文档视界 最新最全的文档下载
当前位置:文档视界 › 1吨锅炉余热回收技术方案

1吨锅炉余热回收技术方案

1吨锅炉余热回收技术方案
1吨锅炉余热回收技术方案

10吨蒸汽锅炉烟气余热回收热水

朗瑞环境工程

二零一一年十一月

目录

1.摘要

2.方案设计

3.热管省煤器特点

4. 节能计算

5. 安装示意图

6. 施工方案

7. 工程报价

8.节能经济分析及付款方式要求

9.售后服务

10. 公司部分实体图片

11.朗瑞环境工程简介

摘要

本文详细介绍XX10t蒸汽锅炉余热回收工程方案,分析XX供热系统并对余热回收技术做了系统的描述,根据工作需求及工作背景做出锅炉热管省煤器技术解决方案、施工方案、工程报价、节能分析、售后服务,对超导热管技术做了较为具体的描述。

方案分析

1、工况参数

10吨燃煤蒸汽锅炉1台

锅炉型号:SHL10-13-AII

排烟温度约为170-180℃

烟气量22600-30000m3/h

拟安装热管省煤器,加热锅炉给水。

锅炉给水温度40℃(其中常温水50%,冷凝水50%)。

锅炉补给水量:10t/h

2、设计依据

2.1 采暖通风与空气调节设计规【GB50019-2003】

2.2 供热通风设计手册【M】

2.3 换热器设计规【SH-T3119-2000】

2.4 机械设备安装工程施工及验收通用规【GB50252-94】

3、设计要求

在锅炉尾部安装一台热管省煤器,将烟温从180℃降至130℃,将锅炉给水从40℃加热到70℃。被加热的锅炉补水可以直接送入锅炉,起到节约燃煤的目的。

热量计算如下表:

烟侧传热量计算

水侧出口温度计算

设备参数

热管简介

1.工作原理

热管是制造换热器的核心技术。

热管是由钢、铜、铝管抽成一定的真空后,灌充“导热介质”密封而成,管的“导热介质”由多种无机活性金属及其化合物混合而成,无毒、无味、无腐蚀。

2.传热形式

具有超常的热活性和热敏感性,遇热而吸,遇冷而放。这种“导热介质”在常温下呈液态,热管一端受热后,导热介质被激活并极速汽化,由液态变为汽态,并以分子震荡相变形式、亚音速传递热量,到热管的另一端遇冷放热,“导热介质”放热后冷凝,由汽态变为液态,在无任何外加动力的作用下,冷凝液体借助管的毛细吸液芯所产生的毛细力,回到原端继续吸热、蒸发;传递、放热;冷凝、回流,如此往复、高速循环,达到热量从一端传输到另一端的目的。大量热能通过其很小的横截面积远距离地传输而不需要外加任何动力。热管工作原理示意图如下:

热管省煤器性能特点

一、热管省煤器原理

热管换热器以超导热管为核心传热元件,高温烟气冲刷热管吸热端,使热管中工质蒸发成气体向冷却端流动,在冷却端冷凝放热,把冷水加热。冷水经管道送入锅炉作为补给水或者用于采暖、洗浴等生活用水。

热管省煤器工作原理如下:

积灰处理:

由于烟气中含有大量灰尘,为防止积灰和处理机会,采取以下措施:

1. 热管启动时产生自振,能抖掉部分积灰。

2. 热管余热回收器两侧检修门可方便拆卸,以方便大修时用高压水枪彻底冲洗。

3. 本体热管组结构了设计有日常运行自吹灰装置,日常操作方便,底部留有大口径落灰口,方便排灰。

4. 热管翅片采用高频焊接,能承受高压冲洗。

5. 利用超声波清灰装置,定期清灰。

6. 本体部设计风速控制在10m/s以上,不会因沉降作用在热管壁上产生积灰,也不会影响现有引风机的流量

7. 因烟温控制在110度以上,使烟气始终处于干燥状态,故不会有烟气焦油产生。

风机阻力影响

整体设备设计烟气和空气阻力在200Pa以、约为20mm水柱,又因烟气温度降低之后烟气体积缩小,几乎可以抵消烟气阻力,因此几乎不会增加引风机负荷。

设备安装示意图

安装如下图示,不影响锅炉正常使用,加装一台热管省煤器,设备采用逆向换热,使换热效果更佳。

.

.

施工方案

***公司余热回收工程采用工厂制作、现场组装的方式组织设计施工。

各工序及进程安排见下表:

说明:我方派技术人员免费提供技术指导安装。

工程报价

付款方式要求

1.合同签订后3日,预付设备定金40%;

2.设备生产完成发货前,支付设备款55%;

3.安装调试验收合格后,支付设备款5%。

节能经济分析

回收总热量根据计算得到:31.6万大卡/小时

煤炭热值按5000kcal/kg

每小时回收热量的当量烟煤重量为31.6万大卡÷5000=63公斤/小时63×24小时=1512公斤/天

锅炉每年运行时间按7000小时计,煤炭价格暂按900元/吨计

每年节约燃料的价格=每小时节约的燃料×每年按运行小时数×燃料价格

63×0.9×7000=39.69万元

投资回收期:设备价格÷节能费×12个月/年=11.5万元÷39.69万元×12个月/年=3.5个月

保守估计4个月收回全部投资。

售后服务

质量保证:

(1)、换热器系统本厂将提供全程跟踪服务:出厂检验、运输、安装调

试,投入使用后的终身服务.

(2)、我司设备采用高强度锅炉钢,单根热管使用寿命25年,设备整体寿命10年以上。所有出厂设备保修壹年,终身维修。

(3)、接用户报修,24小时响应(正常情况下无故障)。

(4)、本厂每年不定期一次主动上门对设备及系统的运行状况作详细巡查,巡查具体容如下:

A、管超导液是否变质,及换热器的传导情况.

B、换热器工作状态是否良好,外壳是否松动.

其他:

1、向用户提供本设备有关技术方面的咨询。

2、向用户提供操作培训,供方技术人员对需方操作人员进行操作、使用、维护、保养等方面的技术培训。

公司部分热管省煤器图片:

朗瑞环境工程简介

朗瑞环境工程座落在京、津、保的三角交汇处,东迤天津120公里,

北临80公里,京珠高速、京广铁路临门而过,交通十分便利。公司占地面积3.8万㎡,车间面积2万㎡,员工1000多人,年销售收入近两亿元。

朗瑞环境工程专业设计、制造环保设备及节能设备。主要产品有各种规格的翅片管、高频焊螺旋翅片管、不锈钢翅片管、铜铝复合翅片管;热管、碳钢重力热管、铝氨热管;各种定型和非标翅片管散热器,热管换热器。锅炉和余热回收用热管空气预热器、热管省煤器、热管余热锅炉。

我公司生产设备先进,管理体系健全完善,通过了ISO9001:2000质量体系认证。公司投资巨资引进了多条最先进的的高频焊生产线、双金属翅片管轧制设备、热管生产线,年产能力25000吨以上。制造工艺技术先进,设备精良完善,检测设备齐全,保证为客户提供按时提供质量合格的产品。

