文档视界 最新最全的文档下载
当前位置:文档视界 › 解析几何与圆锥曲线综合1

解析几何与圆锥曲线综合1

解析几何与圆锥曲线综合1
解析几何与圆锥曲线综合1

解析几何与圆锥曲线综合1

一、填空题

(每空5 分,共

65 分)

1、设椭圆C:的右焦点为F,过点F的直线与椭圆C相交于A,B两点,

直线

的倾斜角为60o,.则椭圆C的离心率是.

2、已知,且,则的最小值为 .

3、已知向量,则的充要条件是= 。

4、双曲线=1(b ∈N)

的两个焦点F1、F2,

P为双曲线上一点,|OP|<5,|PF1|,|F1F2|,|PF2|成等比数列,

则b

2=_________.

5、如图,过抛物线焦点的直线依次交抛物线与圆于点A

、B、C、D,则的值

是________

6、已知有公共焦点的椭圆与双曲线中心为原点,焦点在轴上,左右焦点分别为,

且它们在第一象限的交点为P,是以为底边的等腰三角形.若,双

曲线的离心率的取值范围为

.则该椭圆的离心率的取值范围是

.

7

、已知F1、F2分别为双曲线(

a

>0

,b >0)

的左、右焦点,若双曲线左支上存在一点P使得

=8a

,则双曲线的离心率的取值范围是

8、给出以下三个命题:

(A

)已知是椭圆上的一点,、是左、右两个焦点,若

的内切圆的半径为,则此椭圆的离心率;

(B)过椭圆上的任意一动点,引圆

的两条切线、

,切点分别为、

,若,则椭圆的离心率的取值范围为;

(C)已知、,是直线上一动点,则以、

为焦点且过点的双曲线的

离心率的取值范围是。

其中真命题的代号是(写出所有真命题的代号)。

9、若椭圆的焦点在轴上,过点(1,)作圆的切线,切点分别为A,B,直线恰

好经过椭圆的右焦点和上顶点,则椭圆方程是

10、已知F1、F2分别为双曲线C :

- =1的左、右焦点,点A∈C,点M的坐标为(2,0),AM为∠F1AF2的

平分线.则|A F2| = .

11、若直线被圆所截的弦长不小于2,则在下列曲线中:

①②

与直线一定有公共点的曲线的序号是 . (写出你认为正确的所有序号)

12

、已知当mn

取得最小值时,直线

与曲线的交点个

数为.

13

、若双曲线-=1

的渐近线与圆相切,则此双曲线的离心率为.二、简答题

(共65 分)

14、如图,

已知椭圆

的左右顶点分别是,

离心率为,设点,

连接

交椭圆于点

,坐标原点是.(8分)

(1)证明:

(2

)设三角形

的面积为

,四边形

的面积为,

的最小值为1,求椭圆的标准方程.

15、

已知椭圆的中心在坐标原点,焦点在轴上,左顶点为,

左焦点为,点

在椭圆

上,直线

与椭圆交于

两点,直线

,分别与轴交于点.(8分)

(1

)求椭圆的方程;

(2)在

轴上是否存在点

,使得无论非零实数

怎样变化,总有

为直角?若存在,求出点的坐

标;若不存在,请说明理由.

16、已知双曲线C

-=1

的离心率为,点(,0)是双曲线的一个顶点。(10分)

(1)求双曲线的方程;

(2)经过双曲线右焦点F2作倾斜角为30°的直线l,直线l与双曲线交于不同的A,B两点,求AB的长。

17

、已知椭圆

的离心率为,以椭圆的一个短轴端点及两个焦点构成的三角形的面积

为,圆C

方程为.(12分)

(I)求椭圆及圆C的方程;

(II)过原点O作直线l与圆C交于A,B

两点,若,求直线l的方程.

18

、已知点是中心在原点,长轴在x轴上的椭圆的一个顶点,离心率为,椭圆的左右焦点分别为F1

和F2.(12分)

(1)求椭圆方程;

(2)点M在椭圆上,求⊿MF1F2面积的最大值;

(3)试探究椭圆上是否存在一点P

,使,若存在,请求出点P的坐标;若不存在,请说明理由。

19

、如图,曲线

由曲线

和曲线组成,其中点

为曲线所在圆锥曲线的焦点,点

为曲线所在圆

锥曲线的焦点.(15分)

(Ⅰ)若

,求曲线的方程;

(Ⅱ)如图,作直线

平行于曲线

的渐近线,交曲线于点A、

B,

求证:弦AB的中点M

必在曲线的另一条渐近线上;

(Ⅲ)对于(Ⅰ)中的曲线

,若直线

过点

交曲线于点C、D,求△CDF1 面积的最大值.

三、计算题(共30 分)

20、已知焦点在

轴上的椭圆

过点

,且离心率为,

为椭圆的左顶点.(12分)

(Ⅰ)求椭圆的标准方程;

(Ⅱ)已知过点

的直线与椭圆

交于,两点.

(ⅰ)若直线垂直于

轴,求的大小;

(ⅱ)若直线与

轴不垂直,是否存在直线

使得

为等腰三角形?如果存在,求出直线的方程;如

果不存在,请说明理由.

21

、已知函数,其中是常数.(10分)

(Ⅰ)当时,求

曲线在点处的切线方程;

(Ⅱ)若存在实数,使得关于

的方程

上有两个不相等的实数根,求的取值范围.

