文档视界 最新最全的文档下载
当前位置:文档视界 › 原子轨道能级与核外电子排布

原子轨道能级与核外电子排布

原子轨道能级与核外电子排布
原子轨道能级与核外电子排布

原子轨道能级与核外电子排布

薛万川叶其纲蒋栋成

(广西师范大学,桂林)(高等教育出版社,北京)

原子结构理论是现代化学的基础理论之

一。但仍有许多问题,诸如:原子轨道和轨道

能的概念、轨道能级高低次序、轨道的“填实孙顺序和电离顺序、原子基态时核外电子排布及其

与元素周期系的关系等,在化学教学中是经常

遇到的。

一、轨道近似与原子轨道能级

对于多电子原子轨道能级高低次序目前有

许多不同说法,这些说法的依据除去L. Paining

建议的近似能级之外,主要是Hartree-Fock SCF

轨道能、Thomas-Fermi轨道能和Slater轨道

能。这三种轨道能都是从多电子原子薛定愕方

程的轨道近似法求解后得到的。

采用玻恩一奥本海默定核近似时,含有N个电子(N>2)原子序数为Z的原子体系非相对

论性哈密顿算符为

其定态薛定厄方程为

原子结构理论的重要内容之一是掌握原子中单个电子运动状态的信息。轨道近似理论假设方程(2)的解—体系多电子波函数梦可用

单电子函数的乘积或其组合近似表示,

轨道近似假设要求(i)式中的[H〕用单电子算符【h;]的和近似表示,

经过对电子间库仑排斥势能项1/r“的简化处理使其变成只与电子i的坐标有关,则单电子算符具有下述一般形式

式中Y(r;)是在中心力场近似下核和其余

(N - 1)个电子对电子‘的平均相互作用势

能。于是原子薛定i}方程(2)分离变最后得到单电子本征值方程

确定势能函数V(r;)的不同处理方法:

Hartree-Fock SCF法、Thomas-Fermi原子统计

位能法和Slater半经验法代表不同的轨道近似

理论。不同的方法有不同的势能函数,代人单

电子方程求解得到不同类型的轨道能。Thomas- Fermi法和Slater法计算结果〔,,2,表明这两种类型的轨道能级均随原子序数增大而变化(能级

交叉情况有所不同)。Pilar}3,根据V}'achters}'}

的Hartree-Fock计算结果提出第四周期元素

‘:总是高于,3a的说法。最近潘道皑等的Hartree-Fock计算结果指出:钾钙的e,.低于

e3d (Wachters在论文中没有报导钾钙的e3d数据),而杭钦的。;.高于e3d。原子Hariree-Fock SCF从头计算较为复杂,采用不同的基函数集

合以及计算方法上采用不同的近似处理得到的Hartree-Fock轨道能不尽相同。从目前文献报

导的各种轨道能和能级图来看,在轨道能级高

低次序以及轨道能级与原子序数的关系等问题

上尚未取得一致的意见。正如尹敬执、申淬文

在书中所指出的:中性原子中原子轨道的实际

能级状况是一个没有完满解决的问题。

虽然原子轨道和轨道能的概念有助于人们认识和把握多电子原子中单个电子的运动状态;但是严格地说原子轨道和轨道能的概念不

是唯一的和绝对的。按照(6)式单电子方程的

意义,原子轨道和轨道能是由某种物理模型定义的单电子算符的本征函数和本征值。在教学上应注意原子轨道和轨道能概念的这种近似性。

二、组态平均能t与核外电子排布

关于如何确定一个元素原子基态核外电子排布,徐光宪C61曾指出:电子的配布在不违背保里原理的条件下将尽可能使体系的能量为最低(能量最低原理)0在Hartree-Fock SCF理论中,原子体系能量E为各电子轨道能的和与总电子相互作用能之差,所以原子核外电子排布不是取决于轨道能的高低而是取决于体系能量的高低。但是要比较一个原子体系在不同电子组态时总能量的高低,需要进行大量复杂的Harnee-Fork计算。根据量子力学的基本假设,实验观测得的原子体系能量与该原子正确的哈密顿算符的本征值—薛定愕方程(2)中的体

系能量E相联系。不过,能量E作为原子体系

的可观测量只是对体系的量子态不是对电子组态而言。怎样把观测体系能最的实验结果与轨道近似理论的组态能量联系起来呢?

实验观测的原子光谱或X射线谱项能代表被测原子体系(包括离子,下同)两个量子态之间的能量差,通常规定一个能量基准点使谱项能表示原子体系一个量子态的相对能级。一个原子体系给定组态产生的全部谱项可按Russell- Saunders偶合方案写出并用符号’s+}L }表示。每个给定s,L,I值的光谱支项,当}}o时能

级是简并的,简并度为(2J十1)。能级的简并

度就是具有该能量值的不同量子态的数目,称为该能级的统计权重。因此,一个原子体系给定组态的能量等于该组态产生的全P谱项能级的加权平均值,称为组态加权平均能量用符号E}表示,

式中}i为谱项能级E;相应的统计权重。若一

组态只产生一个光谱支项,该组态能量就由此支项能级表示,习惯上仍记为E,}o

例如碳原子C( lsa2sa2p')组态产生的谱项

能级及该组态E。计算如下(单位:cmi `), C(lsa2sa2pZ) 3Po 0

3P1 16.4

用类似的方法推算钾、钙、抗、钦四元素的原子

和离子若干组态平均能量,并将E。值比较绘

如图1。图中组态符号省略了〔Ar〕实。E均值

以原子光谱基项为能量起点。

通过图1E。值的比较可看到钾、钙、抗、钦

四元素原子的最低能量组态(基态电子组态)分

别是:K(4s),Ca(4s'),Sc(3d4s')和Ti(3d'4sa}o

也就是说,由谱项能级推算组态加权平均能量

从实验上为原子基态时核外电子排布提供了判

据*0

, Koopmans定理与轨道平均电离能

下面进一步通过Koopmans定理建立可观

测量与轨道近似理论中的原子轨道能的联系。

在Hartree-Fock SCF理论中,一个含有2N

个电子的闭壳层原子总能量E为

式中Bj为Hartree-Fock轨道能,它包括电子i

的动能项、与核相互作用势能项以及与其余

(2N一1)个电子平均相互作用能项等三部分。

令eoi代表前两项的和,则

于是原子总能量的另一个表达式是

设此原子在轨道沙。上电离出一个电子而变成

正离子。计算正离子的总能量E十时假设电离

出一个电子后其余电子的轨道没有变化(轨道

冻结近似),则E+等于中性原子总能里E减去

被去除电子的动能项、它与核相互作用势能项

以及它与其余电子平均相互作用能等三项,也就是等于原子总能量E减去被去除电子的轨道

能。b}

自原子去掉一个电子所需的能量等干去掉此电

子所形成的正离子的能量与中性原子能量之

差,这正是电离能IE

联系(ii)(i2)式有

用微扰理论可证明,对离子使用一个不正

确程度只达一阶小量的波函数,在能量上仅造

成二阶小的误差。因此(13)式表示轨道能Bb

的负值是从中性原子相应轨道沙,上电离一个

电子所需能量IE,的良好近似。这就是Koop- mans定理的结果**。

一般意义的电离能由光谱系限推求,它代

表相应的离子和原子两个最低多重态之间的能

量差。但(io)y功式的原子和离子总能量不是

体系的量子态能而是组态能量。所以通过(131

式与轨道能相联系的电离能应当是相应的离子

和原子两个组态加权平均能量之差,我们称之

为轨道平均电离能。对于价电子的电‘离称为价

轨道平均电离能,简称价轨道电离能c;0例如

钾原子4,和3d轨道电离能及相应的轨道能分

$}!为

一般来说,价轨道电离能由原子光谱项能

某些盆原子基态电子组态只代表理想化的情况,例如镶原子的基态可用杂化组态来描述,其中5ds6s.组态有较大的贡献,而5d'6,组态的贡献较小。Koopmans定理对开壳层体系的处理,可参阅文献