公司技术力量雄厚,拥有30多人的研发团队,并与国多家高校和科研院所建立了紧密的合作关系。公司与华北电力大学、航空航天大学、中科院热物理研究所联合研制了高性能的热管换热器、翅片管换热器等产品,获得了多项国家专利。

公司成立以来,业务蒸蒸日上,目前已是行多家大型锅炉厂和研究院所的定点合作单位。公司奉行“以科技成就未来,以诚信回馈客户”的经营理念,坚持“能源节约与开发利用并举,污染源头控制与末端

治理相结合”的设计原则,致力于现代科技与实际应用的完美结合,树立了众多的高效节能、综合治理、清洁生产的典工程。特别是热管换热器在冶金、钢铁、电力、石油、化工、建材等行业的应用,受到业界人士广泛认可。

锅炉低温烟气余热回收

锅炉节能工程

烟气余热回收装置技术参数 烟气余热回收型号:JNQ-4 节能器进出水接口尺寸(热水锅炉):DN125 节能器进出水接口尺寸(蒸汽锅炉):DN50 烟气进/出口直径:可根据配套锅炉尺寸¢400 烟气侧阻力:≤50Pa 设备换热材料:耐高温,高频焊螺旋翅片管。 使用我公司节能器,可使烟温从150℃-220℃降到80℃-170℃左右,可使软化水箱循环 加热将锅炉给水从常温给水提高到50℃-80℃,从而使得锅炉效率6.8%以上。 实际节约的总热量由用户的用热情况及烟温可下降的幅度决定。 烟气余热回收装置结构介绍 我公司生产的烟气余热回收装置为整体组装式,安装方便,便于维修。翅片管外走烟气,管内走水,形成间壁式对流换热。 设计结构本身就考虑了水力的均匀分配。所配管束均为一样。实际的使用效果非常好! 烟气侧管箱采用了碳钢材料制造,采用航天高级防腐涂料对与烟气接触部分进行了防腐处理。防腐涂料固化以后表面形成一层瓷釉,可以有效地防止弱酸的腐蚀。达到预期的使用寿命。 设备本身带有冷凝水排放装置,“烟气余热回收装置”最下部设置了冷凝水收集箱及排放口,及时将产生的冷凝水排出,排入下水系统.冷凝水为弱酸性,PH值实测为6左右,不

会对环境造成污染。冷凝水收集箱采用航天高级防腐涂料进行了防腐处理,耐腐蚀性强,使 用可靠。 烟气余热回收装置换热技术介绍 我公司生产的烟气余热回收装置是采用强化翅片换热管结构。整体组装,安装方便,便 于维修。采用强化传热技术,从而能够把烟气中的热量最大程度回收的节能装置。 换热技术说明: 利用换热翅片的特性,通过脱流涡界产生脉动气流,在翅片扩展面间隙中形成具有周期性特性的射流,使原来稳定流动的烟气产生有规律的周期性脉动,交替出现的脉动压力波使原来的层流变为强烈的紊流,受热面的冲刷变得更加剧烈,边界面减薄,气流混合充分,强化了烟气与换热面之间的传热;同时,脉动气体产生的烟气震动使冷凝液膜明显减薄,加快冷凝液滴的脱离速度,强化凝结换热。该强化扩展面传热技术可降低烟气侧的热阻,节省换热面。脉动压力波频率可以选择,通过合理设计,脉动气体产生的烟气振动不会与设备产生共振,运行稳定、安全可靠。换热技术特点: 1、应用范围广,可用于燃油、燃气锅炉、油田加热炉、余热锅炉、直燃机、燃气发电机,燃煤 锅炉低温余热回收(根据不同结构形式可布置在锅炉不同位置)等多种类型设备。气-气,气-汽,气-液等多种介质间传热。适用温度范围:50-300℃ 2、传热系数高,当量传热系数比普通换热器提高2倍以上 3、启动迅速、传热速度快,系统启动数秒就可将烟气温度降到低点,烟气中的水蒸汽迅速凝结 放热,节能效果显著 4、流动阻力小,扩展面为低翅结构,烟气流程短且与散热片同向流动 5、脉动气流及冷凝水可自动清灰和冲刷受热面,使受热面不易结灰垢,不易堵塞 6、结构紧凑,翅片扩展面强化换热,设备体积小,重量轻 7、降噪:独特的内部结构及翅片的扰流效果可以在一定范围内有效降低锅炉烟气排放的噪音 8、环保:烟气中水蒸气的凝结可以吸收烟气中的部分酸性气体,对烟气排放有一定的净化作用

科技项目技术方案烟气余热回收

中国华电集团公司科技工程技术方案

一、工程背景 自电力企业改革后,从体制上根本打破了电力企业集发、输、配、售于一体的局面,火电厂在新的经营模式下面临着日渐

严峻的考验。尤其是近年来煤炭市场放开后,电煤价格的持续上涨,而电、热价格则一路平行。煤炭价格的上涨,使得火电厂的生产成本急剧上升,导致我厂电热价格与成本倒挂问题越发突出,加剧了火电厂的经营困境。在这种情况下,企业如何扭转负债经营的不利局面,成为当务之急,用新技术、新工艺、新方法,挖潜改造,提高机炉热效率、节能减排势在必行。 现锅炉排烟温度按照经典的控制酸露腐蚀条件的设计规范 设计,计算排烟温度已经留有设备保护的余地。目前设计条件下的排烟温度高于酸露点温度的15-18度,实际上排烟温度的计算方面也因为招标对经济指标要求而存在潜在的上 升空间。以国内300MW机组的实际运行的负荷、排烟温度状况,几乎没有一家能够按照设计指标运行。造成排烟温度升高的原因是多方面的。随着运行时间的延长,排烟温度因空预器设备的末端腐蚀而局部积灰、系统阻力增加、过量空气系数增加、排烟温度升高;空气预热器漏风、夏季空气温度升高、煤种变化也使得锅炉远离校核煤种等因素都会引发排烟温度升高。 排烟损失是影响锅炉效率的主要因素,电站锅炉的排烟温度为120~140℃,每降低排烟温度16-20℃,可提高锅炉热效率1%。对于一台300MW的发电机组,平均每年可节约标煤约6000吨。

另外,利用烟气余热提高空预前空气温度和脱硫塔后烟温,可减轻空预器和烟道腐蚀;降低脱硫塔前烟温还可减少脱硫工艺前的喷水量。 要回收低温烟气的余热,就必须有经济和可靠的技术。 国内较早就开始了烟气余热回收技术的开发,并有些技术相继成熟得到应用,但这些技术多停留在早期粗放的阶段,在系统可靠性和余热回收经济性方面都存在明显的不足。 通过合金、陶瓷或塑料等抗低温腐蚀材料做换热材料来进行余热回收的优点是可以将排烟温度降低到烟气酸露点以下,但由于这些材料的导热系数、造价和使用寿命等限制,余热回收的经济性不佳。另外,当换热材料表面发生酸露凝结时,设备表面会形成导热系数更差的粘性灰垢,该类致密的粘性积灰与换热材料表面结合力很强,较难通过吹灰系统清除,甚至使系统堵灰严重而无法正常运行。 传统低温省煤器技术较简单、成熟,但其不仅余热回收的效益低,而且只适于回收排烟温度较高的余热,否则受热面腐蚀和堵灰问题会很严重。该系统如果设计不当,还有发生凝结水汽化的风险。 相变式低温省煤器是为了控制烟道换热器的低温腐蚀而开发,其通过控制中间传热介质(水-汽)的相变参数来控制传热量和烟道换热器壁温,从而提高了系统的可靠性,并可自动将排烟温度降低到最佳的温度。