22、

已知抛物线的焦点为F,过点F

作直线与抛物线交于A,B两点,抛物线的准线与

轴交于点C.(8分)

(1

)证明:;

(2

)求的最大值,并求取得最大值时线段AB的长。

圆锥曲线知识点整理

高二数学圆锥曲线知识整理 解析几何的基本问题之一:如何求曲线(点的轨迹)方程。它一般分为两类基本题型:一是已知轨迹类型求其方程,常用待定系数法,如求直线及圆的方程就是典型例题;二是未知轨迹类型,此时除了用代入法、交轨法、参数法等求轨迹的方法外,通常设法利用已知轨迹的定义解题,化归为求已知轨迹类型的轨迹方程。因此在求动点轨迹方程的过程中,一是寻找与动点坐标有关的方程(等量关系),侧重于数的运算,一是寻找与动点有关的几何条件,侧重于形,重视图形几何性质的运用。 在基本轨迹中,除了直线、圆外,还有三种圆锥曲线:椭圆、双曲线、抛物线。 1、三种圆锥曲线的研究 (1)统一定义,三种圆锥曲线均可看成是这样的点集:? ?????>=0e ,e d |PF ||P ,其中 F 为定点,d 为P 到定直线的距离,如图。 因为三者有统一定义,所以,它们的一些性质,研究它们的一些方法都具有规律性。 当01时,点P 轨迹是双曲线;当e=1时,点P 轨迹是抛物线。 (2)椭圆及双曲线几何定义:椭圆:{P||PF 1|+|PF 2|=2a ,2a>|F 1F 2|>0,F 1、F 2为定点},双曲线{P|||PF 1|-|PF 2||=2a ,|F 1F 2|>2a>0,F 1,F 2为定点}。 (3)圆锥曲线的几何性质:几何性质是圆锥曲线内在的,固有的性质,不因为位置的改变而改变。 定性:焦点在与准线垂直的对称轴上 椭圆及双曲线中:中心为两焦点中点,两准线关于中心对称;椭圆及双曲线关于长轴、短轴或实轴、虚轴成轴对称,关于中心成中心对称。 (4)圆锥曲线的标准方程及解析量(随坐标改变而变) 举焦点在x 轴上的方程如下: 椭 圆 双 曲 线 抛 物 线 标准方程 1b y a x 2 22 2=+ (a>b>0) 1b y a x 2 22 2=- (a>0,b>0) y 2=2px (p>0) 顶 点 (±a ,0) (0,±b ) (±a ,0) (0,0) 焦 点 (±c ,0) ( 2 p ,0) 准 线 X=±c a 2 x=2 p - 中 心 (0,0) 焦半径 P(x 0,y 0)为圆锥曲线上一点,F 1、F 2分别为左、右焦点 |PF 1|=a+ex 0 |PF 2|=a-ex 0 P 在右支时: |PF 1|=a+ex 0 |PF 2|=-a+ex 0 P 在左支时: |PF 1|=-a-ex 0 |PF 2|=a-ex 0 |PF|=x 0+ 2 p

平面向量在解析几何中的应用

平面向量在解析几何中的应用 -----高三专题复习课教学案例 福建省福州格致中学宋建辉 一、引言: 平面向量是高中数学的新增内容,也是新高考的一个亮点。正因为如此,在2004年3月25日在校教学公开周中开设了《平面向量在解析几何中的应用》高三专题复习公开课,以求在教与学的过程中提高学生学习向量的兴趣,让学生树立并应用向量的意识。 二、背景: 向量知识在许多国家的中学数学教材中,早就成了一个基本的教学内容。在我国全面实施新课程后,向量虽然已进入中学,但仍处于起步的阶段。向量知识、向量观点在数学、物理等学科的很多分支有着广泛的应用,它具有代数形式和几何形式的“双重身份”,能融数形与一体,能与中学数学教学内容的的许多主干知识综合,形成知识交汇点。而在高中数学体系中,解析几何占有着很重要的地位,有些问题用常规方法去解决往往运算比较繁杂,不妨运用向量作形与数的转化,则会大大简化过程。但实际情况是很多学生在学习中就“平面向量”解平面向量题,不会应用平面向量去解决解析几何问题,学生应用向量的意识不强。鉴于这种情况,结合我校开展的构建“探究-合作”型教学模式研究的课题,开设本节《平面向量在解析几何中的应用》高三专题复习公开课,通过问题的探究、合作解决,旨在进一步探索“探究-合作”型教学模式,使学生树立并增强应用向量的意识。 在高中数学新课程教材中,学生学习平面向量在前,学习解析几何在后,而且教材中二者知识整合的不多,很多学生在学习中就“平面向量”解平面向量题,不会应用平面向量去解决解析几何问题。正因为如此,本节课这样设计: 1、教育家赞可夫说“要以知识本身吸引学生学习,使学生感到认识新事物的乐趣,体验克服困难的喜悦”;教育心理学认为:思维是从提出问题开始的;美国心理学家贾德通过实验证明“学习迁移的发生应有一个先决条件,就是学生需掌握原理,形成类比,才能让迁移到具体的类似学习中”。因此首先通过两个旧问题的引入解决,让学生体会向量的工具性特点,体会向量解题的优越性。 2、通过例 3、例4两个问题的探究解决,由此让学生发现,用向量法的最大优点是思路清晰,过程简洁,有意想不到的神奇效果。著名教育家布鲁纳说过:学习的最好刺激是对所学材料的兴趣,简单的重复将会引起学生大脑疲劳,学习兴趣衰退。这充分揭示方法求变的重要性,如果我们能重视向量的教学,必然能引导学生拓展思路,减轻负担。 三、问题:

立体几何与解析几何综合题训练

A C E 立体解析综合题练习1 1.如图,正方形ADEF 与梯形ABCD 所在平面互相垂直,已知//,AB CD AD CD ⊥,1 2 AB AD CD ==. (Ⅰ)求证:BF //平面CDE ; (Ⅱ)求平面BDF 与平面CDE 所成锐二面角的余弦值; (Ⅲ)线段EC 上是否存在点M ,使得平面BDM ⊥平面 BDF ?若存在, 求出EM EC 的值;若不存在,说明理由. 2.已知1(2,0)F -,2(2,0)F 两点,曲线C 上的动点P 满足12123 ||||||2 PF PF F F +=. (Ⅰ)求曲线C 的方程; (Ⅱ)若直线l 经过点(0,3)M ,交曲线C 于A ,B 两点,且12 MA MB = ,求直线l 的方程. 立体解析综合题练习2 1. 在如图所示的多面体中,EA ⊥平面ABC ,DB ⊥平面ABC ,BC AC ⊥, 且22====AE BD BC AC ,M 是AB 的中点. (Ⅰ)求证:CM ⊥EM ; (Ⅱ)求平面EMC 与平面BCD 所成的锐二面角的余弦值; (Ⅲ)在棱DC 上是否存在一点N ,使得直线MN 与平面EMC 所成的角为60?.若存在,指出点N 的位置;若不存在,请说明理由. 2.椭圆C:22 221(0)x y a b a b +=>>的两个焦点为F 1,F 2,点P 在椭圆C 上,且11212414,||,||.33PF F F PF PF ⊥== (Ⅰ)求椭圆C 的方程; (Ⅱ)若直线l 过圆M: x 2+y 2+4x-2y=0的圆心,交椭圆C 于,A B 两点,且A 、B 关于点M 对称, 求直线l 的方程. 立体解析综合题练习3 1.在如图所示的几何体中,四边形ABCD 为正方形,PA ⊥平面ABCD ,PA //BE ,AB =PA =4,BE =2. (Ⅰ)求证:CE //平面PAD ; (Ⅱ)求PD 与平面PCE 所成角的正弦值; (Ⅲ)在棱AB 上是否存在一点F ,使得 平面DEF ⊥平面PCE ?如果存在,求AF AB 的值; 如果不存在,说明理由. 2.已知抛物线C :2 2y px =(0p >)的焦点F (1,0),O 为坐标原点,A ,B 是抛物线C 上 异于O 的两点. (Ⅰ)求抛物线C 的方程; (Ⅱ)若直线OA ,OB 的斜率之积为1 2 - ,求证:直线AB 过x 轴上一定点. A B F E D C

