系统的中性线(N)和保护线(PE)是合一的,该线又称为保护中性线(PEN)线。它的优点是节省了一条导线,缺点是三相负载不平衡或保护中性线断开时会使所有用电设备的金属外壳都带上危险电压。 (2)TN-S系统就是三相五线制,该系统的N线和PE线是分开的,从变压器起就用五线供电。它的优点是PE线在正常情况下没有电流通过,因此不会对接在PE线上的其他设备产生电磁干扰。此外,由于N线与PE线分开,N线断开也不会影响PE线的保护作用。 ③TN-C-S系统(三相四线与三相五线混合系统),该系统从变压器到用户配

电力系统中低压配电线路设计 肖长春

电力系统中低压配电线路设计肖长春 摘要:随着我国经济科技水平不断提高,我国电网改造工程已经逐渐深入到了农村。但由于农村电网改造工作量巨大,以及配电线路的安全性问题,低压配电线路设计成为了当前最重要的一个环节。低压配电线路设计主要是为了确保电力企业供电质量以及用户用电安全等。本文阐述了低压配电线路设计面临的现状、分析了低压配电线路设计要点、并指出了具体的实施步骤。 关键词:电力系统;低压配电;线路设计;用电安全;供电质量 引言: 当前我国电网改造工程已经深入到了农村,作为连接用户的关键环节低压配电线路的设计决定了电力供应的质量和安全。然而由于低压配电线路运行环境具有一定的复杂性,因此在设计过程中必须要充分确保低压配电线路的安全性能,从而保障电力企业的经济效益。 一、低压配电线路设计面临的主要问题 1、电路负荷过大 在实际中,大多数电力安全问题都是由于低压配电线路负荷过大导致的。虽然从目前来看,我国电力企业的供电稳定性和安全性有了大幅度提高,但随着我国人民经济水平的不断提高,我国人民对供电质量的要求也有了一定的提高。在这种情况下,当前我国原有的低压配电线路电力供应与人民实际需求不匹配,以至于原有的抵押配电线路市场超负荷运行,存在极大的安全隐患。 2、农村电网改造工作量巨大 当前我国电网改造工程已经深入到农村,但由于农村电网改造工作量巨大,全面完成配电线路设计改造还需要花费较长的时间。在农村电网改造中,最重要的工作内容就是对低压配电线路进行合理设计和规划,其主要原因在于低压配单线路设计和规划直接影响到农村电网改造工程的进度与落实。 3、漏电、短路问题严重 在实际中,低压配电线路漏电、短路问题较为常见,并且一旦发生这些故障极有可能造成火灾事故或电气爆炸事故。而造成低压配电线路漏电、短路的原因除了人为因素、自然环境因素外,设计因素也是一个极为重要的方面。通常来说如果在低压配电线路设计中没有充分考虑到线路接地、线路过载、以及断线等方面的问题,将极有可能造成低压配电线路故障发生,进而引发安全事故。因此,为了确保低压配电线路的供电安全,必须要合理的对低压配电线路进行设计。 二、低压配电线路设计要点分析 1、避免越级跳闸 在实际中,越级跳闸问题的出现很容造成重大的电力安全事故发生。因此,在低压配电线路设计中必须要注重针对这一问题的设计。通常来说,在低压配点线路中可采用两种方法规避越级跳闸问题。首先,要保证各级低压配电线路配置与相对应的配电线路保护装置相匹配,并确保个级配电线路参数的准确性,最后再利用低压熔断器和断路器切段故障电路,从而避免越级跳闸现象发生。采用此种方法可以有效地降低故障线路对周围线路的影响,同时也可以最大限度的保证配电线路供电,从而减少对人民生活生产用电的影响;其次,针对该问题还可以采用合适的非选择性断路器,当线路发生故障时,非选择性断路器可以自动切断故障线路。[1]值得注意的是,在采用非选择性断路器时,应确保非选择性断路器参数精准。若存在上级脱扣器额定电流过低或上级脱扣器额定电流和脱扣时间低

相关文档
相关文档 最新文档