科技项目技术研究方案[烟气余热回收]

中国华电集团公司科技项目 技术方案 一、项目背景 自电力企业改革后,从体制上根本打破了电力企业集发、输、配、售于

一体的局面,火电厂在新的经营模式下面临着日渐严峻的考验。尤其是近年来煤炭市场放开后,电煤价格的持续上涨,而电、热价格则一路平行。煤炭价格的上涨,使得火电厂的生产成本急剧上升,导致我厂电热价格与成本倒挂问题越发突出,加剧了火电厂的经营困境。在这种情况下,企业如何扭转负债经营的不利局面,成为当务之急,用新技术、新工艺、新方法,挖潜改造,提高机炉热效率、节能减排势在必行。 现锅炉排烟温度按照经典的控制酸露腐蚀条件的设计规范设计,计算排烟温度已经留有设备保护的余地。目前设计条件下的排烟温度高于酸露点温度的15-18度,实际上排烟温度的计算方面也因为招标对经济指标要求而存在潜在的上升空间。以国内300MV机组的实际运行的负荷、排烟温度状况,几乎没有一家能够按照设计指标运行。造成排烟温度升高的原因是多方面的。 随着运行时间的延长,排烟温度因空预器设备的末端腐蚀而局部积灰、系统阻力增加、过量空气系数增加、排烟温度升高;空气预热器漏风、夏季空气温度升高、煤种变化也使得锅炉远离校核煤种等因素都会引发排烟温度升高。 排烟损失是影响锅炉效率的主要因素,电站锅炉的排烟温度为120?140C,每降低排烟温度16-20 C,可提高锅炉热效率1%对于一台300MW勺发电机组,平均每年可节约标煤约6000吨。 另外,利用烟气余热提高空预前空气温度和脱硫塔后烟温,可减 轻空预器和烟道腐蚀;降低脱硫塔前烟温还可减少脱硫工艺前的喷水量。 要回收低温烟气的余热,就必须有经济和可靠的技术。 国内较早就开始了烟气余热回收技术的开发,并有些技术相继成熟得到应用,但这些技术多停留在早期粗放的阶段,在系统可靠性和余热回收经济性方面都存在明显的不足。 通过合金、陶瓷或塑料等抗低温腐蚀材料做换热材料来进行余热回收的

燃气锅炉烟气余热利用的途径及技术要点

燃气锅炉烟气余热 利用的途径及技术要点 燃气锅炉排出的烟气中含有大量余热,目前的燃气锅炉都安装有烟气余热回收装置,但一般都是利用锅炉回水与烟气进行热交换,只回收了烟气中的部分显热。因燃气锅炉烟气中水蒸汽占比较大,且水蒸汽的汽化潜热较大,人们为了提高燃气的利用率,把目光投向了烟气冷凝潜热回收技术。 本文通过对燃气锅炉烟气的特点进行分析,结合烟气余热回收装置的方式,明确烟气余热回收的技术思路,对锅炉房的节能降耗,降低运行成本提供一些参考。 一、烟气组成及热能分析

烟气中烟气温度变化所引起的热量转移为显热,水蒸汽所含的汽化潜热为潜热,也就是水在发生相变时,所释放或吸收的热量。烟气中水蒸汽的体积含量在15-20%左右,潜热可占天然气的低位发热量的10.97%左右。 从此数据可以看出,潜热占排烟热损失的比重是很大的。而利用潜热,必须要把烟气温度降低到水蒸汽露点温度以下,使烟气中的水分由气态变为液态,从而释放烟气潜热,才能实现。 二、烟气中水蒸汽露点温度的确定 烟气中水蒸汽的体积含量在15-20%之间,露点温度一般为 54-60oC之间。如天然气中含有H2S,烟气中还会有SO X。SO X会与烟气中的水蒸汽结合形成硫酸蒸汽,硫酸蒸汽的酸露点温度要比水露点温度要高。所以会使烟气中水蒸汽露点提高。一般烟气中含量愈多,酸露点温度愈高。由于酸露点温度计算复杂且实际烟气组分变化较大,所以在实际应用中采用酸露点分析仪实测一定工况下的酸露点温度。一般烟气SO X含量在0.03%左右时,露点温度可按58-62oC左右估算。 当烟气温度低于露点温度时,烟气中水蒸汽开始凝结,烟温低于露点温度愈大,水蒸汽的凝结率也愈大。凝结率愈大,潜热回收比例也愈大。所以为提高烟气余热回收效率,与烟气进行换热的冷媒温度低于露点温度多些,才能确实做到冷凝换热。按表1估算,烟气余热回收装置的出口烟温一般低于露点温度20-30oC,才可使水蒸汽凝结率达到70-80%。

烟气余热回收技术方案样本

烟气余热回收技术 方案

烟气余热回收利用改造项目 技术方案 ***节能科技有限公司 二O一二年

一、运行现状 锅炉房配备2.1MW锅炉2台(一用一备),供热面积5万m2;**炉配备2.1MW锅炉2台(一用一备),供热面积4.5万m2。经监测,**锅炉房2台锅炉正常运行排烟温度在150--170℃,平均热效率在89%,**锅炉房2台锅炉正常运行排烟温度在160-180℃,平均热效率在88%,(标准应不高于160℃)。锅炉系统运行进出水温差较小,排烟热损失较大,同时影响锅炉热效率的提高,回收利用潜力明显。 二、技术介绍 烟气冷凝回收利用技术是国家第一批特种设备节能技术推荐目录中的成熟技术。有着显著的节能效益。主要原理:1m3天然气燃烧后会放出9450kcal的热量,其中显热为8500kcal,水蒸气含有的热量(潜热)为950kcal。对于传统燃气锅炉可利用的热能就是8500kcal的显热,供热行业中常规计算天然气热值一般以8500kcal/nm3为基础计算。这样,天然气的实际总发热量9450kcal与天然气的显热8500kcal比例关系以百分数表示就为:111%,其中显热部分占100%,潜热部分占11%,因此对于传统燃气锅炉来说还是有很多热量白白浪费掉。 普通天然气锅炉的排烟温度一般在120--250℃,这些烟气含有8%--15%的显热和11%的水蒸气潜热。加装烟气冷凝器的主要