圆锥曲线与向量小题

圆锥曲线小题专项训练 1.已知抛物线x y 82 =的准线与双曲线A,B 两点,双曲线的一条渐近线 F 是抛物线的焦点,,且△FAB 是直角三角形,则双曲线的标准方程是( ) 2所对应的图形变成方程221x y +=所对应的图形,需经过伸缩变换?为( ) C.43x x y y '=??'=? 3的左、右焦点,A 是椭圆上位于第一象限内的一点,点B 也在椭圆 上,且满足0=+OB OA (O 为坐标原点),0212=?F F AF ,若椭圆的离心率等于则直线AB 的方程是 ( ) . A . 4.双曲线具有光学性质:“从双曲线的一个焦点发出的光线经过双曲线反射 后,反射光线的反向延长线都汇聚到双曲线的另一个焦点。”由此可得如下结论:如右图,过双曲线C :右支上的点P 的切线l 平分12F PF ∠。现过原点作l 的平行线交1PF 于M ,则||MP 等于( ) A .a B .b C D .与点P 的位置有关 5 e 右焦点为F (c ,0),方程ax 2+bx -c =0的两个实根分别为x 1和x 2,则点P (x 1,x 2) ( ) A .必在圆x 2+y 2=2内 B .必在圆x 2+y 2=2上 C .必在圆x 2+y 2=2外 D .以上三种情形都有可能 6.如图,在ΔABC C ,以A 、H 为焦点的双曲线的离心率为 ( ) A .2 B .3 C D

7 F 1是左焦点,O 是坐标原点,若双曲线上存在点P ,使1||||PO PF =,则此双曲线的离心率的取值范围是( ) A .(]1,2 B .(1,)+∞ C .(1,3) D .[)2,+∞ 8.已知双曲线)0,0(122 22>>=-b a b y a x 的左、右焦点分别为F 1、F 2,点P 在双曲线的右支上,且|PF 1|=4|PF 2|,则此双曲线的离心率e 的最大值为( )A.34 B. 35 C.2 D. 3 7 9. M ,N ,P 为椭圆上任意一点,且直线PM 则直线PN 的斜率的取值范围是( ) A . B . C . ]2,8[-- D . ]8,2[ 10.设221a b +=,()0b ≠,若直线2ax by +=和椭圆 ( ) A 、 B 、[]1,1-; C 、(][),11,-∞-+∞ ; D 、[]2,2-. 11.已知实系数方程2(1)10x a x a b +++++=的两根分别为一个椭圆和一个双曲线的离心率, 值范围是( ) A .(2,1)-- B 12.如图,已知点B x 轴下方的端点,过B 作斜率为1的直线交椭圆于点M ,点P 在y 轴上,且 PM//x 轴,9=?BM BP ,若点P 的坐标为(0,t ) ,则t 的取值范围 是( )A .0

解析几何与平面几何选讲

1.已知△ABC的顶点B、C在椭圆x2/4+y2=1上,顶点A是椭圆的一个焦点,且椭圆的另外一个焦点在BC边上,则△ABC的周长是( ) A.2B.6 C.8D.12 2.抛物线上的点到直线距离的最小值是() A.B.C.D. 3.已知以椭圆的右焦点F为圆心,a为半径的圆与椭圆的右准线交于不同的两 点,则该椭圆的离心率的取值范围是() A.B.C.D. 4.已知椭圆的焦点是F1、F2,P是椭圆上的一个动点,过点F2向∠F1PF2的外角平分线作垂线,垂足为 M,则点M的轨迹是() A.圆B.椭圆C.直线D.双曲线的一支 5.如图,已知点B是椭圆的短轴位于x轴下方的端点,过B 作斜率为1的直线交 椭圆于点M,点P在y轴上,且PM//x轴,,若点P的坐标为(0,t),则t的取值范围 是() A.0

①AD+AE=AB+BC+CA; ②AF·AG=AD·AE ③△AFB ~△ADG 其中正确结论的序号是 A.①②B.②③C.①③D.①②③ 7. 如图2,A,E是半圆周上的两个三等分点,直径BC=4,AD⊥BC,垂足为D,BE与AD 相交与点F,则AF的长 为____________。 8.如图,已知圆中两条弦与相交于点,是延长线上一点,且 若与圆相切,则线段的长为__________. 9.已知点,动点满足条件.记动点的轨迹 为.则的方 程是____________. 10. 矩形的两条对角线相交于点,边所在直线的方程为

,点在边所在直线上. (I)求边所在直线的方程; (II)求矩形外接圆的方程; (III)若动圆过点,且与矩形的外接圆外切,求动圆的圆心的轨迹方程. 11. 已知平面上两定点M(0,-2)、N(0,2),P为一动点,满足. (I)求动点P的轨迹C的方程; (II)若A、B是轨迹C上的两不同动点,且. 分别以A、B为切点作轨迹C 的切线,设其交点 Q,证明为定值. 【参考答案】 1.C 解析:由椭圆定义知,△ABC的周长=4a。 2.A 解析:由几何知识知道,平移直线与抛物线相切, 切点到直线的距离最小。 3.C 解析:

【高考精品复习】第九篇 解析几何 第8讲 直线与圆锥曲线的位置关系

第8讲 直线与圆锥曲线的位置关系 【高考会这样考】 1.考查圆锥曲线中的弦长问题、直线与圆锥曲线方程的联立、根与系数的关系、整体代入和设而不求的思想. 2.高考对圆锥曲线的综合考查主要是在解答题中进行,考查函数、方程、不等式、平面向量等在解决问题中的综合运用. 【复习指导】 本讲复习时,应从“数”与“形”两个方面把握直线与圆锥曲线的位置关系.会判断已知直线与曲线的位置关系(或交点个数),会求直线与曲线相交的弦长、中点、最值、定值、点的轨迹、参数问题及相关的不等式与等式的证明问题. 基础梳理 1.直线与圆锥曲线的位置关系 判断直线l 与圆锥曲线C 的位置关系时,通常将直线l 的方程Ax +By +C =0(A 、B 不同时为0)代入圆锥曲线C 的方程F (x ,y )=0,消去y (也可以消去x )得到一个关于变量x (或变量y )的一元方程. 即??? Ax +By +C =0,F (x ,y )=0, 消去y 后得ax 2+bx +c =0. (1)当a ≠0时,设一元二次方程ax 2+bx +c =0的判别式为Δ,则Δ>0?直线与圆锥曲线C 相交; Δ=0?直线与圆锥曲线C 相切; Δ<0?直线与圆锥曲线C 无公共点. (2)当a =0,b ≠0时,即得到一个一次方程,则直线l 与圆锥曲线C 相交,且只有一个交点,此时,若C 为双曲线,则直线l 与双曲线的渐近线的位置关系是平行;若C 为抛物线,则直线l 与抛物线的对称轴的位置关系是平行. 2.圆锥曲线的弦长 (1)圆锥曲线的弦长 直线与圆锥曲线相交有两个交点时,这条直线上以这两个交点为端点的线段叫做圆锥曲线的弦(就是连接圆锥曲线上任意两点所得的线段),线段的长就是弦长.

高中数学知识点总结之平面向量与空间解析几何(经典必看)

56. 你对向量的有关概念清楚吗? (1)向量——既有大小又有方向的量。 ()向量的模——有向线段的长度,2||a → ()单位向量,3100|||| a a a a →→ → → == ()零向量,4000→ → =|| ()相等的向量长度相等方向相同5???? =→→ a b 在此规定下向量可以在平面(或空间)平行移动而不改变。 (6)并线向量(平行向量)——方向相同或相反的向量。 规定零向量与任意向量平行。 b a b b a → → → → → → ≠?=∥存在唯一实数,使()0λλ (7)向量的加、减法如图: OA OB OC →+→=→ OA OB BA →-→=→ (8)平面向量基本定理(向量的分解定理) e e a → → → 12,是平面内的两个不共线向量,为该平面任一向量,则存在唯一

实数对、,使得,、叫做表示这一平面内所有向量λλλλ12112212a e e e e →→→→→ =+ 的一组基底。 (9)向量的坐标表示 i j x y →→ ,是一对互相垂直的单位向量,则有且只有一对实数,,使得 ()a x i y j x y a a x y → →→→→ =+=,称,为向量的坐标,记作:,,即为向量的坐标() 表示。 ()()设,,,a x y b x y → → ==1122 ()()()则,,,a b x y y y x y x y → →±=±=±±11121122 ()()λλλλa x y x y →==1111,, ()()若,,,A x y B x y 1122 ()则,AB x x y y → =--2121 ()()||AB x x y y A B →= -+-212212,、两点间距离公式 57. 平面向量的数量积 ()··叫做向量与的数量积(或内积)。1a b a b a b →→→→→→ =||||cos θ []θθπ为向量与的夹角,,a b → → ∈0

高中数学立体几何解析几何 判定&性质&公式整理(全)

高中数学必修二复习 基本概念 公理1:如果一条直线上的两点在一个平面内,那么这条直线上的所有的点都在这个平面内。公理2:如果两个平面有一个公共点,那么它们有且只有一条通过这个点的公共直线。 公理3:过不在同一条直线上的三个点,有且只有一个平面。 推论1: 经过一条直线和这条直线外一点,有且只有一个平面。 推论2:经过两条相交直线,有且只有一个平面。 推论3:经过两条平行直线,有且只有一个平面。 公理4 :平行于同一条直线的两条直线互相平行。 等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等。 空间两直线的位置关系: 空间两条直线只有三种位置关系:平行、相交、异面 1、按是否共面可分为两类: (1)共面:平行、相交 (2)异面: 异面直线的定义:不同在任何一个平面内的两条直线或既不平行也不相交。 异面直线判定定理:用平面内一点与平面外一点的直线,与平面内不经过该点的直线是异面直线。 两异面直线所成的角:范围为( 0°,90° ) esp.空间向量法 两异面直线间距离: 公垂线段(有且只有一条) esp.空间向量法 2、若从有无公共点的角度看可分为两类: (1)有且仅有一个公共点——相交直线;(2)没有公共点——平行或异面 直线和平面的位置关系: 直线和平面只有三种位置关系:在平面内、与平面相交、与平面平行 ①直线在平面内——有无数个公共点 ②直线和平面相交——有且只有一个公共点 直线与平面所成的角:平面的一条斜线和它在这个平面内的射影所成的锐角。 esp.空间向量法(找平面的法向量) 规定:a、直线与平面垂直时,所成的角为直角,b、直线与平面平行或在平面内,所成的角为0°角 由此得直线和平面所成角的取值范围为[0°,90°] 最小角定理: 斜线与平面所成的角是斜线与该平面内任一条直线所成角中的最小角 三垂线定理及逆定理: 如果平面内的一条直线,与这个平面的一条斜线的射影垂直,那么它也与这条斜线垂直 esp.直线和平面垂直 直线和平面垂直的定义:如果一条直线a和一个平面内的任意一条直线都垂直,我们就说直线a和平面互相垂直.直线a叫做平面的垂线,平面叫做直线a的垂面。