级推求,内层轨道电离能由x射线谱项能级推求。}ater}8'9,奠定了这一工作的理论基础。目

前周期表中绝大部分元素的谱项能级已由

Moore等po,iil整理成表格,各元素自1,至7,所有轨道平均电离能就由相应离子和原子两个组

态加权平均能量之差严格地给出。根据Koopm- ans定理,由轨道平均电离势严格地定义了一套

轨道能级,我们称为原子轨道实验能级。鉴于

在轨道近似理论中对轨道能的数值和轨道能级

高低次序未能取得一致的意见,我们认为在教

材中介绍原子轨道实验能级可能是有益的。

欲研究实验能级与原子序数的关系可用实

验能级对原子序数作图。考虑到按能量标度作

图将使图形变得十分庞大复杂不便使用。从反

映轨道能级随原子序数增大而变化规律的关键

来说,主要是不同轨道能级的交错点。我们总

结了42个能级交错点Lial,据此绘得原子轨道实

验能级图(图2)0

四、实验能级图与元素周期系

原子电子结构理论的另一个内容是说明各

元素原子基态核外电子排布,从本质上认识元

素周期系。

不少教科书在论述原子核外电子排布都介

绍了建造原理(Aufbau原理)。它的大意是:

从原子核含有一个质子、核外有一个电子的氢

原子开始,逐个把质子加到核上,与此同时逐个

把电子按一定的顺序“填充”到轨道上,这样就

建造起周期表上全部元素的原子。虽然依据建

造原理可帮助学生按原子序数写出周期表上大

部分元素原子基态的核外电子排布,但它毕竟

只是教学上的一种记忆符号[L137。而且,建造原理的填充顺序系对周期表中全部元素而言(即在

前一元素原子电子组态基础上填充电子构成后

一元素原子电子组态),并不是指一个元素原子

核外电子从Is至7,依次填充轨道的顺序。

一个元素原子核外电子“填充”轨道的顺序

可从实验上由该元素离子和原子相应组态加权

平均能量的高低来判断。例如从图1抗原子和

离子E,}值比较可知不同电离阶段的抗离子和

中性抗原子的最低能量组态分别是Sc'+( 3d),

5c+( 3d 4s)和Sc(3d4s')。根据核外电子排布的

最低能量原理,可认为杭原子核外第19个电子

填充在3d轨道,第20、第21个电子均填充在

4,轨道。这种电子“填充”轨道的顺序正好与电离一致(即后填充者先电离))(141。在教学上更方

便的是从实验能级图(图‘2)直接得出上述填充

顺序和电离顺序。例如从实验能级图看到B4sl “能级交错点在原子序数20/21之间,即原子

序数Z < 20时实验能级B4t C 83d,故钾钙两

原子外层电子填充在4s轨道;Z>21时,4t

“,故抗和抗后各原子外层电子先填充3d轨道

后填充4,轨道,电离时先失去4,电子后失去

3d电子。由于实验能级由轨道平均电离能定

义,而轨道平均电离能又由离子和原子的组态

加权平均能量差定义,可以证明从实验能级的

高低得出的填充顺序和电离顺序与从E、值比

较得出的结果完全一致。

类似地从实验能级图看到其他几个主要能

级交错点分别是:B5tl B4‘为38/39,。‘;加5d为

56/5?,。,/。“为88/89, BSdI B4,和Bbil e4/均为57/58,以及Bsdl e51和e7tl 85J均为89/90。因此

第一、二、三系列过渡元素以及翎系、婀系元素

原子的轨道“填充”的一般规律是:电子先填充

(,一1)d轨道和(,一2 )f轨道,后填充,:轨

道;电离的一般规律是先失去。电子,后失去

(。一1)d电子和(,一2)f电子。也就是说实

脸能级图能够正确表达所有过渡元素和锢系婀

系元素的电子层结构特点及其性质。

同族元素性质的相似性取决于原子最外层

电子排布的类似性,这在实验能级图中也有所

反映。以第IA族和第IIA族元素为例,这两族

元素分别位于所在周期始端,从实脸能级图看

到每一周期始端两个元素都以。轨道能级为

最低,而(,一1)d和。P轨道能级较高,故第

IA族和第IIA族元素外层电子排布分别为。‘

和二a。对于第IIIA至第VIIA族以及零族元素

外层电子排布的类似性读者不难从实验能级图

得出正确的结果。因此在教学中如采用本文所

介绍的实验能级图可能会产生积极的效果。

{;}

[a]

[9J

[12]

[13J

(14]

[15J

参考文献

R. Latter, Phys. Rev., 99, 510 (1955).

薛万川、蒋栋成,《广西师范学院学报》,(自然科学版),

(2), 1(1979)0

F. L. Pilar, j. Chem. Educ., 55, 2 (1978).

^.J. H. Wachters, j. Chem. Phys., S2, 1033 (1970).

尹敬执、申浮文编著,《基础无机化学,上册,人民教育出版社,308(1980)0

徐光宪编著,《物质结构》上册,人民教育出版社,89 (1961)0

R. L. DeKock, and H. H. Gray, "Cheen.ical Structure

and Bonding", Benja min 64 (1980).

J. C. Slater, Phys. Rea., 98, 1039 (1915).

J. C. Statcr, "Quantum Thcory of Atomic Structure,

V ol. L, McGraw-Hill, (1960).

C. E., Moore, "Atomic Energy Levels", NBSC 467,

V o1s. I,II: and III, 1939, 1952 and 1958.

W. C., Martin, et al.,].Phys. Cham., Rcf. Aata

3:771 (1974).

薛万川、蒋栋成,化学教育增刊I, 68 (1981)-

J. E. Huheey, "Inorganic Chemistry", 2nd Ed., 26

(1977).

R. N. Keller, j. Chem. Educ., 39, 289 (1962).

W. G. Laidlaw, and F. W. Birss, Theoret. Chim.

Acta., 2, 181, 186 (1964).