目的就是经过冷凝器把烟气中的水蒸气变成凝结水,最大限度地回收烟气中含有的潜热和显热,使回收热量后排烟温度可降至100℃左右,同时烟气冷却后产生的凝结水得到及时有效地排出(1 nm3天然气完全燃烧后,可产生1.66kg水),而且大大减少了co2、co、nox等有害物质向大气的排放,起到了明显的节能、降耗、减排及保护锅炉设备的作用。从而达到节能增效的目的。 三、改造方案 3.1、设备选型 烟气余热回收器选用瑞典爱瑞科(AIREC)板式烟气热回收器。 瑞典AIREC公司是世界上唯一一家 钎焊式模块化非对称流量板式换热器的 专业生产制造商,凭借独到的设计理 念,雄厚的产品开发能力和多年行业丰 富的实践经验使AIREC成为在非对称流量换热领域的真正领导者。 irCross21由多块板片重叠冲压在一起,在真空和高温的环境下,板片用铜或镍焊接在一起,具有很高的机械强度,更大的传热面积,更高的效率,更轻便小巧。AIREC经过继承CBE(钎焊式换热器)的技术特点,独特的换热器设计板纹,气体/液体应用

燃气锅炉烟气余热回收利用技术浅析

燃气锅炉烟气余热回收利用技术浅析 摘要:随着经济发展迅速,人们对能源的需求越来越大。工业锅炉排烟温度较高,可达160 - 240℃,烟气中含大量热态水蒸气,携带热量可占排烟温度的的55%-75%,使得锅炉热量损失严重,余热回收技术的出现,不仅能够减少有害气体排放量,而且很大程度上缓解了能源供需矛盾。 关键词:燃气;锅炉烟气;余热回收 一、烟气余热回收工作原理 燃气主要成分是CH4,因此燃烧后的烟气中会含有大量的水蒸气,当烟气温度降至55℃左右时,烟气中水蒸气随之冷凝,同时释放大量的汽化潜热。水蒸气总体潜热量约为燃气低位热值的11%,因此降低排烟温度,使烟气中水蒸气冷凝,可以提高天燃气利用效率。 国内目前采用设置有烟气冷凝器、燃气吸收式热泵回收烟气余热两种类型,都可以降低排烟温度,提高燃气利用效率,节省锅炉房燃气用量。随着烟气中水蒸气的冷凝,能够降低排入大气中的水蒸气,冷凝水经过处理后可以回收利用,同时减少氮氧化物、二氧化硫和一氧化碳的排放。 二、改造的基本条件及方案 本论文主要以地窝堡燃气锅炉房改造工程为例,说明改造方案。 (一)基本条件 1、冷源问题 若采用间壁式烟气余热回收方案,冷源所必备条件如下: 锅炉房周围必须要有二级冷源,有条件设置空气预热器的情况下,要求冷源的温度≤40℃(换热器传热端差按5℃考虑)且流量充足。无条件设置空气预热器的情况下,要求冷源的温度≤35℃(换热器传热端差按5℃考虑)且流量充足。 根据业主提供资料,锅炉房周围没有合适的冷源,因此本项目无法采取间壁式烟气余热回收方案;主要考虑热泵烟气余热回收方案。 2、改造锅炉数量及容量的确定 根据锅炉实际运行情况,最终确定本期拟改造的锅炉台数及容量确定为:4台29MW(40t/h)燃气热水锅炉。

烟气余热回收

烟气余热回收 目录 前言 烟气余热回收的方法 编辑本段前言 近十年来,由于能源紧张,随着节能工作进一步开展。各种新型,节能先进炉型日趋完善,且采用新型耐火纤维等优质保温材料后使得炉窑散热损失明显下降。采用先进的燃烧装置强化了燃烧,降低了不完全燃烧量,空燃比也趋于合理。然而,降低排烟热损失和回收烟气余热的技术仍进展不快。为了进一步提高窑炉的热效率,达到节能降耗的目的,回收烟气余热也是一项重要的节能途径。 烟气是一般耗能设备浪费能量的主要途径,比如锅炉排烟耗能大约在15%,而其他设备比如印染行业的定型机、烘干机以及窑炉等主要耗能都是通过烟气排放。烟气余热回收主要是通过某种换热方式将烟气携带的热量转换成可以利用的热量。 编辑本段烟气余热回收的方法 烟气余热回收途径通常采用二种方法:一种是预热工件;二种是预热空气进行助燃。烟气预热工件需占用较大的体积进行热交换,往往受到作业场地的限制(间歇使用的炉窑还无法采用此种方法)。预热空气助燃是一种较好的方法,一般配置在加热炉上,也可强化燃烧,加快炉子的升温速度,提高炉子热工性能。这样既满足工艺的要求,最后也可获得显著的综合节能效果。 此外国内从五十年代开始在工业炉窑上采用预热空气的预热器,其中主要形式为管式、圆筒辐射式和铸铁块状等形式换热器,但交换效率较低。八十年代,国内先后研制了喷流式,喷流辐射式,复台式等换热器,主要解决中低温的余热回收。在100度以下烟气余热回收中取得了显着的效果,提高了换热效率。但在高温下仍因换热器的材质所限,使用寿命低,维修工作量大或固造价昂贵而影响推广使用。 21世纪初国内研制出了陶瓷换热器。其生产工艺与窑具的生产工艺基本相同,导热性与抗氧化性能是材料的主要应用性能。它的原理是把陶瓷换热器放置在烟道出口较近,温度较高的地方,不需要掺冷风及高温保护,当窑炉温度1250-1450℃时,烟道出口的温度应是1000-1300℃,陶瓷换热器回收余热可达到450-750℃,将回收到的的热空气送进窑炉与燃气形成混合气进行燃烧,可节约能源35%-55%,这样直接降低生产成本,增加经济效益。 陶瓷换热器在金属换热器的使用局限下得到了很好的发展,因为它较好地解决了耐腐蚀,耐高温等课题,成为了回收高温余热的最佳换热器。经过多年生产实践,表明陶瓷换热器效果很好。它的主要优点是:导热性能好,高温强度高,抗氧化、抗热震性能好。寿命长,维修量小,性能可靠稳定,操作简便。是目前回收高温烟气余热的最佳装置。目前,陶瓷换热器可以用于冶金、有色、耐材、化工、建材等行业主要热工窑炉。 烟气余热回收的其它方式:

余热回收设计方法

恒昌焦化 焦炉烟气余热回收项目 设计方案 唐山德业环保设备有限公司 二〇一二年三月 一、焦化工艺概述: 备煤车间送来的配合煤装入煤塔,装煤车按作业计划从煤塔取煤,经计量后装入炭化室内。煤料在炭化室内经过一个结焦周期的高温干馏制成焦炭并产生荒煤气。 炭化室内的焦炭成熟后,用推焦车推出,经拦焦车导入熄焦车内,并由电机车牵引熄焦车到熄焦塔内进行喷水熄焦。熄焦后的焦炭卸至凉焦台上,冷却一定时间后送往筛焦工段,经筛分按级别贮存待运。 煤在炭化室干馏过程中产生的荒煤气汇集到炭化室顶部空间,经过上升管、桥管进入集气管。约800℃左右的荒煤气在桥管内被氨水喷洒冷却至84℃左右。荒煤气中的焦油等