平面向量与圆锥曲线的综合问题

平面向量与圆锥曲线的综合问题 例1 已知F 1、F 2分别是椭圆2 214 x y +=的左、右焦点. (Ⅰ)若P 是第一象限内该数轴上的一点,125 4 PF PF ?=- ,求点P 的作标; (Ⅱ)设过定点M (0,2)的直线l 与椭圆交于同的两点A 、B ,且∠ADB 为锐角(其中O 为作标原点),求直线l 的斜率k 的取值范围. 解析:本题主要考查直线、椭圆、平面向量的数量积等基础知识,以及综合运用数学知识解决问题及推理计算能力. (Ⅰ)易知2a =,1b = ,c = ∴1(F ,2F .设(,)P x y (0,0)x y >>.则 2 2 125 (,,)34PF PF x y x y x y ?=--=+-=-,又2214 x y +=, 联立22 227414 x y x y ?+=????+=?? ,解得221134x x y y =??=?????== ???? ,P . (Ⅱ)显然0x =不满足题设条件.可设l 的方程为2y kx =+,设11(,)A x y ,22(,)B x y . 联立2 2222214(2)4(14)1612042x y x kx k x kx y kx ?+=??++=?+++=??=+? ∴1221214x x k = +,122 1614k x x k +=-+由22 (16)4(14)120k k ?=-?+?> 22163(14)0k k -+>,2430k ->,得23 4 k >.①又AOB ∠为锐角 c o s 00A O B O A O B ?∠>??>,∴12120OA OB x x y y ?=+> 又212121212(2)(2)2()4y y kx kx k x x k x x =++=+++ ∴ 1212x x y y +21212(1)2()4k x x k x x =++++222 1216(1)2()41414k k k k k =+? +?-+++ 222 12(1)21641414k k k k k +?=-+++224(4)014k k -=>+∴2144k -<<.②

立体与平面解析解析几何(研究生整理)

立体与平面解析解析几何 1. 常见多面体:棱柱,棱锥,棱台 常见的旋转体:圆柱,圆锥,圆台,球 平面的表示:通常用希腊字母α、β、γ表示,如平面α 直线一般用小写英语字母a, b, l或者大写字母直线上的两个点AB表示。 点与平面的关系:点A在平面内,记作;点不在平面内, 记作 点与直线的关系:点A的直线l上,记作:A∈l;点A在直线l外,记作A l; 直线与平面的关系:直线l在平面α内,记作lα;直线l不在平面α内,记作lα。 4. 四个公理 公理1:如果一条直线的两点在一个平面内,那么这条直线是所有的点都在这个平面内。 符号语言 公理2:经过不在同一条直线上的三点,有且只有一个平面。 公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线 符号:平面α和β相交,交线是a,记作α∩β=a。 公理4:平行于同一条直线的两条直线互相平行 5. 直线和平面之间的位置关系 ★线面平行: ⑴判定:平面外一条直线与此平面内的一条直线平行,则该直线与此 平面平行 ⑵性质:一条直线与一个平面平行,则过这条直线的任一平面与此平

面的交线与该直线平行 ★面面平行: ⑴判定:一个平面内的两条相交直线与另一个平面平行,则这两个平面平行 ⑵性质:如果两个平行平面同时和第三个平面相交,那么它们的交线平行 ★线面垂直: ⑴定义:如果一条直线垂直于一个平面内的任意一条直线,那么就说这条直线和这个平面垂直。 ⑵判定:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直 ⑶性质:垂直于同一个平面的两条直线平行。 ★面面垂直: ⑴定义:两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直。 ⑵判定:一个平面经过另一个平面的一条垂线,则这两个平面垂直 ⑶性质:两个平面互相垂直,则一个平面内垂直于交线的直线垂直于另一个平面。 6. 思考途径 证明直线与直线的平行的思考途径 (1)转化为二直线同与第三条直线平行; (2)转化为线面平行; 证明直线与平面的平行的思考途径 (1)转化为线线平行; (2)转化为面面平行. 证明平面与平面平行的思考途径 (1)转化为线面平行; (2)转化为线面垂直. 证明直线与直线的垂直的思考途径 (1)转化为线面垂直; (2)转化为线与另一线的射影垂直; 证明直线与平面垂直的思考途径 (1)转化为该直线与平面内相交二直线垂直; (2)转化为该直线与平面的一条垂线平行; (3)转化为该直线垂直于另一个平行平面; 证明平面与平面的垂直的思考途径

怎样学好圆锥曲线

怎样学好圆锥曲线(解析几何的高考热点与例题解析)圆锥曲线将几何与代数进行了完美结合.借助纯代数的解决手段研究曲线的概念和性质及直线与圆锥曲线的位置关系,从数学家笛卡尔开创了坐标系那天就已经开始. 高考中它依然是重点,主客观题必不可少,易、中、难题皆有.为此需要我们做到: 1.重点掌握椭圆、双曲线、抛物线的定义和性质.这些都是圆锥曲线的基石,高考中的题目都涉及到这些内容. 2.重视求曲线的方程或曲线的轨迹,此处作为高考解答题的命题对象难度较大.所以要掌握住一般方法:定义法、直接法、待定系数法、相关点法、参数法等. 3.加强直线与圆锥曲线的位置关系问题的复习.此处一直为高考的热点.这类问题常涉及到圆锥曲线的性质和直线的基本知识点、线段的中点、弦长、垂直问题,因此分析问题时利用数形结合思想和设而不求法与弦长公式及韦达定理联系去解决.这样加强了对数学各种能力的考查. 4.重视对数学思想、方法进行归纳提炼,达到优化解题思维、简化解题过程. (1)方程思想 解析几何的题目大部分都以方程形式给定直线和圆锥曲线,因此把直线与圆锥曲线相交的弦长问题利用韦达定理进行整体处理,就简化解题运算量. (2)用好函数思想方法 对于圆锥曲线上的一些动点,在变化过程中会引入一些相互联系、相互制约的量,从而使一些线的长度及a,b,c,e之间构成函数关系,函数思想在处理这类问题时就很有效. (3)掌握坐标法 坐标法是解决有关圆锥曲线问题的基本方法.近几年都考查了坐标法,因此要加强坐标法的训练. 考点一求圆锥曲线方程 求指定的圆锥曲线的方程是高考命题的重点,主要考查学生识图、画图、数形结合、等价转化、分类讨论、逻辑推理、合理运算及创新思维能力,解决好这类问题,除要求同学们熟练掌握好圆锥曲线的定义、性质外,命题人还常常将它与对称问题、弦长问题、最值问题等综合在一起命制难度较大的题。 解决这类问题常用定义法和待定系数法。 ●思路方法:一般求已知曲线类型的曲线方程问题,可采用“先定形,后定式,再定量”的步骤。 定形——指的是二次曲线的焦点位置与对称轴的位置. 定式——根据“形”设方程的形式,注意曲线系方程的应用,如当椭圆的焦点不确定在哪个坐标轴上时,