,.J 1.J,.J,.J IJ

,j斗.、沙︸b lj

r.L F.L r.L r.Lr二‘

、.J f.J

0 11

,且1二

一..‘r.L

~~~砂~屯~~~~~一一一~夕、、、勿尸、尸妇产勺、.产.尸,‘尸砂妇,,,.、.、,,叼、子‘尸、·书讯·《自由甚化学》

Rayson L. Huang, S. H. God:,

S. H. Ong著

移光照,甘礼雅,陈敏为译

上海科学技术出版社出版

作者通过自己的研究工作的大量数据,较系统地

论证、阐明了自由基化学的基本理论及其应用;在每章

之后,均附有大量参考文献,以便读者根据各自的爱好

和兴趣进行阅读和研究。鉴于上述优点,本书不失为

较实用的教学参考书。

(1983年9月发行,定价o.s7元)

《核外电子排布》教学设计

《核外电子排布》教学设计 思南三中何显勇 一、教学习目标 1、知识目标 (1)知道原子的核外电子是分层排布的及其排布规律; (2)会画原子结构图示意图; (3)知道元素的性质与最外层电子数关系最密切。 2、能力目标 通过对核外电子运动状态的想象和描述,培养学生的抽象思维能力和逻辑思维能力。 3、情感目标 (1)通过对最外层电子数与元素性质的学习,让学生认识到事物之间是相互依存和相互转化的,初步学会科学抽象的学习方法; (2)通过对核外电子排布知识的学习,让学生体会核外电子排布的规律性。 二、教学重点及难点 重点:知道原子核外电子是如何分层排布的;会画1~18号元素的原子结构示意图。 难点:原子核外电子排布规律间相互制约关系。 三、教学过程 [引入] 水是由水分子构成;铁是由铁原子构成;氯化钠是由氯离子和钠离子构成。离子也是构成物质的一种粒子,课题3就给我们讲了有关离子的知识。在学习离子之前,我们再走进原子的内部结构进行更深入的了解。 我们知道原子是由原子核和核外电子构成的,原子核的体积仅占原子体积的几万分之一,相对来说,原子里有很大的空间。电子就在这个空间里作高速的运动。那么电子是怎样运动的?在含有多个电子的原子里,电子又是怎样排布在核外空间的呢?

一、核外电子的排布 [讲述] 核外电子的运动规律与宏观物体不同:它没有确定的轨道,我们不能测定或计算它在某一时刻所在的位置,也不能描绘出它的运动轨道。 [提问]是不是原子核外的电子的运动就没有规律呢?核外电子的运动有什么规律呢?如:钠原子核外有11个电子,这11个电子是聚成一堆在离核相同的距离处运动,还是分散在离核不同的距离处运动?为什么?(学生思考) [讲述] 在多电子原子里,一方面电子和原子核之间因带有异性电荷而有吸引力,这个吸引力倾向于把电子尽可能拉得靠近原子核。另一方面,电子和电子之间因带有同性电荷而相互排斥,这个排斥力迫使电子尽可能远离,当吸引力和排斥力达到平衡时,核外电子就分布在离核不同的区域运动,而且分布在不同区域的电子能量不同。电子能量低的,在离核较近的区域运动,电子能量高的,在离核较远的区域运动。也就是说,核外电子是分区域运动的,我们把这种现象叫做核外电子的分层运动,又叫核外电子的分层排布。 [提问] 原子核外的不同区域,既然能量有高低,那么,可否把它们按照能量的高低来划分为不同的层次呢? [讲述] 我们将电子离核远近不同的运动区域叫做电子层。离核最近的叫第一层,依次向外类推,分别叫做一,二,三,四,五,六,七层,通常用字母表示为:K、L、M、N、O、P、Q。即在多个电子的原子里,核外电子是在能量不同的电子层上运动的。 [提问] 核外电子的排布有没有一定的规律?既然核外电子是分层排布的,那么核外电子是先排能量低的电子层,还是先排能量高的电子层? 1、核外电子总是最先排在能量最低的电子层,即排满第一层再排第二层,依次类推。 [提问] 每一个电子层上容纳的电子数目有没有一个限度?(学生思考回答) 2、每一电子层,最多容纳的电子数为2n2个。(n为电子层序数) 3、最外层最多容纳8个电子(第一层为最外层时最多只能容纳2个电子)。

《原子核外电子的排布》教学设计

《原子核外电子的排布》教学设计 一、教材分析 本章《物质结构元素周期律》是高中必修二第一章的内容,是在九年级化学上册第四单元《物质构成的奥秘》的理论基础上进一步的深入学习,而本节内容——原子核外电子的排布又是本章的核心内容,是后面学习元素周期律的基础。 二、学生分析 学生初中时已经学习了原子的构成和元素,对核外电子是分层排布这一知识点也做了初步了解,所以在此节内容的学习之前学生就已经具备了一些原子的相关基础知识。同时也具备一定的数学基础,能够对一些数据进行分析处理。 三、教学目标 (一)知识与技能目标 1.了解原子核外电子运动的特征。 2.了解元素原子核外电子排布的基本规律,能用原子(离子)结构示意图表示常见原子(离子)的核外电子排布。 (二)过程与方法目标 培养学生分析、处理数据的能力,尝试运用比较、归纳等方法对信息进行加工。 四、教学重难点 重点:原子核外电子分层排布、原子核外电子的排布及其规律。 难点:原子核外电子排布规律间相互制约关系。 五、教学过程 【引入】大家好,这节课我们进入到新课的学习:

【板书】原子核外电子的排布 【提问】在进入新课内容之前,我们先来复习一下以前学习的内容。初中的时候在《物质构成的奥秘》这一章当中我们就学习了原子的相关知识,下面我们来回顾一下,什么是原子?原子由什么微粒构成? 【学生回顾】…… 【板书】 外电子数 核电荷数=质子数=核的负电荷核外电子:带一个单位 中子:不带电 个单位的正电荷质子:带原子核原子????????1 【教师】原子由原子核和核外电子构成,而原子核又由质子和中子构成,其中质子带一个单位的正电荷,中子不带电。核外电子则带一个单位的负电荷。 【提问】那么为什么原子对外显电中性呢? 【学生】质子所带的正电荷数等于核外电子所带的负电荷数,所以原子不显电性。 【教师】很好,其中我们还学习到了一个重要的等式关系:核电荷数=质子数=核外电子数。所以质子所带的正电荷与核外电子所带的负电荷相互抵消,导致原子不显电性。 【过渡】好,我们都知道了原子的结构。现在我们来研究一下电子在原子核外究竟是怎么运动的。 【教师】大家来看ppt 上这张熟悉的原子结构图。我们可以看到原子核外有一圈圈的层状区域,由里往外分为好几个圈层,这就是我们以前初三所学习到的电子层——核外电子的运动有自己的特点,它不像行星绕太阳旋转有固定的轨道,但却有经常出现的区域,科学家把这些区域称为电子层。而核外电子就是在这样不同的电子层内运动,我们把这种现象称为核外电子的分层排布。这些都是同学们初中已经学习过的内容。 【过渡】那么,大家知道了核外电子的分层排布之后,是不是产生了这样的疑问:核外电子究竟是怎么分层排布的呢?好,接下来我们一起来共同解决同学们的疑问——我们来探究核外电子的排布规律。 【板书】核外电子的排布规律 【提问】我们来看这个原子结构,从黄色最里一层原子层到蓝色最外一层原子层,

原子结构 核外电子排布