同时被冷凝下来。煤气和冷凝下来的焦油等同氨水一起经过吸煤气管送入煤气净化车间。 焦炉加热用的焦炉煤气,由外部管道架空引入。焦炉煤气经预热后送到焦炉地下室,通过下喷管把煤气送入燃烧室立火道底部与由废气交换开闭器进入的空气汇合燃烧。燃烧后的废气经过立火道顶部跨越孔进入下降气流的立火道,再经蓄热室,又格子赚把废气的部分显热回收后,经过小烟道、废气交换开闭器、分烟道、总烟道、烟囱排入大气。 对于其中经总烟道进入烟囱热烟气的仍有较大的余热回收价值。 二、余热回收工艺流程图 技术方案如下:该系统由热管蒸气发生器、软水预热器、汽包、上升管、下降管、外连管路和控制仪表等组成,并且互相独立。 主要技术特点: 1、地下烟道开孔技术:如何实现地下主烟道在焦炉正常行产情况下在线开孔,是本项目成功实施的第一关键。我公司根据多次地下烟道的开孔经验,成功总结出一套行之有效施工方案。 地下烟道路截面尺寸如上图所示。

余热回收方案样本

_______有限公司 导热油炉-余热回收装置 项 目 说 明 书 目录 1.摘要 (1) 2.公司营业执照和资质证书复印件 (1) 3.授权委托书 (2) 4.用户供热系统分析、节能分析及节能计算 (3) 5. 热量回收计算

表 (4) 6.热管技术介绍 (5) 7.国内常见余热回收方式对比分析 (9) 8.热管余热回收解决方案 (10) 9. 施工方案 (12) 10. 工程报价及付款方式 (13) 11.售后服务 (14) 12.公司部分实体图片 (15) 13.公司简介 (16)

摘要 本文详细某公司供热系统余热回收工程方案, 分析某公司供热系统并对余热回收技术做了系统的描述, 根据工作需求及工作背景做出技术解决方案、施工方案、工程报价、节能分析、售后服务, 对超导热管技术做了较为具体的描述。本文还对国内各种常见余热回收方式做了系统比较。

授权委托书 本授权委托书声明: 我 ( 公司名称) 现授权委托本公司( 单位名称) 的 ( 姓名) 为我公司代理人, 以本公司的名义参加某公司, 的2台600万大卡导热油炉余热回收工程的业务洽谈。代理人在合同谈判过程中所签署的一切文件和处理与之有关的一切事务, 我均予以承认。 代理人无转委权。特此委托。 代理人: 性别: 年龄: 单位: 本公司部门: 职务: ( 签字或盖章) 日期: 8月31日

供热系统分析 某公司当前2台600万大卡燃煤导热油炉, 在能源日趋紧张的背景下, 同时企业的经营成本不断上升。排烟温度在280℃以上, 造成很大的资源浪费。 备注: 根据现有锅炉情况, 排烟温度为280℃以上, 其节能有很大的空间, 因为其烟气量较大, 热焓高。 节能分析 某公司导热油炉能够改进节能设备: 在导热油炉与引风机之间加装热管余热回收器, 烟气温度由300℃降到130℃左右, 每小时可产生173度的蒸汽1.15吨, 回收74万大卡的热量, 为企业带来可观的经济效益。 节能计算 每小时回收74万大卡热量, 按煤燃烧值5000大卡、锅炉效率80%计算, 每小时可省煤 74万大卡÷5000小时÷80%=185公斤/小时 按煤价650元/吨, 每小时节省费用 185公斤/小时×0.65元/公斤=120元/小时 每年锅炉运行时间按7200小时计, 则每年可节约 120元/小时×7200小时=86万元 设备总投资约16万, 则设备的回报周期为: 16万/( 86万/12月)=2.23个月, 保守估计3个月收回全部

冷凝燃气锅炉烟气余热回收利用研究

冷凝燃气锅炉烟气余热回收利用研究 摘要近些年来,随着经济社会的快速发展,国家对环境保护、节约资源、能源综合利用等提出了较高的要求。在北京市集中供热系统中,燃气锅炉得到了广泛的应用,而燃气锅炉所排放的烟气具有较高的温度,可以采取有效措施来降低烟气排放温度,并实现对烟气余热的有效回收,其不仅可以使燃气锅炉的供热效率得到有效提升,而且还可以达到比较理想的节能效果。本文将会以北京市某热源厂为例来对冷凝燃气锅炉烟气余热回收利用技术进行探究。 关键词冷凝燃气锅炉;烟气余热;回收利用 如今,随着燃气锅炉在供热行业中的广泛应用,与燃煤锅炉相比具有热效率更高、污染更小等特点。在锅炉中天然气燃烧过程中,将会有大概92%左右能量转化为热量、7%左右为排烟热损失、1%左右表面散热损失掉。因此,做好烟气余热回收利用工作就显得尤为重要。通常情况下,很大一部分烟气中的余热存在于水蒸气中,在回收显热、降低烟气温度的同时,会有效回收烟气中的水蒸气潜热,从而实现烟气全热的正回收。烟气余热回收利用主要是以天然气为驱动源,借助回收型热泵机组,就能够使锅炉排烟从80℃降至30℃,从而使大量的水蒸气冷凝潜热被回收,这样既可以达到节省燃气锅炉燃气耗量的目的,而且还可以降低PM2.5雾霾形成物的排放,达到节能减排的双重效果。 1 冷凝燃气锅炉烟气余热回收利用技术 1.1 利用换热器烟气余热回收技术 在烟气余热回收利用技术中,换热器是比较常用的设备,对其进行科学、合理的选择尤为关键,根据换热方式的差异,可以将烟气余热回收利用方式划分为直接接触式换热型、间接接触式换热型[1]。 (1)直接接触式换热器。直接接触式换热通常是以直接接触的方式来实现两种介质相互传热传质的过程。通常情况可以根据接触结构的不同划分为折流盘型、多孔板鼓泡型和填料型如图1所示。因为我国供热供回水温度相对比较高,导致直接接触式换热型换热器在烟气余热回收利用过程中并未得到广泛的应用。(2)间接接触式换热器。间接换热通常是指在被壁面分隔来的空间里冷热介质可以实现独立流动,并通过壁面来使实现冷热介质的换热。在烟气余热回收利用技术中,常用的间接接触式换热器有热管换热器、翅片管换热器和板式换热器. 1.2 利用热泵回收烟气余热技术 在燃气锅炉中,天然气燃烧过程中所产生的烟气露点在55—65℃之间,在进行回收烟气冷凝余热阶段,一般要求供热回水温度在烟气露点温度范围以内。一旦供热回水温度超过了烟气露点温度,则需要借助热泵回收烟气冷凝余热来实现预热供热回水。目前,在烟气余热回收利用过程中,吸收式热泵回收烟气余热