平面向量及解析几何

六、平面向量 考试要求:1、理解向量的概念,掌握向量的几何表示,了解共线向量的概念。2、掌握向量的加法和减法。3、掌握实数与向量的积,理解两个向量共线的充要条件。4、了解平面向量的基本定理,理解平面向量的坐标的概念,掌握平面向量的坐标运算。5、掌握平面向量的数量积及其几何意义,了解用平面向量的数量积可以处理有关长度、角度和垂直问题,掌握向量垂直的条件。6、掌握平面两点间的距离公式,以及线段的定比分点和中点坐标公式,并且能熟练运用,掌握平移公式。 1、已知向量与不共线,且0||||≠=,则下列结论中正确的是 A .向量-+与垂直 B .向量-与垂直 C .向量b a +与a 垂直 D .向量b a b a -+与共线 2.已知在△ABC 中,?=?=?,则O 为△ABC 的 A .内心 B .外心 C .重心 D .垂心 3.在△ABC 中设a AB =,b AC =,点D 在线段BC 上,且3BD DC = ,则AD 用b a ,表 示为 。 4、已知21,e e 是两个不共线的向量,而→→→ →→ → +=-+=2121232)2 51(e e b e k e k a 与是两个共线 向量,则实数k = . 5、设→ i 、→ j 是平面直角坐标系内分别与x 轴、y 轴方向相同的两个单位向量,且 →→+=j i 24,→ →+=j i 43,则△OAB 的面积等于 : A .15 B .10 C .7.5 D .5 6、已知向量OB OA OC OB OA +==--=),3,2(),1,3(,则向量OC 的坐标是 , 将向量按逆时针方向旋转90°得到向量,则向量的坐标是 . 7、已知)3,2(),1,(==k ,则下列k 值中能使△ABC 是直角三角形的值是 A . 2 3 B .21- C .-5 D .31- 8、在锐角三角形ABC 中,已知ABC ?==,1||,4||的面积为3,则=∠BAC ,?的值为 . 9、已知四点A ( – 2,1)、B (1,2)、C ( – 1,0)、D (2,1),则向量与的位置关系是 A. 平行 B. 垂直 C. 相交但不垂直 D. 无法判断 10、已知向量OB OA CA OC OB 与则),sin 2,cos 2(),2,2(),0,2(αα===夹角的范围

高中数学立体几何解析几何常考题汇总

新课标立体几何解析几何常考题汇总 1、已知四边形ABCD 是空间四边形,,,,E F G H 分别是边,,,AB BC CD DA 的中点 (1) 求证:EFGH 是平行四边形 (2) 若BD=AC=2,EG=2。求异面直线AC 、BD 所成的角和EG 、BD 所成的角。 证明:在ABD ?中,∵,E H 分别是,AB AD 的中点∴1 //,2 EH BD EH BD = 同理,1 //,2 FG BD FG BD =∴//,EH FG EH FG =∴四边形EFGH 是平行四边形。 (2) 90° 30 ° 考点:证平行(利用三角形中位线),异面直线所成的角 2、如图,已知空间四边形ABCD 中,,BC AC AD BD ==,E 是AB 的中点。 求证:(1)⊥AB 平面CDE; (2)平面CDE ⊥平面ABC 。 证明:(1)BC AC CE AB AE BE =??⊥?=? 同理, AD BD DE AB AE BE =? ?⊥?=? 又∵CE DE E ?= ∴AB ⊥平面CDE (2)由(1)有AB ⊥平面CDE 又∵AB ?平面ABC , ∴平面CDE ⊥平面ABC 考点:线面垂直,面面垂直的判定 A H G F E D C B A E D B C

3、如图,在正方体1111ABCD A B C D -中,E 是1AA 的中点, 求证: 1//A C 平面BDE 。 证明:连接AC 交BD 于O ,连接EO , ∵E 为1AA 的中点,O 为AC 的中点 ∴EO 为三角形1A AC 的中位线 ∴1//EO AC 又EO 在平面BDE 内,1A C 在平面BDE 外 ∴1//A C 平面BDE 。 考点:线面平行的判定 4、已知ABC ?中90ACB ∠=,SA ⊥面ABC ,AD SC ⊥,求证:AD ⊥面SBC . 证明:90ACB ∠=∵° BC AC ∴⊥ 又SA ⊥面ABC SA BC ∴⊥ BC ∴⊥面SAC BC AD ∴⊥ 又,SC AD SC BC C ⊥?=AD ∴⊥面SBC 考点:线面垂直的判定 5、已知正方体1111ABCD A B C D -,O 是底ABCD 对角线的交点. 求证:(1) C 1O ∥面11AB D ;(2)1 AC ⊥面11AB D . 证明:(1)连结11A C ,设 11111 A C B D O ?=,连结1AO ∵ 1111ABCD A B C D -是正方体 11A ACC ∴是平行四边形 ∴A 1C 1∥AC 且 11A C AC = 又1,O O 分别是11,A C AC 的中点,∴O 1C 1∥AO 且11O C AO = 11AOC O ∴是平行四边形 111,C O AO AO ∴? ∥面11AB D ,1C O ?面11AB D ∴C 1O ∥面11AB D (2)1CC ⊥面1111A B C D 11!CC B D ∴⊥ 又1111 A C B D ⊥∵, 1111B D A C C ∴⊥面 1 11AC B D ⊥即 同理可证11A C AD ⊥, 又 1111 D B AD D ?= A 1 E D 1 C 1 B 1 D C B A S D C B A D 1O D B A C 1 B 1 A 1 C