专题5 微观结构与物质的多样性 第一单元原子结构核外电子排布 课时训练练知能、提成绩限时测评 (时间:40分钟) 测控导航表 基础过关 1.(2013甘肃河西五市第一次联考)下列有关错误!未找到引用源。Po叙述正确的是( C ) A.Po的相对原子质量为210 B错误!未找到引用源。Po与错误!未找到引用源。Po互为同素异形体 C.Po位于第6周期ⅥA族 D错误!未找到引用源。Po原子核内的中子数为84 解析:Po元素有多种核素,210只是错误!未找到引用源。Po这种核素的近似相对原子质量,A错误错误!未找到引用源。Po与错误!未找到引用源。Po是Po的不同核素,者互为同位素,而同素异形体是指同种元素形成的不同单质,B错误;第6周期的稀有气体原子序数是86,故Po应为第6周期ⅥA族元素,C正确错误!未找到引用源。Po原子

核内的中子数为:210-84=126,D错误。 2.(2013漳州模拟)不具有放射性的同位素称之为稳定同位素,稳定同位素分析法在科学研究中获得了广泛的应用。如2H、13C、15N、18O、34S等常用作环境分析指示物。下列有关说法正确的是( B ) A.34S原子核内中子数为16 B.16O与18O互称同位素 C.13C和15N原子核内的质子数相差2 D.2H+结合OH-的能力比1H+更强 解析:34S原子核内中子数为34-16=18,A错误;16O与18O质子数相同而中子数不同,互为同位素,B正确;13C的质子数为6,15N的质子数为7,两者质子数相差1,C错误;2H+与1H+化学性质相同,D错误。 3.(2014山东实验中学一模)金属钛对体液无毒且有惰性,能与肌肉和骨骼生长在一起,有“生物金属”之称。下列有关错误!未找到引用源。Ti和错误!未找到引用源。Ti的说法中正确的是( C ) A.错误!未找到引用源。Ti和错误!未找到引用源。Ti原子中均含有22个中子 B错误!未找到引用源。Ti与错误!未找到引用源。Ti为同一核素C错误!未找到引用源。Ti与错误!未找到引用源。Ti互称同位素,在周期表中位置相同,都在第4 纵行 D.分别由错误!未找到引用源。Ti和错误!未找到引用源。Ti组成的金属钛单质互称为同分异构体 解析错误!未找到引用源。Ti和错误!未找到引用源。Ti原子中中

第2讲 原子核外电子排布的规律练习题

第二讲原子核外电子的排布规律练习题 一、核外电子的排布规律 在含有多个电子的原子里,电子的能量并不相同,能量低的电子通常在离核近的区域运动,能量高的电子通常在离核远的区域运动。我们常用电子层来表明。离核最近的叫第一层,离核稍远的叫第二层,依次类推,由近及远叫三、四、五、六、七层,也可依次把它们叫做K、L、M、N、O、P、Q层。核外电子的分层运动,又叫核外电子的分层排布。如图。科学研究证明,电子一般总是尽先排布在能量最低的电子层里,即最先排布K层,当K层排满后,再排布L层,依次类推。 1-20号元素原子的电子层排布 核电 荷数 元素 名称 元素 符号 各电子层的电子数核电 荷数 元素 名称 元素 符号 各电子层的电子数 K L M N K L M N 1 2 3 4 5 6 7 8 9 10 氢 氦 锂 铍 硼 碳 氮 氧 氟 氖 H He Li Be B C N O F Ne 1 2 2 1 2 2 2 3 2 4 2 5 2 6 2 7 2 8 11 12 13 14 15 16 17 18 19 20 钠 镁 铝 硅 磷 硫 氯 氩 钾 钙 Na Mg Al Si P S Cl Ar K Ca 2 8 1 2 8 2 2 8 3 2 8 4 2 8 5 2 8 6 2 8 7 2 8 8 2 8 8 1 2 8 8 2 核外电子排布的一般规律是:①各电子层最多容纳的电子数目是2n2;②最外层电子数目不超过8个(K层为最外层时不超过2个),次外层电子数目不超过18个,倒数第三层电子数目不超过32个;③核外电子总是尽先排布在能量最低的电子层里,然后再由里往外依次排布在能量逐步升高的电子层里。1-18号元素的原子结构示意图。

原子核外电子排布的原理

原子核外电子排布的原理 处于稳定状态的原子,核外电子将尽可能地按能量最低原理排布,另外,由于电子不可能都挤在一起,它们还要遵守保里不相容原理和洪特规则,一般而言,在这三条规则的指导下,可以推导出元素原子的核外电子排布情况,在中学阶段要求的前36号元素里,没有例外的情况发生。 核外电子排布原理一——能量最低原理 电子在原子核外排布时,要尽可能使电子的能量最低。怎样才能使电子的能量最低呢?比方说,我们站在地面上,不会觉得有什么危险;如果我们站在20层楼的顶上,再往下看时我们心理感到害怕。这是因为物体在越高处具有的势能越高,物体总有从高处往低处的一种趋势,就像自由落体一样,我们从来没有见过物体会自动从地面上升到空中,物体要从地面到空中,必须要有外加力的作用。电子本身就是一种物质,也具有同样的性质,即它在一般情况下总想处于一种较为安全(或稳定)的一种状态(基态),也就是能量最低时的状态。当有外加作用时,电子也是可以吸收能量到能量较高的状态(激发态),但是它总有时时刻刻想回到基态的趋势。一般来说,离核较近的电子具有较低的能量,随着电子层数的增加,电子的能量越来越大;同一层中,各亚层的能量是按s、p、d、f的次序增高的。这两种作用的总结果可以得出电子在原子核外排布时遵守下列次序:1s、2s、2p、3s、3p、3d、4s、4p…… 原子轨道能量的高低(也称能级)主要由主量子数n和角量子数l决定。当l相同时,n越大,原子轨道能量E越高,例如E1s<E2s<E3s;E2p<E3p <E4p。当n相同时,l越大,能级也越高,如E3s<E3p<E3d。当n和l 都不同时,情况比较复杂,必须同时考虑原子核对电子的吸引及电子之间的相互排斥力。由于其他电子的存在往往减弱了原子核对外层电子的吸引力,从而使多电子原子的能级产生交错现象,如E4s<E3d,E5s<E4d。Pauling根据光谱实验数据以及理论计算结果,提出了多电子原子轨道的近似能级图。用小圆圈代表原子轨道,按能量高低顺序排列起来,将轨道能量相近的放在同一个方框中组成一个能级组,共有7个能级组。电子可按这种能级图从低至高顺序填入。

核外电子排布、原子结构示意图、电子式、8电子稳定结构

原子的核外电子排布 1.原子结构行星模型告诉我们,核外电子在原子核外的外周运动,那么原子的核外电子是怎样排布在原子核外的呢?下图是1~20号元素核外电子的排布图,仔细观察图像,回答下列问题:注:在圆内标出原子的核电荷数,外面用弧线表示电子层,每层排的电子数目在弧线上标出。 (1)第一层最多排_______个电子,第二层最多排________个电子,第三层最多排______个电子。规律:第n层最多容纳的电子数为______________(用含n的代数式表示)。 (2)最外层最多排_______个电子。 (3)第二层电子的能量比第一层电子的能量_________(填“大”或“小”,提示:从原子核对电子的作用思考)。 2.电子层的表示方法及能量变化: 3.核外电子的排布规律: (1)能量最低原则:核外电子总是先排布在能量______的电子层里,然后再按照由______向______的顺序依次排布在能量逐渐升高的电子层里。 (2)电子分层排布的原则: ①第n层最多容纳的电子数为______。 ②最外层不超过________个(K层为最外层时,不超过_____个)。 4.原子结构示意图:在圆内标出原子的核电荷数,外面用弧线表示电子层,每层排的电子数目在弧线上标出,如: 5.阴阳离子的形成: (1)当原子_________(填“得到”或“失去”)电子时便形成阴离子,如N3-、O2-、F-。 (2)当原子_________(填“得到”或“失去”)电子时便形成阳离子,如Na+、Mg2+、Al3+。