燃气锅炉排烟温度降低对烟气扩散的影响分析

燃气锅炉排烟温度降低对烟气扩散的影响分析锅炉烟气中蕴含着大量的显热和潜热,充分利用烟气中的热量可以减少能源消耗,从而实现污染物减排。天然气锅炉烟气含湿量较高,水蒸气冷凝过程会放出大量的气化潜热,同时产生大量的水,且天然气杂质较少,凝结水相对清洁,因此天然气的烟气余热回收成为研究的热点。在供热系统中,燃气锅炉烟气余热回收可以采取不同的技术路线。最常见的是在常规燃气锅炉尾部增设冷凝式换热器,这方面的研究包括传热理论与实验研究[1-4]、强化传热与防腐研究[5-7]、冷凝换热装置的设备开发及示范工程的应用等[8-9]。 燃气锅炉烟气的露点在55℃左右(过剩空气系数在1.15时),只有被加热介质温度低于55℃才能回收烟气中的冷凝热,在30℃甚至以下才能取得更好的热回收效果。在我国的集中供热领域,热网回水温度一般在50℃以上,因此不能充分回收烟气冷凝热。这种直接在燃气锅炉尾部增设冷凝式换热器的方法往往只能回收烟气的部分潜热,不能实现冷凝热的深度回收。 近年来随着吸收式换热技术[10-11]的日趋成熟,利用吸收式换热技术可以实现烟气余热的深度利用,系统利用吸收式热泵产生一种低温冷介质,使得烟气的排烟温度更低,余热回收更彻底,水蒸气被大量冷凝下来,节能和环保效果均更为显著,这种技术路线逐步得到了业内人士的认可并备受关注。文献[12]介绍了这种技术,并就该系统及余热回收装置进行了传热理论与实验研究、冷凝换热装置的设计和设备开发,并陆续在几个锅炉房中成功应用。随着新技术的应用,水蒸气被冷凝的量越来越大,烟气中的碳氧化物、氮氧化物等污染物会溶于冷凝液中,从而减少了直接排放到大气环境中的各种污染物的量,其减排总量多大?该技术使系统的排烟温度越来越低,可以做到低于30℃排放,排烟温度的降低对污染

热管技术在有机热载体锅炉烟气余热回收上的应用(2021年)

热管技术在有机热载体锅炉烟气余热回收上的应用(2021 Safety management is an important part of enterprise production management. The object is the state management and control of all people, objects and environments in production. ( 安全管理 ) 单位:______________________ 姓名:______________________ 日期:______________________ 编号:AQ-SN-0371

热管技术在有机热载体锅炉烟气余热回收 上的应用(2021年) 绍兴是一个纺织印染大市,全市有2万余台有机热载体锅炉,其中燃煤有机热载体锅炉占到70%以上,燃煤有机热载体锅炉尾部排烟温度达到320℃以上,烟气带走的热量为30%--40%,造成大量的热量浪费。根据国家TSGG0002-2010《锅炉节能结束监督管理规程》的要求,尾部烟气温度过高,必须装节能装置,降低排烟温度。 为积极响应绍兴市节能减排的需要,我公司开发出一系列热管式余热锅炉,并在印染行业得到了广泛应用,降低了燃煤有机热载体锅炉排烟温度,取得了较好成绩、 1.热管技术回收有机热载体锅炉烟气余热主要用途 在燃煤有机热载体锅炉尾部受热面中,热管技术主要有以下用

途: 1.1.生产热水和蒸汽。利用有机热载体锅炉排烟温度300~400℃中,高温烟气余热,产生50-90℃的热水,也客气产生0.8Mpa及以下蒸汽,可以广泛用于生活和工艺用热。 1.2.预热空气。燃煤有机热载体锅炉具有排烟温度高,效率低的特点,在燃烧过程中,煤没有充分燃烧,可以用来加热空气,提高鼓风机进口空气温度,提高工作效率。 2.热管技术原理和回收装置构造 2.1.热管技术原理 热管是一个内部抽成真空并充以一定量高纯度工质的密封管,形状无特殊限制.全管分为加热段、放热段、绝热段。在工作时,工质在加热段吸热汽化,到放热段凝结放出热量,并回流到加热段重新吸热,从而将热量从一端传递到另一端,以达到热交换之目的。 以热管为传热元件的热管式余热锅炉(气一汽型热管换热器),具有超常规的优良特性,特别是在余热回收中,发挥着重要作用. 2.2.回收装置结构

空压机余热回收方案

空压机余热利用中央热水系统设计案 致: 根据贵员工宿舍中央热水系统工程项目的邀请,设计施工市森茂节能环保工程有限公司,按贵要求,为该公司员工的热水工程提供空压机余热利用中央热水系统,设计案包括如下容。 第一部分工程概述(P2-4) 第二部分空压机余热利用装置的综合优势(P5-6) 第三部分工程设计案详解(P7-11) 第四部分施工组织计划(P12-13) 第五部分售后服务(P14) 第六部分经济效益分析(P15-P16) 后附:工程概算报价单1份 工程图纸 1

第一部分工程概述 1.1用户需求 1.1.1现用户热水使用情况 现贵司要求我公司对员工楼热水供应系统提供设计案,贵司现有员工3000人左右,员工宿舍楼2栋,每栋共20层,现需增加空压机余热回收系统供热水。1.1.2 空压机机使用情况 现对贵司9台旧空压机及新增4台新空压机进行余热回收改造,空压机余热回收机放置于污水处理厂旁的空压机房,一般情况下13台空压机每天工作24个小时。1.1.3 热水工程改造需求 本着降低企业运营成本及环保的目的,贵司现要求我公司对其热水系统进行改造。改造式为利用螺杆式空压机余热加热热水,实现零费用获取热水的效果。 本工程对13台空压机加装余热利用装置。分两套系统安装,本工程完工后,基本满足3000人的热水供应,供水标准为33KG/人,总供水量约100吨/日,供水式为不定时不定量,热水温度在55℃以上。 1.2 工程总案 根据贵公司的实际情况,我公司为贵公司设计热水系统,将对贵公司现有的13台螺杆式空压机加装余热利用装置,所得热水储存于宿舍楼楼顶的保温水箱,再将热水管

道接入宿舍楼各宿舍洗手间。 1.2.1循环加热输送管道 本工程热泵为我公司的螺杆式空压机余热利用装置,因输送管道过长,所以在空压机房及厂房楼顶各安装了两个转箱,保暖水箱里的水通过循环水泵送入余热利用装置加热,再送回保暖水箱,如此不断往复循环,保证水箱里面的水不断得到加热。 根据贵公司的实际情况,我公司为贵公司设计热水系统,将对贵公司现有的13台螺杆式空压机加装13台“森茂”牌空压机余热利用主机,自来水经冷水管的补水电磁阀输送到保温水箱,经主机换热器与空压机的高温油进行热交换,冷水温度慢慢升高,最终的热水温度即为显示面板控制器所指定的温度。所得热水储存于宿舍楼楼顶的保温水箱,再将热水管道接入宿舍楼各宿舍洗手间。 在管路上水箱、水泵、换热器两头及各预留检修处,均安装铜制优质阀门,另在保暖水箱出口及换热器出口处安装水过滤器各1个。 1.2.2保暖水塔 贵司安装两个50吨保暖水箱,即可满足贵公司员工的用水要求。水箱材质为双层不锈钢,50mm厚聚脂泡沫保溫层,24小时温降5℃以。 1.2.3 换热装置 本工程将对13台螺杆式空压机加装余热利用装置,分两套系统,每小时分别可产水800L以上,10小时可产水160吨,完全可以满足员工的用水要求。 1.2.4 补水系统 补水系统使用水位开关、电磁阀、温度控制器控制