高中数学 考前归纳总结 圆锥曲线与向量的综合性问题

圆锥曲线与向量的综合性问题 一、常见基本题型: 在向量与圆锥曲线相结合的题目中,主要是利用向量的相等、平行、垂直去寻找坐 标之间的数量关系,往往要和根与系数的关系结合运用。 (1) 问题的条件以向量的形式呈现,间接的考查向量几何性质、运算性质, 例1、设(1,0)F ,M 点在x 轴的负半轴上,点P 在y 轴上,且,MP PN PM PF =⊥. 当点P 在y 轴上运动时,求点N 的轨迹C 的方程; 解:(解法一)MP PN =,故P 为MN 的中点. 设(,)N x y ,由M 点在x 轴的负半轴上,则(,0),(0,),(0)2 y M x P x -> 又(1,0)F ,(,),(1,)22 y y PM x PF ∴=--=- 又PM PF ⊥,2 04 y PM PF x ∴?=-+= 所以,点N 的轨迹C 的方程为24(0)y x x => (解法二)MP PN =,故P 为MN 的中点. 设(,)N x y ,由M 点在x 轴的负半轴上,则(,0),(0,),(0)2 y M x P x -> - 又由,MP PN PM PF =⊥,故FN FM =,可得22FN FM = 由(1,0)F ,则有222(1)(1)x y x -+=--,化简得:24(0)y x x => 所以,点N 的轨迹C 的方程为24(0)y x x => 例2、已知椭圆的方程为22221(0)x y a b a b +=>>,它的一个焦点与抛物线28y x =的焦点 重合,离心率e =,过椭圆的右焦点F 作与坐标轴不垂直的直线l ,交椭圆 于A 、B 两点. (1)求椭圆的标准方程; (2)设点(1,0)M ,且()MA MB AB +⊥,求直线l 的方程; 解:(Ⅰ)设椭圆的右焦点为(,0)c ,因为2 8y x =的焦点坐标为(2,0),所以2c = 因为c e a ==25a =,21b =

平面解析几何知识点总结.doc

基本要求① .掌握两条直线平行、垂直的条件,能根据直线方程判断两条直线的位置关系; ②.掌握两条直线的夹角公式、到角公式和点到直线的距离公式。 ③ . 掌握圆的标准方程和一般方程 . ④ . 掌握圆的方程的两种形式,并能合理合理运用; ⑤. 灵活运用圆的几何性质解决问题 . 1 直线方程的五种形式 点斜式:y y0k ( x x0 ) ,(斜率存在 ) 斜截式:y kx b (斜率存在 ) 两点式: y y1 x x 1, (不垂直坐标轴 ) y2 y1 x2 x1 截距式:x y 1 (不垂直坐标轴 ,不过原点 ) a b 一般式: Ax By C 0 2.直线与直线的位置关系: ( 1)有斜率的两直线 l1:y=k 1x+b1; l2:y=k 2x+b2;有:① l1∥ l2 k1=k2且 b1≠ b2;② l 1⊥ l2 k1·k2 =-1 ; ③ l 1与 l 2相交k 1≠ k2 ④l 1与 l 2重合k1=k2 且 b1=b2。( 2)一般式的直线l : A x+B y+C =0, l : A x+B y+C =0 有:① l ∥ l 2 AB-A B=0;且 BC-B 2 C ≠ 0 1 1 1 1 2 2 2 2 1 1 2 2 1 1 2 1 ② l1⊥ l2A1A2+B1B2=0 ③ l1与 l2相交 A 1B2-A 2B1≠ 0 ④ l1与 l2重合 A 1B2-A 2B1=0 且 B1C2-B 2C1=0。 3.点与直线的位置关系: 点 P( x , y )到直线 Ax+By+C=0的距离: d Ax0 By0 C 。 00 A2 B 2 平行直线 Ax+By+C1=0 与 Ax+By+C2=0 之间的距离为 d C1 C2 A2 B 2 两点间距离公式:| PP | (x x )2 ( y y )2 1 2 1 2 1 2 .4 直线系方程 ①过直线 l 1:A1x+B1y+C1=0, l 2:A2x+B2y+C2=0交点的直线系方程为:A1x+B1y+C1+λ( A2x+B2y+C2)=0(λ∈R)( 除l2外 ) 。 ②过定点 M ( x0 , y0 ) 的直线系方程为 y y0 k( x x0 ) (其中不包括直线x x0) ③和直线 Ax By C 0 平行的直线方程为Ax By C ' 0 (C C ') ④和直线 Ax By C 0 垂直的直线方程为Bx Ay C ' 0 5.圆的定义 : 平面内与定点距离等于定长的点的集合( 轨迹 ) 叫圆 . 在平面直角坐标系内确定一个圆需要三个独立条件: 如三个点 , 半径和圆心 ( 两个坐标 ) 等 . 2 2 2 6. 圆的方程 (1)标准式: (x-a) +(y-b) =r (r>0),其中 r 为圆的半径, (a, b)为圆心。 2 2 2 2 D E 1 D 2 E 2 4F (2)一般式: x +y +Dx+Ey+F=0(D+E -4F>0),其中圆心为( , ) ,半径为 2 2 2 (3) 参数方程 : x r cos , x a r cos (是参数) . 消去θ可得普通方程y r sin y b r sin ( 4) A(x 1, y1)B(x 2,y2)为直径的圆: (x-x1)(x-x 2)+(y-y 1)(y-y 2)=0; (5) .过圆与直线(或圆)交点的圆系方程: i)x2+y2+Dx+Ey+F+λ (Ax+By+C)=0,表示过圆与直线交点圆的方程