规律: a.当原子的最外层电子数大于4时,原子易______(填“得”或“失”)电子形成_____离子(填“阴”或“阳”)。 b.当原子的最外层电子数小于4时,原子易______(填“得”或“失”)电子形成_____离子(填“阴”或“阳”)。 6.“8e”稳定结构:___________________________________________。 由“8e”稳定结构可知,N元素常见的化合价是________,S元素常见的化合价是__________。规律:元素的最高正化合价=__________________,元素的最低负化合价=_________________。 7.原子的电子式:元素的化学性质主要由_________________决定,我们常用小黑点或×来表示 元素原子的最外层上的电子。分别写出下列粒子的电子式: Na_______、Na+__________、Cl_________、Cl-________、NH4+_________、OH-_________。 8.微粒半径大小的比较: (1)电子层数越多,微粒半径越______,如r(O)______ r(Na)。 (2)电子层数相同,核电荷数越大,微粒半径越_________,如r(Mg)______ r(Al)。 (3)电子层数相同,核电荷数也相同,电子数越多,微粒半径约___________,如r(Cl)______ r(Cl—)。规律:不同的原子结构对应不同的性质(如化合价、半径大小等),这就是“结构决定性质”。9.核外有十电子的微粒有:__________________________________________________________。 10.核外有十八电子的微粒有:________________________________________________________。 例1.(核外电子的排布规律) 1.1.下列叙述中,正确的是(A) A.在多电子的原子里,能量高的电子通常在离核较远的区域内运动 B.核外电子总是先排在能量低的电子层上,如M层只有排满18个电子后才能排N层 C.两种微粒,若核外电子排布完全相同,则其化学性质一定相同 D.微粒的最外层只能是8个电子才稳定 1.2.A元素原子L层比B元素L层少2电子,B元素的核外电子总数比A元素的核外电子总数多5个,则A、B 可形成(D) A.AB B.A2B C.A2B3 D.B2A3 例2.(原子或离子结构示意图、电子式的书写) 2.写出下列原子或离子的结构示意图和电子式: (1)碳原子(C)_________、______________,(2)钾原子(K)_________、______________,(3)硫离子(S2-)_________、______________,(4)铝离子(Al3+)_________、______________,

第2讲 原子核外电子排布的规律练习题

第二讲 原子核外电子的排布规律 练习题 一、核外电子的排布规律 在含有多个电子的原子里,电子的能量并不相同,能量低的电子通常在离核近的区域运动,能量高的电子通常在离核远的区域运动。我们常用电子层来表明。离核最近的叫第一层,离核稍远的叫第二层,依次类推,由近及远叫三、四、五、六、七层,也可依次把它们叫做K 、L 、M 、N 、O 、P 、Q 层。核外电子的分层运动,又叫核外电子的分层排布。如图。科学研究证明,电子一般总是尽先排布在能量最低的电子层里,即最先排布K 层,当K 层排满后,再排布L 层,依次类推。 核外电子排布的一般规律是:①各电子层最多容纳的电子数目是2n 2;②最外层电子数目不超过8个(K 层为最外层时不超过2个),次外层电子数目不超过18个,倒数第三层电子数目不超过32个;③核外电子总是尽先排布在能量最低的电子层里,然后再由里往外依次排布在能量逐步升高的电子层里。1-18号元素的原子结构示意图。

1.结构示意图(原子、离子) 2.电子式(原子、离子) [课堂练习]写出下列微粒的结构示意图和电子式: 结构示意图:Na+;Cl-;Ar ;K+;N ;O 电子式:S2-;K+;S;P ;He 。 练习 一、选择题 1.以下说法正确的是() A.原子是最小的粒子 B.所有粒子都带中子 C.原子呈电中性,所以原子不含电荷 D.原子质量主要集中在原子核上 2.下列说法中不正确的是() A.原子中电子在核外运动没有确定的轨道 B.电子云中小黑点的疏密表示电子在核外某处出现机会的多少 C.离原子核越近的电子越不容易失去 D.在原子中,除最外层电子层,每层上的电子数必符合2n2个 3.下列各关系式中,正确的是() A.中性原子中:核外电子数=核内中子数 B.中性原子中:核内质子数=核外电子数 C.在R2-中:电子数=核内质子数-2 D.在R2+中:电子数=核内质子数+2 4.在构成原子的各种微粒中,决定原子种类的是() A.质子数 B.中子数 C.质子数和中子数 D.核外电子数

第一节 原子结构 --核外电子排布规律

第2课时原子核外电子排布 【教学目标与重难点】1、核外电子的排布规律 2、电子分层排布 3、每层最多容纳的电子规律 【课时】:第2课时 【导入】:原子结构 【讲授新课】 一、核外电子的分层排布 1、核外电子排布:(1)分层排布(2)能量低的电子离核近的区域运动(3)能量高的电子离核远的区域运动 2、电子层:n = 1,2,3,4,5 …… K L M N O …… 3、He 2 Ne 2 8 Ar 2 8 8 Kr 2 8 8 8 二、核外电子分布规律 1、K层为最外层时,最多容纳电子数为:2 2、除K层外,其它层为最外层时,最多容纳电子数:8 3、次外层最多容纳电子数:18 4、第n层最多容纳电子数:2N2 三、习题巩固

四、核外电子分布排布的一般规律 五、习题巩固 1、在 中; (1)互为同位数的是 和 。 (2)质量数相等,但不为同位素的是 和 (3)中子数相等,质子数不相等的是 和 【板书设计】 【作业布置】 1、按核电荷数从1~18的顺序将元素如下表排列: 从核外电子层和最外层电子数分析: (1)核电荷为6和14的一组原子,它们的 相同, 不相同:核电荷数为15和16的一组原子,它们的 相同, 不相同;核电荷数为10和18的一组原子,它们的最 Li N Na Mg Li C 3 6 7 11 2312 241437 611