600万大卡导热油炉烟气余热回收方案讲解

实益长丰纺织有限公司 600万大卡导热油炉-余热回收装置 项 目 说 明 书 目录

1.摘要 (1) 2.公司营业执照和资质证书复印件 (1) 3.授权委托书 (2) 4.用户供热系统分析、节能分析及节能计算 (3) 5. 热量回收计算表 (4) 6.热管技术介绍 (5) 7.国内常用余热回收方式对比分析 (9) 8.热管余热回收解决方案 (10) 9. 施工方案 (12) 10. 工程报价及付款方式 (13) 11.售后服务 (14) 12.公司部分实体图片 (15) 13.公司简介 (16)

摘要 本文详细介绍了英德市实益长丰纺织有限公司供热系统余热回收工程方案,分析英德市实益长丰纺织有限公司供热系统并对余热回收技术做了系统的描述,根据工作需求及工作背景做出技术解决方案、施工方案、工程报价、节能分析、售后服务,对超导热管技术做了较为具体的描述。本文还对国内各种常用余热回收方式做了系统比较。

2 供热系统分析 英德市实益长丰纺织有限公司目前1台600万大卡燃煤导热油炉,在能源日趋紧张的背景下,同时企业的经营成本不断上升。排烟温度在280℃以上,造成很大的资源浪费。 备注:根据现有锅炉情况,排烟温度为280℃以上,其节能有很大的空间,因为其烟气量较大,热焓高。 节能分析 英德市实益长丰纺织有限公司导热油炉可以改进节能设备: 在导热油炉与引风机之间加装热管余热回收器,烟气温度由300℃降到130℃左右,每小时可产生173度的蒸汽1.15吨,回收74万大卡的热量,为企业带来可观的经济效益。 节能计算 每小时回收74万大卡热量,按煤燃烧值5000大卡、锅炉效率80%计算,每小时可省煤 74万大卡÷5000小时÷80%=185公斤/小时 185公斤/小时×24/天×320天=1420800公斤/每年 1420800公斤÷1000=1402.8吨 1402.8吨×0.7143=1001tce(每年可节省) 按煤价650元/吨,每小时节省费用 185公斤/小时×0.65元/公斤=120元/小时 每年锅炉运行时间按7200小时计,则每年可节约 120元/小时×7200小时=86万元 设备总投资约16万,则设备的回报周期为: 16万/(86万/12月)=2.23个月,保守估计3个月收回全部投资。

燃气锅炉烟气余热回收利用技术分析

燃气锅炉烟气余热回收利用技术分析 发表时间:2018-07-23T17:48:12.747Z 来源:《知识-力量》2018年8月上作者:李言 [导读] 燃气锅炉排放出的烟气温度较高,设备温度损失较大,为了提升燃气热能利用率,热力公司需合理应用燃气锅炉烟气余热回收利用技术。 (西安市热力总公司,陕西省西安市 710016) 摘要:燃气锅炉排放出的烟气温度较高,设备温度损失较大,为了提升燃气热能利用率,热力公司需合理应用燃气锅炉烟气余热回收利用技术。现阶段,可采用的烟气余热回收利用技术有利用换热器回收烟气余热技术、利用热泵回收烟气余热技术两种,前者的技术装置有间接接触式余热回收换热器、直接接触式余热回收换热器两种,后者的技术装置有电压缩式热泵、吸收式热泵两种。在实际应用过程中,根据烟气余热回收级数可分为单级余热回收供热型和双级余热回收供热型两种。 关键词:燃气锅炉;烟气余热;回收利用技术 在环保型社会建设过程中,生态环保已成为各个行业发展的战略制高点,如何降低生产过程中污染物的排放量,实现对于生产资源的循环高效利用,是现阶段生产工艺优化的目标。燃气锅炉是集中供热系统中的关键性设备,一般来说,设备运行时的排烟温度是比较高的,其中蒸汽型燃气锅炉的排烟温度可达200℃至250℃,热水型燃气锅炉的排烟温度可达115℃至180℃,在这一过程中,面临着较大的温度损失[1]。为了减少燃气锅炉排烟造成的热量损失,热力公司一般会采用常规省煤器及空气预热器等烟气余热回收设备,不过这些设备仅能回收部分热量,燃气锅炉运行时的供热效率只能达到80%至90%,还有10%左右的天然气热值无法回收利用。针对这一现状,人们加大了对于燃气锅炉烟气余热回收利用技术的研究,并将有效技术推广在工业实践中。 1. 燃气锅炉烟气余热回收利用技术 1.1利用换热器回收烟气余热技术 换热器是常见的燃气锅炉烟气余热回收利用设备,根据换热方式的不同,这一设备可分为两种类型: ①间接接触式余热回收换热器。包括翅片管换热器、热管换热器、板式换热器三种,通过在壁面分开空间中独立流动的冷热介质来进行换热。不同的间接换热器有不同的优点,其中,翅片管换热器具有热传递效率高、结构紧凑、材材质丰富且结垢少的优点,热管换热器具有结构简单、质量轻、体积小、传热系数高的优点,板式换热器结构紧凑、质量轻、节能效果显著的优点; ②直接接触式余热回收换热器。这一设施的传热递质直接接触,根据接触结构的不同,可分为多孔板鼓泡型、折流盘型、填料型三种,在这一技术装置应用过程中,接触换热强度会受到介质接触面积、气液比、湍流强度、换热器高度、水滴雾化粒径等因素的影响,不过由于我国供热供回水温度过高的原因,直接接触式余热回收换热器的应用可行性不高,于是人们提出了基于空气加湿的直接接触换热冷凝式燃气锅炉的概念[2]。 1.2利用热泵回收烟气余热技术 燃气锅炉产生的烟气,其露点为55℃至65℃,当供热回水温度控制在这一温度范围之内,便可利用热泵回收烟气冷凝余热,用于预热供热回收。在此过程中,看根据燃气锅炉容量大小,选择合适的热泵,一般来说,0.01MW至10MW的锅炉可选电压缩式热泵,将之于烟气冷凝余热回收装置相结合,其中,烟气余热回收装置作为压缩式热泵蒸发器而存在,或者是,将装置内的循环水作为压缩式热泵的低温侧热源,用于预热热网回水[3]。 除此之外,还有一种利用吸收式热泵回收烟气预热的技术,其中采用的吸收式热泵,可分为闭式吸收式热泵及开式吸收式热泵两种。在这一技术应用过程中,人们经过试验提出了不同构想,比如说第一类吸收式热泵与冷凝换热器结合使用,利用低温循环水盘管换热器与烟气之间的间接换热,来回收烟气预热,同时规避了换热器腐蚀的问题;比如说将吸收式热泵与直接接触式换热器结合使用,可全部回收烟气显热和冷凝潜热,换热效率高。 2.烟气余热回收利用技术在集中供热系统中的应用 在集中供热系统中,根据烟气余热回收级数,可见烟气余热回收技术分为单级余热回收供热型和双级余热回收供热型两种。 2.1单级余热回收供热型 在热力公司中,可采用的单级余热回收供热型有以下两种类型: ①余热热网回水,即利用天然气驱动的吸收式热泵,通过烟气-水换热装置,回收烟气余热,得到的热水可作为低温热源,将之用于预热一次热网回水,一次热网回水经锅炉加热后,可给一次网供水,能够将燃气能源的利用率提升10%以上,技术投资可在3至4年内回收; ②供生活热水。利用烟气冷凝热回收装置,收集余热用于加热生活热水,同时烟气凝结的水可为空调系统补水,在酒店天然气直燃机改造中应用过,设备热效率提升11%[4]。 2.2双级余热回收供热型 双级余热回收供热型装置,通过高温烟气来加热热网回水,然后再利用热泵机组回收烟气中的余热,利用加热热泵机组高温侧加热热网回水,使之都能达到客户需求的供水温度。装置中的换热器可根据实际情况变化,采用双级换热装置,可大幅度降低燃气烟气温度,并实现燃气热值的最大化利用,为供热用户提供较高的热网供水温度。 3.结语 燃气锅炉烟气余热回收利用技术应用的目的,是为了最大程度利用天然气热值,提升燃气锅炉的供热效率,其理论依据为:当燃气锅炉排烟温度降低,烟气理论可回收热量减少,锅炉理论供热效率提升。也就是说,将排烟温度降低至烟气露点,便可获得较高的燃气锅炉理论热效率,比如说,当将烟气的排放温度从 180 ℃降低到 35 ℃至 40 ℃,燃气锅炉的理论供热效率便可提升13.8% 至15.2%[5]。除此之外,还可以采取回收烟气中水分的方式,来提燃气锅炉供热效率,降低烟气污染物排放量。现阶段,我国工业中采用的烟气余热回收技术有利用换热器回收烟气余热技术、利用热泵回收烟气余热技术两大类,其技术装置仍有改进的余地,且新型技术仍在不断开发的过程中。参考文献