高考数学平面向量与解析几何

第18讲 平面向量与解析几何 在高中数学新课程教材中,学生学习平面向量在前,学习解析几何在后,而且教材中二者知识整合的不多,很多学生在学习中就“平面向量”解平面向量题,不会应用平面向量去解决解析几何问题。用向量法解决解析几何问题思路清晰,过程简洁,有意想不到的神奇效果。著名教育家布鲁纳说过:学习的最好刺激是对所学材料的兴趣,简单的重复将会引起学生大脑疲劳,学习兴趣衰退。这充分揭示方法求变的重要性,如果我们能重视向量的教学,必然能引导学生拓展思路,减轻负担。 一、知识整合 平面向量是高中数学的新增内容,也是新高考的一个亮点。 向量知识、向量观点在数学、物理等学科的很多分支有着广泛的应用,它具有代数形式和几何形式的“双重身份”,能融数形与一体,能与中学数学教学内容的的许多主干知识综合,形成知识交汇点。而在高中数学体系中,解析几何占有着很重要的地位,有些问题用常规方法去解决往往运算比较繁杂,不妨运用向量作形与数的转化,则会大大简化过程。 二、例题解析 例1、(2000年全国高考题)椭圆14 92 2=+y x 的焦点为F ,1F 2,点P 为其上的动点,当∠F 1P F 2为钝角时,点P 横坐标的取值范围是___。 解:F 1(-5,0)F 2(5,0),设P (3cos θ,2sin θ) 21PF F ∠ 为钝角 ∴ 123cos ,2sin )3cos ,2sin )PF PF θθθθ?= -?- ( =9cos 2θ-5+4sin 2θ=5 cos 2θ-1<0 解得:55cos 55<<-θ ∴点P 横坐标的取值范围是(5 53,553-) 点评:解决与角有关的一类问题,总可以从数量积入手。本题中把条件中的角为钝角转化为向量的数量积为负值,通过坐标运算列出不等式,简洁明了。 例2、已知定点A(-1,0)和B(1,0),P 是圆(x-3)2+(y-4)2=4上的一动点,求22 PA PB +的最大值和最小值。 分析:因为O 为AB 的中点,所以2,PA PB PO += 故可利用向量把问题转化为求向量OP 的最值。 解:设已知圆的圆心为C ,由已知可得:{1,0},{1,0}OA OB =-=

高三数学立体几何,解析几何复习建议

高三数学《立体几何》、《解析几何》的复习建议 仙居中学赵娅芳 《立体几何》 一、2009年浙江(文科)考题分析 紧张又期待的2009年新高考已过去,为迎接不久到来的2010年高考,我们又得时刻准备着,整装待发……大家都十分关注新高考考什么?怎么考?非常疑惑高三复习教什么?怎么教?我想:2009年的浙江省高考试题为我们所有高三数学老师的复习起了一定的导向作用.2009年的浙江文科数学试题仍保持“1+1+1”的题型,即一道选择题,一道填空题和一道解答题组成,分值23分,占全卷的15.3%.从考查内容来看:线线、线面、面面的平行与垂直关系是立体几何的主干知识,还是今年新高考考查的重点.如浙江文(4)、文(19)第(Ⅰ)题;求角的问题主要考了直线与平面所成的角(应该是重点考查对象),如浙江文(19)第(Ⅱ)题;值得我们眼睛一亮和重视的是填空题第12题对新增内容——三视图的考查.从考查要求看:试题均可用常规常法和通性通法来解决,淡化特殊技巧,但是考生要完整准确地解答,则需要有扎实的双基和良好的数学素养.方法能力上:在考查空间想象能力的同时,又考查了推理论证能力、运算能力和分析问题、解决问题的能力. 二、几点复习建议 1. 重视对《考试说明》的研究,并结合对2009年高考题的认真分析,深化对新课程高考题的认识. 《考试说明》是高考命题的指挥棒,它规定了考试的性质、考试的要求、考试的内容、考试形式及试卷结构等各方面的要求,而且对考查不同的知识提出了明确的层次要求.因此认真研究《考试说明》,并以此为复习备考的依据,也为复习的指南,做到复习既不超纲,又能有针对性、有重点地进行复习,切实提高复习的效率. (1)细心推敲对考试内容三个不同层次的要求.准确掌握哪些内容是了解,哪些是理解,哪些是掌握.这样既明了知识系统的全貌,又知晓了知识体系的主干及重点内容.如2009年《考试说明》(文科)对求角的的问题指出:了解两条异面直线所成角及二面角的概念,理解并会求直线与平面所成角.因此复习时就没有必要在求两条异面直线所成角及二面角的问题上进行过于复杂的探讨,应重点放在求直线与平面所成角的问题上.今年文科第19题的第(Ⅱ)题就

圆锥曲线综合练习试题(有答案)

圆锥曲线综合练习 一、 选择题: 1.已知椭圆221102 x y m m +=--的长轴在y 轴上,若焦距为4,则m 等于( ) A .4 B .5 C .7 D .8 2.直线220x y -+=经过椭圆22 221(0)x y a b a b +=>>的一个焦点和一个顶点,则该椭圆的离心率为( ) A B .12 C .2 3 3.设双曲线22 219 x y a -=(0)a >的渐近线方程为320x y ±=,则a 的值为( ) A .4 B .3 C .2 D .1 4.若m 是2和8的等比中项,则圆锥曲线2 2 1y x m +=的离心率是( ) A B C D 5.已知双曲线22 221(00)x y a b a b -=>>,,过其右焦点且垂直于实轴的直线与双曲线交于M N , 两点,O 为坐标原点.若OM ON ⊥,则双曲线的离心率为( ) A B 6.已知点12F F ,是椭圆2 2 22x y +=的两个焦点,点P 是该椭圆上的一个动点,那么12||PF PF +u u u r u u u u r 的最小值是( ) A .0 B .1 C .2 D .7.双曲线221259 x y -=上的点到一个焦点的距离为12,则到另一个焦点的距离为( ) A .22或2 B .7 C .22 D .2 8.P 为双曲线22 1916 x y -=的右支上一点,M N ,分别是圆22(5)4x y ++=和22(5)1x y -+= 上的点, 则||||PM PN -的最大值为( ) A .6 B .7 C .8 D .9 9.已知点(8)P a ,在抛物线24y px =上,且P 到焦点的距离为10,则焦点到准线的距离为( ) A .2 B .4 C .8 D .16 10.在正ABC △中,D AB E AC ∈∈,,向量12DE BC =u u u r u u u r ,则以B C ,为焦点,且过D E ,的双曲线离心率为( ) A B 1 C 1 D 1 11.两个正数a b ,的等差中项是92,一个等比中项是a b >,则抛物线2b y x a =-的焦点坐标是( ) A .5(0)16- , B .2(0)5-, C .1(0)5-, D .1 (0)5 , 12.已知12A A ,分别为椭圆22 22:1(0)x y C a b a b +=>>的左右顶点,椭圆C 上异于12A A ,的点P

相关文档
相关文档 最新文档