外层电子数均为 个,它们分别是 元素的原子,一般情况下化学性质 。 (2)某元素的原子核外有3个电子层,最外层电子数是核外电子总数的1/6,该元素的元素符号是 ,原子结构示意图是 。 二、选择题 1、某元素的原子,原子核外有3个电子层,最外层有4个电子,该原子核内的质子数为 ( ) A 、14 B 、15 C 、16 D 、17 2、下列分子中,有3个原子核和10个电子的是 ( ) A 、NH 3 B 、SO 2 C 、HF D 、H 2O 3、有一种粒子,其核外电子排布为2,8,8,这种粒子可能是 ( ) A 、氩原子 B 、硫原子 C 、钙离子 D 、难以确定 三、问答题 1、 这些符号都代表氢,它们有什么区 别? 2H 2H + H 2 H 2 1

原子核外电子排布课件

原子核外电子排布课件 教学过程 一、复习预习 本节课核外电子排布的初步知识,是在学习了第二章分子和原子的基础上进行的,核外电子排布的初步知识与原子构成,形成了原子结构理论的知识体系,本节之所以放在第三章讲述,目的为了分散知识难点,使学生的空间想象力得以充分的发挥。通过对前18号元素的核外电子排布情况的介绍。使学生了解前18号元素原子的核外电子排布规律,进一步了解元素性质与其原子结构的关系,为离子化合物,共价化合物的形成以及化合价的教学提供了理论依据。因本节课的内容抽象,学生难理解,在高中化学的学习中还会进一步讲述原子结构理论,所以本节课知识只要求学生达到了了解的水平即可。 二、知识讲解 课程引入:我们知道,原子是由原子核和核外电子构成的,原子核的体积仅占原子体积的几千亿分之一,相对来说,原子里有很大的空间。电子就在这个空间里作高速的运动。那么电子是怎样运动的?在含有多个电子的原子里,电子又是怎样排布在核外空间的呢?

[视频演示]:原子的构成 考点/易错点1.核外电子排布对于氢原子来说,核外只有一个电子。电子的运动状态没有固定的轨道。它在核外一定距离的空间内作高速运动。是一个球形。对于多个电子的原子里。它的电子是怎样运动的呢? [视频2]:原子核外电子的运动 结合视频2:在含有多个电子的原子里。电子的能量并不相同。能量低的。通称在离核近的区域运动。能量高的,通常在离核远的区域运动。我们将电子离核远近的不同的运动区域叫做电子层。离核最近的叫第一层,依次向外类推,分别叫做二,三,四,五,六,七层,即在多个电子的原子里,核外电子是在能量不同的电子层上运动的。 (1)在多个电子的原子里,因为电子的能量不同,电子在不同的电子层上运动。 (2)能量低的电子在离核近的电子层上运动;能量高的电子在离核较远的电子层运动。 1

教案《原子核外电子的排布》

二、原子核外电子的排布 [教学目标] 1、知识与技能目标 (1)了解元素原子核外电子排布的基本规律,能用原子(离子)结构示意图表示原子(离子)的核外电子排布 (2)了解原子核外电子的排布规律,元素的金属性和非金属性,元素的化合价、原子半径等随元素核电核数呈周期性变化的规律,认识元素周期率。 2、过程与方法目标 培养学生分析、处理数据的能力,尝试运用比较、归纳等方法对信息进行加工。3.情感、态度与价值观 (1)初步体会物质构成的奥秘,培养学生的抽象思维能力、想像力和分析推理能力; (2)树立“结构决定性质”、“物质的粒子性”等辩证唯物主义观点。 [教学重、难点] 构成原子的微粒间的关系和核外电子排布规律。培养分析、处理数据的能力,尝试运用比较、归纳等方法对信息进行加工。了解假说、模型等科学研究方法和科学研究的历程。 [教学过程] [复习提问] 1.构成原子的粒子有哪些,它们之间有何关系? 2.为什么原子不显电性? 3.为什么说原子的质量主要集中原子核上? [引言]我们已经知道,原子是由原子核和电子构成的,原子核的体积很小,仅占原子体积的几千亿分之一,电子在原子内有“广阔”的运动空间。在这“广阔”的空间里,核外电子是怎样运动的呢? [板书]原子核外电子的排布 [交流与讨论1]原子在核外是怎样运动的? [打开书P78页,阅读教材,核外电子是怎么排布的?用两个字概括。 【讲解】原子中的核外电子运动虽然没有固定的轨道(太阳系中的地球等有运动轨道),但却有经常出现的区域,这些区域叫做电子层。 【过渡】电子究竟是怎样分层排布的呢? 【投影】讲解:核外电子最少的有1层,最多的有7层,最靠近原子核的是第一层(K 层)……第一层的能量最低,第七层能量最高。[归纳]按能量高低分层排布。(能量由低到高) K L M N O P Q ……

原子核外电子的排布应遵循三大规律

《原子核外电子排布应遵循的三大规律》 (一)泡利不相容原理: 1.在同一个原子里,没有运动状态四个方面完全相同的电子存在,这个结论叫泡利不相容原理。 泡利:奥地利物理学家,1945年获诺贝尔物理学奖。 2.根据这个原理,如果有两个电子处于一个轨道(即电子层电子亚层电子云的伸展方向都相同的轨道),那么这两个电子的自旋方向就一定相反。 3.各个电子层可能有的最多轨道数为,每个轨道只能容纳自旋相反的两个电子,各电子层可容纳的电子总数为2个。 (二)能量最低原理: 1.在核外电子的排布中,通常状况下,电子总是尽先占有能量最低的原子轨道,只有当这些原子轨道占满后,电子才依次进入能量较高的原子轨道,这个规律叫能量最低原理。 2.能级:就是把原子中不同电子层和亚层按能量高低排布成顺序,象台阶一样叫做能级。 (1)同一电子层中各亚层的能级不相同,它们是按s,p,d,f的次序增高。

不同亚层:ns< np< nd< nf (2)在同一个原子中,不同电子层的能级不同。离核越近,n越小的电子层能级越低。 同中亚层:1s< 2s< 3s;1p< 2p< 3p; (3)能级交错现象:多电子原子的各个电子,除去原子核对它们有吸引力外,同时各个电子之间还存在着排斥力,因而使多电子原子的电子所处的能级产生了交错现象。 例如:E3d >E4S , E4d >E5S,n≥3时有能级交错现象。 3.电子填入原子轨道顺序:1s 2s2p 3s3p 4s3d4p 5s4d5p 6s4f5d6p 7s5f6d7p,能级由低渐高。 (三)洪特规则: 1.在同一亚层中的各个轨道上,电子的排布尽可能单独分占不同的轨道,而且自旋方向相同,这样排布整个原子能量最低。 2.轨道表示式和电子排布式: 轨道表示式:一个方框表示一个轨道 电子排布式:亚层符号右上角的数字表示该亚层轨道中电子的数目

2021版新高考化学(人教版)一轮复习课题16 原子结构 核外电子排布原理

课题16原子结构核外电子排布原理学习任务1原子结构核素

一、原子构成 1.构成原子的微粒及其作用 原子(A Z X)?????原子核???? ?质子(Z 个)——决定元素的种类中子[(A -Z )个]在质子数确定后 决定原子种类同位素核外电子(Z 个)——最外层电子数决定元素 的化学性质 2.微粒之间的关系 (1)原子中:质子数(Z )=核电荷数=核外电子数。 (2)质量数(A )=质子数(Z )+中子数(N )。 (3)阳离子的核外电子数=质子数-阳离子所带的电荷数。 (4)阴离子的核外电子数=质子数+阴离子所带的电荷数。 3.微粒符号周围数字的含义