燃气锅炉烟气余热回收利用技术

燃气锅炉烟气余热回收利用技术 发表时间:2018-09-18T20:51:04.930Z 来源:《基层建设》2018年第26期作者:李杨 [导读] 摘要:随着能源价格的日益增长,以及环境污染的日趋严重,对燃气锅炉烟气余热进行回收已经成了一个越来越重要的话题,燃气锅炉烟气的余热回收技术是一种进行余热回收和热量再次利用的设计,这是针对锅炉尾部烟气的余热而实施的。 天津泰达热电有限公司天津 300457 摘要:随着能源价格的日益增长,以及环境污染的日趋严重,对燃气锅炉烟气余热进行回收已经成了一个越来越重要的话题,燃气锅炉烟气的余热回收技术是一种进行余热回收和热量再次利用的设计,这是针对锅炉尾部烟气的余热而实施的。本文对锅炉烟气余热回收方式以及回收装置进行简单介绍,并对烟气余热回收技术进行了节能意义及经济效益评估,希望为该项工作的开展提供参考。 关键词:燃气锅炉烟气;余热回收;热泵技术应用 燃气锅炉是工业生产中经常被运用的设备,燃气的燃烧会产生余热,余热是二次能源利用的一种。锅炉的烟气排放是造成热能动力损耗的原因,而且直排烟气还会造成环境污染。另一方面,如果不进行处理,锅炉排烟的温度远远超过100℃,造成烟气“白烟”。如何积极的利用锅炉燃烧中产生的余热进行二次投入,对于提高锅炉的各项效率减少污染的排放率尤其重要。同时烟气余热回收满足日益严格的环保“消白烟”要求。 1、锅炉烟气余热回收技术利用 1.1锅炉烟气余热回收利用的难点及解决方法 对锅炉的烟气余热进行回收的实际应用当中,存在一定程度的障碍,如果采用常规的换热器,一旦排烟温度比较低,则会导致锅炉尾部受热面中的烟气和工制存在着温差传热减小的趋势,导致传热面积被增大,由于布置的管道多而密,局限在有限的空间之内,会造成烟气流阻力大,以及金属消耗和动力消耗比较大,导致设备初期的投资大幅度增加[1]。同时由于燃气锅炉节能器后烟气温度本身不高,进行回收困难。 热泵式烟气回收技术是这几年新兴的技术,很多地方环保局鼓励企业进行热泵烟气余热回收的技术改造。烟气冷凝热回收原理是在燃气锅炉之后设置烟气冷凝热换热器,利用锅炉尾部的低温烟气的余热进行低温换热(在锅炉回水温度70℃时,锅炉的排烟温度从约90℃降低到40℃以下;在锅炉回水温度60℃时,锅炉的排烟温度从约90℃降低到30℃以下),通过系统循环水,置换出烟气的低温余热,同时,采用吸收式热泵技术吸收循环水的热量,转化为低温热水,通过补燃天然气进一步将锅炉回水加热到目标温度。锅炉排放烟气经冷凝热回收后烟气温度降低,烟气中的水份凝结后回收,因此,本系统对于节能、节水、提高系统的综合利用效率都有重要意义。 1.2热泵式烟气余热回收装置的结构与应用介绍 热泵烟气余热回收系统由吸收式热泵、接触式换热塔和循环水泵组成。接触式换热塔负责将烟气中的余热转移至水中,吸收式热泵负责将循环水中的余热转移至高温热水中。通过这两个步骤,烟气低温余热便可转移至高温热水中。 接触式换热塔是烟气与水换热的设备,换热塔中布满填料,循环水自上喷淋,烟气自下而上流动,烟气和水直接接触换热。换热过程中,烟气的温度下降至30℃,热量转移至循环水中,烟气中的水蒸气和酸性可溶物也同时混入循环水中。通过水质在线管理,可以保证循环水水质满足热泵的使用要求。 吸收式热泵是一种可以将低温热量转移至高温热源中的设备。其原理为,以溴化锂浓溶液为吸收剂,水为蒸发剂,利用水在低压真空状态下低沸点沸腾的特性,提取低位余热源的热量,通过吸收剂回收热量并转换制取工艺性或供暖用的热水。 1.3烟气余热同收方式对比 传统的烟气余热回收可通过节能器及空气预热器进行余热回收。空预器技术通过空气提高进入锅炉的温度来实现用加热空气燃烧用进行,通过排烟温度的降提高炉膛温度的降低,节能器通过提高热网回水全部或部分温度来降低烟气温度。举例某供热锅炉,两种回收余热排烟方式均被利用,烟气余温40-50摄氏度。冬季时仍有明显白烟冒出。 和传统方式相比,热泵烟气余热回收系统存在独特的技术优势。 1.4烟气余热同收方式对比经济效益 以某热源厂2*29MW燃气热水锅炉为例: 天然气热值10kwh/Nm3 气价3.05元/ Nm3 每年采暖时长3000小时电价0.81元/kwh 采暖年平均负荷率 50% 采暖回水温度对余热回收影响系数0.75 锅炉排烟温度150℃余热回收后的排烟温度30℃ 锅炉热效率 91% 直燃吸收式热泵效率170% 29MW燃气锅炉的排烟量约 40000 m3/h, 150℃烟气密度0.85kg/ m3,焓值479.9KJ/kg 30℃烟气焓值105 KJ/kg, 每台锅炉可回收的烟气热量 40000×0.85×(479.9-105)×0.5×0.75=4.77GJ/h 五台锅炉每个采暖季回收的热量 4.77×3000×2=28620GJ 折合锅炉耗气量:28620×278÷10÷0.91=87.2万Nm3 价值:87.2×3.05=265万元 系统每年运行增加的电费:8万元

相关文档