4.两种相对原子质量 (1)原子(即核素)的相对原子质量:一个原子(即核素)的质量与一个12C原子质量的1 12的 比值。一种元素有几种同位素,就有几种不同核素的相对原子质量。 (2)元素的相对原子质量:按该元素各种天然同位素原子所占的原子百分比(丰度)算出的平均值。例如:A r(Cl)=A r(35Cl)×a%+A r(37Cl)×b%。 二、元素、核素、同位素 1.元素、核素、同位素的关系 2.同位素的特征 (1)同一元素的各种核素的中子数不同,质子数相同,化学性质几乎相同,物理性质差异较大。 (2)同一元素的各种稳定核素在自然界中所占的原子百分比(丰度)不变。 同位素的“六同三不同”

3.氢元素的三种核素 1 H:用字母H表示,名称为氕,不含中子; 1 2 H:用字母D表示,名称为氘或重氢,含有1个中子;1 3 H:用字母T表示,名称为氚或超重氢,含有2个中子。1 4.几种重要核素的用途 1.核外电子排布规律 2.原子结构示意图

核外电子排布规律总结

核外电子排布规律总结 原子核外电子排布规律 ①能量最低原理:电子层划分为KvLvMvOvPv对应电子层能量增大;原子核外电子排布按照能量较低者低优先排布原则. ②每个电子层最多只能容纳2n2个电子 ③最外层最多只能容纳8个电子(K层为最外层时不能超过2个)次外层最多只能容纳18个电子(K层 为次外层时不能超过2个倒数第三层最多只能容纳32个电子 注意:多条规律必须同时兼顾。 简单例子的结构特点: ⑴离子的电子排布:主族元素阳离子跟上一周期稀有气体的电子层排布相同,如钠离子、镁离子、铝离子和氖的核外电子排布是相同的。 阴离子更同一周期稀有气体的电子排布相同:负氧离子,氟离子和氖的核外电子排布是相同的。(2)等电子粒子(注意主要元素在周期表中的相对位置) ①10 电子粒子:CH4、N3、NH,、NH3、NH4、O2、OH、H, O H3O、F、HF、Ne Na、 Mg2、Al 3等。 ②18 电子粒子:SiH4、P3、Pli、S2、HS、H2S、Cl 、HCI、Ar、K、Ca2、PH^ 等。 特殊情况:F2、H2O2、C2H6、CI^OH ③核外电子总数及质子总数均相同的阳离子有: Na、NH、H3O等;阴离子有:F、OH、 NH, ;HS 、CI 等。 前18号元素原子结构的特殊性: (1)原子核中无中子的原子:;H

(2)最外层有1个电子的元素:H、Li、Na;最外层有2个电子的元素:Be、Mg He (3)最外层电子总数等于次外层电子数的元素:Be Ar (4)最外层电子数等于次外层电子数2倍的元素:C ;是次外层电子数3倍的元素:O ;是次外层电子数4倍的元素:Ne (5)最外层电子数是内层电子数一半的元素:Li、P (6)电子层数与最外层电子数相等的元素:H、Be Al (7)电子总数为最外层电子数2倍的元素:Be (8)次外层电子数是最外层电子数2倍的元素:Li、Si 元素周期表的规律: (1)最外层电子数大于或等于3而又小于8的元素一定是主族元素,最外层电子数为1或2 的元素可能是主族、副族或0族元素,最外层电子数为8的元素是稀有气体(He例外) (2)在元素周期表中,同周期的U A、川A族元素的原子序数差别有:①第2、3周期(短周期)元素原子序数都相差1;②第4、5周期相差11;③第6 7周期相差25 (3)同主族、邻周期元素的原子序数差 ①位于过渡元素左侧的主族元素,即I A、U A 族,同主族、邻周期元素原子序数之差为下一周期元素所在周期所含元素总数;相差的数分别为 2,8,8,18,18,32 ②位于过渡元素左侧的主族元素,即川A?%A族,同主族、邻周期元素原子序数之差为 下一周期元素所在周期所含元素种数。例如,氯和溴的原子序数之差为35-17=18 (溴所在第 四周期所含元素的种数)。相差的数分别为8,18,18,32,32. ③同主族非县令的原子序数差为上述连续数的加和,如H和Cs的原子序数为 2+8+8+18+18=54 (4)元素周期表中除毗族元素之外,原子序数为奇数(偶数)的元素,所属所在族的序数及主要化合价也为奇数(偶数)。如:氯元素的原子序数为17,而其化合价有-1、+1、+3、+5、+7,最外层有7个电子,氯元素位于%A族;硫元素的原子序数为16,而其化合价有-2、+4、+6价,最外层有6个电子,硫元素位于W A族。 5)元素周期表中金属盒非金属元素之间有一分界线,分界线右上方的元素为非金属元素,分界线左下方的元素为非金属元素(H除外),分界线两边的元素一般既有金属性也有非金属性。每周期的最右边金属的族序数与周期序数相等,如:Al为第三周期川A族。 元素周期律: (1)原子半径的变化规律:同周期主族元素自左向右,原子半径逐渐增大;同主族元素自上而下,原子半径逐渐增大。 (2)元素化合价的变化规律:同周期自左向右,最高正价:+1?+7,最高正价=主族序数(O F除外),负价由-4?-1,非金属负价=-(8-族序数) (3)元素的金属性:同周期自左向右逐渐减弱;同主族自上而下逐渐增强。 (4)元素的非金属性:同周期制作仙游逐渐增强;同主族自上而下逐渐减弱。 (5)最高价化合物对应水化物的酸、碱性:同周期自左向右酸性逐渐增强,碱性逐渐减弱;同主族自上而下酸性逐渐减弱,碱性逐渐增强。 (6)非金属气态氢化物的形成难以、稳定性:同周期自左向右形成由难到易,稳定性逐渐增强;同主族

原子核外电子排布教学设计

一、教学目标 (一)知识与技能目标 引导学生了解原子核外电子的排布规律,使他们能画出1~18号元素的原子结构示意图;了解原子的最外层电子排布与元素的原子得、失电子能力和化合价的关系。 (二)过程与方法目标 通过对原子核外电子的排布规律问题的探讨,培养学生分析、处理数据的能力,尝试运用比较、归纳等方法对信息进行加工。 (三)情感态度与价值观目标 培养他们的科学态度和科学精神,体验科学研究的艰辛与喜悦。 二、教学重点、难点 (一)知识上重点、难点:核外电子排布规律。 (二)方法上重点、难点:培养分析、处理数据的能力,尝试运用比较、归纳等方法对信息进行加工。 三、教学过程 【引言】 首先,请同学们观看一段视频

——这是著名的α粒子散射实验,卢瑟福就是通过这个实验,提出了原子是由原子核和电子构成的核式结构模型的。视频中还介绍了原子核的体积很小,核外有着非常广阔的相对空间,电子就是在这非常“广阔”的空间里作高速的绕核运动。那么电子的绕核运动还有着哪些特征?这些运动的电子在核外又是怎样排布的?这就是本节课我们所要研究的内容。 【板书】二、核外电子排布 【讲述】同学们请看,屏幕上展示的是核外电子的运动特征,我们共同看一下。 (1)质量很小(9.109×10-31kg)。 (2)运动速度快(接近光速)。 (3)运动空间范围小(直径约10-10m)。 【过渡】根据核外电子的运动特征,请同学们充分发挥想象力,电子在核外的运动到底是一个什么样的情形? 【设想猜测】电子在核外的运动到底是一个什么样的情形? 【学生活动】略。 【质疑一】电子的绕核运动有没有固定的轨迹? 【质疑二】电子的绕核运动没有固定的轨迹,是不是说电子绕核运动就没有规律? 【讲述并投影】电子在原子核外的这个极小的空间内作高速运动,时而出现在离核远处,时而出现在离核近处,我们不能同时测定出电子在某一时刻的位置和速度,但是能从理论上统计出它在原子核外某一范围内出现的机会的多少——这就是我们将要在《物质结构与性质》选修教材中加以学习的电子云。 【过渡】同学们太伟大了!我们研究分析原子结构中电子的运动情况,用了不到10 分钟的时间,而科学家们却用去了一个多世纪!让我们踏着科学的足迹,重温这段曲折、坎坷、震撼世人的科学探索过程! 【投影】历史回眸 1.最早提出“原子”一词的是古希腊哲学家德谟克利特,他认为万物都是由原子组成的,原子是不可分割的最小微粒。但是很可惜,由于种种原因,这一伟大的学说没有为人们所重视,被忽视了20多个世纪——这是科学界的一大憾事! 2.直到1803年英国科学家道尔顿通过对当时化学实验的现象分析,创立了近代原子学说,第一次将原子学说从推测转变为科学概念。很长一段时间,人们都认为原子就像道尔顿说得那样,是一个小得不能再小的实心球,里面再也没有什么花样了。

高一化学原子结构和核外电子排布

高一化学 第一讲 原子结构和核外电子排布 学习目标 1.掌握原子的组成,掌握原子中各组成微粒之间的数量关系。 2.理解质量数的含义,理解元素、同位素的概念。 3 知道元素的平均相对原子质量和同位素的相对原子质量 4 掌握核外电子排布规律和1—18号元素原子核外电子排布特点 5理解离子的形成及特点 考试热点 1元素、同位素、相对原子质量概念的辨别和同位素的判断 2质子数、中子数、电子数和质量数之间的计算 3计算一定质量的物质中所含的微粒数 4会画核电荷数为1~18的元素的原子结构示意图和 电子式 5 会计算离子的电子数 新授过程 一 调整状态 二 检查作业 回顾上节内容 三 新授(谈话互动启发) 知识·规律·方法 考点1.原子(A Z X )的组成以及原子中的两个等量关系 ⑴原子组成:原子组成符号:A Z X 位于原子的中心,半径 原子核 只有原子半径的几万分 之一,却集中了几乎全 部的原子的质量。 原子 核外电子运动的特征 核外电子 (高速运动但无固定轨 迹,因此用电子云来 形容它的运动状态) ① ② ③ ④ ⑵原子中的两个等量关系 ① 质量数(A )= + ② 质子数=核电荷数

A :若质子数=核外电子数( ) B :若质子数>核外电子数( ) (阳离子)质子数-电荷数= C :若质子数<核外电子数( ) (阴离子)质子数+电荷数= 例1.(2011海南) 是常规核裂变产物之一,可以通过测定大气或水中 的含量变化 来检测核电站是否发生放射性物质泄漏。下列有关的叙述中错误的是 A .的化学性质与 相同 B .的原子序数为53 C . 的原子核外电子数为78 D . 的原子核内中子数多于质子数 若a g 呢? 例2.(2009·上海化学卷,10) 9.2 g 金属钠投入到足量的重水中,则产生的气体中含有( ) A .0.2 mol 中子 B .0.4 mol 电子 C .0.2 mol 质子 D .0.4 mol 分子 (模型思想,对比例1异同) 考点2.同位素以及同位素与元素的区别和联系 ⑴ 同位素:(虚拟思想) ⑵ 同位素与元素的区别和联系 联 例3.(2009·广东卷,1)我国稀土资源丰富。下列关稀土元素Sm 144 62与 Sm 150 62的说法正 确是 A .Sm 144 62与Sm 150 62互为同位素 B .Sm 14462与Sm 150 62的质量数相同 C .Sm 14462与Sm 150 62是同一种原子 D .Sm 14462与Sm 150 62的核外电子数和中子数均为62

原子核外电子排布

原子核外电子排布 1 氢H 1 2 氦He 2 3 锂Li 2 1 4 铍Be 2 2 5 硼 B 2 3 6 碳 C 2 4 7 氮 N 2 5 8 氧 O 2 6 9 氟 F 2 7 。 10 氖 Ne 2 8 11 钠 Na 2 8 1 12 镁 Mg 2 8 2 13 铝 Al 2 8 3 14 硅 Si 2 8 4 15 磷 P 2 8 5 16 硫 S 2 8 6 17 氯 Cl 2 8 7 18 氩 Ar 2 8 8 % 19 钾 K 2 8 8 1 20 钙 Ca 2 8 8 2 21 钪 Sc 2 8 9 2 22 钛 Ti 2 8 10 2 23 钒 V 2 8 11 2 24 铬 Cr 2 8 13 1 25 锰 Mn 2 8 13 2 26 铁 Fe 2 8 14 2 27 钴 Co 2 8 15 2 28 镍 Ni 2 8 16 2 29 铜 Cu 2 8 18 1 & 30 锌 Zn 2 8 18 2 31 镓 Ga 2 8 18 3 32 锗 Ge 2 8 18 4 33 砷 As 2 8 18 5 34 硒 Se 2 8 18 6 35 溴 Br 2 8 18 7 36 氪 Kr 2 8 18 8

37 铷 Rb 2 8 18 8 1 38 锶 Sr 2 8 18 8 2 39 钇 Y 2 8 18 9 2 ) 40 锆 Zr 2 8 18 10 2 41 铌 Nb 2 8 18 12 1 42 钼 Mo 2 8 18 13 1 43 锝 Tc 2 8 18 13 2 44 钌 Ru 2 8 18 15 1 45 铑 Rh 2 8 18 16 1 46 钯 Pd 2 8 18 18 47 银 Ag 2 8 18 18 1 48 镉 Cd 2 8 18 18 2 49 铟 In 2 8 18 18 3 50 锡 Sn 2 8 18 18 4 ) 51 锑 Sb 2 8 18 18 5 52 碲 Te 2 8 18 18 6 53 碘 I 2 8 18 18 7 54 氙 Xe 2 8 18 18 8 55 铯 Cs 2 8 18 18 8 1 56 钡 Ba 2 8 18 18 8 2 57 镧 La 2 8 18 18 9 2 〖镧系〗 58 铈 Ce 2 8 18 19 9 2 〖镧系〗 59 镨 Pr 2 8 18 20 9 2 〖镧系〗 60 钕 Nd 2 8 18 21 9 2 〖镧系〗 — 61 钷 Pm 2 8 18 22 9 2 〖镧系〗 62 钐 Sm 2 8 18 23 9 2 〖镧系〗 63 铕 Eu 2 8 18 24 9 2 〖镧系〗 64 钆 Gd 2 8 18 25 9 2 〖镧系〗 65 铽 Tb 2 8 18 26 9 2 〖镧系〗 66 镝 Dy 2 8 18 27 9 2 〖镧系〗 67 钬 Ho 2 8 18 28 9 2 〖镧系〗 68 铒 Er 2 8 18 29 9 2 〖镧系〗 69 铥 Tm 2 8 18 30 9 2 〖镧系〗 70 镱 Yb 2 8 18 31 9 2 〖镧系〗 71 镥 Lu 2 8 18 32 9 2 〖镧系〗 、 72 铪 Hf 2 8 18 32 10 2 73 钽 Ta 2 8 18 32 11 2 74 钨 W 2 8 18 32 12 2

核外电子排布规律总结.

原子核外电子排布规律 ①能量最低原理:电子层划分为K

相关文档
相关文档 最新文档